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SURFACES OF PRESCRIBED MEAN CURVATURE IN A

CONE

JOSEF BEMELMANS AND JENS HABERMANN

Abstract. We show existence of surfaces of prescribed mean curvature
in central projection for such values of the mean curvature for which
estimates for the corresponding Euler-Lagrange equations are generally
not known. This is achieved by extending the variational problem to the
space BV (Ω), where graphs in a cone must satisfy a side condition, and
using variational methods. Moreover, we give an example of a solution
in BV (Ω) which does not solve the Dirichlet problem for the Euler-
Lagrange equation.

1. Introduction

Surfaces of prescribed mean curvature have been studied in most cases
either with a parametric representation Y : D → R3 with D = {(x1, x2) ∈
R2 : x2

1 + x2
2 < 1} or as graphs of real functions u : Ω → R, where Ω is a

bounded domain in R2 or more generally in Rn. The first investigation of
such surfaces that can be written as graphs in a cone is due to T. Radó [12];
in the cone

C1(Ω) :=
{
y ∈ R3 : yi = txi, i = 1, 2, y3 = 1− t, t > 0, (x1, x2) ∈ Ω ⊂ R2

}
with center (0, 0, 1) he looks for surfaces S(u) given by some real function
u : Ω→ R in the form

S(u) =
{
y ∈ C1(Ω): t = eu(x1,x2), (x1, x2) ∈ Ω

}
.

With this parametrization he takes care of the condition t > 0 by showing
that there is a bounded function u that attains prescribed boundary values
on ∂Ω and satisfies the minimal surface equation.

The more general case of graphs of prescribed mean curvature in a cone

C(Ωs) =
{
y ∈ Rn+1 : yi = tωi, i = 1, . . . , n− 1,

t > 0, ω ∈ ΩS ⊂ Sn ⊂ Rn+1
}
,

where Ωs is a domain in the unit sphere Sn, was first treated in the fun-
damental work by J. Serrin, [20]. Existence of solutions u(ω) to the mean
curvature equation with u(ω) > 0 was proved under the assumption that
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the prescribed mean curvature is restricted by the curvature of the domain,
namely

(1.1) Hg(y) ≥ n

n− 1
Λ(y) · f(y) > 0,

cf. [20, §23]; here Λ(y) is the prescribed mean curvature (in central projec-
tion) in a point y ∈ ∂Ωs, Hg(y) denotes the geodesic mean curvature of ∂Ωs

in the point y ∈ ∂Ωs, and f is the given boundary value. If we compare
condition (1.1) with the corresponding inequality for the cylindrical case,

(1.2) H(y) ≥ n

n− 1
|Λ(y)|,

cf. [20, (104)], we can see mainly two differences: Firstly, condition (1.1)
in case of the cone depends on the boundary values, whereas the boundary
values are not relevant in the cylindrical case. Secondly, in case of the cone
the mean curvature at the boundary must be positive. The dependence
of condition (1.1) on the boundary data is evident geometrically, as the
following example shows: We take a circular cone in R3 with angle π/4 and
assume the prescribed mean curvature Λ and the boundary values f to be
constant. In this setting we have Hg ≡ 1 and therefore the above condition
reads 1 ≥ 2Λ ·f . For boundary values f ≡ c, only spherical caps with radius
r ≥ c, and therefore Λ ≤ 1/(2c) at the boundary, will attain the boundary
data f . The second difference, concerning the sign of the curvature (with
respect to the normal that points towards the center of the cone) can be
explained as follows: If there is a spherical cap of positive mean curvature
that meets the boundary in some height f , then its reflection at the plane
{y3 = f} need not lie inside the cone. The cone acts as an obstacle, and
this causes restrictions concerning the sign of the mean curvature.

In a recent publication by P. Caldiroli and A. Iacopetti [3], existence is
shown also for sign-changing curvatures. As however the case of constant
mean curvature is ruled out, cf. condition (1.4) in [3], this condition cannot
be compared with the ones we formulate in our existence theorem. The
work by F. Sauvigny [13, 14] contains existence theorems for non-negative
curvature and also results on uniqueness and stability of the solutions.

