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Abstract

Using a blow-up construction due to E. Kuwert and R. Schätzle, we
investigate the Willmore flow of radially symmetric immersions of the
sphere. It will be shown that in this situation the blow-up limit is a
surface of revolution as well and is either a round sphere or consists of
planes and catenoids. Furthermore, we give an estimate for the number of
these planes and catenoids in terms of the Willmore energy of the initial
surface. This will enable us to show that there are immersions of the
sphere with a Willmore energy arbitrarily close to 8π that do not converge
to a round sphere under the Willmore flow. Either a small quantum of
the curvature concentrates or the diameter of the surface does not stay
bounded under the Willmore flow.

2000 AMS Subject Classification: 53A05, 53C44, 47J99

1 Introduction

In this paper we consider the Willmore flow in three space dimensions. Let M
be a two-dimensional C∞ manifold without boundary. We call a function

f : M × [0, T ) → R3

of class C∞ a Willmore flow if for every time t ∈ [0, T ) the mapping f(·, t) is
an immersion and

∂tf(·, t) = ∆f(·,t)Hf(·,t) + 2Hf(·,t)
(
‖Hf(·,t)‖2 −Kf(·,t)

)
. (1.1)

Here, ∆f(·,t), Hf(·,t), and Kf(·,t) stand for the Laplace-Beltrami operator on the
normal bundle, the mean curvature vector, and the Gauß curvature of f(·, t)
respectively.

∗partially supported by DFG project “Geometric curvature energies”
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The Willmore flow is the L2-gradient flow of the Willmore energy [KS01].
For an immersed surface h : M → Rn this energy is given by

W(h) :=
�

M

‖Hh‖2dµh (1.2)

where dµh is the surface measure induced by h. Every critical point of the
Willmore energy, i.e. every immersion h ∈ C∞(M,R3) that satisfies

∆hHh + 2Hh

(
‖Hh‖2 −Kh

)
= 0,

is called Willmore immersion. If M = S2, Willmore immersions are referred to
as Willmore spheres.

It is well-known that for every immersed surface f0 ∈ C∞(M,R3) there is
a unique non-extendable smooth solution f : M × [0, T ) → R3, T > 0, of (1.1)
with f(·, 0) ≡ f0 (cf. [HP99, Chapter 7] for a self-contained proof). In this case,
we call f the maximal Willmore flow with initial data f0, and the maximal time
of existence T ∈ (0,∞] the lifespan of the flow.

There are global existence results due to G. Simonett [Sim01] and E. Kuwert
and R. Schätzle [KS01, KS02, KS04] for the Willmore flow of spheres. Kuwert
and Schätzle showed that there is a lower bound on the lifespan of f which
only depends on the concentration of the curvature at time t = 0 [KS02]. More
sophisticated estimates enabled them in [KS02] and [KS04] to perform a blow-
up for the Willmore flow of spheres. The limit of this blow-up process is a
compact or noncompact Willmore immersion. Discussing the removability of
point singularities of Willmore immersions, they succeeded in showing that the
Willmore flow with initial surface f0 : S2 → R3 satisfying

W(f0) ≤ 8π (1.3)

is immortal, i.e. T = ∞, and converges to a round sphere [KS04, Theorem
5.2]. In [KS07] Kuwert and Schätzle continued the study of point singularities
of Willmore immersions.

It is an open problem whether or not the Willmore flow can develop singu-
larities in finite time. Nevertheless, numerical experiments due to U. Mayer and
G. Simonett [MS03] indicate that some surfaces of revolution might develop sin-
gularities after finite time. In the present paper we will show that these surfaces
indeed develop singularities after finite or infinite time under the Willmore flow.
Furthermore, we will determine the blow-up limit obtained in [KS04] for these
surfaces. To the best of our knowledge this is the only analytic result concerning
the existence of singularities for the Willmore flow.

We consider an immersion of the submanifold S2 of R3 into R3 that commutes
with rotations around the x1-axis and maps the intersection of the unit sphere
with the

(
x1, x2

)
-plane to points of the

(
x1, x2

)
-plane. Then the restriction of

such an immersion to the set S2 ∩ [x3 = 0] is a curve in the
(
x1, x2

)
-plane.

Thus, we can define its Gauß map. We assume that the winding number of this
Gauß map around the origin is not equal to that of a circle. If we take such

2



an immersion as initial data of the Willmore flow, Theorem 4.1 tells that either
a small quantum of the curvature concentrates or the diameter of the surface
does not stay bounded under the Willmore flow.

To make this precise let f0 ∈ C∞(S2,R3) be an immersion satisfying

Rφ ◦ f0 = f0 ◦Rφ ∀φ ∈ R

and
f0([x3 = 0]) ⊂ [x3 = 0].

Here, the function Rφ : R3 → R3 denotes the rotation of R3 around the x1-axis
by an angle of φ which is given by

Rφ(x) :=

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 · x ∀x ∈ R3.

For such f0 we consider the closed curve

γ : [0, 2π] → [x3 = 0],

γ(s) :=
(
f1
0

f2
0

) cos s
sin s

0

 .

