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Abstract
We consider k-dimensional knots with ends at infinity and show that
such submanifolds are unknotted if they are globally §-Reifenberg flat with
small § or if their Gromov distortion is small and they satisfy a certain
Ahlfors regularity condition.

1 Introduction

In [DS07] J. Sullivan and E. Denne showed that closed curves in R? with Gromov
distortion less than %ﬂ' are unknotted. In this paper we will extend this result
to submanifolds of arbitrary dimension and codimension that contain the point
infinity. Inspired by the work of S. Semmes [Sem9la, Sem91b], we show that
these submanifolds are unknotted spheres if the higher dimensional analog of the
Gromov distortion is small and a certain Ahlfors regularity condition is satisfied.
In contrast to the one dimensional case, in the case of higher dimension even
showing that the submanifold is topologically a sphere is a nontrivial task.

By a k-dimensional knot with ends at infinity we understand a subset I' C R"
such that I'U {cc} is a k-dimensional, compact, and connected C! submanifold
of R" U {oo} = S" without boundary. More precisely, we will assume that
Pn(T)U{ent+1} is a k-dimensional, compact, and connected submanifold of S™
without boundary. Here,

4
Py :R" —8S" —{e , T+— ——— (r,—2)+e 1.1
N - {TL+1} |.’E‘2+4 ( )+ n+1 ( )
is the inverse of the stereographic projection, and ey, ..., e,4+1 is the standard

basis of R**!. We do not assume a priori that such knots are orientable or that
anything else is known about the topology of these knots.
For a k-dimensional knot I' C R™ with ends at infinity we define

n (T) ::sup{M—l:x,yeF,x#y}, (1.2)
k x
n2(T) :sup{‘Wl‘:xGF,R>0}, (1.3)
and
n(I) = max{n: ('), n2(I") }- (1.4)



Here, dr is the Riemannian distance on I', H* denotes the k-dimensional
Hausdorff measure, Br(x) is the open ball around z with radius r, and wy
denotes the volume of the k-dimensional unit ball. If 72(T') < 1, the submanifold
T" is Ahlfors regular.

For curves, the constant 7 (I") 4+ 1 is known as Gromov distortion and the
quantity n;(I") is referred to as chord-arc constant or Lavrent’ev constant. It
plays a major role in the context of boundary regularity of holomorphic and
clifford holomorphic functions [Lav63, Pom78, Sem91a, KT97], of minimal sur-
faces [HN80, DHKW92, Kapitel 7.5], minima of Cartan functionals [HvdMO03],
regularity of free boundaries [KT99, KT03, KT04], and geometric knot theory
[Gro78, Gro81, Gro83, KS98, DS07, BS].

The main result of this paper is

Theorem 1.1. There is a constant € = e(n, k) such that for all k-dimensional
knots T' C R™ with ends at infinity and

nl) <e

the set T'U {00} considered as submanifolds of R™ U {oo} = S™ is an unknot-
ted k-dimensional sphere. More precisely, there is a C' isotopy H : S" x
[0,1] — S™ such that H(-,0) = idsn, H(ept1,t) = enq1 for allt € [0,1], and
H(Py(R"),1) = Py(D).

Although A. Haeflinger showed that all embeddings of S* into S are C!
ambient isotopic if n > 2(k + 1) [Hae62], even in this case of high codimension
Theorem 1.1 tells us that I' U {oo} is diffeomorphic to a k-dimensional sphere.
Note that we did not even assume a priori that I' was orientable.

The proof of Theorem 1.1 relies on the fact that knots with ends at infinity
and small constant 7 are globally J-Reifenberg flat with small §. For hypersur-
faces, this result is contained in [Sem91a, Main Theorem] while the correspond-
ing statement for submanifolds of higher codimensions can be found in [Bla08,
Theorem 4.13]. Using the topological disc theorem of E.R. Reifenberg [Rei60]
one can deduce that these knots are diffeomorphic to spheres. T. Toro pointed
out that -Reifenberg flat sets are tame using smooth orthogonal frames [Tor95,
Remark 4.2]. We will prove

Theorem 1.2. There is a constant ¢ = €(n, k) > 0 such that for every k-di-
mensional knot T' C R™ with ends at infinity that is globally §-Reifenberg flat
with

0 < g,

the set I' U {oo} considered as a submanifold of R™ U {oco} = S™ is an un-
knotted k-dimensional sphere. More precisely, there is a C' isotopy H : S™ x
[0,1] — S™ such that H(-,0) = idgn, H(epi1,t) = enq1 for all t € [0,1], and
H(Py(R*),1) = Py(I).

One way to prove that globally §-Reifenberg flat knots with ends at infinity
are unknotted in the sense of the above theorems could be to adopt the technique
of smooth orthogonal frames used by Morrey and Toro [Mor66, Tor95] and make
it applicable to k-dimensional knots with ends at infinity. One would start with
a plane and, following Reifenberg, one would deform this plane successively
such that one gets new submanifolds isotopic to the plane which converge to



the original submanifold with respect to Hausdorfl distance. But actually the
convergence in Hausdorff measure does not guarantee that one remains in the
given knot class.