In this paper we investigate the functional

F(u) = A(u)− VH(u),

where A(u) denotes the area of the surface

S(u) =
{
y ∈ Rn+1 : yi = u(x)xi, i = 1, . . . , n, yn+1 = u(x), x ∈ Ω

}
,

and

VH(u) =

∫
C(u)

nH(y) dHn+1(y)

is the weighted volume of

C(u) =
{
y ∈ C(Ω): 0 < t < u(x)

}
,
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with H(y) being the weight. The fact that the surface must lie in the cone
leads to the side condition u ≥ 0 under which F(u) must be minimized. In
contrast to the results quoted above where this inequality led to restrictions
on H the side condition u ≥ 0 gives boundedness of F(u) from below for
prescribed H with H ≤ 0, i.e. for those cases for which a priori estimates for
solutions of the Euler equations are not known. This leads to the question
what type of functions will be solutions for H ≤ 0. We show that there are
minimizers that do not attain the boundary values continuously; their graph
consists of a surface in the cone and of a part of the boundary of the cone.
They correspond to the well-known example in the cylindrical case, namely
a minimal surface that is a graph over an annulus and a part of the cylinder
above the inner circle, see Giusti [8], Ex. 12.15, and §4 below.

In order to show existence of minimizers the area integral must be de-
fined on a suitable function space which is BV (Ω), the space of Lebesgue-
integrable functions whose derivatives are Radon measures. This is the
standard approach for the classical area integral

A(u) =

∫
Ω

√
1 + |Du|2 dx.

In the parametrization used by Radó the area of S(u) is

A(u) =

∫
Ω
e2u
√

(1 + x ·Du)2 + |Du|2 dx,

and such an integral is not defined in case Du is a measure. We introduce a
transformation v = Φ(u) such that the area integral formulated in terms of
v can be extended to v ∈ BV (Ω). This approach was introduced in [1] for

graphs over the sphere, and it was used in [2] for the integrand u
√

1 + |Du|2;
then it was applied by G. Schindlmayr [19] who studied capillary surfaces.
The same device was used by D. Schwab [16, 17] in his study of minimal
surfaces and surfaces of prescribed mean curvature in a cone; to show that
F(u) is bounded from below he postulates an estimate for integrals of H
over subsets E of Ωs in terms of the perimeter of E; conditions of this type
need not be satisfied for the data considered in this paper.

The existence of minimizers to the area functional

A(u) =

∫
Ω
enu
√

(1 + x ·Du)2 + |Du|2 dx

for n-dimensional surfaces in central projection was shown by E. Tausch
[21]; he proved that there can be at most one minimizer in the class C0,1(Ω)
and established its existence with a priori estimates for the corresponding
Euler-Lagrange equation. Using a theorem of H. Federer [4, Chap.4], he
then showed that this solution is also minimizing in the much larger class of
rectifiable currents.
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2. The area integral of surfaces in central projection and its
extension onto the space BV

For a surface S in R3 that is given in central projection by

S =
{

(y1, y2, y3) ∈ R3 : y1 = eu(x1,x2)x1, y2 = eu(x1,x2)x2,

y3 = 1− eu(x1,x2), (x1, x2) ∈ Ω ⊂ R2
}

for some function u : Ω→ R the first fundamental form reads

E = e2u
{

(1 + |x|2)u2
x1

+ 2x1ux1 + 1
}
,

F = e2u
{

(1 + |x|2)ux1ux2 + x1ux1 + x2ux2

}
,

G = e2u
{

(1 + |x|2)u2
x2

+ 2x2ux2 + 1
}
,

and hence the area element is

W = e2u
√

(1 + x ·Du)2 + |Du|2,
cf. [12, §10]. For hypersurfaces in Rn+1 we obtain

W = enu
√

(1 + x ·Du)2 + |Du|2,
cf. [21], and therefore the area of such a surface is given by

(2.1) A(u) =

∫
Ω
enu
√[

1 + x ·Du
]2

+ |Du|2 dx.

