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Abstract

We consider the hydrostatic configuration of a body floating freely
on a liquid. Under the influence of gravitational and capillary forces
there exists an equilibrium solution with contact angle π/2. This
solution is the minimizer of a variational problem with an obstacle
condition; the corresponding free boundary consists of the curve where
the capillary surface meets the floating body.



1 Introduction

This is the first part of an investigation into stationary motions of floating
bodies on a Navier-Stokes liquid. It is our goal to provide a mathematical
framework incorporating a theory of existence and regularity of solutions to
the corresponding equations of motion. In this first part, we will treat the
hydrostatic case, that is, the case with the liquid at rest. These results are
the basis of the treatment of the hydrodynamic case.

1.1 The general problem

Fluid flows around a rigid body that is fully immersed in a (generally un-
bounded) reservoir of liquid have been studied in great detail, in particular
for viscous, incompressible fluids whose motions are described by the Navier-
Stokes equations. Much less attention has been paid to floating bodies that
are only partly in contact with the liquid. We can think of a body B that
is moving according to some exterior force on top of a layer of fluid. The
moving body then causes a motion of the liquid. On the other hand, the
fluid may move under the influence of exterior forces, and this motion will
then carry the floating body along. Finally, one can consider forces acting
on B and on the fluid and their interaction results in a motion of both.
For ideal fluids, the problem of floating bodies has been investigated in
[Joh49], [Joh50] by F. John. Although we do not address this type of fluid
here (and also not in part II of this paper, where we deal with viscous fluids),
we recommend John’s work because it is the first analytical contribution (at
least as far as we know). Furthermore, his results are presented in a truly
exemplary manner. More recently, floating bodies have been investigated
numerically by N. Parolini and A. Quarteroni in their work on mathematical
modelling and numerical simulation for yacht engineering; for an overview,
we refer to [PQ05].
We consider a viscous incompressible Newtonian fluid that occupies a layer
G of finite depth (see Figure 1). We assume that G is bounded from below by
the rigid bottom Σ0 = {x = (x1, x2, x3) : x3 = 0}, from above by a capillary
surface Σ and by the floating body B. The part of its boundary ∂B that
is wetted by the fluid is denoted by ΣB, and we assume that the height of
Σ tends to 1 as x2

1 + x2
2 tends to infinity. We are interested in solutions to

the equations of motion of this system that are stationary with respect to a
coordinate system attached to B. In general, both the motion of the body
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and of the fluid are unknowns. We will, however, take the motion of the
body to be rigid, that is vB = ξ+ω ∧ x for some a priori unknown constants
ξ, ω ∈ R3. The equations of motion of the fluid, expressed in terms of the
Eulerian velocity v relative to the frame attached to B and the corresponding
pressure p, are

(1)


−ν∆ v +Dp+ (v ·D) v + (ξ ·D) v − (ω ∧ x) ·Dv

+ ω ∧ v = f ,

div v = 0

in the domain G occupied by the fluid. Note that this domain is fixed in the
frame attached to B. On the bottom of the reservoir, we assume the no-slip
boundary condition

(2) v(x) = 0 on Σ0.

Moreover, we assume the fluid is at rest at infinity:

(3) v(x)→ 0 as x2
1 + x2

2 →∞.

On ∂B∩∂G, the wetted part of the body, we also consider the no-slip bound-
ary condition

(4) v(x) = vB(x).

On the capillary surface Σ, there holds the kinematic condition

(5) v(x) · nΣ(x) = 0 ,

where nΣ is the normal on Σ that is pointing out of G.
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As a capillary surface cannot resist tangential stresses, we get

(6) τk(x) · T
(
v(x), p(x)

)
· nΣ(x) = 0 , k = 1, 2,

where τ1 and τ2 span the tangent plane to Σ, and T (v, p) = −p I + 2ν D(v)
is the stress tensor of the fluid, and D(v) = 1

2
(Dv+DvT ) denotes the defor-

mation tensor. Next, we have

(7) nΣ(x) · T
(
v(x), p(x)

)
· nΣ(x) = 2σH(x)

on Σ, which means that the normal component of the stress vector is pro-
portional to the mean curvature H(x) of Σ; σ denotes the capillary constant.
Furthermore, we require that Σ meets the rigid body in a contact line Γ
under some prescribed angle α, i.e.,

(8) cos (nB , nΣ) = cos(α) .

The interaction between the fluid and the floating body is described by equi-
librium conditions that involve

(9)

∫
∂B∩∂G

T (v, p) · n dσ and

∫
∂B∩∂G

(T (v, p) ∧ n) ∧ x dσ,

the force and the torque that are exerted by the fluid on the body, as well as
the corresponding quantities of B that reflect the body’s weight and the forces
that move B. As the various possibilities lead to different boundary value
problems for the Navier-Stokes equations, we will not discuss them here in
detail but rather do so when we investigate the solutions to these problems.
In all of these cases, however, the density of B, and hence, the buoyancy
force are part of the problem, and therefore, we discuss the density’s role in
Section 1.2, where we concentrate on the hydrostatic problems that arise in
the method of proof for the flow problems.
The equations (1)–(8) together with the equilibrium conditions that involve
(9) constitute a free-boundary problem for the Navier-Stokes equations; the
unknowns are the velocity and the pressure of the fluid as well as the do-
main G that is occupied by the liquid. The free boundary consists of Σ
and of the wetted part of B. Free-boundary problems involving a capillary
surface have been solved by successive approximations (or by the implicit
function theorem), see e.g. [Sat76], [Bem81]. We will apply the method of
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successive approximations to solve (1)–(9). Roughly speaking, this involves
the following steps: One starts with some configuration, for example by
setting all exterior forces to zero, except for gravity; then, the correspond-
ing velocity is zero, and G0 is determined by gravity only. In G0 we solve
the Navier-Stokes equations for given data under the boundary conditions
(2) - (6) and the equilibrium condition for (9). For the solution (v1, p1),
we evaluate nΣ(x) · T (v1(x), p1(x)) · nΣ(x)=: g1(x) and solve the capillary
problem (7) and (8) for this datum g1(x), where the position of B is a fur-
ther unknown. This leads to a new domain G1 in which we solve again the
Navier-Stokes equations for v2 and p2, and so on. Finally, we show that the
sequence {(vn, pn,Gn)} converges to a solution of the free boundary problem.