Let νγ : [0, 2π] → S1 be a unit normal field along γ and let wγ be the winding
number of νγ around 0. Furthermore, for an immersion h : M → R3 we need the
second fundamental form Ah :=

(
D2h

)⊥ and the trace free part of the second
fundamental form A0

h := Ah−Hh⊗ gh. One of the main results of this article is

Theorem 4.1. If wγ 6= ±1, then the maximal Willmore flow f with initial
surface f0 develops singularities in the sense that there is an ε > 0 such that for
all r > 0 either

sup {t ∈ [0, T ) : κ(r, t) ≤ ε} < T

where
κ(r, t) := sup

x∈R3

�
f−1(Br(x)×{t})

∥∥∥A0
f(·,t)

∥∥∥2

dµf(·,t),

or
sup

t∈[0,T )

diam(f(S2, t)) = ∞.

We do not claim that these singularities occur after finite time.
For a maximal Willmore flow of topological spheres f : S2 × [0, T ), Kuwert

and Schätzle showed the existence of so called blow-up limits [KS04, p. 347].
A blow-up limit is basically a Willmore immersions f̂T : Σ → R3 of a two-
dimensional complete manifold Σ, to which suitable translations and rescalings
of the immersions f(·, t) subconverge. To prove Theorem 4.1, we have to deter-
mine the blow-up limit of rotational symmetric Willmore flows. We will show
that the blow-up limit consists of catenoids and planes if f(·, t) does not converge
to a round sphere as t→ T :
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Corollary 3.6. Let f : S2× [0, T ) → R3 be a maximal Willmore flow such that
f(·, 0) is a surface of revolution. Then every blow-up limit of this Willmore flow
is either a single round sphere or consists of catenoids and planes.

Furthermore, one can estimate the number of catenoids and planes that
occur in the blowup limit:

Corollary 3.7. Let f : S2×[0, T ) → R3 be a maximal Willmore flow of surfaces
of revolution that does not converge to a round sphere and let f̂T : Σ → R3 be
a blow-up limit of this flow. Then fT is not a round sphere and if nC is the
number of connected components of Σ that parametrize a catenoid, and nP is
the number of connected components of Σ that parametrize a plane we have

nC ≥ 1

and
8πnC + 4πnP <W(f(·, 0)).

In particular, fT consists of a single catenoid if

W(f(·, 0)) ≤ 12π.

Keeping in mind that the Willmore energy of planes and catenoids is 0,
it is surprising that one can estimate the number of these components by the
Willmore energy of the initial energy. To show this estimate we will invert the
blow-up limit on a sphere whose center does not belong to the blow-up limit and
use the fact that the sphere has Willmore energy 4π and the inverted catenoid
has Willmore energy 8π.

Finally, for every ε > 0 we are going to construct a surface of revolution f0
with

W(f0) ≤ 8π + ε

which satisfies the assumption of Theorem 4.1. This shows that the constant
8π in the global existence result of Kuwert and Schätzle [KS04, Theorem 5.2]
mentioned above is sharp as these surfaces do not converge to a round sphere.
If ε ≤ 4π. Corollary 3.7 tells us that the blow-up limit is a simple catenoid.

To prove Theorem 4.1 as well as to determine the blow-up limits, we have
to specify the surfaces of revolution which are Willmore immersions. Theo-
rem 3.4 shows that except from tori these are only the catenoids, planes and
round spheres. This will be shown using results about free elastica in spaces of
constant curvature due to J. Langer and D. Singer [LS84a] and the tight con-
nection between free elastica in the hyperbolic space and Willmore immersions
of revolution [BG86, LS84b, Pin85] .

R. Bryant classified all Willmore spheres f0 : S2 → R3 and proved in par-
ticular that the only Willmore immersions with Willmore energy W(f0) < 16π
are round spheres [Bry84]. As a simple corollary to Theorem 3.4 we will get

Corollary 3.5. The only Willmore spheres that are surfaces of revolution are
the round spheres.

4



2 The Blow-Up Limit For Surfaces of Revolu-
tion

The next theorem gathers some facts of the blow-up construction for the Will-
more flow of spheres in [KS01, p. 432-434] and [KS04, p. 348-349]. There is
a constant C < ∞ such that for all sufficient small ε > 0, all Willmore flows
f : S2 × [0, T ) → R3, and all t ∈ [0, T ) there are rt > 0 such that

ε < κ(rt, t) ≤ Cε

(cf. [KS04, p. 347]).

Theorem 2.1 (cf. [KS04, p.347]). There is an ε0 > 0 such that for all 0 <
ε ≤ ε0, every maximal Willmore flow of spheres f : S2 × [0, T ), every rt > 0
with ε < κ(rt, t) ≤ Cε, and every tj ↑ T there is a subsequence (which we also
denote by tj), xj ∈ R3, and a smooth, complete, and proper Willmore immersion
f̂T : Σ̂ → R3 such that the immersions

fj :=
1
rtj

(f(·, tj)− xj)

converge to fT in the sense that there are vector fields uj ∈ C∞(f̂−1
T (Bj(0)),R3)

which are normal along f̂T and diffeomorphisms ψj : f̂−1
T (Bj(0)) → Uj ⊂ S2

with

fj ◦ ψj = f̂T + uj on f̂−1
T (Bj(0)) ,

Uj ⊃ f−1
j (BR(0)) for j > j(R),

‖∇k
f̂T
uj‖L∞(f̂−1

T (Bj(0))) → 0 for j →∞.

Furthermore,

ε ≤
�

Σ̂

‖Af̂T
‖2dµf̂T

<∞.