With the transformation

v = Φ(u) = 1
ne

nu

we get
e2nu|Du|2 = |Dv|2,

and

e2nu(1 + x ·Dsu)2 =
[
enu + x · (enuDu)

]2
= (nv + x ·Dv)2 =

[
div(x · v)

]2
,

so we can write

(2.2) A(v) =

∫
Ω

√[
div(xv)

]2
+ |Dv|2 dx,

and this integral can be extended to BV (Ω).

Definition 2.1. For v ∈ BV+(Ω) = {v ∈ BV (Ω): v ≥ 0} we set

(2.3)

∫
Ω

√[
div(xv)

]2
+ |Dv|2 := sup

G

∫
Ω

(
v divg′ + vx ·Dgn+1

)
dx,

where G :=
{
g = (g′, gn+1) ∈ C1

c (Ω;Rn+1), ‖g‖ ≤ 1
}

.

Remark 2.2.

a) In (2.3) the total variation of the vector-valued measure

N =
(
Dv,div(xv)

)
is defined for arbitrary v ∈ BV (Ω). However, only for v ≥ 0 it
denotes the area of the surface S with u = 1

n ln(nv).
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b) For smooth functions v ∈ C1(Ω) the quantity (2.3) coincides with
the area integral A(v) in (2.2). This can be shown in the same way

as it is done for the integrand
√

1 + |Dv|2, see e.g. [8, p. 160]. There
are more properties that can be proven in exactly the same way as
in the standard case

∫
Ω

√
1 + |Dv|2.

c) As we apply variational methods we can use the somewhat simpler
parametrization of a surface in central projection, namely

S =
{
y ∈ Rn+1 : yi = u(x)xi, i = 1, . . . , n,

yn+1 = u(x), x ∈ Ω ⊂ Rn
}

with some function u : Ω→ R, and the side-condition u(x) ≥ 0 in Ω.
Then the area element becomes

W = un
√

(1 + x ·Du)2 + |Du|2,
and with the transformation v = Ψ(u) = 1

nu
n we obtain again the

expression (2.1) for the area of S.

A basic ingredient of the direct methods is the lower semicontinuity of
the area with respect to convergence in L1(Ω).

Lemma 2.3. Let {uj} with uj ∈ BV (Ω) be a sequence which converges to
u in L1

loc(Ω). Then∫
Ω

√[
div(xu)

]2
+ |Du|2 ≤ lim inf

j→∞

∫
Ω

√[
div(xuj)

]2
+ |Duj |2.

Lemma 2.4. Let u ∈ BV+(Ω) and K b Ω. Then there exists a sequence of
functions {uj}∞j=1 with uj ∈ C∞c (Ω) such that

lim
j→∞

∫
K
|uj − u|dx = 0,

and

lim
j→∞

∫
K

√[
div(xuj)

]2
+ |Duj |2 dx =

∫
K

√[
div(xu)

]2
+ |Du|2.

The proofs of Lemmas 2.3 and 2.4 can be found in [18, Chapter 4.2].
It is well known that the set {u ∈ BV (Ω) : u = h on ∂Ω} for some func-

tion h ∈ L1(∂Ω) is not closed with respect to convergence in L1(Ω). There-
fore the integral that will be minimized has to be changed such that the be-
havior of u on the boundary can be controlled. With the same reasoning as
in the standard case (see e.g. [8, Chapter 2]) we can determine the total vari-
ation of the vector measure µ :=

(
Du(x), x ·Du(x)

)
on (n− 1)-dimensional

sets, in particular on the boundary ∂Ω. If we choose g ∈ C1
c (BR(0);Rn+1)

for some ball BR(0) in Rn such that Ω is compactly contained in it, we get∫
Ω

(
udivg′ + ux ·Dgn+1

)
dx = −

∫
Ω

(
g′ ·Du+ gn+1div(xu)

)
+

∮
∂Ω

(
ug′ · ν + ux · νgn+1

)
dHn−1,
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where ν is the exterior normal to Ω and the boundary integral equals∮
∂Ω
u
(
ν · g′ + x · νgn+1

)
dHn−1 =

∮
∂Ω
u

(
ν
x · ν

)
·
(

g′

gn+1

)
dHn−1.