1.2 The hydrostatic problem

We will start our investigation with the hydrostatic problem. More precisely,
we will formulate and solve the equations governing the equilibrium of a body
floating on a fluid that is at rest.
In order to solve the hydrostatic problem, the capillary problem (7), (8),
together with appropriate fluid-structure conditions, is formulated for an
infinite reservoir of fluid that extends over all of R2. In order to solve the
problem in an infinite reservoir, we exhaust R2 by discs BR(0), and let R
tend to infinity. In doing so, the capillary surface has finite area, hence,
finite energy, and therefore, we can employ variational methods.
Various capillary problems involving floating bodies have been studied in
recent years, see e.g. [Fin09]. Existence, stability, uniqueness and non-
uniqueness and geometrical properties of special solutions, usually symmetric
ones, were investigated, but to our knowledge, an existence theorem for a
general situation has not been established. Therefore, our results for (7) and
(8) are not only steps toward a solution of the free-boundary problem for
the Navier-Stokes equations; they are hopefully also of some interest in the
theory of capillary surfaces.
So let G : = Ω × R+ be a cylinder in R3 whose cross section Ω ⊂ R2 is a
bounded domain. B is a rigid body, and we denote by B(c, R) its position
after some Euclidian motion by a translation c ∈ R3 and a rotation through
some angle α about an axis that contains the center of B; we denote this
rotation by R = R(α) ∈ SO(3).
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We assume that the closed set B(c, R) is contained in G and that the fluid
occupies some set E in G \ B(c, R); then, we consider the energy functional

(10) E(c, R;E) : = σ

∫
G\B(c,R)

|DϕE|+ ρg

∫
E

x3 dx+ ρ0 g

∫
B(c,R)

x3 dx

The first integral in (10) denotes the surface energy of the interface between
the fluid and the air above it; σ > 0 is the capillary constant, and

∫
G\B(c,R)

|DϕE| := sup


∫
G\B(c,R)

ϕE div g dx : g ∈ C1
c (G \ B(c, R);R3) , |g(x)| ≤ 1


is the perimeter of E in G \ B(c, R). The gravitational energy of the fluid
and of the body is ρ g

∫
E
x3dx and ρ0 g

∫
B(c,R)

x3 dx, respectively. Here, ρ and

ρ0 denote the density of the fluid and of the body.

Remark 1.1. One could add the adhesion energy

−κ1

∫
∂G

ϕE dσ − κ2

∫
∂B(c,R)

ϕE dσ

of the fluid which is proportional to the wetted part of the boundary of the
cylinder and of the boundary of B. For κ1, κ2 6= 0 this leads to contact angles
different from π

2
. In view of our applications to the free-boundary problems

for the Navier-Stokes equations, we restrict ourselves to the case that the
capillary surface meets the floating body in a right angle because in this case,
the solutions of the Navier-Stokes equations are regular up to the ridge.

In section 2 we will show that the minimization problem

(11) E(c, R;E)→ min . in C

with

(12) C :=
{(
c, R;E

)
: B(c, R)⊆G, E⊆G\B(c, R) measurable, vol(E)=V0

}
has a solution. For applications to the flow problem, we need to know that
the solution (c, R;E) is locally unique and that ∂E is the graph of some real
function that is defined on some subset of Ω.
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As we cannot prove these properties for solutions E of (11), we give a sec-
ond existence result which is more restricted with respect to the admissible
values of ρ0

ρ
but where the capillary surface is a graph of a real function; the

boundary ∂B(c, R) acts as an obstacle in this variational problem. Based
on this result, we show properties of the solution that are needed in later
applications.
Once the capillary surface is described by a function, rather than a set,
it is possible to calculate the first variation of the energy. For a capillary
problem without a floating body, the result is an equation for surfaces of
prescribed mean curvature and a boundary condition involving the contact
angle. Variations of the position and the orientation of B lead to further
equilibrium conditions that reflect the fact that, in order to move B, one has
to work against the forces that the fluid exerts on B as well as the force that
acts in the capillary suface.
These conditions have already been established by J. Mc Cuan in [McC07];
here, the author even allows for the more general case of a deformable body.
All such variations can be regarded as special cases of the class of general
variations studied by M. Giaquinta and S. Hildebrandt in [GH96], Chapter
II, §§1-3, where variations of the independent and dependent variables are
carried out simultaneously. This means in our case of an obstacle whose
position is unknown that the variations of both types of variables depend
on each other. But rather than applying the general variation formula from
[GH96], p. 175, we give a proof of the present case with the methods from
[GH96] which is rather short.
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2 Existence of solutions: the general case

We consider the variational problem

E(c, R;E) := σ

∫
G\B(c,R)

|DϕE|+ ρg

∫
E

x3 dx+ ρ0g

∫
B(c,R)

x3 dx→ min . in C

with

C :=
{(
c, R;E

)
: B(c, R) ⊆ G, E ⊆ G \ B(c, R) measurable, vol(E) = V0

}
,

cf. (10), (12).

Theorem 2.1. The problem

E(c, R;E)→ min . in C

has a solution in C.

Proof. The functional E(c, R;E) is clearly bounded from below by zero, and
we denote its infimum by m0. Then, there exists a minimizing sequence
{(cn, Rn;En)}∞n=1 in C, and we may assume that

E(cn, Rn;En) ≤ m0 + 1 ∀n ∈ N.

As the integrals in E are nonnegative, each of them is bounded, too, by
m0 + 1.
From

ρ0g

∫
B(cn,Rn)

x3 dx ≤ m0 + 1 ,

we infer that |cn| ≤ c ∀n ∈ N, and as Rn lies in a compact set, there exists
a subsequence {(cnk

, Rnk
)}∞k=1 that converges to some (c0, R0) ∈ R3×SO(3).

The perimeter of En in G is bounded independently of cn and Rn because∫
G

|DϕEn| ≤
∫

G\B(cn,Rn)

|DϕEn|+
∫

∂B(cn,Rn)

ϕEn dσ ≤ m0 + 1 + |∂B|.

The L1-norm of ϕEn is constant by definition of C. Hence, ‖ϕEn‖BV (G) is
bounded, and there exists a subsequence {ϕEnk

}∞k=1 that has a limit ϕE0 in
L1(G).
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We denote the convergent subsequence again by {(cn, Rn;En)}∞n=1 and show
that E(c, R;E) is lower semicontinuous for cn → c0 in R3, Rn → R0 in SO(3),
and ϕEn → ϕE0 in L1(G), n→∞.
Because of En ⊆ G \ B(cn, Rn), we have∫

G\B(cn,Rn)

x3ϕEn dx =

∫
G

x3ϕEn dx,

and this integral is lower semicontinuous because x3 · ϕEn(x) is nonnegative,
and we can apply Fatou’s lemma.
The integral

∫
B(cn,Rn)

x3 dx depends continuously on the domain of integra-

tion. Thus, it converges to
∫
B(c0,R0)

x3 dx.

