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Abstract
This work concerns the sufficient condition for the regularity of solutions to the evolution
Navier-Stokes equations known in the literature as Prodi-Serrin condition. H.-O. Bae and
H.J. Choe proved in 1997 that, in the whole space R3, it is sufficient that two components
of the velocity satisfy the above condition in order to guarantee the regularity of solutions.
In contribution [8], this result was extended to the half-space case Rn

+ under slip boundary
conditions by assuming that the velocity components parallel to the boundary enjoy the above
condition. It remained open whether the flat boundary geometry is essential. Below, we prove
that, under physical slip boundary conditions imposed in cylindrical boundaries, the result
still holds.

1 Introduction. Related Results. The Main Problem.
To explain motivation, setting, and interest of the problem studied below, we start by recalling
some well-known results. A sketch is sufficient to this purpose, since we assume that readers are
acquainted with the main lines of the subject. Some results that are referred to below also hold
for dimensions n > 3. For simplicity, since we are interested in the case n = 3 below, we do not
refer to extensions to larger dimensions, except if strongly connected to our specific problem.

Consider the Navier-Stokes equations described in Cartesian coordinates{
∂tu + (u · ∇)u− ν∇2u +∇π = 0,

∇ · u = 0 in Ω× (0, T ],
(1.1)

where Ω ⊂ R3 is an open, smooth set. Below, weak solutions are considered in the so-called
Leray-Hopf sense, see J. Leray in [24], E. Hopf in [18], and A.A. Kiselev and O.A. Ladyzhenskaya
in [19], and also J.L. Lions in [25]. Solutions are called strong if

u ∈ L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)). (1.2)

A main point in the theory of the 3D Navier-Stokes equations is that strong solutions are unique
and smooth if data and domain are smooth as well. The result holds in a very large class of domains
Ω if suitable boundary conditions, or behavior at infinity, are prescribed. To prove, or disprove,
that weak solutions are necessarily strong (or unique) under reasonable but general assumptions,
is one of the most challenging open mathematical problems.
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In this context, a remarkable and classical sufficient condition for uniqueness and regularity is
the so-called strict Prodi-Serrin (P-S) condition, namely

u ∈ Lq(0, T ;Lp(Ω)),
2

q
+

3

p
= 1, p > 3. (1.3)

Weak solutions satisfying the P-S condition (1.3) are known to be strong and unique.
Assumption (1.3) was firstly considered by G. Prodi in his paper [28] of 1959. He proved

uniqueness under assumption (1.3), see also C. Foias, [13]. Furthermore, J. Serrin, see [30] and
[31], particularly proved interior spatial regularity under the stronger (non-strict) assumption

u ∈ Lq(0, T ;Lp(Ω)),
2

q
+

3

p
< 1, p > 3. (1.4)

Concerning the above problems, see also O.A. Ladyzenskaya’s contributions [22] and [23]. The
above setup led to the nomenclature Prodi-Serrin condition.

Complete proofs of the strict regularity result (i.e. under assumption (1.3)) were given by
H. Sohr in [32], W. von Wahl in [34], and Y. Giga in [16]. A simplified version of the proof was
given in [15]. We additionally recommend the references in the bibliography of this last paper. For
a quite complete overview on the initial-boundary value problem see contribution [14].

More recently, L. Escauriaza, G. Seregin, and V. Šverák, see [12], extended the regularity result
to the case (q, p) = (∞, 3).

We strongly recommend [29] and [31] as sources for information on the historical context of the
P-S condition by the initiators themselves.

A significant improvement of the P-S condition was obtained by H.-O. Bae and H.J. Choe. This
is the main subject of our paper. These authors succeeded in proving that regularity also holds
under the weaker assumption

u ∈ Lq(0, T ;Lp(R3)),
2

q
+

3

p
≤ 1, p > 3, (1.5)

where u is a vector consisting of two arbitrary components of u. A complete proof of this result
was shown in a preprint from 1999 by Bae and Choe, see also [1].

Furthermore, in contribution [8], this result was extended to the half-space Rn+ under slip
boundary conditions. In this case, the truncated (n−1)-dimensional vector field u cannot be
chosen arbitrarily. The omitted component has to be normal to the boundary.

u = (u1, u2, ..., un−1, 0).

The challenging question whether the assumption of a flat boundary was a crucial element for the
proof remained open. In order to study this problem, we will consider, below, a cylindrical three-
dimensional domain, periodic in the axial direction, see §2. Equations are studied in cylindrical
coordinates (ξ1, ξ2, ξ3) = (r, ϑ, z) with obvious notation. Hence, the velocity’s component normal
to the lateral boundary ∂lΩ of the cylinder is represented by u1, and u = (0, u2, u3) consists of the
angular and the axial components of the velocity field. In order to better highlight the common
features in the two approaches, Cartesian and cylindrical, we keep the same notation in both
systems of coordinates. For instance, u and π denote velocity and pressure, respectively, in both
systems.

Our main result is Theorem 2.2 below. For definitions and notation, see §2.

After the contribution by Bae and Choe, related papers appeared that particularly concerned
assumptions on two components of velocity or vorticity, see [2], [5], [8], [9], and [11]. There are
also many papers dedicated to sufficient conditions for regularity which depend merely on one
component, see, for instance, [10], [17], [21], [27], [35], and [36].

Next, we briefly consider the Prodi-Serrin condition for (q, p) = (∞, n). It deserves a separate
treatment. Consult [12] and [26] for full results, and [4] and [20] for previous results. Concerning
contributions in which the restricted P-S condition

u ∈ L∞(0, T ;Ln(Ω)) (1.6)

is assumed, we refer to [5] and [9]. In both cases, Ω = Rn.
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In contribution [5], it was shown that solutions are regular even under the condition that the
norm ‖u(t)‖n admits a sufficiently small discontinuity from the left. In other words, they cannot
exist. More precisely, it was proved that there is a positive constant C(n) such that the solution
is smooth in (0, T ] if

sup
τ∈(0,T ]

((
lim sup
t→τ−0

‖u(t)‖nn

)
− ‖u(τ)‖nn

)
≤ C(n) νn . (1.7)

In particular, by setting τ = 0, it follows that ‖u‖L∞(0,T ;Ln(Rn)) ≤ C(n) ν implies regularity.
In contribution [9], the author replaced the space Ln(Rn) by the weak Ln-Marcinkiewicz space
Lnw(Rn), endowed with the canonical quasi-norm [v]n, and essentially proved that there is a positive
constant C such that a weak solution u is smooth in (0, T ] if it satisfies ‖u‖L∞(0,T ;Ln

w(Rn)) ≤ C.

For the reader’s convenience, we briefly describe the main points of the classical proof of the
sufficiency of the P-S condition for regularity in §3. The aim of this sketch is merely to provide
additional assistance in comprehensively reading the more complicated situation that involves
cylindrical coordinates. In this sense, it may be skipped by the reader.

2 The Navier-Stokes Equations in Cylindrical Coordinates.
The Restricted P-S Condition. The Main Result.

In the sequel, we are interested in the evolution Navier-Stokes equations in the open bounded
cylinder Ω ⊂ R3, defined by

Ω := (ρ0, ρ1)× [0, 2π)× (0, 1),

under the classical Navier slip boundary condition without friction, see below. It is convenient
to study these equations in cylindrical coordinates (ξ1, ξ2, ξ3), where the radial coordinate ξ1 has
range

0 < ρ0 < ξ1 < ρ1, (2.1)

the angular coordinate ξ2 is 2π-periodic, and the component in axial direction ξ3 is 1-periodic. We
write

u = u1 · e1 + u2 · e2 + u3 · e3,

where ek, k = 1, 2, 3, are the unit vectors in radial, angular and axial (orthogonal) directions,
respectively. We use the ∇-symbol in the following manner, where v : Ω → R

3 is a vector field
and g : Ω→ R is a scalar field:

∇ · v :=
1

ξ1
∂1 (ξ1v1) +

1

ξ1
(∂2v2) + ∂3v3,

∇g := (∂1g) · e1 +
1

ξ1
(∂2g) · e2 + (∂3g) · e3,

∇2g :=
1

ξ1
∂1 (ξ1∂1g) +

1

ξ21

(
∂22g
)

+
(
∂23g
)
,

∇2v :=

(
∇2v1 −

2

ξ21
∂2v2 −

v1
ξ21

)
· e1+(

∇2v2 +
2

ξ21
∂2v1 −

v2
ξ21

)
· e2+(

∇2v3

)
· e3,

v · ∇g :=v1(∂1g) +
v2
ξ1

(∂2g) + v3(∂3g).