Then the total variation of µ on ∂Ω is∮
∂Ω
|µ| =

∮
∂Ω
|u|
√

1 + (x · ν)2 dHn−1.

This integral is the surface area of that part of the envelope ∂C(Ω) of the
cone C(Ω) that is bounded by u|∂Ω.

Lemma 2.5. Let h ∈ L1
+(∂Ω), and denote by h̃ an extension of h onto

BR(0) \ Ω that is of class W 1,1(BR(0) \ Ω). With u ∈ BV+(Ω) set

ũ(x) :=

{
u(x) , x ∈ Ω

h̃(x) , x ∈ BR(0) \ Ω.

Then ũ is of class BV+(BR(0)) and there holds

(2.4)

∮
∂Ω

√[
div(xu)

]2
+ |Du|2 =

∮
∂Ω
|h− u+|

√
1 + (x · ν)2 dHn−1,

where u+ denotes the trace of u on ∂Ω.

Proof. The existence of the extension h̃ is proved by E. Gagliardo [5], and
(2.4) follows as in [8, Prop. 2.8]. �

As it is equivalent to minimize A(u) in the class BV+(Ω)∩{u = h on ∂Ω}
or A(u) +

∮
∂Ω |u− h|

√
1 + (x · ν)2 dHn−1 in BV+(Ω), see [8, Satz 1.11], the

direct methods can be applied because A(u) is lower semicontinuous with
respect to convergence in L1(Ω).

As this inequality does not hold for the boundary integral we must once
more use Gagliardo’s extension theorem. With the function ũ from Lemma
2.5 we have∫

BR(0)

√[
div(xũ)

]2
+ |Dũ|2 =

∫
Ω

√[
div(xu)

]2
+ |Du|2

+

∮
∂Ω
|u− h|

√
1 + (x · ν)2 dHn−1

+

∫
BR(0)\Ω

√[
div(xh̃)

]2
+ |Dh̃|2 dx,

and as A(ũ) is lower semicontinuous, so is also the expression on the right-
hand-side.

3. Graphs of prescribed mean curvature in a cone: a
variational approach

Surfaces of prescribed mean curvature are critical points of a functional
that consists of the area integral and a volume-type integral with the mean
curvature as weight. In the simplest case of constant mean curvature Ho
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this is ±nHoV (u), where V (u) is the volume of that part of the cone C(Ω)
that is bounded by the graph of u; the sign can be chosen according to the
orientation of the normal to the graph of u.

If we use the parametrization as in Remark 2.2 c) the volume of the
domain

D =
{
y ∈ Rn+1 : yi = txi, i = 1, . . . , n, yn+1 = t, x ∈ Ω, 0 < t < u(x)

}
for some function u : Ω→ R, u(x) ≥ 0 a.e. on Ω, is

V (u) =

∫
Ω

∫ u(x)

0
tn dt dx =

1

n+ 1

∫
Ω
un+1(x) dx,

and in terms of v := Φ(u) = 1
nu

n this is

V (v) =

∫
Ω

∫ v(x)

0

√
nt dt dx =

1

n+ 1

∫
Ω

[
nv(x)

]n+1
n dx.

Solutions of the Euler-Lagrange equation to

F(v) = A(v)− n

n+ 1
HoV (v)

are then surfaces of mean curvature Ho, where the normal to the surface

S(u) =
{
y ∈ Rn+1 : yi = u(x)xi, i = 1, . . . , n,

yn+1 = u(x), x ∈ Ω, u : Ω→ R≥0

}
points into the region D.