Finally, we have

(13)

∫
G\B(c0,R0)

|DϕE0| ≤ lim inf
n→∞

∫
G\B(cn,Rn)

|DϕEn| .

In order to see this, we note that ϕEn → ϕE0 , as n tends to infinity. Together
with the fact that En ⊆ G \ B(cn, Rn), this implies

∫
B(c0,R0)

ϕE0(x) dx = 0.

Now, we fix a function g ∈ C1
c (G \ B(c0, R0),R3); then,∫

G\B(c0,R0)

ϕE0 div g dx = lim
n→∞

∫
G\B(cn,Rn)

ϕEn div g dx .

Because of supp g ⊂⊂ G \ B(c0, R0) and the fact that B(c0, R0) differs from
B(cn, Rn) by a Euclidean motion that approaches the identity for n → ∞,
there exists an n0 ∈ N, such that supp g ⊂⊂ G \ B(cn, Rn) ∀n ≥ n0.
Therefore g is an admissible function in the definition of

∫
G\B(cn,Rn)

|DϕEn|,
and consequently we have∫

G\B(cn,Rn)

ϕEn div g dx ≤
∫

G\B(cn,Rn)

|DϕEn| ∀n ≥ n0.

For n→∞, this gives∫
G\B(c0,R0)

ϕE0 div g dx ≤ lim inf
n→∞

∫
G\B(cn,Rn)

|DϕEn|.

Now, we take the supremum over all g ∈ C1
c (G \ B(c0, R0);R3), and (13) is

proved.
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3 The first variation of the energy

First, we formulate the problem of capillary surfaces Σ around a floating
body B for the case that Σ is the graph of a real function u. The upper part
of ∂B is described by a real function h that will act as an obstacle for u in
the variational problem. To define h, we fix B = B(0, R) and assume that
the center of B(0, R) is at x0 = (x′0, 0). By assumption is B strictly convex,
and we let α = α(R) be the smallest number, such that

B(0, R) ∩ {x : x3 > α(R)}

can be written as graph of a real function h̄ : Bα → R, where Bα is the
projection of B(0, R) ∩ {x : x3 = α(R)} onto the x′-plane. We assume that
α(R) < h0(R), where h0 is determined by

vol(B(0, R) ∩ {x : x3 > h0(R)}) =
1

3
vol(B(0, R)) .(14)

Now we set B(h0) = {x′ ∈ Bα : h̄(x′) > h0}, C(h0) = ∂B(h0), and finally,
we define the obstacle by

h(x′) =

{
h̄(x′) , x′ ∈ B(h0) ,

h0 , x′ ∈ Ω \B(h0) .
(15)

Remark 3.1. If ρ0/ρ = 2/3, and if B(c, R) is a minimizer to the gravita-
tional energy (i.e. of E with σ = 0), the graph of h̄ is the part of ∂B that is
not in contact with the fluid.

We assume that the construction of h̄ can be done for any value of c and R,
and we denote the corresponding graph by h = h(x′; c, R). Such a function
h = h(c, R) exists if B is not only strictly convex but also close to a sphere
in the following sense: ∂B is the graph of a function β : S2 → R+ over the
sphere, and min β/max β ≥ 1− β0, β0 � 1.
Now let E be an open set that contains G ∩ {x : x3 ≤ h0(c, R)} \ B(c, R)
and whose boundary Σ in G \ B(c, R) is the graph of a real-valued function
ū : B(γ) → R, where B(γ) ⊂ Ω is the interior domain of the curve γ ⊂ Ω
given by γ =

{
x′ ∈ Ω : ū(x′) = h̄(x′)

}
. Then, we set

u(x′) =

{
ū(x′) , x′ ∈ Ω \B(γ) ,

h̄(x′) , x′ ∈ B(γ) .
(16)
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With these quantities, the energy (10) is of the form

(17)

E(c, R;u) := σ

∫
Ω

√
1 + |Du|2 + σ

∫
B(h0)∩{u>h}

√
1 + |Dh|2 dx′

− σ
∫

B(h0)

√
1 + |Dh|2 dx′ +

ρg

2

∫
Ω

u2 dx′

− (ρ− ρ0)g

∫
B(c,R)

x3 dx .

We look for a minimizer of E(c, R;u) in the class

(18)

C :=
{

(c, R;u) ∈ R3 × SO(3)×BV (Ω) : B(c, R) ⊆ G,∫
Ω

u dx′ = V0 + |B|, u(x′) ≥ h(x′) a.e. in Ω
}
.

Remark 3.2.

(i) The area integrals add up to the area of Σ. If

u(x′) > h0(c, R) ∀x′ ∈ Ω \B(h0) ,(19)

this expression equals
∫

Ω∩{u>h}

√
1 + |Du|2dx for a regular function u.

Therefore, this integral will be used when we calculate the first variation
of the energy.

11



(ii) The adhesion energy between the fluid and the boundary of the floating
body is proportional to the the area of the wetted part of ∂B. As we
must express all quantities in terms of h and u, this area is

A(c, R;u) := |∂B| −
∫

B(h0)

√
1 + |Dh|2 dx′ +

∫
B(h0)∩{u>h}

√
1 + |Dh|2 dx′ .

If we consider also the adhesion energy, we have to investigate

E∗(c, R;u) := E(c, R;u) + βA(c, R;u)(17*)

instead of (17).

Lemma 3.3. Let (c, R;u) be a minimizer of the energy E as given in (17);
if u ∈ C2(Ω \B(γ)) ∩ C1(Ω \B(γ)) satisfies (19), we have

σ div

(
Du√

1 + |Du|2

)
= ρgu+ λ in Ω \B(γ) ,(20)

Du ·Dh = −1 on C(γ) .(21)

This means that u satisfies the equation of prescribed mean curvature, and its
graph meets ∂B under a right angle. (20) and (21) follow from the standard
variations of the dependent and indepedent variables.
The variation integral E also depends on the variables c and R, so we can
differentiate E with respect to these variables, too. This leads to an equilib-
rium condition for the forces that act on B. It is an analogue to Archimedes’
principle which now includes also the force that the capillary surface exerts
on B.
In this variation, we compare the energy of the minimizer (B(c, R);u) with
that of (Bε(c, R);u), where Bε is the position of B after an infinitesimal
Euclidean motion. If h(x′; c, R) describes the obstacle that corresponds to
B(c, R), we get for Bε(c, R) a function of the form

hε(x
′; c, R) := h(x′; c, R) + εϕ(x′) + o(ε),

where ϕ must be chosen according to the various motions of B.
For Bε = B + ε · e3, e3 = (0, 0, 1), we clearly have

(22.1) ϕ(x′) = 1 ;

12



for Bε = B + ε · e, e3 = (e′, 0), ‖e′‖ = 1, we get

(22.2) ϕ(x′) = −Dh(x′) · e′ +O(ε)

because
hε(x

′) = h(x′ − εe′) = h(x′)− εDh(x′) · e′ + o(ε) .