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

Note that
v · (∇g) = (v · ∇)g = v1(∂1g) +

v2
ξ1

(∂2g) + v3(∂3g). (2.3)
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The three-dimensional evolution Navier-Stokes equations in cylindrical coordinates, see [3, p. 602],
are given by: 

E1 := ∂tu1 +N1 − ν
(
∇2u1 −

2

ξ21
∂2u2 −

u1
ξ21

)
+ ∂1π = 0,

E2 := ∂tu2 +N2 − ν
(
∇2u2 +

2

ξ21
∂2u1 −

u2
ξ21

)
+

1

ξ1
∂2π = 0,

E3 := ∂tu3 +N3 − ν
(
∇2u3

)
+ ∂3π = 0.

(2.4)1

(2.4)2

(2.4)3
The fluid’s incompressibility is expressed by

∇ · u =
1

ξ1
∂1 (ξ1u1) +

1

ξ1
(∂2u2) + (∂3u3) = 0. (2.5)

N1, N2 and N3 denote the three components of the non-linear term (u · ∇)u in cylindrical coor-
dinates, namely

N1 := u · ∇u1 −
u22
ξ1

= u1(∂1u1) +
u2
ξ1

(∂2u1) + u3(∂3u1)− u22
ξ1
,

N2 := u · ∇u2 +
u1u2
ξ1

= u1(∂1u2) +
u2
ξ1

(∂2u2) + u3(∂3u2) +
u1u2
ξ1

,

N3 := u · ∇u3 = u1(∂1u3) +
u2
ξ1

(∂2u3) + u3(∂3u3).

(2.6)1

(2.6)2

(2.6)3

On the lateral boundary of the cylinder,

∂lΩ := {(ξ1, ξ2, ξ3) : ξ1 = ρ0, ρ1; ξ2 ∈ [0, 2π); ξ3 ∈ (0, 1)} , (2.7)

we impose slip boundary conditions defined by requiring that the normal component of u vanishes,
i.e. u1 ≡ 0, and that the tangential components of the stress vector vanish, too. By appealing to
the tangent vector fields e2 and e3 on ∂lΩ and to the stress vector

[−π + 2 (∂1u1)] · e1+

[
(∂2u1)

ξ1
+ξ1

(
∂1
u2
ξ1

)]
· e2+[(∂3u1)+(∂1u3)] · e3, (2.8)

we get 
u1 = 0,

∂1
u2
ξ1

= 0,

∂1u3 = 0

(2.9)1

(2.9)2

(2.9)3
on ∂lΩ , because of ∂2u1 ≡ ∂3u1 ≡ 0 on ∂lΩ.

Note that we may assume Ω being a ξ3-periodic cylinder, and so do not consider its base and
top as parts of the boundary.

For a mathematical treatment of quite general physical slip boundary conditions imposed on
smooth, but generic, boundaries, with applications to stationary (classical and generalized) Stokes
systems, see reference [6]. See also [33]. Further, in reference [7], applications to evolution problems
of the results shown in [6] are illustrated by some significant examples.

Definition 2.1. Let u be a weak solution of the Navier-Stokes equations given by (2.4) - (2.6).
Set

u = (0, u2, u3).

We say that u satisfies the restricted Prodi-Serrin condition if

u ∈ Lq(0, T ;Lp(Ω)),
2

q
+

3

p
≤ 1, p > 3, (2.10)

holds.

In the sequel, we prove the following result.

Theorem 2.2. Let u be a weak solution of the Navier-Stokes equations given by (2.4) - (2.6) in
the cylinder Ω, subject to the slip boundary conditions (2.9). Furthermore, assume that u satisfies
the restricted P-S condition (2.10). Then, u is a strong solution

u ∈ L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)). (2.11)

Strong solutions are smooth provided that data and domain are smooth as well.
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3 Remarks on the Whole- and Half-Space Cases
The proof of Theorem 2.2 is quite intricate, particularly due to the appearance of many “lower
order terms”. We believe that an anticipatory knowledge of the main lines of the proof, in a
simpler case, could help readers to follow the complete proof of the Theorem shown in the next
sections. We try to accomplish this purpose by briefly describing the main points in the classical
proof of the P-S condition’s sufficiency for regularity, in the simplest case, namely Ω = R

n, in
Cartesian coordinates. Our aim is merely to assist in the understanding of the more complicated
situation involving cylindrical coordinates. In this sense, this section may be fully skipped by the
reader.

To better highlight the common features in the two approaches, Cartesian and cylindrical, we
stick to the same notation (u, π). Hence, we write{

∂tu + (u · ∇)u− ν∇2u +∇π = 0,

∇ · u = 0 in Ω× (0, T ].
(3.1)

In this simplified case, the proof of (2.11) has the following structure. By differentiating both sides
of the first equation in (3.1) with respect to xk, k = 1, 2, 3, by taking the scalar product with ∂ku,
and by summing up over k, one shows that

1

2

d
dt

∫
|∇u|2 dx+ ν

∫ ∣∣∇2u
∣∣2 dx = −

∫
∇[(u · ∇)u] · ∇u dx, (3.2)

where obvious integrations by parts have been done, and ∇ · u = 0 was taken into account. On
the other hand, an integration by parts yields∣∣∣∣∫ ∇[(u · ∇)u] · ∇udx

∣∣∣∣ ≤ c(n)

∫
|u| |∇u|

∣∣∇2u
∣∣ dx. (3.3)

From (3.2) and (3.3), it follows that

1

2

d
dt

∫
|∇u|2 dx+ ν

∫ ∣∣∇2u
∣∣2 dx ≤ c(n)

∫
|u| |∇u|

∣∣∇2u
∣∣ dx. (3.4)

Hence,
1

2

d
dt

∫
|∇u|2 dx+ ν

∫ ∣∣∇2u
∣∣2 dx ≤ c(n) ‖|u| ∇u‖2

∥∥∇2u
∥∥
2
. (3.5)

By Hölders inequality, one has

‖|u| ∇u‖2 ≤ ‖u‖p ‖∇u‖ 2p
p−2

.

Furthermore, by interpolation and by Sobolev’s embedding theorem,

‖∇u‖ 2p
p−2
≤ ‖∇u‖1−

n
p

2 ‖∇u‖
n
p

2∗ ≤ c ‖∇u‖
1−n

p

2

∥∥∇2u
∥∥n

p

2
,

since (p− 2)/(2p) = (1− n/p)/2 + (n/p)/2∗. Here, 2∗ = 2n/(n− 2) is the well-known exponent in
Sobolev’s embedding theorem. Consequently,

‖|u| ∇u‖2
∥∥∇2u

∥∥
2
≤ c ‖u‖p ‖∇u‖

1−n
p

2

∥∥∇2u
∥∥1+n

p

2
.

Hence, by Young’s inequality,

‖|u| ∇u‖2
∥∥∇2u

∥∥
2
≤ C(ε) ‖u‖qp ‖∇u‖

2
2 + ε

∥∥∇2u
∥∥2
2
. (3.6)

From (3.5) and (3.6), we get, for t ∈ (0, T ],

1

2

d
dt
‖∇u‖22 +

ν

2

∥∥∇2u
∥∥2
2
≤ C(ε) ‖u‖qp ‖∇u‖

2
2 + ε

∥∥∇2u
∥∥2
2
. (3.7)

Finally, (2.11) is proved by appealing to Gronwall’s Lemma, since, by the classical version of the
P-S condition,

‖u‖qp ∈ L
1(0, T ).
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The crucial contribution of H.-O. Bae and H.J. Choe was to succeed in replacing, in the right
hand side of (3.3), the term |u| simply by |u| , where u = (u1, u2, ..., un−1, 0). So∣∣∣∣∫ ∇[(u · ∇)u] · ∇udx

∣∣∣∣ ≤ c(n)

∫
|u| |∇u|

∣∣∇2u
∣∣ dx (3.8)

holds instead of the weaker estimate (3.3). The reader immediately verifies that all the above
calculations hold simply by replacing u by u in the appropriate places. In particular, the inequality
(3.7) holds with ‖u‖qp replaced by ‖u‖qp . This leads to the generalized P-S condition

‖u‖qp ∈ L
1(0, T ). (3.9)

4 Structure and Method of Proof of Theorem 2.2
In order to prove Theorem 2.2, we start from the integral identities

I1,1 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1E1)] ·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 = 0,

I1,2 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1E2)] ·
[
∂1
u2
ξ1

]
· ξ1 dξ1dξ2dξ3 = 0,

I1,3 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1E3] · [∂1u3] · ξ1 dξ1dξ2dξ3 = 0,

I2,1 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂2E1] · [∂2u1] · ξ1 dξ1dξ2dξ3 = 0,

I2,2 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂2E2] · [∂2u2] · ξ1 dξ1dξ2dξ3 = 0,

I2,3 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂2E3] · [∂2u3] · ξ1 dξ1dξ2dξ3 = 0,

I3,1 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂3E1] · [∂3u1] · ξ1 dξ1dξ2dξ3 = 0,

I3,2 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂3E2] · [∂3u2] · ξ1 dξ1dξ2dξ3 = 0,

I3,3 (E) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂3E3] · [∂3u3] · ξ1 dξ1dξ2dξ3 = 0

(4.1)1,1

(4.1)1,2

(4.1)1,3

(4.1)2,1

(4.1)2,2

(4.1)2,3

(4.1)3,1

(4.1)3,2

(4.1)3,3

which follow immediately from equations (2.4). To exploit incompressibility, we have to combine
the above equations in the following manner:

Ij,1 (E) + Ij,2 (E) + Ij,3 (E) = 0, j = 1, 2, 3. (4.2)

Note that Ek, k = 1, 2, 3, consist of four distinct terms, time, non-linear, viscous, and pressure,
respectively. This leads to the following decomposition of the integrals appearing in equations
(4.1).