If the mean curvature is given as a function on C(Ω), H = H(y) =
H(tx, t), the corresponding functional is

VH(u) =

∫
Ω

∫ u(x)

0
nH(tx, t)tn dt dx,

or equivalently in terms of v with v = Φ(u) = 1
nu

n:

(3.1)

VH(v) =

∫
Ω

∫ v(x)

0
nH

(
n
√
ns x, n

√
ns
)

n
√
nsds dx

=

∫
Ω

∫ n
√

nv(x)

0
nH(tx, t)tn dt dx.

Conditions on H. Let H : C(Ω)→ R be a measurable function that satisfies
the following conditions:

(i) H ∈ L1(D(u)) for all u ∈ L1(Ω) such that v = Φ(u) ∈ BV +(Ω), i.e.

(3.2)

∣∣∣∣ ∫
Ω

∫ n
√

nv(x)

0
nH(tx, t)tn dtdx

∣∣∣∣ <∞.
(ii) For almost all x ∈ Ω and for all t > 0 there holds

(3.3)
d

dt

(
tH(tx, t)

)
≤ 0.
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(iii) For all t > 0 there holds

(3.4) H(t ·, t) ∈ Ln(Ω),

and there is a function H ∈ Ln(Ω) such that

(3.5) lim
t→0

t ·H(tx, t) = H(x), a.e. in Ω.

Remark 3.1. The functional −VH(v) is convex in v if (3.3) holds.

Lemma 3.2. Let H : C(Ω) → R satisfy the conditions (3.2) to (3.5), and
let {vh}∞h=1 be a sequence of functions with

(i) ‖vh‖BV +(Ω) ≤M, for all k ∈ N,
(ii) vh → v in L1(Ω), h→∞, for some v ∈ L1(Ω).

Then VH(v) is lower semicontinuous with respect to convergence in L1(Ω),
i.e.

VH(v) ≤ lim inf
h→∞

VH(vh).

Proof. We use an approximation procedure that is due to E. Giusti, cf. [7,
Proposition 2.1].
1st step: For m > 0 we set[

−H(tx, t) · t
]
m

:=

{ −H(mx, x) ·m, if t > m,

−H(tx, t) · t, if 0 < t ≤ m.
Then we have

n

∫
Ω

∫ n
√

nvh(x)

0

[
−H(tx, t) · t

]
m
· tn−1 dt dx

− n
∫

Ω

∫ n
√

nv(x)

0

[
−H(tx, t) · t

]
m
· tn−1 dtdx

= n

∫
Ω∩{x : vh(x)>v(x)}

∫ n
√

nvh(x)

n
√

nv(x)

[
−H(tx, t) · t

]
m
· tn−1 dtdx

+ n

∫
Ω∩{x : v(x)>vh(x)}

∫ n
√

nvh(x)

n
√

nv(x)

[
−H(tx, t) · t

]
m
· tn−1 dt dx

=: I1 + I2.

Because of (3.3) and (3.5) we get

I1 ≥ −n
∫

Ω∩{x : vh(x)>v(x)}
H(x)

(
vh(x)− v(x)

)
dx

= −n
∫

Ω
H(x)

(
vh(x)− v(x)

)+
dx,

where
(
vh(x)− v(x)

)+
:= max

(
vh(x)− v(x), 0

)
, and the integral converges

to zero because H is in Ln(Ω), and (vh − v)+ converges weakly to zero in
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L
n

n−1 (Ω). For the second integral we get

I2 = −n
∫

Ω∩{x : v(x)>vh(x)}

∫ n
√

nv(x)

n
√

nvh(x)

[
−H(tx, t) · t

]
m
· tn−1 dtdx

≥ n
∫

Ω
H(mx,m) ·m

(
v(x)− vh(x)

)+
dx −→ 0,

as h → ∞, because of (3.4) and the weak convergence (vh − v)+ to zero in

L
n

n−1 (Ω). Therefore we get

(3.6)

lim inf
h→∞

n

∫
Ω

∫ n
√

nvh(x)

0

[
−H(tx, t) · t

]
m
· tn−1 dtdx

≤ n
∫

Ω

∫ n
√

nv(x)

0

[
−H(tx, t) · t

]
m
· tn−1 dt dx.