In the same manner, we get

hε(x
′) = h(x1 − εx2, x2 + εx1) + o(ε) = h(x′) + εDh(x′) · (−x2, x1) + o(ε)

for a rotation about the x3-axis which gives

(22.3) ϕ(x′) = Dh(x′) · (−x2, x1) .

For a general rotation about an axis with direction d = (d1, d2, d3) , ‖d‖ = 1,
we have

Bε = {xε ∈ R3 : xε = cos(ε)x+ (1− cos(ε))(d · x)d+ sin(ε)d ∧ x, x ∈ B}

which gives
xε = x+ εd ∧ x+ o(ε) ,

in particular, {
x1 − εd3x2 = xε1 − εd2h(x′) + o(ε) ,

εd3x1 + x2 = xε2 + εd1h(x′) + o(ε)

which means

x1 = xε1 − εd2h(x′) + o(ε), x2 = xε2 + εd1h(x′) + o(ε) .

With this, we get, up to terms of order o(ε),

hε(x
′) = hε(x

ε
1 − εd2h(x′), xε2 + εd1h(x′))

= hε(x
ε
1, x

ε
2) + εDhε(x

ε
1, x

ε
2) · (−d2h(x′), d1h(x′))

= h(x′) + εDh(x′) · (−d2, d1)h(x′) + ε(d1x2 − d2x1) ,

and we get, for this case,

(22.4) ϕ(x′) = (d1x2 − d2x1) +Dh(x′) · (−d2, d1)h(x′).

The variations ϕ in (22.1)-(22.4) are defined on B(h0) because the function
h̄ that describes the upper part of ∂B is defined on a neighborhood of B(h0).
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Lemma 3.4. Let (c, R;u) as in Lemma 3.3, Bε(c, R) as above, and denote
the contact line of Σ and ∂Bε by Γε, its projection on Ω by γε. Set

A(u;F ) :=

∫
F

√
1 + |Du|2 dx′

for some open set F ⊆ Ω. Then, there holds

(23)

lim
ε→0

1

ε

(
A(u; Ω \B(γε))−A(u; Ω \B(γ))

)
= −

∮
γ

√
1 + |Du|2

(Du−Dh) · nγ
ϕ ds ,

(24)

lim
ε→0

1

ε
(A(h+ εϕ;B(γε))−A(h;B(γ)))

=

∮
γ

√
1 + |Dh|2

(Du−Dh) · nγ
ϕ ds ,

(25)

lim
ε→0

1

ε

∫
B(γε)

(h+ εϕ)2 dx′ −
∫
B(γ)

h2 dx′


= 2

∫
B(γ)

hϕ dx′ +

∮
γ

h2

(Dh−Dh) · nγ
ϕ ds ,

(26)

lim
ε→0

1

ε

∫
Ω\B(γε)

u2 dx′ −
∫
Ω\B(γ)

u2 dx′


= −

∮
γ

u2

(Dh−Dh) · nγ
ϕ ds(ξ) .

Here, nγ is the unit normal to γ.
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Proof. By definition of the contact line, we have

u(x′) = h(x′) + εϕ(x′) ∀x′ ∈ γε ;

for ε small, we can write

x′ = ξ + tnγ(ξ) ξ ∈ γ, |t| < ε0

for all x′ from a neighborhood of γ, and for γε = {ξ + δ(ξ, ε)nγ(ξ), ξ ∈ γ},
we obtain

u(ξ + δ(ξ, ε)nγ(ξ)) = h(ξ + δ(ξ, ε)nγ(ξ)) + εϕ(ξ + δ(ξ, ε)nγ(ξ)) .

From this, δ can be determined:

u(ξ) + δ(ξ, ε)Du(ξ) · nγ(ξ) = h(ξ) + δ(ξ, ε)Dh(ξ) · nγ(ξ) + εϕ(ξ) + o(ε) .

Hence,

δ = δ(ξ, ε) = ε
ϕ(ξ)

(Du(ξ)−Dh(ξ)) · nγ(ξ)
+ o(ε)

because u(ξ) = h(ξ) on γ. Now the variational formulae follow immediately:

1

ε

{
A(u; Ω \B(γε))−A(u; Ω \B(γ))

}
=

1

ε

∮
γ

0∫
δ(ξ,ε)

√
1 + |Du(ξ + tnγ)|2 dt ds(ξ)

=
1

ε

∮
γ

−ε ϕ(ξ)

(Du(ξ)−Dh(ξ)) · nγ(ξ)

√
1 + |Du(ξ + t′(δ)nγ(ξ))|2 ds(ξ),

where t′ = t′ (δ(ξ, ε)) ∈ (0, δ(ξ, ε)); this gives (23) for ε→ 0.
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In the same way we get

1

ε
{A(h+ εϕ,B(γε))−A(h,B(γ))}

=
1

ε

∮
γ

δ(ξ,ε)∫
0

√
1 +Dh(ξ + tnγ(ξ))|2 dt ds(ξ)

+
1

ε

∮
γ

δ(ξ,ε)∫
0

[
εDϕ(ξ + tnγ(ξ)) ·Dh(ξ + tnγ(ξ))√

1 + |Dh(ξ + tnγ(ξ))|2
+O(ε2)

]
dt ds(ξ)

−→
∮
γ

√
1 + |Dh|2

(Du−Dh) · nγ
ϕ ds , as ε→ 0,

because the second integral is of order O(ε2).
For the variation of the gravitational energy, we get

1

ε


∫
B(γε)

(h+ εϕ)2 dx′ −
∫
B(γ)

h2 dx′

 =

1

ε

∫
B(γε)

2εhϕ dx′ +
1

ε

∮
γ

δ(ξ,ε)∫
0

h2(ξ + tnγ(ξ)) dt ds(ξ) +O(ε)

−→2

∫
B(γ)

hϕ dx′ +

∮
γ

h2

(Du−Dh) · nγ
ϕ ds , as ε→ 0.