Ij,k (E) = Ij,k (N) + Ij,k (π) + Ij,k (ν) + Ij,k (∂t) . (4.3)

6



The integrals on the right hand side will be studied separately. Just at the end of this paper, we
will put all together by appealing to the core identity∑

j,k=1,2,3
Ij,k (E) = 0 . (4.4)

Roughly, we will prove in the next sections that the time terms give rise to the first term in the left
hand side of (3.5), the viscous terms generate the second term, the pressure terms vanish, and the
non-linear terms give rise to the right hand side of (3.5), obviously with |u| replaced by |u|. This
leads to (3.7), with ‖u‖qp replaced by ‖u‖qp . However, in our cylindrical setting, this identification
is possible only up to the appearance of a large number of negligible terms, see below.

Convention 4.1. In the sequel, claiming that some quantity H(t) is negligible means that one
can show, without appealing to the restricted P-S condition (2.10), that, given an arbitrary ε > 0,
there is a real function bε(t) ∈ L1(0, T ), such that

|H(t)| ≤ bε(t)
(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥D2u
∥∥2
2
, (4.5)

a.e. in (0,T).
Terms that generate negligible terms after integration over Ω are also called negligible and may,

thus, be eliminated from equations.
If an equality or an estimate holds up to negligible terms, we will write ' or �, respectively.

Due to the integrability of the function bε(t), negligible terms H(t) are trivially controlled by
our main left hand side by appealing to Gronwall’s Lemma – equation (3.7) shows the typical
situation where now the above term |H(t)| appears on the left hand side.

The above convention is useful, since it allows us to avoid many similar calculations and unnec-
essarily long equations as the verification of the negligibility of many quantities becomes routine
and may be left to the reader.

We could give simple expressions, case by case, for the above functions bε(t), see Lemma 4.2
below for examples. However, by appealing to a generic bε, we invite the reader to retrace these
simple calculations on his own.

Note that the above convention is quite significant in the context of the P-S condition as it
separates terms requiring this extra assumption from terms that can be treated without appealing
to it.

Lemma 4.2. Terms of the following forms are negligible:

u3,

u2(∂u),

u2(∂2u),

u(∂u)2, and

(∂u)(∂2u)

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

Furthermore,

‖u ·Du‖2 ≤ c (‖u‖2 + ‖Du‖2)
3/2
(
‖Du‖1/22 +

∥∥D2u
∥∥1/2
2

)
. (4.7)

Products of functions that are bounded by terms in (4.6) are still negligible.

Proof. The term (4.6e) is clearly bounded by the right hand side of (4.5) with bε(t) = ε−1. The
term (4.6d) can be estimated by appealing to Hölder’s inequality with exponents 3, 2, and 6, and
to Sobolev’s embedding theorem W 1,2 ⊂ L6 applied to Du. It follows that

1∫
0

2π∫
0

ρ1∫
ρ0

|u| · |∂u| · |∂u| dξ1dξ2dξ3 ≤ c ‖u‖3 ‖Du‖2 ‖Du‖6

≤ c ‖u‖3 ‖Du‖2
(
‖Du‖2 +

∥∥D2u
∥∥
2

)
≤ c ‖u‖3 ‖Du‖22 +

c

ε
‖u‖23 ‖Du‖22 + ε

∥∥D2u
∥∥2
2
.
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The coefficient ‖u‖23 ≤ c ‖u‖
2
6 ∈ L1(0, T ) satisfies condition (4.5) without appealing to the restricted

P-S condition (2.10) as Leray-Hopf solutions belong to L2(0, T ;W 1,2(Ω)). Similarly, the term (4.6c)
may be bounded as follows.

1∫
0

2π∫
0

ρ1∫
ρ0

|u| · |u| ·
∣∣∂2u∣∣ dξ1dξ2dξ3 ≤ c ‖u‖3 ‖u‖6 ∥∥D2u

∥∥
2

≤ c ‖u‖3 (‖u‖2 + ‖Du‖2)
∥∥D2u

∥∥
2

≤ c

ε
‖u‖23

(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥D2u
∥∥2
2
.

The terms (4.6a) and (4.6b) are bounded by c ‖u‖3
(
‖u‖22 + ‖Du‖22

)
.

Equation (4.7) will be used much later only. Since the proof follows the same ideas, it seems
appropriate to state it right away for the reader’s convenience. By Hölder’s inequality with ex-
ponents 3 and 3/2, one shows that ‖u ·Du‖2 ≤ ‖u‖6 ‖Du‖3 . Furthermore, by interpolation, we
obtain the relation ‖Du‖23 ≤ ‖Du‖2 ‖Du‖6 . On the other hand, ‖u‖6 ≤ c(‖u‖2 +‖Du‖2), similarly
for ‖Du‖6 . The estimate (4.7) now follows easily. The last claim in the Lemma is obvious.

Note that, with regard to the boundary condition for u2 that we consider, the quantity ‖Du‖2
is merely a semi-norm. This led to the addition of ‖u‖2 .

It is worth noting that Hölder and Sobolev theorems, due to (2.1), hold in Ω in the context of
cylindrical coordinates, formally as for Cartesian coordinates, at most with an obvious adaptation.

5 Contribution of the Non-Linear Terms
We start by remarking that the role of the non-linear terms is central here, since the P-S condition
is necessary especially because of these terms.

In this section, we study the integrals obtained by restricting the terms E1, E2, E3 in (4.1) to
their non-linear parts, i.e. N1, N2, and N3, respectively. Thus, we consider

I1,1 (N) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1N1)] ·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (N) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1N2)] ·
[
∂1
u2
ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (N) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1N3] · [∂1u3] · ξ1 dξ1dξ2dξ3,

Ij,k (N) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂jNk] · [∂juk] · ξ1 dξ1dξ2dξ3, j=2, 3, k=1, 2, 3.

(5.1)1,1

(5.1)1,2

(5.1)1,3

(5.1)j,k

We start by investigating the integrands

N1,1 := [∂1 (ξ1N1)] ·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1,

N1,2 := [∂1 (ξ1N2)] ·
[
∂1
u2
ξ1

]
· ξ1,

N1,3 := [∂1N3] · [∂1u3] · ξ1,
Nj,k := [∂jNk] · [∂juk] · ξ1, j = 2, 3, k = 1, 2, 3,

(5.2)1,1

(5.2)1,2

(5.2)1,3
(5.2)j,k

and by replacing the quantities Nk, k = 1, 2, 3, by their definitions from (2.6). In this way, each
Nj,k appears as a sum of single terms which are trilinear in u, possibly with coefficients consisting
of powers of ξ1. This claim is obvious. Hence, we may decompose each Nj,k in the following
manner:

Nj,k = Bj,k +Kj,k +Rj,k, j, k = 1, 2, 3, (5.3)
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where, up to negligible terms (cf. Remark 5.1), Bj,k denotes the summation of all terms having
a factor of the form u(∂u)(∂∂u), and Kj,k consists of all terms containing a factor of the form
(∂u)(∂u)(∂u). It is worth noting that the really significant terms are the Bj,k- and the Kj,k-terms,
since they are characterized by three differentiations. The sums of all other terms which have, at
most, two differentiations, are denoted by Rj,k, j, k = 1, 2, 3.

Remark 5.1. In the sequel, some negligible terms will be dropped from the expressions of the
Bj,k- and the Kj,k-terms without changing notation. However, the definition (5.7) is strict due to
the equality required in (5.9). On the contrary, the definition of the Kj,k-terms shown in (5.8) is
neither strict nor particularly significant. To this extent, note that, in (5.14), one has a �-sign.

We now proceed to prove the negligibility of Rj,k-terms.

Proposition 5.2. The Rj,k-terms, j, k = 1, 2, 3, are negligible.

Proof. Since every term in Nj,k, j, k = 1, 2, 3, is trilinear in u, the residual terms Rj,k must fall
into one of the five categories of terms given in (4.6), possibly multiplied by an integer power of ξ1.
Due to this particular form, these coefficients remain in the very same class after differentiation.
Furthermore, coefficients in this class are bounded, cf. (2.1). The Proposition becomes immediate
by appealing to (4.6a) - (4.6d): The negligibility of these expressions has been shown in Lemma
4.2.