2nd step: We now show that for all t > 0

(i)
[
−H(tx, t) · t

]
m+1

≥
[
−H(tx, t) · t

]
m
, for almost all x ∈ Ω,

and

(ii) 1
t

[
−H(t ·, t) · t

]
m
∈ L1(D(u)).

The inequality (i) is elementary because of the growth condition (3.3), and∫
D(u)

1
t

[
−H(tx, t) · t

]
m

dHn+1(x, t)

=

∫
Ω

∫ m

0

1
t

(
−H(tx, t) · t

)
tn dt dx

+

∫
Ω

∫ n
√

nv(x)

m
−H(mx,m) ·mtn−1 dt dx,

and the integrals are finite because of (3.4) and v ∈ L
n

n−1 (Ω). We note that
v ∈ BV +(Ω) due to the lower semicontinuity of the area integral.
3rd step: From (i) and (ii) in the last step we infer that

(3.7)

∫
Ω

∫ n
√

nv(x)

0
−H(tx, t)tn dtdx

= sup
m>0

∫
Ω

∫ n
√

nv(x)

0

[
−H(tx, t) · t

]
m
tn−1 dt dx
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holds due to Lebesgue’s theorem on monotone convergence. Finally, (3.6)
implies lower semicontinuity of Vh(v):

sup
m>0

n

∫
Ω

∫ n
√

nv(x)

0

[
−H(tx, t) · t

]
m
tn−1 dtdx

≤ sup
m>0

lim inf
h→∞

∫
Ω

∫ n
√

nvh(x)

0

[
−H(tx, t) · t

]
m
tn−1 dt dx

= lim inf
h→∞

∫
Ω

∫ n
√

nvh(x)

0
−H(tx, t)tn dt dx.

�

Theorem 3.3. Suppose that h ∈ L1(∂Ω) and that H : C(Ω) → R satisfies
the conditions (3.2) to (3.5). Moreover, assume in particular that H(y) ≤ 0
for all y ∈ C(Ω). Then the variational problem

F(v) :=

∫
Ω

√
|div(x · v)|2 + |Dv|2

+

∮
∂Ω
|h− v|

√
1 + (x · v)2 dHn−1

−
∫

Ω

∫ n
√

nv(x)

0
H(tx, t)tn dt dx −→ min in BV +(Ω)

has a solution.

Remark 3.4. If H is not necessarily non-positive, the integral F(v) is
bounded from below on BV +(Ω) under additional conditions on the quan-
tity

∫
E H(tx, t) · t dx in terms of the perimeter of the Borel set E ⊆ Ω.

Such inequalities are known from a priori estimates for solutions of the cor-
responding Euler-Lagrange equation, in particular for their behavior at the
boundary. We will address these problems in a separate work.

Proof. According to Lemma 2.5 it is equivalent to minimize F(v) or the
functional

FB(v) :=

∫
B

√
|div(x · v)|2 + |Dv|2

−
∫
B\Ω

√
|div(x · h̃)|2 + |Dh̃|2

− n
∫

Ω

∫ n
√

nv(x)

0
H(tx, t)tn dtdx,

where we extend H outside the cone by zero. Because of H(y) ≤ 0 in C(Ω)
we have

FB(v) ≥ co > −∞, for all v ∈M := BV +(Ω) ∩ {v : v = h̃ on B \ Ω},



SURFACES OF PRESCRIBED MEAN CURVATURE IN A CONE 11

and there exists a sequence {vh} with vh ∈M such that

lim
h→0
FB(vh) = inf

v∈M
FB(v).