In order to establish (26), we replace h by u, and note that there is no vari-
ation of the integrand. Hence, we get only the boundary integral from (25)
but with the opposite sign because in (26) we integrate over the complement
of B(γ) and of B(γε).
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The integrals whose first variations are calculated in (23) and (24) represent,
up to a constant factor, the surface energy and the adhesion energy. If we
set σ = 1 and choose the coefficient of the adhesion energy to be κ ∈ (−1, 1)
which implies that Σ = graph(u) meets graph(h) ⊆ ∂B in an angle α with
cosα = κ, we have from (23) and (24) for the first variation

I =

∮
γ

(
−

√
1 + |Du|2

(Du−Dh) · nγ
+ κ

√
1 + |Dh|2

(Du−Dh) · nγ

)
ϕ ds .(27)

Lemma 3.5. The integral I from (27) can be written in the form

I =

∮
Γ

E ·N0 ds(28)

with E = (0, 0, ϕ(x′)) and N0 being the unit vector that is normal to the
contact line Γ and lies in the tangent plane to Σ = graph(u).

Remark 3.6. From (28), we see that one has to work against the tension in
the capillary surface in order to move B.

Proof. We denote the integrand of I by I ·ϕ and insert cosα for κ; this gives

I = −
√

1 + |Du|2
(Du−Dh) · nγ

+
1 +Du ·Dh√

1 + |Du|2
√

1 + |Dh|2
·
√

1 + |Dh|2
(Du−Dh) · nγ

.

As γ is a level line of u−h, we have Du−Dh
|Du−Dh| = nγ for h > u in B(γ) or rather

−nγ for h < u in B(γ). We set un = Du ·nγ and uτ = Du · τ , where τ = τ(ξ)
is the unit tangent to γ in ξ. Then, we get

I = − 1

(un − hn)
· 1√

1 + |Du|2
(
1 +Du ·Dh− (1 + |Du|2)

)
.

The expression in brackets is Du · (Dh − Du) and, because uτ = hτ on γ,
this reduces to un · (hn − un), such that

I = − un√
1 + |Du|2

.

17



On the other hand,
N0 = Nu ∧ T ,

where Nu is the unit normal to the graph of u and T is the unit tangent to
Γ. Then, we have

N0 =
(−Du, 1)√
1 + |Du|2

∧ (τ,Du · τ)√
1 + |Du · τ |2

and

e3 ·N0 =
−ux1τ2 + ux2τ1√
1 + |Du|2

√
1 + u2

τ

=
un√

1 + |Du|2
√

1 + u2
τ

because (−τ2, τ1) = nγ. This means∮
Γ

E ·N0 ds =

∮
γ

(
ϕe3 ·N

√
1 + u2

τ

)
ds

=

∮
γ

un√
1 + |Du|2

ϕ ds ,

and (28) is proved.

The variation of the gravitational energy
1

2
ρg

∫
Ω

u2 dx′ leads to

G1 = ρg

∫
B(γ)

hϕ dx′ ,

cf. (25), (26), because the integrals over γ cancel due to the fact that u = h
on γ; ϕ is from (22.1) - (22.4). This integral can be written as

G1 = ρg

∫
B(γ)

h√
1 + |Dh|2

ϕ
√

1 + |Dh|2 dx′

= ρg

∫
∂B\ΣB

−E ·Nx3 dσ

with E = (0, 0, ϕ(x′)), N being the normal to ∂B and ΣB being the wetted
part of ∂B.
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For the second term of the gravitational energy, −(ρ− ρ0)g

∫
B

x3 dx, we get

G2 = −ρg
∫
B

ϕ dx = −ρg
∫
B

div (0, 0, x3ϕ) dx

= −ρg
∫
∂B

−E ·Nx3 dσ

and

G3 = ρ0g

∫
B

ϕ dx = −ρ0g(e+ d ∧ xs)3|B| ,

where xs is in the center of B.

G1 + G2 = ρg

∫
ΣB

−E ·Nx3 dσ ,

and this means that we have to work against the force that the fluid exerts
on ΣB. G3 expresses the fact that with any Euclidean motion, we move the
center of B in the gravitational field.

Theorem 3.7. Let (c, R;u) be a minimizer of the energy functional E from
(17). Variations of the position and orientation of B by e+ d∧ x lead to the
equilibrium condition

(29)
σ

∮
γ

un√
1 + |Du|2

ϕ ds+ ρg

∫
B(h)

hϕ dx′

− ρ0g(e+ d ∧ xs)3|B| = 0

or, equivalently,

(30)
σ

∮
Γ

E ·N ds+ ρg

∫
ΣB

−E ·Nx3 dσ

− ρ0g(e+ d ∧ xs)3|B| = 0 .
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4 Existence of a solution

to the obstacle problem

We assume that the densities of the fluid and the floating body satisfy ρ0 = 3
4
ρ

and that, for any orientation, B(0, R) admits for a description of the upper
part of its boundary by some real function h as in (15). Then, we have the
following existence result.

Theorem 4.1. Assume ρ, ρ0, B and G as before. Then, there exists a
minimizer (c0, R0;u0) ∈ C to the variational problem

E(c, R;u)→ min . in C ,(31)

where E and C are defined in (17) and (18).

Remark 4.2. If we assume that surface tension is not present and if we
set ρ0/ρ = 2/3, Σ lies in the plane {x3 = h0}. As we want to exclude the
possibility that ∂B ∩ {x3 ≤ h0} is not completely wetted (which would be
physically not realistic at all), we restrict the set of admissible functions u
by requiring u(x′) ≥ h0. This means that 2/3 of B must be immersed in
the liquid. This, in turn, leads to the necessity to choose the densities to
satisfy ρ0/ρ > 2/3. The number 2/3 is just one possible choice for a setup in
which we can prove the existence of capillary surfaces that are graphs. With
suitable restrictions on the shape of B, we could choose a different number
equally well, as long as it is larger than 1/2.

Remark 4.3. We could also consider the case that less than the lower half
of B is immersed in the liquid. Then, h0 would be determined by a number
α less than 1/2, cf. (15), and ρ0/ρ would have to be smaller than α.