Clearly, in order to eliminate the ε-term from the right hand side of estimates like (3.6), we
need a suitable estimate of the term

∥∥D2u
∥∥2
2
, present on the left hand side of (3.4). This crucial

estimate will be obtained from the viscous ν-terms in §7.
Next, note that, in equations (2.6), the terms u22/ξ1 and (u1u2)/ξ1 give rise to negligible terms.

Thus, we drop these terms from the expression of N1 and N2 :

Nk ' (u · ∇)uk, k = 1, 2, 3. (5.4)

Suitable expressions for the Bj,k- and the Kj,k-terms can easily be obtained as follows. One
starts by noting that, in equations (5.2), each time we differentiate a coefficient with respect to ξ1,
we obtain a negligible term. Thus,

Nj,k ' (∂jNk) (∂juk) ξ1 ' [∂j (u · ∇uk)] (∂juk) ξ1, (5.5)

where we also have appealed to the equivalence (5.4). Hence,

Nj,k ' [u · ∇ (∂juk)] (∂juk) ξ1

+

[
(∂ju1) (∂1uk)+

(
∂j
u2
ξ1

)
(∂2uk)+(∂ju3) (∂3uk)

]
(∂juk) ξ1

'ξ1
2
u · ∇

[
(∂juk)

2
]

+

[
(∂ju1) (∂1uk)+

1

ξ1
(∂ju2) (∂2uk)+(∂ju3) (∂3uk)

]
(∂juk) ξ1,

(5.6)

where we have appealed to (2.3) and to the fact that ∂jξ−11 gives rise to a negligible term (which
vanishes if j 6= 1.)

The first term on the right hand side of (5.6) denotes the explicit form of the Bj,k-terms:

Bj,k =
ξ1
2
u · ∇

[
(∂juk)

2
]
. (5.7)

To fix ideas, we choose the second term in (5.6) as being the explicit form of the Kj,k-terms,

Kj,k = [ξ1 (∂ju1) (∂1uk)+(∂ju2) (∂2uk)+ξ1 (∂ju3) (∂3uk)] (∂juk) . (5.8)

We now prove that the Bj,k-terms do not contribute to the integrals (5.1). The following identity
holds.

Proposition 5.3. One has

1∫
0

2π∫
0

ρ1∫
ρ0

Bj,k dξ1dξ2dξ3 = 0, j, k = 1, 2, 3. (5.9)
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The result follows from the following statement.

Lemma 5.4. Let g be a scalar field that is 2π-periodic with respect to ξ2 and 1-periodic with respect
to ξ3. Then, there holds

1∫
0

2π∫
0

ρ1∫
ρ0

(u · ∇g) · ξ1 dξ1dξ2dξ3 = 0. (5.10)

Proof. Integration by parts yields

1∫
0

2π∫
0

ρ1∫
ρ0

u1(∂1g) · ξ1 dξ1dξ2dξ3 =

1∫
0

2π∫
0

ρ1∫
ρ0

(ξ1u1)(∂1g) dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1(ξ1u1)g dξ1dξ2dξ3,

since the corresponding boundary integral vanishes due to the boundary condition u1 = 0 on the
lateral boundary.

Similarly,

1∫
0

2π∫
0

ρ1∫
ρ0

u2
ξ1

(∂2g) · ξ1 dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

(∂2u2)g dξ1dξ2dξ3,

and

1∫
0

2π∫
0

ρ1∫
ρ0

u3(∂3g) · ξ1 dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

ξ1(∂3u3)g dξ1dξ2dξ3,

since the boundary integrals vanish due to periodicity in ξ2 or ξ3, respectively.
Adding up the three above equations, it follows that

1∫
0

2π∫
0

ρ1∫
ρ0

(u · ∇) g · ξ1 dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

(∇ · u) · g · ξ1 dξ1dξ2dξ3 = 0,

and equation (5.10) is proved.

The reader should take note that the main ingredient for the estimate of the Bj,k-terms was the
incompressibility of the velocity u. The weak P-S condition was not used. It will be used, though,
while considering the Kj,k-terms in order to prove the following result.

Proposition 5.5. One has∣∣∣∣∣∣
1∫

0

2π∫
0

ρ1∫
ρ0

Kj,k dξ1dξ2dξ3

∣∣∣∣∣∣
� c ·

1∫
0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣D2u

∣∣ · ξ1 dξ1dξ2dξ3, j, k = 1, 2, 3,

(5.11)

where u may denote the angular component u2 or the axial component u3 of the velocity.

Proof. For arbitrary but fixed j, k = 1, 2, 3, the three parts of Kj,k have the particular form

a(ξ1) (∂jui) (∂iuk) (∂juk), i = 1, 2, 3, (5.12)
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where a(ξ1) = 1 or a(ξ1) = ξ1. Hence, in order to prove Proposition 5.5, it is sufficient to show
that ∣∣∣∣∣∣

1∫
0

2π∫
0

ρ1∫
ρ0

a(ξ1) (∂jui) (∂iuk) (∂juk) dξ1dξ2dξ3

∣∣∣∣∣∣
� c ·

1∫
0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣D2u

∣∣ · ξ1 dξ1dξ2dξ3
(5.13)

for each triad of indices i, j, k.
Assume that the term ∂2u2 is present in the left hand side of (5.13). Then, after integrating

by parts with respect to the angular variable ξ2, one gets

1∫
0

2π∫
0

ρ1∫
ρ0

a(ξ1) (∂jui) (∂iuk) (∂juk) dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

a(ξ1) ∂2 [(∂∗u∗)(∂∗u∗)]u2 dξ1dξ2dξ3,

since the corresponding boundary integral vanishes due to ξ2-periodicity. Take note that the factor
(∂∗u∗)(∂∗u∗) must be of the the form (∂2uk)(∂2uk), (∂ju2)(∂ju2), or (∂2ui)(∂iu2). This already
proves (5.13) with u = u2 (and c = ρ1 or c = a(ρ1)).

A similar proof applies if we assume that the term ∂3u3 is present in the left hand side of (5.13).
In this case, we appeal to the ξ3-periodicity.

Next, assume that the term ∂1u1 is present in the left hand side of (5.13). As u is incompressible,
we may now replace ∂1u1 by

−u1
ξ1
− ∂2u2

ξ1
− ∂3u3.

The expression coming from u1/ξ1 is negligible. The other two are treated as above.
If the left hand side of equation (5.13) does not fall into one of the above three cases, then,

necessarily, the three indices i, j, k are pairwise distinct. One easily verifies that, in this case,
at least one of the two terms ∂2u3 or ∂3u2 must be present. In the first case, we integrate by
parts with respect to ξ2, and we end up with u = u3 in equation (5.13). The boundary integral
vanishes due to ξ2-periodicity. The second case is similar and the argumentation reads as above if
we interchange the indices 2 and 3.

Equation (5.3) and Propositions 5.2, 5.3 and 5.5 lead to the following result.

Proposition 5.6. One has

|Ij,k (N)| =

∣∣∣∣∣∣
1∫

0

2π∫
0

ρ1∫
ρ0

Nj,k dξ1dξ2dξ3

∣∣∣∣∣∣
� c ·

1∫
0

2π∫
0

ρ1∫
ρ0

|u| |Du|
∣∣D2u

∣∣ · ξ1 dξ1dξ2dξ3, j, k = 1, 2, 3,

(5.14)

where u may denote the angular component u2 or the axial component u3 of the velocity.

By arguing as in the proof of (3.6) with |u| replaced by |u|, we prove the following result.

Theorem 5.7. One has

|Ij,k (N)| � C(ε) ‖u‖qp ‖Du‖22 + ε
∥∥D2u

∥∥2
2
, j, k = 1, 2, 3. (5.15)

Recall that, due to Convention 4.1, we may replace in ((5.15)) the �-sign by the ≤-sign, and
add bε(t)

(
‖u‖22 + ‖Du‖22

)
to the right hand side of (5.15).

11



6 Contribution of the Pressure Terms
In this section, we study the integrals obtained by restricting the terms E1, E2, and E3 in (4.1) to
their pressure parts, i.e. ∂1π, 1

ξ1
∂2π, and ∂3π, respectively. Thus, we consider

I1,1 (π) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1π)] ·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (π) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (∂2π)] ·
[
∂1
u2
ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (π) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (∂3π)] · [∂1u3] · ξ1 dξ1dξ2dξ3,

Ij,2 (π) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[
∂j

(
1

ξ1
∂2π

)]
· [∂ju2] · ξ1 dξ1dξ2dξ3, j=2, 3,

Ij,k (π) :=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂j (∂kπ)] · [∂juk] · ξ1 dξ1dξ2dξ3, j=2, 3, k=1, 3.

(6.1)1,1

(6.1)1,2

(6.1)1,3

(6.1)j,2

(6.1)j,k

In order to handle the pressure terms, we consider the three sums

Ij(π) := Ij,1 (π) + Ij,2 (π) + Ij,3 (π) , j = 1, 2, 3.