For this sequence we have∫
B
|Dvh| ≤ C1 for all h ∈ N,

with some C1 > 0, and because vh(x) = h̃(x) for all x ∈ B \ Ω this implies
that the BV -norm of {vh} is uniformly bounded:

‖vh‖L1(B) +

∫
B
|Dvh| ≤ C2, for all h ∈ N,

for some C2 > 0, cf. [8, Theorem 1.28]. As BV (B) is continuously embedded

in L
n

n−1 (B) and compactly in L1(B), Lemma 2.3 and Lemma 3.2 give the
lower semicontinuity of FB: there exists a subsequence {vhj

}∞j=1 of {vh}∞h=1

that converges to some function v ∈ L1(B), such that

FB(v) ≤ lim inf
j→∞

FB(vhj
).

Hence v ∈ BV +(B) is a minimizer to the variational problem. �

4. Minimizers that do not attain the prescribed boundary
values

It is a characteristic property of the variational approach to graphs of
minimal area in orthogonal projection that there are minimizers that do not
attain the prescribed boundary values continuously. If we choose Ω to be the
annulus A(R1, R2) :=

{
(x1, x2) ∈ R2 : 0 < R2

1 < x2
1+x2

2 < R2
2

}
and prescribe

the boundary data h(x) = 0 for |x| = R2 and h(x) = M > 0 for |x| = R1,
then for M large enough, the surface of minimal area consists of a part of a
catenoid which can be written as graph of some function u : A(R1, R2)→ R
with u(x) = h(x) for |x| = R2 and u(x) = m < M for |x| = R1 and of
the cylindrical surface S(m,M) =

{
(x1, x2, x3) : x2

1 + x2
2 = R2

1,m < x3 <

M
}

. All graphs with boundary data h(x) on ∂A(R1, R2) have larger area.
Therefore in this case the integral∮

∂Ω
|u− h|dHn−1

is different from zero.
The reason for this behavior lies in the fact that boundary values are

attained only if the prescribed mean curvature H of the surface is smaller
than the mean curvature of the boundary, cf. [9], hence in an annulus where
the boundary consists of circles with mean curvature 1/R2 and −1/R1 this
condition cannot hold for H = 0.

The analogue to this example for minimizers to the functional F in Theo-
rem 3.3 with positive mean curvature Ho can be constructed in the following
way. Instead of the cylinder AR1,R2 × R we consider the circular cone C(B)
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with B denoting the unit ball B1(0) ⊆ R2. The minimizers consist of spher-
ical caps C(ro) of radius ro = 1/Ho which are described by

(4.1) ζ(ρ) = ζo −
√
r2
o − ρ2,

with ρ2 = ξ2 + η2, (ξ, η) ∈ B, where ρ lies in some suitable interval [0, ρ∗],
and (0, 0, ζo) is the center of the sphere ∂Bro ⊂ R3, and some part of ∂C(B)
which is bounded by the circles Γ(g) and Γ(ρ∗) with Γ(c) = {(ξ, η, ζ) : (ξ, η) ∈
∂B, ζ(ξ, η) = c}, c = const. The spherical cap corresponds to the piece of
the catenoid in the example above, and the region in ∂C(B) corresponds to
the cylinder ∂BR1 × (m,M).

Now we fix Ho > 0 and constant boundary data h > 0. It is clear from the
set-up, that a spherical cap of radius ro will meet the boundary ∂C(B) only
if the center of the sphere lies on the ζ-axis between ζ = ro and ζ =

√
2ro.

Hence for h > ρo = ro√
2

the spherical caps

ζ(ρ) = ζo −
√
r2
o − ρ2, ro ≤ ζo ≤

√
2ro,

will not meet the envelope of the cone in Γ(h), whereas for h = ρo the sphere
(4.1) with ζo =

√
2ro touches ∂C(B) in Γ(ρo). For h < ρo the spherical caps

(4.1) with ζo = h+
√
r2
o − h2 will meet the boundary ∂C(B) in Γ(h).