In this situation, we call f̂T blow-up limit of the Willmore flow f .

Let us define the term “surface of revolution”. We denote by T the subman-
ifold

T :=


 cos(s)

cos(φ) (sin(s) + 2)
sin(φ) (sin(s) + 2)

 : φ, s ∈ R

 ⊂ R3.

Definition 2.2 (surface of revolution). We call an immersion h : Σ → R3

an surface of revolution if for each connected component Σc ⊂ Σ there is a
diffeomorphism ψ : M → Σc, M ∈

{
S2,
[
x3 = 0

]
,R× S1, T

}
, such that

Rφ ◦ (h ◦ ψ) = (h ◦ ψ) ◦Rφ ∀φ ∈ R

and
(h ◦ ψ)([x3 = 0]) ⊂ [x3 = 0].
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In this case we call the curve

γg :
(
−π

2
,
π

2

)
→ R2, γg(s) :=

(
h1∣∣h2
∣∣ )

 sin(s)
cos(s)

0

 if M = S2,

γg : (0,∞) → R2, γg(s) :=
(

h1∣∣h2
∣∣ )

 0
s
0

 if M = [x1 = 0],

γg : R → R2, γg(s) :=
(

h1∣∣h2
∣∣ )

 s
1
0

 if M = R× S2,

γg : R/2πZ → R2, γg(s) :=
(

h1∣∣h2
∣∣ )

 cos(s)
2 + sin(s)

0

 if M = T

the profile curve of the component ΣC .

One can easily see that surfaces of revolution remain being surfaces of revo-
lution under the Willmore flow as follows. Assume that f : M × [0, T ) → R3 is
a Willmore flow and f(·, 0) is a surface of revolution. Since Rφ is an isometry,
we get that

(x, t) → Rφ (f(R−φ(x), t))

is still a Willmore flow with

Rφ (f(R−φ(x), t)) = Rφ (f(R−φ(x), 0)) = f(x, 0).

By uniqueness of the solution to the Willmore initial problem we thus derive

f(x, t) = Rφ (f(R−φ(x), t)) .

In this section we want to prove

Proposition 2.3. Let f : Σ × [0, T ) → R3 be a maximal Willmore flow such
that f(·, 0) is a surface of revolution. Then for every blow-up limit fT of this
Willmore flow there is a y ∈ R3 such that fT − y is a surfaces of revolution as
well.

Let us first deal with the convergence

Lemma 2.4. Assume that fj : Σj → R3 are surfaces of revolution that converge
to a proper immersion f∞ : Σ∞ → R3 in the sense that there are normal vector
fields uj ∈ C∞(f−1

∞ (Bj(0)),R3) and diffeomorphisms ψj : f−1
∞ (Bj(0)) → Σj ⊂

S2 such that

fj ◦ ψj = f∞ + uj on f−1
∞ (Bj(0)) , (2.1)

Uj ⊃ f−1
j (BR(0)) for j > j(R), (2.2)

‖∇k
f∞uj‖L∞(f−1

∞ (Bj(0))) → 0 for j →∞. (2.3)

Then f∞ is a surface of revolution as well.
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We will use the following

Lemma 2.5. An immersion f : M → R3 of a two-dimensional manifold without
boundary is a surface of revolution in the sense of Definition 2.2 if and only if
for ever p ∈M there is a 2π periodic continuous curve cp : R →M satisfying

cp(0) = p

and
(f ◦ cp)(φ) = Rφ(f(p)) ∀φ ∈ R.

Using this characterization of surfaces of revolution, the prove of Lemma 2.4
is basically an application of Arzelà-Ascoli’s Lemma.

Proof of Lemma 2.4. Let p ∈ Σ∞ and j > j(‖f∞(p)‖+ 1). Then (2.2) implies

Uj ⊃ f−1
j

(
B‖f∞(p)‖+1(0)

)
(2.4)

and hence pj := ψ−1
j (p) is well defined. Using (2.3), we get

fj(pj) → f∞(pj).

Hence, if we choose j big enough we can guarantee

fj(pj) ∈ B‖f∞(p)‖+ 1
2
(0). (2.5)

Since fj is a surface of revolution, there is a 2π periodic curve cj ∈ C(R,Σ) such
that cj(0) = p and

(fj ◦ cj)(φ) = Rφ(fj(pj)). (2.6)

Using (2.4) again, we see that the curve

ĉj := ψ−1
j (cpj )

is well defined. These curves satisfy

ĉj(0) = p.

We now want to show that after taking a suitable subsequence these curves
converge uniformly to a continuous curve c∞.