This crucial device allows us to exploit the incompressibility of the velocity field u.
With the help of straightforward calculations, by appealing to the boundary conditions, and

with suitable integrations by parts, we show that

I1(π) = −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1π] · ∂1 [∇ · u] · ξ1 dξ1dξ2dξ3 + I̊1,1 (π) , (6.2)

where

I̊1,1 (π) :=

1∫
0

2π∫
0

[ξ1∂1π] ·
[

1

ξ1
∂1 (ξ1u1)

]∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

The volume integral on the right hand side of (6.2) vanishes due to ∇ · u ≡ 0. Hence,

I1(π) = I̊1,1 (π) ,

and we are left to study the boundary integral I̊1,1 (π) .
Similar calculations show that

I2(π) = I3(π) = 0.

We now turn to treating the remaining boundary integral I̊1,1 (π) .

Lemma 6.1. The boundary integral

I̊1,1 (π) =

1∫
0

2π∫
0

[∂1π] · [∂1 (ξ1u1)]

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

is negligible in the sense that there holds∣∣∣I̊1,1 (π)
∣∣∣ ≤ bε(t) · ‖Du‖22 + ε ·

∥∥D2u
∥∥2
2
.
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Proof. According to equations (2.4)1 and (2.6)1, we have

∂1π = −∂tu1 − u · ∇u1 +
u22
ξ1

+ ν

(
∇2u1 −

2

ξ21
∂2u2 −

u1
ξ21

)
.

First, we evaluate this equation for ξ1 = ρ0, ρ1, using the boundary condition u1 = 0, and, thus, as
a consequence, that also the tangential derivatives ∂iu1, ∂i∂ju1, i, j = 2, 3, vanish for ξ1 = ρ0, ρ1.
Hence, we get

∂tu1 = 0, u · ∇u1 = 0, and ∇2u1 =
1

ξ1
∂1 (ξ1∂1u1) ,

and that leads to

∂1π = ν · 1

ξ1
∂1 (ξ1∂1u1)− ν 2

ξ21
∂2u2 +

u22
ξ1

on ∂lΩ.

Since ξ1∂1u1 = ∂1 (ξ1u1)− u1 and ∇ · u = 0, we get

1

ξ1
∂1 (ξ1∂1u1) =

1

ξ1
∂1 (−∂2u2 − ξ1∂3u3 − u1)

= − 1

ξ1
· ∂2 (∂1u2)− 1

ξ1
· ∂3u3 −

1

ξ1
· ξ1 · ∂3∂1u3 −

1

ξ1
· ∂1u1.

Now, we use the boundary conditions for u2 and u3 and get

∂3∂1u3 = 0 and ∂2∂1

(
u2
ξ1

)
= 0.

This leads to
1

ξ1
∂1 (ξ1∂1u1) = − 1

ξ21
(∂2u2)− 1

ξ1
(∂3u3)− 1

ξ1
(∂1u1), (6.3)

and, because ∂1u1 =
1

ξ1
∂1 (ξ1u1) with u1 = 0, the right-hand side of (6.3) equals − 1

ξ1
∇ · u and,

therefore, vanishes. So we finally arrive at

∂1π = −2ν

ξ21
∂2u2 +

u22
ξ1
.

The second factor in the integrand is

∂1 (ξ1u1) = −∂2u2 − ξ1∂3u3,

hence, we have

I̊1,1 (π) =

1∫
0

2π∫
0

[
−2ν

ξ21
∂2u2 +

u22
ξ1

]
· [−∂2u2 − ξ1∂3u3]

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

We now expand the product and consider the four appearing summands.
For the integrals over |∂2u2|2 and ∂2u2 · ∂3u3, we use Gagliardo’s trace theorem and get

1∫
0

2π∫
0

|Du|2
∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3 ≤ c
∥∥∥ |Du|2

∥∥∥
1,1

≤ c
(
‖Du‖22 +

∥∥ |Du|
∣∣D2u

∣∣ ∥∥
1

)
≤ c ‖Du‖22 + C(ε) · ‖Du‖22 + ε ·

∥∥D2u
∥∥2
2
.

(6.4)

Here, ‖·‖1,1 denotes the W 1,1(Ω)-norm.
The integral with the integrand

1

ξ1
u22 (∂2u2)
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vanishes because
u22 (∂2u2) =

1

3
∂2
(
u32
)
,

and we can integrate by parts with respect to ξ2.
Finally, we consider

−
1∫

0

2π∫
0

(
1

ξ1
· u22
)
· (ξ1∂3u3)

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1
[
u22 · (∂3u3)

]
dξ1dξ2dξ3

=−
1∫

0

2π∫
0

ρ1∫
ρ0

2u2(∂1u2)(∂3u3) dξ1dξ2dξ3 −
1∫

0

2π∫
0

ρ1∫
ρ0

u22∂3∂1u3 dξ1dξ2dξ3

The first integral is of type (4.6d), and the second integral is of type (4.6c). Integrals of these types
have been treated in Lemma 4.2.

The above Lemma and the fact that all volume integrals, if summed up suitably, vanish iden-
tically lead to the following result.

Theorem 6.2. All pressure terms Ij,k (π) are negligible.

7 Contribution of the Viscous Terms
To estimate the contribution of the viscous terms in equations (4.1), we consider the nine integrals
obtained by restricting the terms E1, E2, E3 to their respective viscous parts. For instance,

I1,1 (ν) := (7.1)1,1

− ν
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
ξ1

(
∇2u1 −

2

ξ21
∂2u2 −

u1
ξ21

)]
·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3.

The two “lower order terms” in the expression

∇2u1 −
2

ξ21
∂2u2 −

u1
ξ21

clearly generate negligible quantities. Thus, we drop these two terms in equation (7.1)1,1 and
instead investigate the integral

I1,1
(
∇2
)

:=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1
[
ξ1 · ∇2u1

]
·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 (7.2)1,1

=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1

[
∂1 (ξ1∂1u1) +

1

ξ1
∂22u1 + ξ1∂

2
3u1

]
·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3.

In the same way, we obtain integrals Ij,k
(
∇2
)
, j, k = 1, 2, 3, that we will refer to with equation

numbers (7.2)j,k, j, k = 1, 2, 3.

In order to obtain integrands of the form |∂i∂ju1|2 , i, j = 1, 2, 3, we separate the three terms
which make up the right hand side of equation (7.2)1,1. Hence, we write

I1,1
(
∇2
)

= I11,1
(
∇2
)

+ I21,1
(
∇2
)

+ I31,1
(
∇2
)
,

where the upper index l = 1, 2, 3 indicates that, in the right hand side of (7.2)1,1, we have only
considered the l-th term of the decomposition of the expression ξ1(∇2u1). Subsequently, we inte-
grate by parts: the first term with respect to ξ1, the second one with respect to ξ2, and the third
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one with respect to ξ3. We start with the ξ1-term:

I11,1
(
∇2
)

:=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1 [∂1 (ξ1∂1u1)] ·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 (7.3)1

= −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1u1)] · ∂1
[

1

ξ1
∂1 (ξ1u1)

]
dξ1dξ2dξ3

because the boundary integral
1∫

0

2π∫
0

[∂1 (ξ1∂1u1)] ·
[

1

ξ1
∂1 (ξ1u1)

]∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

disappears, since the first factor vanishes identically. We have already established this fact whilst
deriving equation (6.3).

For the second part of the Laplacian, we get

I21,1
(
∇2
)

:=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1

[
1

ξ1
∂22u1

]
·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 (7.3)2

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1

[
1

ξ1
∂2u1

]
·
[

1

ξ1
∂2 (∂1 (ξ1u1))

]
dξ1dξ2dξ3

because the boundary integral vanishes due to periodicity in ξ2.
Integration by parts with respect to ξ3 yields

I31,1
(
∇2
)

:=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1
[
ξ1∂

2
3u1
]
·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3 (7.3)3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂1 [ξ1∂3u1] ·
[

1

ξ1
∂3 (∂1 (ξ1u1))

]
dξ1dξ2dξ3

because u is periodic in ξ3.
From (7.3), it looks clear that

I l1,1
(
∇2
)
' −

1∫
0

2π∫
0

ρ1∫
ρ0

|∂l∂1u1|2 dξ1dξ2dξ3 ' −c ‖∂l∂1u1‖22 , l = 1, 2, 3.

We can argue similarly to show the following result.

Proposition 7.1. One has

I lj,k
(
∇2
)
' −c ‖∂l∂juk‖22 , j, k, l = 1, 2, 3.

Proof. The integral (7.2)1,1 has already been considered. The other eight integrals can be handled
in the same manner. After a decomposition of each integral in three summands, the respective
first summands should be integrated by parts with respect to ξ1, the respective second summands
with respect to ξ2, and the respective third summands with respect to ξ3. Integrating by part with
respect to ξ2 or ξ3 does not lead to boundary integrals due to the periodicity in the corresponding
variables. Therefore, we only check the remaining eight first summands that contain an integration
by parts with respect to ξ1. One has

I11,2
(
∇2
)

:=

1∫
0

2π∫
0

ρ1∫
ρ0

∂1 [∂1 (ξ1∂1u2)] ·
[
∂1
u2
ξ1

]
· ξ1 dξ1dξ2dξ3

= −
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂1u2)] · ∂1
[
ξ1∂1

u2
ξ1

]
dξ1dξ2dξ3
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because the boundary integral

1∫
0

2π∫
0

[∂1 (ξ1∂1u2)] ·
[
ξ1∂1

u2
ξ1

]∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

vanishes, since ∂1
u2
ξ1
≡ 0 on ∂lΩ.