Proof. We proceed along the same lines as in the proof of Theorem 2.1.
At first, we notice that E(c, R;u) is bounded from below on C because
σ
∫

Ω

√
1 + |Du|2 and σ

∫
B(h0)

√
1 + |Dh|2 dx′ are positive, and furthermore,

−σ
∫
B(h0)

√
1 + |Dh|2 dx′ ≥ −σ|∂B|; finally, ρg

2

∫
Ω
u2 dx′ − ρg

∫
B x3 dx ≥ 0

because B ⊆ {x ∈ G : 0 < x3 < u(x′), x′ ∈ Ω} and ρ0g
∫
B x3 dx ≥ 0. There-

fore, there exists a minimizing sequence {(cn, Rn;un)}∞n=1, and this sequence
is bounded because
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i) R is from a compact set,

ii) B(c, R) ⊆ G implies (c1, c2) ∈ Ω, and the x3-component of c is bounded
because

∫
Ω
h dx′ ≤

∫
Ω
u dx′ ≤ V0 + |B|, hence, c3 ≤ V0

|Ω| + diamB =: c∗0,

iii): if the minumum is denoted by m0, we can assume that

E(cn, Rn;un) ≤ m0 + 1

which implies

σ

∫
Ω

√
1 + |Dun|2 ≤ m0 + 1− σ

∫
B(h0)

√
1 + |Dhn|2 dx′

+ σ

∫
B(h0)

√
1 + |Dhn|2 dx′ − ρg

2

∫
Ω

u2 dx′

+ (ρ− ρ0)g

∫
B(cn,Rn)

x3 dx

≤ m0 + 1 + σ|∂B|+ (ρ− ρ0)g|B|max
n∈N

xs(cn, Rn) ,

where xs(cn, Rn) is the center of gravity of B(cn, Rn); as the parameters
cn and Rn are bounded, we have

∫
Ω
|Dun| ≤ const. Together with the

volume constraint this means that ‖un‖BV(Ω) is bounded.

Therefore, there exists a subsequence, again denoted by {(cn, Rn;un)}∞n=1,
such that cn → c0, Rn → R0 and un → u0 in L1(Ω), as n → ∞, for
some (c0, R0;u0). With respect to this convergence, σ

∫
Ω

√
1 + |Du|2 is lower

semicontinuous. For (cn, Rn) → (c0, R0) the domains B (h0(cn, Rn)) con-
verge in measure to B (h0(c0, R0)), and the integral −σ

∫
B(h0)

√
1 + |Dh|2 dx′

depends continuously on the domain of integration. The same argument
applies to −(ρ − ρ0)g

∫
B(c,R)

x3 dx. The two remaining integrals are lower

semicontinuous according to Fatou’s Lemma. For hn = h(cn, Rn) and
Dn = B (h0(cn, Rn)) ∩ {un > hn}, we set∫

Dn

√
1 + |Dhn|2 dx′ =

∫
Ω

√
1 + |Dhn|2χDn dx′ .
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√
1 + |Dhn(x′)|2 converges uniformly to

√
1 + |Dh(c0, R0)|2, and (for a sub-

sequence) we have un − hn → u0 − h(c0, R0) almost everywhere in Ω, hence,
(un − hn)+ ≡ max(un − hn, 0) converges almost everywhere, too, and∫

D0

√
1 + |Dh(c0, R0)|2 dx′ ≤ lim inf

n→∞

∫
Dn

√
1 + |Dhn|2 dx′

according to Fatou’s Lemma. The same reasoning applies to
∫

Ω
u2
n dx′ be-

cause u2
n is nonnegative, and a subsequence converges a.e. in Ω. With this,

we have that E(c, R;u) is lower semicontinuous, and therefore E attains its
infimum at some point (c0, R0;u0) in C.
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5 Boundedness and regularity

of the solutions

Boundedness of minimizers u to the classical variational problem for capil-
lary surfaces can be shown by using ut := min(u, t), t ∈ (0,∞), as com-
parison function and deriving a differential inequality for the measure of
E(t) := {x = (x′, x3) ∈ G : t < x3 < u(x′), x′ ∈ A(t)}, where A(t) is defined
by A(t) := {x′ ∈ Ω : u(x′) > t}, cf. [MM84], pp. 210 - 213. A similar rea-
soning can be applied in the present case, where we have to take into account
that the comparison function must satisfy the obstacle condition as well as
the volume constraint.

Lemma 5.1. Let (c, R;u) ∈ C be a solution to the variational problem (31).
Then, there exists a constant C such that

u(x′) ≤ C a.e. in Ω.(32)

Proof. We define

vt,ε(x
′) =

{
min (u(x′), t) + ε in {u > h} ,
u(x′) in Ω \ {u > h} ,

where ε is chosen, such that
∫

Ω
vt,ε dx′ = V0 + |B|. With A(t) as above, we

obtain ∫
Ω

vt,ε dx′ =

∫
Ω\{u>h}

u dx+

∫
{u>h}\A(t)

(u+ ε) dx′ +

∫
{u>h}∩A(t)

(t+ ε) dx′

=

∫
Ω\{u>h}

u dx′ +

∫
{u>h}\A(t)

u dx′ +

∫
{u>h}∩A(t)

u dx′

which gives

ε =
1

|{u > h}|

∫
A(t)

(u− t) dx′ .
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As vt,ε lies in C, we have

(∗) E(c, R;u) ≤ E(c, R; vt,ε),

and we can compare the various integrals in E for u and vt,ε.∫
Ω

√
1 + |Dvt,ε|2 =

∫
Ω\{u>h}

√
1 + |Du|2 +

∫
{u>h}\A(t)

√
1 + |D(u+ ε)|2 +

∫
∂{u>h}

|Dvt,ε|

+

∫
{u>h}∩A(t)

1 dx′ .

∫
B(h0)∩{vt,ε>h}

√
1 + |Dh|2 dx′ =

∫
B(h0)∩{u>h}

√
1 + |Dh|2 dx′ because {vt,ε > h} = {u > h} .

∫
Ω

v2
t,ε dx′ =

∫
Ω\{u>h}

u2 dx′ +

∫
{u>h}∩A(t)

(t+ ε)2 dx′

+

∫
{u>h}\A(t)

(u+ ε)2 dx′ .

We insert these expressions into (∗) and get, with k := ρg
2σ

,∫
A(t)

√
1 + |Du|2 +k

∫
A(t)

u2 dx′+

k

∫
{u>h}\A(t)

u2 dx′

=

∫
∂{u>h}

|Dvt,ε|+ |A(t)|+ k

∫
A(t)

(t+ ε)2 dx′

+

∫
{u>h}\A(t)

(u+ ε)2 dx′ .
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This leads to∫
A(t)

√
1 + |Du|2 + k

∫
A(t)

(u2 − t2) dx′ − 2kεt |A(t)| − 2kε

∫
{u>h}\A(t)

u dx′

− ε2k |{u > h}| − ε |∂{u > h}| ≤ |A(t)| .

Now, we estimate the expression on the left hand side by
∫
A(t)

(u − t) dx′,

except for the area integral:

k

∫
A(t)

(u2 − t2) dx′ ≥ 2kt

∫
A(t)

(u− t) dx′

because u(x′) + t > 2t on A(t);

2kε

∫
A(t)

u dx′ + 2kεt |A(t)| ≤ 2kε

∫
A(t)

(u+ t) dx′

≤ 2kε · 2
∫
A(t)

u dx′ ≤ A

∫
A(t)

(u− t) dx′

with A = 4k · 1
|{u>h}|

∫
Ω
u dx′; here, we used the definition of ε.