For large boundary data h > ρo = ro/
√

2 we consider the configurations
that consist of a spherical shell

Γ(ρ∗) = {(ξ, η, ζ) : ξ2+η2 ≤ ρ2
∗, ζ = ζo−

√
r2
o − ρ2 with ζo = ρ∗+

√
r2
o − ρ2

∗}

together with the surface

Γ(h, ρ∗) = {(ξ, η, ζ) : ξ = ζx, η = ζy, x2 + y2 = 1, ρ∗ < ζ < h}.

Then the variational integral F in Theorem 3.3 can be calculated for such
a configuration by elementary means, and we get

(4.2)
F(ρ∗;h) = 2πro(ro −

√
r2
o − ρ2

∗) +
√

2π(h2 − ρ2
∗)

+
2π

3ro

[
ρ3
∗ − (ro −

√
r2
o − ρ2

∗)
2(2ro +

√
r2
o − ρ2

∗)
]
.

F attains its minimum for ρ∗ ∈ (0, ρo] in ρ∗ = ρo = ro/
√

2. Differentiating
F with respect to ρ∗ we get

(4.3)
dF(ρ∗;h)

dρ∗
=

2πρ∗
ro

[
−
√

2ro + ρ∗ +
√
r2
o − ρ2

∗

]
.

and this expression vanishes if and only if

ρ∗ =
ro√

2
.

If we develop F(ρ∗;h) for ρ∗ = ρo − ε, ε > 0, the coefficient of 1
2ε

2 reads

2π

ro
√
r2
o − ρ2

o

[
r2
o − 2ρ2

o +
√
r2
o − ρ2

o(2ρo −
√

2ro)
]
,
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and for ρo = ro√
2

this gives

2
√

2π

r2
o

[
r2
o − 2

r2
o

2
+

ro√
2

(
2
ro√

2
−
√

2ro

)]
= 0.

The coefficient of 1
6ε

3 is

− 2π

ro(r2
o − ρ2

o)
3/2

[
2ρ2

o

(
ρo −

√
r2
o − ρ2

o

)
− r2

o

(
− 3ρo + 2

√
r2
o − ρ2

o

)]
,

which gives

−2π · 2
√

2

r4
o

[
2
r2
o

2

( ro√
2
− ro√

2

)
+ r2

o

(
− 3

ro√
2

+ 2
ro√

2

)]
=

4π

ro
> 0

at the point ρo = ro√
2
. Therefore F(ρ∗;h) is minimal at ρ = ro√

2
.

In the cylindrical case the convexity of
√

1 + |p|2 yields that the spherical
mean

u∗(r) =
1

2π

∮
|y|=1

u(ry) ds, r = |x|

is a solution to the variational problem, provided u(x) is a minimizer. Here
the same argument holds because the integrand

F (z, p) =
√

(2z + x · p)2 + |p|2 +
2

3
ho(2z)

3
2

is jointly convex in (z, p), which means, cf. [6, p.289], that the matrix of the
second derivatives (

DpipjF DpizF
DpjzF DzzF

)
i,j=1,2

is pointwise positive definite.
The result of this chapter therefore reads

Theorem 4.1. For B = B1(0) ⊆ R2, boundary values h = const and
constant mean curvature Ho with h > 1

Ho
the minimizer of

F(v) =

∫
B

√
(2v + x ·Dv)2 + |Dv|2

+

∮
∂B
|v − h|

√
1 + (x · ν)2 ds+

2

3
Ho

∫
B

√
2v

3
dx dy

consists of the spherical shell of radius ro = 1
Ho

, described by

ζ(ρ) =
√

2ro −
√
r2
o − ρ2, 0 ≤ ρ ≤ ρo =

ro√
2
,

together with the part of the envelope of C(B) that lies between Γ(ρo) and
Γ(h).
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Remark 4.2. These surfaces can also be seen in the context of constant
mean curvature surfaces; we refer to the monograph [11] by R. López, in
particular §8.5. Compared with radial graphs in a cone considered there,
our example gives a singular surface, because the boundary data are not
attained continuously.
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