From the definition of the curve ĉj and (2.4) one deduces

f∞ ◦ ĉj = fj ◦ cj − uj(ĉj)

and hence∥∥∥∥ ddφ (f∞ ◦ ĉj) (φ)
∥∥∥∥ ≤ ∥∥∥∥ ddφ (fj ◦ cj) (φ)

∥∥∥∥+
∥∥∥∥ ddφ (uj(ĉj)) (φ)

∥∥∥∥ .
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Decomposing the vector d
dφ (uj(ĉj)) (φ) into its tangential and normal part with

respect to the immersion f∞, we get the estimate

∥∥∥∥ ddφ (uj(ĉj)) (φ)
∥∥∥∥ ≤ ∥∥∥∇ ˙̂cj(φ)uj(φ)

∥∥∥
+ ‖Af∞(ĉj(φ))‖ ‖uj(ĉj(φ))‖

∥∥∥∥ ddφ (f∞ ◦ ĉj) (φ)
∥∥∥∥

and hence∥∥∥∥ ddφ (f∞ ◦ ĉj) (φ)
∥∥∥∥ ≤ ∥∥∥∥ ddφ (fj ◦ cj) (φ)

∥∥∥∥+ ‖∇uj(ĉj(φ))‖
∥∥∥∥ ddφ (f∞ ◦ ĉj) (φ)

∥∥∥∥
+ ‖Af∞(ĉj(φ))‖ ‖uj(ĉj(φ))‖

∥∥∥∥ ddφ (f∞ ◦ ĉj) (φ)
∥∥∥∥ ,

Using (2.3), (2.5), and (2.6) we derive from the last estimate

‖ d
dφ

(
f∞ ◦ ĉj

)∥∥∥∥
L∞(R)

≤ 2π ‖fj(pj)‖

+ ‖∇uj‖L∞(B‖f∞(p)‖+1(0))

∥∥∥∥ ddφ (f∞ ◦ ĉj)
∥∥∥∥

L∞(R)

+ ‖Af∞‖L∞(B‖f∞(p)‖+1(0))
‖uj‖L∞(B‖f∞(p)‖+1(0))

∥∥∥∥ ddφ (f∞ ◦ ĉj)
∥∥∥∥

L∞(R)

.

Since f∞ is a proper immersion, ‖Af∞‖L∞(B‖f∞(p)‖+1(0))
is finite and hence we

get for j large enough together with (2.3)∥∥∥∥ ddt (f∞ ◦ ĉj)
∥∥∥∥

L∞(R)

≤ 4π sup
j∈N

‖fj(pj)‖ <∞.

Using Arzelà-Ascoli’s theorem and the fact that the immersion f∞ is proper, we
get that there is a curve c ∈ C(R,Σ∞) such that

ĉj → c uniformly.

Equation (2.3) tells us

f∞(c(φ)) = lim
j→∞

f∞(ĉj(φ)) = lim
j→∞

fj(cj(φ))− uj(ĉj(φ))

= lim
j→∞

fj(cj(φ)) = Rφ( lim
j→∞

fj(cj(0)))

= Rφ(c(0)).

Thus, for every p ∈ Σ∞ there is a curve c ∈ C(R,Σ) with

c(0) = p
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and
(f∞ ◦ c)(φ) = Rφ(f∞(p)).

Lemma 2.5 tells us that f∞ is a surface of revolution.

Proof of Proposition 2.3. Let f : Σ × [0, T ) → R3 be a maximal Willmore flow
of surfaces of revolution and let f̂T : Σ̂ → R3 be a blow-up limit of this Willmore
flow. More precisely, let rt > 0 with ε < κ(rt, t) ≤ Cε, tj ↑ T and xj ∈ R3 be
such that the immersions

fj :=
1
rtj

(f(·, tj)− xj)

converge to f̂T in the sense that there are vector fields uj ∈ C∞(f̂−1
T (Bj(0)) ,R3)

which are normal along f̂T and diffeomorphisms ψj : f̂−1
T (Bj(0)) → Uj ⊂ S2

with

fj ◦ ψj = f̂T + uj on f̂−1
T (Bj(0)) ,

Uj ⊃ f−1
j (BR(0)) for j > j(R),

‖∇k
f̂T
uj‖L∞(f̂−1

T (Bj(0))) → 0 for j →∞,

and
ε ≤

�
Σ̂

‖Af̂T
‖2dµf̂T

<∞.

We set

yj :=

 0
x2

j

x3
j


and want to show that

sup
j∈N

‖yj‖
rj

<∞. (2.7)

To this end, we firstly observe that f̂j := 1
rtj
f(·, tj) is a surface of revolution

which satisfies �
B1( xrt )

‖Af̂j
‖2dµf̂j

≥ ε.

We set

Gφ(x) :=


 s

0
0

+ r ·Rθ(x) : |θ| ≤ φ, r > 0, s ∈ R


and

ψ(xj) = ψ(‖yj‖) = inf
{
φ > 0 : B1

(
x

rt

)
⊂ Gφ(x)

}
.
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It is easy to see that ψ(‖y‖) → 0 as ‖y‖ → ∞ and that due to the symmetry
�

Σ̂

‖Af̂j
‖2dµf̂j

=
2π

ψ(‖y‖)

�
f̂−1
j (Gψ(‖y‖)(x))

‖Af̂j
‖2dµf̂j

≥ 2π
ψ(‖y‖)

�
f̂−1
j (B1(x))

‖Af̂j
‖2dµf̂j

≥ ε
2π

ψ(‖yj‖)
.

These two facts imply (2.5).
Hence, after choosing a suitable subsequence we can assume that

yj → y

and conclude that the surfaces of revolution f̂j converge to f̂T − y in the sense
of Lemma 2.4. Thus, f̂T − y is a surface of revolution.

3 Willmore Immersions

In this section we will determine the surfaces of revolution we may get with the
blow-up construction from Section 2. We will use the observation due to Bryant
and Pinkall that the profile curves of such Willmore immersions are free elastica
in the hyperbolic space, and the characterization of free elastica in manifolds of
constant curvature of Langer and Singer [LS84a].