The terms I11,3
(
∇2
)
, I12,1

(
∇2
)
, and I13,1

(
∇2
)
lead to boundary integrals that vanish for the

same reason, namely ∂1u3 ≡ ∂2u1 ≡ ∂3u1 ≡ 0 on ∂lΩ.
I12,2

(
∇2
)
and I13,2

(
∇2
)
lead to boundary integrals that contain first order derivatives only. In

fact,

I12,2
(
∇2
)

:=−
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [∂1u2] · ∂1 [∂2u2] · ξ1 dξ1dξ2dξ3

+

1∫
0

2π∫
0

∂2 [∂1u2] · [∂2u2] · ξ1

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

However, due to the fact that

∂1u2 = ξ1 ·
(
∂1
u2
ξ1

)
+
u2
ξ1

(7.4)

and ∂1 u2

ξ1
≡ 0 on ∂lΩ, we obtain the identity ∂2 (∂1u2) =

∂2u2
ξ1

on ∂lΩ and arrive at a boundary

integral that is quadratic in a first order derivative.
More precisely, we get

I12,2
(
∇2
)

=−
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [∂1u2] · ∂1 [∂2u2] · ξ1 dξ1dξ2dξ3 (7.5)

+

1∫
0

2π∫
0

|∂2u2|2
∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

The boundary integral in (7.5) is negligible; this was shown in (6.4).
The term I13,2

(
∇2
)
can be treated in the exact same manner, simply by replacing ∂2 by ∂3 in

each step.
Regarding I12,3

(
∇2
)
, after an integration by parts, we arrive at

I12,3
(
∇2
)

:= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂2 [ξ1∂1u3] · ∂1 [∂2u3] dξ1dξ2dξ3,

since the boundary integral, namely

1∫
0

2π∫
0

∂2 [ξ1∂1u3] · [∂2u3]

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

vanishes due to the condition ∂2 (∂1u3) ≡ 0 on ∂lΩ in the integrand’s first factor.
Considering I13,3

(
∇2
)
, we can argue in the very same manner if we appeal to the condition

∂3 (∂1u3) ≡ 0 on ∂lΩ. Hence,

I13,3
(
∇2
)

:= −
1∫

0

2π∫
0

ρ1∫
ρ0

∂3 [ξ1∂1u3] · ∂1 [∂3u3]dξ1dξ2dξ3
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since, as mentioned before, the boundary integral,

1∫
0

2π∫
0

∂3 [ξ1∂1u3] · [∂3u3]

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

vanishes.

The proof of Proposition 7.1 shows that the following result holds.

Theorem 7.2. One has ∑
j,k

Ij,k (ν) ' ν
∥∥D2u

∥∥2
2
, (7.6)

uniformly in t for almost all t ∈ (0, T ).

8 Contribution of the Time Derivatives
In this section, we study the integrals obtained by restricting the terms E1, E2, and E3 in (4.1) to
the time derivatives, ∂tuk, k = 1, 2, 3, of the velocity.

Hence, we consider

I1,1 (∂t):=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂tu1)]·
[

1

ξ21
∂1 (ξ1u1)

]
· ξ1 dξ1dξ2dξ3,

I1,2 (∂t):=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂tu2)]·
[
∂1
u2
ξ1

]
· ξ1 dξ1dξ2dξ3,

I1,3 (∂t):=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂1 (∂tu3)]·[∂1u3]· ξ1 dξ1dξ2dξ3,

Ij,k (∂t):=

1∫
0

2π∫
0

ρ1∫
ρ0

[∂j (∂tuk)]·[∂juk]· ξ1 dξ1dξ2dξ3, j=2, 3, k=1, 2, 3.

(8.1)1,1

(8.1)1,2

(8.1)1,3

(8.1)j,k

Except for the consideration of (8.1)1,1 and (8.1)1,2, this leads to integrals of the form

Ij,k (∂t) =
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂juk|2 · ξ1 dξ1dξ2dξ3, (8.2)j,k

and these are the quantities that we need in the main inequality (3.7) (with ‖u‖qp replaced by
‖u‖qp).

Straightforward calculations show that the integrand of (8.1)1,1 reads

1

2

d
dt
[
ξ21(∂1u1)2 + 2ξ1u1(∂1u1) + u21

] 1

ξ1
=

1

2

d
dt
[
(∂1u1)2

]
ξ1 +

1

2

d
dt
[
(∂1(u21)

]
+

1

2

d
dt

1

ξ1
u21.

(8.3)

The first term on the right hand side of (8.3) gives the integral

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂1u1|2 · ξ1 dξ1dξ2dξ3,

and this is of the form that we need in (3.7) (with ‖u‖qp replaced by ‖u‖qp).
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The integral of the second term in (8.3),

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

[
∂1(u21)

]
dξ1dξ2dξ3,

vanishes as we can integrate by parts with respect to ξ1 and use the boundary condition u1 = 0
on ∂lΩ for all t ∈ (0, T ).

We have proved that

I1,1 (∂t) '
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂1u1|2 · ξ1 dξ1dξ2dξ3 +
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u21
ξ1

dξ1dξ2dξ3, (8.4)

where the second term on the right hand side is the integral of the third term in (8.3). We note that,
in the sequel, this term will appear on the left hand side of our equation of type (3.7). Further, in
§9, the application of Gronwall’s Lemma in the proof of the main theorem will give the additional
conclusion u1 ∈ L∞(0, T ;L2(Ω)).

The integral (8.1)1,2 must be treated differently because, now, the integrand differs from
(1/2)∂t(∂1u2)2 by terms that cannot be handled in the way above. Therefore, we proceed in
the following way:

∂1 (ξ1∂tu2) = ∂t

[
∂1

(
ξ21 ·

u2
ξ1

)]
= ∂t

[
2ξ1 ·

u2
ξ1

+ ξ21

(
∂1
u2
ξ1

)]
,

and the integrand of (8.1)1,2 can be rewritten in the form

[∂1 (ξ1∂tu2)] ·
[
∂1
u2
ξ1

]
· ξ1 =

1

2
∂t

(∣∣∣∣∂1u2ξ1
∣∣∣∣2
)
· ξ31 + 2(∂tu2)(∂1u2)− 2

ξ1
(∂tu2)u2.

Thus, we have

I1,2 (∂t) =
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 · ξ31 dξ1dξ2dξ3

+2

1∫
0

2π∫
0

ρ1∫
ρ0

(∂tu2)(∂1u2) dξ1dξ2dξ3 (8.5)

− d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22 ·
1

ξ1
dξ1dξ2dξ3 =: I11,2 (∂t) + 2I21,2 (∂t)− I31,2 (∂t) .

The term I31,2 (∂t) will be easily estimated, since it is integrable on (0, T ) because the weak solution
belongs to L2(0, T ;L2(Ω)).

Proposition 8.1. The term I21,2 (∂t) is negligible.

Proof. In order to estimate I21,2 (∂t) , we replace ∂tu2 according to the equation of motion (2.4)2:

∂tu2 = − (u · ∇)u2 −
u1u2
ξ1

+ ν

(
∇2u2 +

2

ξ21
∂2u1 −

u2
ξ21

)
− 1

ξ1
∂2π. (8.6)

An integration of (∂tu2)(∂1u2) then leads to integrals of types which we already treated in Lemma
4.2, except for the integral that contains the pressure:

−
1∫

0

2π∫
0

ρ1∫
ρ0

[
1

ξ1
∂2π

]
·
[
∂1
u2
ξ1

]
dξ1dξ2dξ3 ≤ c ‖∇π‖2 ‖Du‖2 . (8.7)
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On the other hand, by scalar multiplication of E1 · e1 + E2 · e2 + E3 · e3 = 0 by ∇π, we get

〈∇π,∇π〉 = −〈∂tu,∇π〉 − 〈N(u),∇π〉+ 〈ν(u),∇π〉 . (8.8)

When, subsequently, integrating (8.8) over Ω, we note that the first summand on the right hand
side vanishes:

1∫
0

2π∫
0

ρ1∫
ρ0

〈∂tu,∇π〉 · ξ1 dξ1dξ2dξ3

=

1∫
0

2π∫
0

ρ1∫
ρ0

{
[(∂tu1) · ∂1π] +

[
(∂tu2) · ∂2π

ξ1

]
+ [(∂tu3) · ∂3π]

}
· ξ1 dξ1dξ2dξ3

=−
1∫

0

2π∫
0

ρ1∫
ρ0

[∂1 (ξ1∂tu1) + ∂2 (∂tu2) + ξ1∂3 (∂tu3)] · π · ξ1 dξ1dξ2dξ3 = 0

because ∇·(∂tu) = 0. Note that the boundary integrals vanish, again, since, when integrating with
respect to ξ1, we can exploit ∂tu1 = 0 on ∂lΩ and, when integrating with respect to ξ2 and ξ3, we
can draw on the periodicity in these variables.