ε |∂{u > h}| ≤ B ·
∫
A(t)

(u− t)dx′ with B =
|∂{u > h}|
|{u > h}|

.

ε2k |{u > h}| ≤ C ·
∫
A(t)

(u− t) dx′ with C = k

∫
Ω
u dx′

|{u > h}|
.

This leads to ∫
A(t)

√
1 + |Du|2 +D(t)

∫
A(t)

(u− t) dx′ ≤ |A(t)|

with D(t) := 2kt − (A + B + C), and there is a t0 > 0, such that D(t) > 0
for all t > t0, which means that there is some constant C, such that

|A(t)| > c


∫
A(t)

√
1 + |Du|2 +

∫
A(t)

(u− t)dx′

 for all t > t0.(33)
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The rest of the proof follows as in [MM84], pp. 211 - 213: The isoperimetric
inequality for the set E(t) reads

H3 (E(t))2/3 ≤ c1P (E(t)) ,

where the perimeter of E(t) is

P (E(t)) =

∫
A(t)

√
1 + |Du|2 +H2 (A(t)) +

∫
∂Ω∩A(t)

(u− t) ds ;

here, Hk(M) denotes the k-dimensional Haussdorf measure of some set M .

For f(t) := H3 (E(t))1/3, we have f ′(t) = H3 (E(t))−2/3 · 1
3
· d

dt
H3 (E(t)), and

with d
dt
H3 (E(t)) = −H2 (A(t)), we see that (33) is a differential inequality

which we can write as

1 ≤ −c d

dt
H3 (E(t))1/3 .

Integrating from t0 to t, we get for t large enough that H3 (E(t)) = 0 which
means that u is essentially bounded.

Regularity of solutions to the variational problem (31) follows once the Euler-
Lagrange equations are established. For obtaining them, we must show that
the capillary surface does not touch the (artificial) obstacle h(x′; c, R) = h0,
x′ ∈ Ω0, cf. Lemma 2.1, because, in that case, one can allow for variations
u(x′) + εϕ(x′) with supp ϕ ⊂⊂ B(γ) that satisfy u(x′) + εϕ(x′) ≥ h(x′; c, R)
in Ω independently of the sign of εϕ(x′).

Lemma 5.2. Let u be a solution to the variational problem (31). Then, there
holds

u(x′) > h0 a.e. in Ω0 .(34)

Proof. If (c, R;u) is a minimizer to E in C, u is in particular a minimizer for
E with (c, R) fixed, and if we further restrict variations to Ω0 only, keeping
the boundary data of u fixed, we see that u also minimizes

I(v) := σ

∫
Ω0

√
1 + |Dv|2 +

ρg

2

∫
Ω0

v2 dx′ + σ

∫
∂Ω∪C(h0)

|v − u| ds(35)
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in the class

C0 :=

v ∈ BV (Ω0) : v ≥ h0 a.e. on Ω0,

∫
Ω0

v dx′ =

∫
Ω0

u dx′

 .

We assume that (34) were not true and derive from this a comparison function
that has smaller energy than u. In doing so, we have to distinguish several
cases.
(i) We assume that there is a δ > 0, such thatH1 ({x′ ∈ ∂Ω : u(x′) > h0 + δ})
is positive. Then, the function uδ(x

′) := min(u(x′), h0 + δ) is not identically
h0 on ∂Ω. The boundary value problem

div
Dw√

1 + |Dw|2
= 0 in Ω0 ,

w = 0 on C(h0), w = uδ on ∂Ω

has (for δ � 1) a unique solution w ∈ C2(Ω0) ∩ C0(Ω0). According to the
strong maximum principle, there holds

0 < w(x′) < h0 + δ on Ω0.(36)

We define the comparison function uδ,t to be

uδ,t(x
′) =


h(x′) if u(x′) ≥ h(x′) ≥ t ,

t if u(x′) ≥ t ≥ h(x′) ,

u(x′) if t ≥ u(x′) ≥ w(x′) ,

w(x′) if w(x′) ≥ u(x′) ,

where t is chosen such that uδ,t satisfies the volume constraint. Then, we
have ∫

{w(x′)>u(x′)}

√
1 + |Du|2 >

∫
{w(x′)>u(x′)}

√
1 + |Dw|2

because w minimizes area locally. Because uδ,t is constant on {u(x′) > t},
there holds ∫

{u>t}

√
1 + |Du|2 >

∫
{u>t}

√
1 + |Duδ,t|2 .
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Hence, ∫
{u>h}

√
1 + |Du|2 >

∫
{u>h}

√
1 + |Duδ,t|2 .

For the gravitational energy, we get∫
{u<w}

(u2 − w2) dx′ =

∫
{u<w}

(u− w)(u+ w) dx′ ≥ 2(h0 + δ)

∫
{u<w}

(u− w) dx′

and ∫
{u>t}

(u2 − u2
δ,t) dx′ =

∫
{u>t}

(u− uδ,t)(u+ uδ,t) dx′ ≥ 2t

∫
{u>t}

(u− uδ,t) dx′ .

The volume constraint implies∫
{u<w}

(w − u) dx′ =

∫
{u>t}

(u−max(h, t)) dx′ ,

therefore, we get∫
Ω

(u2 − u2
δ,t) dx′ ≥ (2t− 2(h0 + δ))

∫
{u<w}

(w − u) dx′ > 0 .

This means E(c, R;u) > E(c, R;uδ,t) for some uδ,t ∈ C, and hence, u cannot
be a minimizer.
(ii) We assume that u(x′) = h0 on ∂Ω and that u(x′) > h0 on C(h0). Now,
let w be the minimizer of

J (w;u) :=

∫
Ω0

√
1 + |Dw|2 +

∮
∂Ω

|w − h0| ds+

∮
C(h0)

|w − u|ds(37)

in BV (Ω0).
Then, w is regular and attains the boundary values h0 on ∂Ω continuously;
on the non-convex part of ∂Ω0, the trace of w may satisfy w(x′) < u(x′) for
some x′ ∈ C(h0). We now claim that

w(x′) > h0 a.e. in Ω0.
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Assume that this were not the case; then, w(x′) = h0 on a set A ⊆ Ω0 of
positive measure, and consequently we had w(x′) ≡ h0 on Ω0 because w is
analytic. But the function

w(x′) =

{
h0 in Ω0 ∪ ∂Ω ,

u(x′) on C(h0)

cannot be a minimizer to problem (37) because there exists some v ∈ BV (Ω0)
with J (v;u) < J (w;u). To construct v, we solve{

div Dw√
1+|Dw|2

= 0 in Ω0 ,

w = h0 on ∂Ω , w = min(u, h0 + δ) on C(h0) .