Let H :=
{
x ∈ R2 : x2 > 0

}
and consider the euclidean metric

geucl := dx1 ⊗ dx1 + dx2 ⊗ dx2

as well as the hyperbolic metric

ghyp :=
geucl

(x2)2

on this space and set

‖v‖eucl :=
√
geucl(v, v),

‖v‖hyp :=
√
ghyp(v, v),

for v ∈ R2. We denote by ∇(eucl) and ∇(hyp) the Levi-Civita connection on
(H, geucl) and (H, ghyp) respectively and define signed curvatures for regular
curves c ∈ C∞(J,H) by setting

k(eucl)
c (s) :=

1
‖ċ(s)‖eucl

det
(
ċ(s),∇(eucl)

ċ ċ(s)
)

and
k(hyp)

c (s) :=
1

‖ċ(s)‖hyp
det
(
ċ(s),∇(hyp)

ċ ċ(s)
)
.
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We say that c is parametrized by the euclidean arc length if ‖ċ‖eucl ≡ 1 and c
is parametrized by hyperbolic arc length if ‖ċ‖hyp ≡ 1.

Following the standard prove of the fundamental theorem of curve theory,
one gets that for every differentiable function k : J → R, J ⊂ R open, t0 ∈ J ,
s0 ∈ H, and v0 ∈ R2 there is exactly one curve c : J → H parametrized by
hyperbolic arc length that satisfies

γ(t0) = s0, γ̇(t0) = v0 and k(hyp)
c = k.

Furthermore, for an immersion h : M → R3 of a two-dimensional manifold
M we set

W̃(f) :=
1
2

�
M

‖A0
h‖2dµh

and for measurable S ⊂M

W̃S(h) :=
1
2

�
S

‖A0
h‖2dµh.

It contrast to ‖Ah‖2dµh, the term ‖A0
h‖2dµh is invariant under conformal trans-

formations [Tho23, Bla29, Whi73]. Using Gauß-Bonnet’s theorem and

‖Hh‖2 =
1
2
‖A0

h‖2 +Kh (3.1)

one gets that for immersions h : M → R3 of compact two-dimensional manifolds
without boundary the two energies W and W̃ are related via

W(h) = W̃(h) + 2πχ(M). (3.2)

Given a regular curve c ∈ C∞(R,H), we define by

fγ : R× S1 → R3,

(s, w) 7→

 c1(s)
c2(s)w1

c2(s)w2


a surface of revolution.

The main theorem of this section is

Theorem 3.1. Let γ ∈ C∞(R,H) be a curve parametrized by hyperbolic arc
length with

W̃(fγ) <∞. (3.3)

Furthermore, let us assume that

lim sup
s→∞

∣∣∣k(eucl)
γ (s)

∣∣∣ <∞ if lim
s→∞

γ(s) ∈ ∂H (3.4)

and
lim sup
s→−∞

∣∣∣k(eucl)
γ (s)

∣∣∣ <∞ if lim
s→−∞

γ(s) ∈ ∂H. (3.5)

Then fγ is a Willmore immersion if and only if γ is the profile curve of a round
sphere, a plane, or a catenoid.
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For a regular curve γ ∈ C∞(R,H) and an open interval J ⊂ R we define the
elastic energy by

EJ(γ) :=
�

J

(k(hyp
γ )2(s) · ‖γ̇(s)‖hyp ds.

According to the Theorem on page 532 in [LS84b], we have

π

2
EJ(γ) = W̃J×S1(fγ). (3.6)

Definition 3.2. We call a regular curve c ∈ C∞(R,H) free elasticum if for all
open intervals J ⊂⊂ R and all curves ψ ∈ C∞(R,R2) with sptψ ⊂ J we have

d

dε
EJ(c+ εψ)

∣∣∣∣
ε=0

= 0.

The following observation goes basically back to Bryant [BG86] and Pinkall
[Pin85] and establishes a connection between Willmore immersions of revolution
and free elastica in the hyperbolic space.

Lemma 3.3. If fγ is a Willmore immersion, then γ ∈ C∞(R,H) is a free
elasticum.

Proof. Let J ⊂ R be an open interval and ψ ∈ C∞(R,H) be such that sptψ ⊂ J .
We set

V : R× S1 → R3,

V (s, w) :=

 ψ1(s)
ψ2(s)w1

ψ2(s)w2

 .

If ε > 0 is small enough, f + εV is an immersion and hence we get using 3.1
and Gauß-Bonnet’s theorem

WJ×S1(f + εV ) = W̃J×S1(f + εV ) +
�

J×S1
Kf+εV dµf+εV

= W̃J×S1(f + εV ) +
�

J×S1
Kfdµf..

Since f is a Willmore immersion and (3.6), we get

d

dε
(EJ(γ + εψ))|ε=0 =

2
π

d

dε

(
W̃J×S1(f + εV )

)∣∣∣
ε=0

=
2
π

d

dε
(WJ×S1(f + εV ))|ε=0 = 0.

12



Proof of Theorem 3.1. By Lemma 3.3, γ is a free elasticum in the hyperbolic
space. According to Langer and Singer [LS84b, Table (2.7), (c)], we have the
following possibilities1:

1. The curve γ is a geodesic of (H, ghyp), i.e. γ is either a circle or a straight
line that is orthogonal to the x1-axis.