Therefore, we have
‖∇π‖2 ≤ c (‖N(u)‖2 + ‖ν(u)‖2) . (8.9)

So,
‖∇π‖2 ‖Du‖2 ≤ c (‖N(u)‖2 + ‖ν(u)‖2) ‖Du‖2 � c ‖N(u)‖2 ‖Du‖2

as ‖ν(u)‖2 ‖Du‖2 � c
∥∥D2u

∥∥
2
‖Du‖2 is negligible. By appealing to (4.7), it follows that

‖∇π‖2 ‖Du‖2 � c ‖Du‖5/22

∥∥D2u
∥∥1/2
2

.

By Young’s equality with exponents 4/3 and 4, we obtain

‖∇π‖2 ‖Du‖2 � C(ε) ‖Du‖4/32 ‖Du‖22 + ε
∥∥D2u

∥∥2
2
.

The desired result follows as Du ∈ L2(0, T ;L2(Ω)) ⊂ L4/3(0, T ;L2(Ω)).

We have proved that

I1,2 (∂t) '
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

(
∂1
u2
ξ1

)2

· ξ31 dξ1dξ2dξ3

− d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22 ·
1

ξ1
dξ1dξ2dξ3. (8.10)

From (8.2)j,k, (8.4), and (8.10), we get the following result.

Theorem 8.2. For the time terms, one gets, with Ij,k (∂t) as in (8.2)j,k,∑
j,k=1,2,3

Ij,k (∂t) '

∑
(j,k) 6=(1,2)

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂juk|2 · ξ1 dξ1dξ2dξ3

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 ξ31 dξ1dξ2dξ3

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u21
ξ1

dξ1dξ2dξ3 −
d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22
ξ1

dξ1dξ2dξ3.
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9 The Core Estimate. Related Remarks.
The aim of this section is twofold: We give the core estimate – actually, in more than one explicit
form –, and we also explain how – and why – we will proceed in the sequel. These explanations
should be helpful for the readers.

The integrals Ij,k (E) of the basic identities (4.1) have been split up according to (4.3) into four
distinct parts: time, pressure, non-linear and viscous terms. These quantities have been estimated
in §§5-8, cf. Theorems 5.7, 6.2, 7.2, and 8.2. Adding up these inequalities according to (4.4) gives
the following main result.

Theorem 9.1. The estimate

∑
(j,k) 6=(1,2)

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|∂juk|2 · ξ1 dξ1dξ2dξ3

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 ξ31 dξ1dξ2dξ3

+ ν
∥∥D2u

∥∥2
2

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u21
ξ1

dξ1dξ2dξ3 −
d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22 ·
1

ξ1
dξ1dξ2dξ3

≤ C(ε) ‖u‖qp ‖Du‖22 + bε(t)
(
‖u‖22 + ‖Du‖22

)
+ ε

∥∥D2u
∥∥2
2

(9.1)

holds for almost all t ∈ (0, T ).

Note that, by inserting, on the right hand side, the bε-term, we were allowed to replace the
symbol “�” by “≤”. Equation (9.1), up to secondary terms, enjoys the canonical structure of
equation (3.7). In view of the application of Gronwall’s lemma, an apparent main difference is
that, on the left hand side of (9.1), one has

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 · ξ31 dξ1dξ2dξ3 (9.2)

instead of

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

(∂1u2)2 · ξ1 dξ1dξ2dξ3 , (9.3)

but, on the right hand side of the same inequality, one must have

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 · ξ31 dξ1dξ2dξ3 (9.4)

instead of
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1u2)2 · ξ1 dξ1dξ2dξ3 . (9.5)

We overcome this obstacle by appealing to the following result.

Lemma 9.2. One has the following equivalence up to negligible terms.

1∫
0

2π∫
0

ρ1∫
ρ0

(
∂1
u2
ξ1

)2

· ξ31 dξ1dξ2dξ3 '
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1 u2)2 · ξ1 dξ1dξ2dξ3 . (9.6)

The proof follows immediately from the identity

(∂1(u2/ξ1))
2
ξ31 = (∂1u2)2ξ1 − 2u2(∂1u2) + u22/ξ1 . (9.7)
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Since the two terms in (9.4) and (9.5) are equivalent, and ‖∂1u2‖22 still appears on the right hand
side of (9.1), we may add ‖∂1(u2/ξ1)‖22 to this same right hand side. So we will show, by appealing
to Gronwall’s Lemma, that

∂1
u2
ξ1
∈ L∞(0, T ;L2(Ω)).

Using Lemma 9.2 once more, we will obtain, in particular, that

∂1u2 ∈ L∞(0, T ;L2(Ω)),

which is the desired result.
Therefore, we define, in addition to ‖Du‖22 , the quite similar quantity

∥∥∥D̃u
∥∥∥2
2

=
∑

(j,k) 6=(1,2)

1∫
0

2π∫
0

ρ1∫
ρ0

|∂juk|2 · ξ1 dξ1dξ2dξ3

+

1∫
0

2π∫
0

ρ1∫
ρ0

∣∣∣∣∂1u2ξ1
∣∣∣∣2 ξ31 dξ1dξ2dξ3 .

(9.8)

By appealing to (9.7), one shows that∣∣∣∣ ∥∥∥D̃u
∥∥∥2
2
− ‖Du‖22

∣∣∣∣ ≤ c
(
‖u‖2

∥∥∥D̃u
∥∥∥
2

+ ‖u‖22
)
≤ c

(∥∥∥D̃u
∥∥∥2
2

+ ‖u‖22

)
, (9.9)

where we may replace, on the right hand side, D̃u by Du. The core argument is that (9.9) leads
to the crucial estimate

‖u‖qp ‖Du‖22 ≤ ‖u‖
q
p

∥∥∥D̃u
∥∥∥2
2

+ c

(
‖u‖qp

∥∥∥D̃u
∥∥∥2
2

+ ‖u‖22

)
. (9.10)

It is worth noting that, in the sequel, the equivalence would be not sufficient.
By setting ε = ν/2 in equation (9.1), and by taking into account equation (9.10), it readily

follows that
1

2

d
dt

∥∥∥D̃u
∥∥∥2
2

+
ν

2

∥∥D2u
∥∥2
2

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u21
ξ1

dξ1dξ2dξ3

− d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22
ξ1

dξ1dξ2dξ3

≤B(t)

(
‖u‖22 +

∥∥∥D̃u
∥∥∥2
2

)
,

(9.11)

where, from now on, B(t) denotes any generical non-negative real function satisfying

B(t) ∈ L1(0, T ) .

Basically, equation (9.11) is well prepared to apply Gronwall’s Lemma. However, there are two
minor obstacles. The first one is the presence of the two last terms on the left hand side of (9.11),
especially the one with the negative sign (actually, the other one is even helpful). The second point
is that, in some cases of axial symmetry of Ω, see [6], the quantities ‖u‖22 + ‖Du‖22 and ‖Du‖22 are
not equivalent. In the present case, this concerns the third component. Hence, in order to control
the term ‖u‖22 on the right hand side of (9.1) by means of Gronwall’s Lemma, we will add its time
derivative to the left hand side, which is obtained from an energy type estimate. This additional
term also allows us to control the above integral with the minus sign in front of it.
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10 The Energy Inequality
According to (2.4), we define Ej(∂t), Ej(N), Ej(ν), and Ej(π), j = 1, 2, 3, through the following
identity

Ej = Ej(∂t) + Ej(N) + Ej(ν) + Ej(π), j = 1, 2, 3. (10.1)

Note that Ej(N) = Nj , cf. (2.6), and Ej(∂t) = ∂tuj .
A full energy inequality is obtained by time integration of the main identity:

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

Ej · (ξ1uj)dξ1dξ2dξ3 = 0. (10.2)

Since integrations by parts with respect to ξ2 and ξ3 always lead to vanishing boundary integrals
due to periodicity, we will not treat these integrals explicitly.

Lemma 10.1. We have
1∫

0

2π∫
0

ρ1∫
ρ0

Ej(∂t) · (ξ1uj) dξ1dξ2dξ3 =
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|uj |2 · ξ1 dξ1dξ2dξ3. (10.3)

Proof. Obvious.

Lemma 10.2. We have
3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

Ej(π) · (ξ1uj) dξ1dξ2dξ3 = 0. (10.4)

Proof. For j = 1, we obtain
1∫

0

2π∫
0

ρ1∫
ρ0

E1(π) · (ξ1u1) dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

π · ∂1(ξ1u1)dξ1dξ2dξ3,

since the boundary integral vanishes due to u1 = 0 on ∂lΩ. For j = 2, 3, we proceed in an analogous
manner. Now, the boundary integrals vanish due to periodicity. Summing up, we draw on the
velocity’s divergence-free property to obtain the desired result.