For δ sufficiently small, there exists a unique solution w∗ that is regular up
to the boundary. The function

v(x′) =

{
w∗(x

′) , x′ ∈ Ω0 ∪ ∂Ω ,

u(x′) , x′ ∈ C(h0)

has in x′ ∈ C(h0) a jump of the size

u(x′)−min(u(x′), h0 + δ) =

{
0 if u(x′) ≤ h0 + δ ,

u(x′)− (h0 + δ) if u(x′) > h0 + δ,

and clearly has on Ω0 a smaller area than w. This proves that w(x′) > h0

for all x′ ∈ Ω0. With this w, we can construct a comparison function for the
minimizer u of E(c, R;u) as in case (i) by adjusting for the volume constraint
in C with the function max(h(x′), t).
(iii) Next, we consider the case that u(x′) = h0 on ∂Ω∪C(h0). If u(x′) ≡ h0 on
Ω0, u cannot be a minimizer to E because fluid of the amount V0+|B|−

∫
Ω
h dx′

must be located above the floating body, which means that∫
B(h0)

(u− h) dx′ = V0 + |B| −
∫
Ω

h dx′.

If we compare u with

u∗(x
′) =

{
h(x′) if u(x′) > h0 + α ,

h0 + α if u(x′) ≤ h0 + α ,
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where α is chosen such that
∫

Ω
u∗ dx′ = V0 + |B|, we see immediately that

the energy of u∗ is less than the one of u. Hence, u cannot be a minimizer
to E .
(iv) The remaining case that has to be considered u(x′) = h0 on ∂Ω∪C(h0)
with

∫
Ω0

(u− h0) dx′ > 0. In this case, let C1 be equal to C0 but without the
inequality v ≥ h0 a.e. in Ω0. Then, the minimizer of I(v) from (35) in the
set C1 nevertheless satisfies the inequality that distinguishes C1 from C0. In
other words, the minimizer also lies in the set C0.
If this were not correct, there were a subset A ⊆ Ω0 of positive measure such
that u(x′) < h0 ∀x′ ∈ A. Consider now the function

u∗(x
′) =

{
max(u(x′), t) , x′ ∈ Ω0 \ A ,
h0 , x′ ∈ A ,

where t is chosen, such that
∫

Ω0
u∗ dx′ =

∫
Ω0
u dx′. This condition implies∫

{u>t}

(u− t) dx′ =

∫
{u<h0}

(h0 − u) dx′ .(∗)

For the gravitational energy, we get∫
Ω0

(u2 − u2
∗) dx′ =

∫
{u>t}

(u2 − t2) dx′ +

∫
{u<h0}

(u2 − h2
0) dx′

=

∫
{u>t}

(u− t)(u+ t) dx′ +

∫
{u<h0}

(u− h0)(u+ h0) dx′

≤ 2t

∫
{u>t}

(u− t) dx′ − 2h0

∫
{u<h0}

(h0 − u) dx′

= 2t

∫
{u<h0}

(h0 − u) dx′ − 2h0

∫
{u<h0}

(h0 − u) dx′

> 0 because of t > h0 and the condition (∗) from above.

This means that the minumizers to I(u) in C0 and C1 are the same, and u,
therefore, satisfies the Euler-Lagrange equation

div
Du√

1 + |Du|2
− κu = λ in Ω0.(38)
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The boundary data u|∂Ω = u|C(h0) = h0 and u ≥ h0 in Ω imply

Du · n ≤ 0 on ∂Ω ∪ C(h0).

Therefore, λ must be negative because by integrating (38), we get

λ|Ω0| =
∫
Ω0

Du√
1 + |Du|2

dx′ − κ
∫
Ω0

u dx′

=

∮
∂Ω0

Du · n√
1 + |Du|2

ds− κ
∫
Ω0

u dx′

< 0.

Now, we can apply the strong maximum principle to obtain

u(x′) > h0 ∀x′ ∈ Ω0.

Lemma 5.2 also allows for variations of u that are negative, and therefore, u
satisfies the Euler-Lagrange equation of the functional E .

Theorem 5.3. Let u be a minimizer to the variational problem (31). Then,
u satisfies

div
Du√

1 + |Du|2
− κu = λ in Ω \B(h) ,(39)

Du · n = 0 on ∂Ω ,(40)

Du ·Dh = −1 on C(h) .(41)

The solutions is analytic in Ω\B(h). Its regularity on ∂Ω and C(h) increases
with the regularity of the data which we impose on the boundaries of Ω and
B.

Proof. (39) and (40) follow by standard methods. The fact that the mini-
mizer meets the obstacle in a right angle, cf. (41), was proven by J. Taylor
in [Tay77] in a much more general context with methods from geometric
measure theory.
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[31] Buttazzo G. and Wagner A.: On some Rescaled Shape Optimization Problems, S 17, März 2009

[32] Gerlach H. and von der Mosel H.: What are the longest ropes on the unit sphere?, S 50, März 2009

[33] Schikorra A.: A Remark on Gauge Transformations and the Moving Frame Method, S 17, Juni 2009

[34] Blatt S.: Note on Continuously Differentiable Isotopies, S 18, August 2009

[35] Knappmann K.: Die zweite Gebietsvariation für die gebeulte Platte, S 29, Oktober 2009

[36] Strzelecki P. and von der Mosel H.: Integral Menger curvature for surfaces, S 64, November 2009

[37] Maier-Paape S., Imkeller P.: Investor Psychology Models, S 30, November 2009

[38] Scholtes S.: Elastic Catenoids, S 23, Dezember 2009

[39] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of an Elastic Body Moving Freely in a
Navier-Stokes Liquid under the Action of a Constant Body Force, S 67, Dezember 2009

[40] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are
Physically Reasonable, S 25, Dezember 2009

[41] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Around a Rotating Body: Leray Solutions are
Physically Reasonable, S 15, Dezember 2009

[42] Bemelmans J., Galdi G.P. and Kyed M.: Fluid Flows Around Floating Bodies, I: The Hydrostatic Case, S 19,
Dezember 2009

[43] Schikorra A.: Regularity of n/2-harmonic maps into spheres, S 91, März 2010

[44] Gerlach H. and von der Mosel H.: On sphere-filling ropes, S 15, März 2010

[45] Strzelecki P. and von der Mosel H.: Tangent-point self-avoidance energies for curves, S 23, Juni 2010

[46] Schikorra A.: Regularity of n/2-harmonic maps into spheres (short), S 36, Juni 2010

[47] Schikorra A.: A Note on Regularity for the n-dimensional H-System assuming logarithmic higher Integrability,
S 30, Dezember 2010
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