2. The quantity k2
γ is not identical to 0 but periodic.

3. There is an s ∈ R such that

k2
γ(s) = 4 sech2(s− s0).

In the first case, f is either a plane or a round sphere. In the second case, let T

be the period of
(
k

(hyp)
γ

)2

. Then

�
R

(
k(hyp)

γ (s)
)2

ds =
∑
i∈Z

� (i+1)T

iT

(
k(hyp)

γ (s)
)2

ds =
∑
i∈Z

� T

0

(
k(hyp)

γ (s)
)2

ds

= ∞

which contradicts Equation (3.3).
We will conclude the proof by showing that in the third case γ is a catenary.

Let there be an s0 ∈ R, such that
(
k

(hyp)
γ (s)

)2

= 4 sech2(s−s0). Since sech > 0,

there is a κ ∈ {−1, 1} such that k(hyp)
γ (s) = 2κ sech(s − s0). First we simplify

the situation by looking at the curve

γ̃(s) =
1

γ2(s0)

(
γ(κs+ s0)−

(
γ1(s0)

0

))
.

This curve has the properties k(hyp)
γ̃ (s) = 2 sech(s) and

γ̃(0) =
(

0
1

)
.

A standard calculation shows that the curve

cK : R → H

cK(s) :=
(

s
cosh(s)

)
is parametrized according to hyperbolic arc length and that

kcK (s) = 2 sech(s).
1In the notation of Langer and Singer, we have G = −1. The only nonperiodic case, is

contained in the forth row of [LS84b, Table (2.7), (c)],. In this case p = q = 1 and thus from
the third equation of (2.5) on page 6 in [LS84b] we get r = 1 since α3 = α = −4G = 4.
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The fundamental theorem of curve theory hence tells us that there is an orien-
tation preserving isometry ψ of the hyperbolic space such that

γ̃ = ψ ◦ cK(s).

But these isometries are either the identity or of the form

fa : H → H,

z 7→ az − 1
z + a

,

with a ∈ R, where we use the multiplication and addition in C ⊃ H. We will
show that γ̃ = fa ◦ cκ leads to a contradiction and hence γ̃ is a catenary.

Let us assume that there is an a ∈ R such that

γ̃ = (fa ◦ cκ) =
(
f 1
a
◦ (f0 ◦ cκ)

)
.

A straight forward calculation leads

lim
s→∞

(f0 ◦ cκ) = 0

and
lim

s→∞

∣∣∣k(eucl)
f0◦cκ (s)

∣∣∣ = ∞.

Since f 1
a

defines a diffeomorphism on R2\
{(
− 1

a , 0
)}

, we get

lim
s→∞

∣∣∣k(eucl)
γ̃ (s)

∣∣∣ = ∞

and
lim

s→∞
γ̃(s) = a ∈ ∂H.

This contradicts (3.4) and (3.5).

Theorem 3.4. Each component of a proper Willmore immersion that is a sur-
faces of revolution and that is not a torus is either a plane, a round sphere, or
a catenoid.

Proof. Let f ∈ C∞(S2,R3) be a proper Willmore immersion that satisfies

Rφ ◦ f = f ◦Rφ ∀φ ∈ R

and
f([x3 = 0]) ⊂ [x3 = 0]

and let γf : (−π
2 ,

π
2 ) → H be the profile curve. We know that

lim
s↑π2

γf (s) ∈ ∂H
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and
lim
s↓π2

γf (s) ∈ ∂H.

Since (H, ghyp) is a complete manifold, this implies

lhyp(γf |(−1,0]) = lhyp(γf |[0,1)) = ∞

so that we get a curve γ̃ ∈ C∞(R,H) if we reparametrize γf by its hyperbolic
arc length. Using Lemma 3.3, we obtain that γ̃f is the profile curve of a round
sphere.

Let f : [x1 = 0] → R3 be a proper Willmore immersion that satisfies

Rφ ◦ f = f ◦Rφ ∀φ ∈ R

and
f([x3 = 0]) ⊂ [x3 = 0]

and let γf : (0,∞] → H be its profile curve. We then know that

lim
s↓0

γf (s) ∈ ∂H,

which implies lhyp(γf |(0,1]) = ∞ as above. Since f is proper and [x1 = 0] is
not compact, there is a sequence tj → ∞ such that ‖γf (tj)‖eucl → ∞. Since
(H, ghyp) is a complete manifold, we obtain that lhyp(γf |[1,∞)) = ∞. Hence, if
we reparametrize γf by its hyperbolic arc length we get a curve γ̃ ∈ C∞(R,H)
that satisfies the assumptions of Lemma 3.3. This implies that f parametrizes
a plane.

Let f : R× S1 → R3 be a proper Willmore immersion that satisfies

Rφ ◦ f = f ◦Rφ ∀φ ∈ R

and
f([x3 = 0]) ⊂ [x3 = 0]

and let γf : R → H be its profile curve. Since f is proper but (−∞, 0] × S1

and [0,∞) × S1 are not compact, there are a sequence t±j → ±∞ such that
‖γf (tj)‖ → ∞. Since (H, ghyp) is a complete manifold, this implies

lhyp(γf |(−∞,0]) = lhyp(γf |[0,∞)) = ∞.