Lemma 10.3. We have
3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

Ej(N) · (ξ1uj) dξ1dξ2dξ3 = 0. (10.5)

Proof. One easilly shows that, for each j = 1, 2, 3,

(u · ∇uj) (ξ1uj) =
1

2
(u · ∇u2j ) · ξ1 .

Hence, the integral of each of the above terms vanishes according to Lemma 5.4. It follows that
the integral on the left hand side of equation (10.5) consists merely of the two “lower order terms”
appearing in (2.6)1 and (2.6)2. These terms cancel each other due to their opposite signs.

Next, we consider the viscous terms. We start by the “higher order terms”. From (2.2c), one
has

∇2uj =
1

ξ1
∂1(ξ1∂1uj) +

1

ξ21
(∂22uj) + (∂23uj). (10.6)

Hence,
1∫

0

2π∫
0

ρ1∫
ρ0

(∇2uj) · (ξ1uj) dξ1dξ2dξ3 =

1∫
0

2π∫
0

ρ1∫
ρ0

∂1(ξ1∂1uj) · uj dξ1dξ2dξ3

+

1∫
0

2π∫
0

ρ1∫
ρ0

(∂22uj) ·
uj
ξ1

dξ1dξ2dξ3 +

1∫
0

2π∫
0

ρ1∫
ρ0

(∂23uj) · uj · ξ1 dξ1dξ2dξ3.

(10.7)
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By suitable integrations by parts, one shows that, for each j = 1, 2, 3,

1∫
0

2π∫
0

ρ1∫
ρ0

(∇2uj) · (ξ1uj) dξ1dξ2dξ3 = −
1∫

0

2π∫
0

ρ1∫
ρ0

(∂1uj)
2 · ξ1 dξ1dξ2dξ3

−
1∫

0

2π∫
0

ρ1∫
ρ0

(∂2uj)
2 · 1

ξ1
dξ1dξ2dξ3 −

1∫
0

2π∫
0

ρ1∫
ρ0

(∂3uj)
2 · ξ1 dξ1dξ2dξ3

+

1∫
0

2π∫
0

(∂1uj) · uj · ξ1

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

For j = 1, the boundary integral vanishes due to u1 ≡ 0 on ∂lΩ. For j = 3, the boundary integral
vanishes, since ∂1u3 ≡ 0 on ∂lΩ. Furthermore, for j = 2, due to boundary condition (2.9)2, one
has ∂1u2 = u2/ξ1 on ∂lΩ. Hence,

1∫
0

2π∫
0

(∂1u2) · u2 · ξ1

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3 =

1∫
0

2π∫
0

u22

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3.

It readily follows that

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

(∇2uj) · (ξ1uj) dξ1dξ2dξ3

= −
3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

[
(∂1uj)

2 · ξ1 + (∂2uj)
2 · 1

ξ1
+ (∂3uj)

2 · ξ1
]
dξ1dξ2dξ3

+

1∫
0

2π∫
0

u22

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3,

(10.8)

where the first integral is the principal part of the ν-term.
The boundary integral can be estimated by appealing to Gagliardo’s trace theorem. This

immediately shows that ∣∣∣∣∣∣
1∫

0

2π∫
0

u22

∣∣∣∣∣
ξ1=ρ1

ξ1=ρ0

dξ2dξ3

∣∣∣∣∣∣
≤ C·

∥∥u22∥∥1,1
≤ C·

 1∫
0

2π∫
0

ρ1∫
ρ0

u22 dξ1dξ2dξ3 +

1∫
0

2π∫
0

ρ1∫
ρ0

|u2 ·Du2| dξ1dξ2dξ3


≤ C·

(
‖u‖22 + ‖u‖2 ‖Du‖2

)
(10.9)

which is clearly a negligible term because

C ·
(
‖u‖22 + ‖u‖2 ‖Du‖2

)
≤ Cε · ‖u‖22 + ε · ‖Du‖22 . (10.10)

Next, we consider the “lower order terms” which are present for j = 1, 2, cf. (2.4)1 and (2.4)2.
All these terms are clearly negligible. Hence, for the purpose of proving our main result, the reader
does not have to take these terms into account. However, it might still by interesting for the reader
to study their contribution in order to obtain a stringent energy inequality in the current context.
Instead of appealing to negligibility, we might, therefore, note that the contribution of the “lower
order terms” that have not been taken into account yet is bounded by the left hand side of (10.10),
as can be easily verified by the reader. Hence, with an obvious ε-notation, one has, by appealing
to (10.8), (10.9), and (10.10), the following statement.
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Lemma 10.4. We have

3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

Ej(ν) · (ξ1uj) dξ1dξ2dξ3

≥ ν
3∑
j=1

1∫
0

2π∫
0

ρ1∫
ρ0

[
(∂1uj)

2 · ξ1 + (∂2uj)
2 · 1

ξ1
+ (∂3uj)

2 · ξ1
]
dξ1dξ2dξ3

−ν ·
(
Cε · ‖u‖22 + ε · ‖Du‖22

)
.

(10.11)

From the main identity 10.2, by appealing to Lemma 10.1 - Lemma 10.4, one obtains the
following energy inequality.

Theorem 10.5. One has
1

2

d
dt
‖u‖2 +

ν

2
‖Du‖22 ≤ Cν ‖u‖

2
2 . (10.12)

In particular,
u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)). (10.13)

11 Proof of Theorem 2.2.
It looks convenient to write the equation (10.12) in the more explicit form

1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

3∑
j=1

|uj |2 · ξ1 dξ1dξ2dξ3 +
ν

2
‖Du‖22 ≤ Cν ‖u‖

2
2 . (11.1)

Addition, side by side, of equation (9.11) with equation (11.1) multiplied by a suitable positive
constant α (to control the previous integral with a minus sign in front of it), leads to the estimate

1

2

d
dt

∥∥∥D̃u
∥∥∥2
2

+
ν

2

∥∥D2u
∥∥2
2

+ α
ν

2
‖Du‖22

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u21

(
α ξ1 +

1

ξ1

)
dξ1dξ2dξ3

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

u22

(
α ξ1 −

2

ξ1

)
dξ1dξ2dξ3

+
1

2

d
dt

1∫
0

2π∫
0

ρ1∫
ρ0

|u3|2 α · ξ1 dξ1dξ2dξ3

≤B(t)

(
‖u‖22 +

∥∥∥D̃u
∥∥∥2
2

)
,

(11.2)

which is clearly suitable for the application of Gronwall’s Lemma, up to minor obvious adaptations.
Note that the right hand side of (11.1) has been incorporated in the right hand side of (11.2) by
replacing B(t) + Cνα simply by B(t).

Next, fix α such that αρ0 = 1 + 2/ρ1. Since ρ0 ≤ ξ1 ≤ ρ1 , it follows that

α ξ1 −
2

ξ1
≥ 1 .

For convenience, let us denote the three explicit space integrals on the left hand side of (11.2)
by, respectively, K2

1 , K
2
2 , and K2

3 , and let us introduce K2 = K2
1 + K2

2 + K2
3 . Due to the above

choice of α, one has K2
j ' ‖uj‖

2
2 , for j = 1, 2, 3, which means K2 ' ‖u‖22 . It follows that

1

2

d
dt

(∥∥∥D̃u
∥∥∥2
2
+K2

)
+
ν

2

∥∥D2u
∥∥2
2
+α

ν

2
‖Du‖22 ≤ B(t)

(∥∥∥D̃u
∥∥∥2
2
+K2

)
. (11.3)
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A classical argument, based on integration with respect to time of (11.3) and Gronwall’s Lemma,
shows that (∥∥∥D̃u

∥∥∥2
2

+ K2

)
∈ L∞(0, T ) , and

∥∥D2u
∥∥2
2
∈ L1(0, T ) .

This is obviously equivalent to (2.11), namely

u ∈ L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)).

Theorem 2.2 is proved.
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[48] Bemelmans J.: Über die Integration der Parabel, die Entdeckung der Kegelschnitte und die Parabel als literarische Figur,

S 14, 01/11
[49] Strzelecki P. and von der Mosel H.: Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in Rn.

Part I: Smoothing and self-avoidance effects, S 47, 02/11
[50] Scholtes S.: For which positive p is the integral Menger curvature Mp finite for all simple polygons, S 9, 11/11
[51] Bemelmans J., Galdi G. P. and Kyed M.: Fluid Flows Around Rigid Bodies, I: The Hydrostatic Case, S 32, 12/11
[52] Scholtes S.: Tangency properties of sets with finite geometric curvature energies, S 39, 02/12
[53] Scholtes S.: A characterisation of inner product spaces by the maximal circumradius of spheres, S 8, 02/12
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