Hence, if we reparametrize γf by its hyperbolic arc length we get a curve γ̃ ∈
C∞(R,H) that satisfies the assumptions of Lemma 3.3. This implies that f
parametrizes a plane.

An immediate consequence of Theorem 3.4 is

Corollary 3.5. The only Willmore spheres that are surfaces of revolution are
the round spheres.
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Now we are able to determine the blow-up limit in the case of surfaces of
revolutions.

Corollary 3.6. Let f : S2× [0, T ) → R3 be a maximal Willmore flow such that
f(·, 0) is a surface of revolution. Then every blow-up limit fT of this Willmore
flow is either a single round sphere or consists of embedded catenoids and planes.

Proof. Due to Lemma 2.3 and Lemma 3.4 each connected component of the
blow-up limit fT : Σ → R3 is either a plane, a round sphere, a cantenoid, or
some immersed Willmore torus.

Let there be one compact connected component Σc ⊂ Σ. Kuwert and Schät-
zle have shown that then Σ = Σc and that Σ is diffeomorphic to a sphere. Thus,
no connected component of Σ can be a torus and f parametrizes a single round
sphere if any connected component Σ and hence all of Σ parametrizes a round
sphere.

Corollary 3.7. Let f : S2×[0, T ) → R3 be a maximal Willmore flow of surfaces
of revolution that does not converge to a round sphere and let fT : Σ → R3 be a
blow-up limit of f . Then fT is not a round sphere and if nC is the number of
connected components of Σ that parametrize a catenoid, and nP is the number
of connected components of Σ that parametrize a plane we have

8πnC + 4πnP <W(f(·, 0)).

In particular, fT consists of a single catenoid if

W(f(·, 0)) ≤ 12π.

Proof. Let the fj be as in Theorem 2.1.
Since the blow-up limit fT is not a sphere, we know that f(·, 0) is not a

sphere and hence by Corollary 3.5 f(·, 0) is not a Willmore immersion. This
implies

W(fT ) <W(f(·, 0)).

Since Σ is a two-dimensional manifold, there exists an x ∈ R3 − fT (Σ) and a j0
such that

x /∈ fj(S2) ∀j ≥ j0.

We set

Ix : R3 − {x} → R3,

y 7→ y − x

‖y − x‖2
+ x,

and
f̃j := Ix ◦ fj ,∀j ≥ j0 f̃T := Ix ◦ fT .

Since the energy W̃ is invariant under Möbius transfomations and by (3.2),

W(fT ) ≤ W(f̃j) = W̃(f̃j) + 4π = W̃(fj) + 4π = W(fj) <W(f(·, 0)).
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Combining this with the fact that the inverted catenoid has Willmore energy
8π and that round spheres have Willmore energy 4π, we finally derive

8πnC + 4πnP <W(f(·, 0)).

4 Singularities After Finite or Infinite Time

Theorem 4.1. Let f0 : S2 → R3 be a surface of revolution with

wf0 /∈ {1,−1} .

Let f : S2× [0, T ) → R3 be the maximal Willmore flow with initial data f(·, 0) ≡
f0. Then either

sup
t∈[0,T )

diam(f(S2, t)) = ∞

or there is an ε > 0 such that for all r > 0

sup {t ∈ [0, T ) : κ(r, t) ≥ ε} < T.

In particular, the Willmore flow does not converge to a round sphere.

Remark 4.2. In the case that there is some ε > 0 such that for all r > 0

sup {t ∈ [0, T ) : κ(r, t) ≥ ε} < T,

we get by Theorem 1.2 in [KS02] that in fact

sup {t ∈ [0, T ) : κ(r, t) ≥ ε} < T,

for all 0 < ε < ε0, where ε0 is the constant from Theorem 1.2 in [KS02].

Proof. Assume that
sup

t∈[0,T )

diam(f(S2, t)) <∞

and that there is an r > 0 such that

sup {t ∈ [0, T ) : κ(r, t) ≥ ε} = T.

Hence, there is a sequence tj → T such that

κ(r, tj) ≥ ε.

By Theorem 2.1 there are xj ∈ R3 and a smooth, complete, and proper
Willmore immersion f̂T : Σ̂ → R3 such that the immersions

fj :=
1
rtj

(f(·, tj)− xj)
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converge to fT in the sense that there are vector fields uj ∈ C∞(f̂−1
T (Bj(0)) ,R3)

which are normal along f̂T and diffeomorphisms ψj : f̂−1
T (Bj(0)) → Uj ⊂ S2

with

fj ◦ ψj = f̂T + uj on f̂−1
T (Bj(0)) ,

Uj ⊃ f−1
j (BR(0)) for j > j(R),

‖∇k
f̂T
uj‖L∞(f̂−1

T (Bj(0))) → 0 for j →∞.

Furthermore,

ε ≤
�

Σ̂

‖Af̂T
‖2dµf̂T

<∞.

From Lemma 2.4 we get that there is a y ∈ R3 such that f̂T − y is a surface
of revolution. Since the diameters of the fj are bounded and f̂T is a proper
immersion, we deduce that Σ is a compact Willmore immersion. By Corol-
lary 3.5 this implies that f̂T is a round sphere. This contradicts the fact that
wf(·,0) /∈ {1,−1} since this would imply wf̂T

/∈ {−1, 1} .

5 Construction of Initial Surfaces

We want to prove

Theorem 5.1. For every ε > 0 there is a surface of revolution f : S2 → R3

with

W(f) < 8π + ε,

wf = 3.

In order to construct these surfaces of revolution, we will put together pieces
of two spheres and a catenoid as indicated in Figure 5.1. Firstly we will get
a profile curve which is merely C1,1. Using standard smoothing techniques we
will derive a smooth profile curve with the desired properties.

Proof. For δ > 0 we set

φδ := arccos
(

δ√
1 + δ2

)
, sδ := arcosh

(√
1 + δ2

δ

)

and consider the three curves

cS,δ : [0, π/2 + φδ] → R2,

cS,δ(s) :=
4
√

1 + δ2

δ

(
cos s
sin s

)
+
(

4
δ −

2sδ
cosh sδ
0

)
,
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Figure 5.1: The picture illustrates how to construct the initial surface. It shows
the rotational axis, the profile curve of the surface, and half of the surface.
The surface is build out of two round spheres painted in blue and a piece of a
catenoid, painted in red. The yellow part is used to connect theses pieces.

cP,δ : [−1, 1] → R2,

cP,δ(s) :=
(

δ
2 (s2 − 1)− 2sδ

cosh sδ
3− s

)
,

and

cC,s : [−sδ, 0] → R2,

cC,δ(s) :=
(

s
cosh s

)
.

Let lS,δ, lP,δ, and lC,δ be the lengths of cS,δ, cP,δ, and cC,δ respectively and let
us reparametrize the curves above by euclidean arc length to get the mappings

c̃S,δ : [0, lS ] → R2,

c̃P,δ : [0, lS ] → R2,

c̃C,δ : [0, lS ] → R2.
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We now compose these curves by setting

c̃δ : [0,
π

2
] → R2

c̃δ(s) :=


c̃S,δ( 2s

π l) if 2s
π ∈ [0, lS,δ],

c̃P,δ( 2s
π l) if 2s

π ∈ [lS,δ, lS,δ + lP,δ],
c̃C,δ( 2s

π l) if 2s
π ∈ [lS,δ + lP,δ, lS,δ + lP,δ + lC,δ].

where l := lS,δ + lP,δ + lC,δ and see from the definition of cS,δ, cP,δ, cC,δ and
c̃S,δ, c̃P,δ, c̃C,δ that

c̃2δ(0) = 0,

c̃1δ(π/2) = 0,

and
c̃δ ∈ C1,1([0,

π

2
)).

We extend c̃δ to a 2π-periodic function cδ : R → R2 with the properties

c1δ(π/2 + s) = −c1δ(π/2− s),

c2δ(π/2 + s) = c2δ(π/2− s),

c1δ(π + s) = c1δ(π − s),

c2δ(π + s) = −c2δ(π − s),

which is C1,1 and get
c2δ(s) = 0 ⇐⇒ s ∈ πZ.

Furthermore, cδ ∈ C∞((πn− σ, πn+ σ)) for all n ∈ Z where

σ = min {(πlS,δ)/(2l), (πlC,δ)/(2l)} .

Thus there are smooth 2π-periodic functions cδ,n : R → R2 with

c2δ,n(s) > 0, ∀s ∈ (0, π),

cδ,n → cδ in C1(R)
cδ,n = cδ, on (−σ/2, σ/2) + πZ,
cδ,n → cδ in C1(R) and W 1,2(R).

We define

fδ,n : S2 −


 1

0
0

 ,

 −1
0
0

→ R3

by

fδ,n

Rφ

 cos(s)
sin(s)

0

 := Rφ

 cδ,n(s)
cδ,n(s)

0

 , ∀s ∈ (0, π), φ ∈ R.

20



This is a smooth immersion which can be extended to a smooth surface of
revolution fδ,n : S2 → R3 with profile curve cδ,n.. For a smooth regular curve
c : R → H and s ∈ R we set

Ic(s) : =
π

2
‖c2(s)‖ · ‖c′(s)‖

(
(c1)′(s) · (c2)′′(s)− (c1)′′(s) · (c2)′(s)

‖c′(s)‖3

+
(c1)′(s)

c2(s) · ‖c′(s)‖

)
.

One computes

W(fc) =
�

R
Ic(s)ds,

where fc is the surface of revolution with profile curve c. Since cδ,n → cδ in
C1(R) and in W 1,2(R), ‖c′δ‖ = 2l

δ , and infs∈(σ/2,π−σ/2) c
2
δ(s) > 0, we obtain

W(fδ,n) =
� σ/2

0

Icδ,n(s)ds+
� π−σ/2

σ/2

Icδ,n(s)ds+
� π

π−σ/2

Icδ,n(s)ds

=
� σ/2

0

Icδ(s)ds+
� π−σ/2

σ/2

Icδ,n(s)ds+
� π

π−σ/2

Icδ(s)ds

→
� π/2

0

Icδ(s)ds.

The contribution of the two spheres to this integral is less or equal to 8π. Since
the connecting piece cP,δ converges smoothly to an plane annulus and since the
mean curvature of the catenoid is 0, we get

� π/2

0

Icδ(s)ds→ 8π

as δ → 0. Hence, if we choose δ0 > 0 small enough we get

W(fδ0,n) < 8π + ε,

for large n. Since wfδ0,n
∈ Z and wfδ0,n

→ wfδ0
= 3 we finally deduce

wfδ,n = 3

for n sufficiently large.
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