We want to present a different approach to prove Theorem 1.1, which is
inspired by an approximation technique, used by Semmes, to show the existence
of good parametrizations of so called chord-arc surfaces with small chord-arc
constants [Sem91b]. This technique can also be used to reprove the topological
disc theorem of Reifenberg.

For an arbitrary r > 0, we will construct approximating submanifolds I,
that are equal to the graph of a C' function inside of balls of radius r centered
on I'. These submanifolds approximate I" in the sense of Hausdorff distance
and we coin the name (r, Cd)-approximation to refer to these properties. We
build these submanifolds in Section 3 by patching together the approximating
affine subspaces coming from the definition of global §-Reifenberg flatness. One
starts with the affine subspaces inside of balls that are so far away from each
other that they do not overlap. It is a difficult and technical challenging task
to interatively fill the holes between the portions of these affine spaces to finally
get a complete C! submanifold with the desired properties.

Section 4 is devoted to the proof of Theorem 1.2. First we show that on
the one hand T itself is a (r, C'd)-approximation for r small, and on the other
hand that for r large the (r, Cd)-approximations are globally graphs over a lin-
ear subspace I' whose differential vanishes at co. Using an elaborate recursive
construction, we then show that all (r, C'§)-approximations are C'' ambient iso-
topic. Together with the fact that the graph of a C' function over a linear
subspace whose differential vanishes at infinity is unknotted, this shows that I"
is unknotted as well.

We give a precise definition of globally d-Reifenberg flat sets in Section 2 and
rigorously prove how to control the distance between the linear subspaces used
in this definition can be controled (cf. Lemma 2.5). The appendix contains a
stability result for Lipschitz graphs and we cite Lemma 4.3 form [Bla08] that
will help us to deal with the change of coordinate systems on S™.

2 Preliminary Facts

Since we do not want to work with the image of I' under the stereographic
projection, we give another characterization of a knot with ends at infinity. For
a linear subspace L C R™ we denote by L := {z € R" : (x,y) = 0,Vy € L} the
orthogonal complement of L and let I, be the orthogonal projection of R™ onto
L.

If L C R™ is a k-dimensional linear subspace, a mapping f : L — L= is called
a function over L. In this case, we call the set graph(f) := {z + f(z):x € L}
graph of the function f.

The next proposition tells us that a complete, connected, and embedded
C' submanifold without boundary is a knot with ends at infinity if and only if
outside of a large ball around the origin it is the graph of a C! function over a
k-dimensional linear subspace of R™ whose differential vanishes at oo.

Proposition 2.1 ([Bla08, Proposition 4.2]). A set I' C R" is a k-dimensional
knot with ends at infinity if and only if the following two conditions are satisfied:



o I' is an embedded, complete, connected, k-dimensional C* submanifold of
R"™ that has no boundary.

e There is a k-dimensional linear subspace L C R", ¢ € CY(L,L*), and
R < oo such that
lim Dg¢(x) =0

xzE€L

|z|— oo

and
I' — Bgr(0) = graph(¢) — Br(0).

The Hausdorff distance between two subset A, B C R™ is given by

dy (A, B) := max < sup | inf ||z — ,sup | inf ||z — .
sl 8) = max {sup (inf o =) csup (3 o= 1) |

Let us introduce the notion of a globally §-Reifenberg flat set.

Definition 2.2 (Global Reifenberg flatness). A set A C R™ is called globally
0-Reifenberg flat if and only if for every x € A and every R > 0 there is a
k-dimensional linear subspace L, r C R" such that

dH(AO BR(x), (LLR -l-.’E) N BR(.%)) < Ré.

Next, we derive estimates for the distance between two linear subspaces
Ly, r, and Ly, g, in the above definition. For k-dimensional linear subspaces
Ly, Ly C R™ we define the distance

d(Ll, LQ) = d'H(Ll n Bl(O), L2 N Bl(O))

Lemma 2.3. Let L C R™ be a linear subspace, A, S C R™, and R > 0 be such
that
S D Bgr(0)

and
dny(ANS,LNS)<R.

Then,
dy (AN Bgr(0), LN Bgr(0)) <2dy(ANS,LNS).

One can see that this estimate is sharp takingn =1, L =S =R, A = Z,
and R=1.

Proof. Let x € AN Br(0) C ANS. There are ¢, € LN S with
lim ||z — gnl| < dn(ANS,LNS).

Since
Jim (gl < lim (17 — o] + o] < R+ du(ANS.LOS),

there are y, € L N Br(0) with



Thus
d(w, L0 BR(0)) < lim [l — ol < Tim (o = Gall + 52 — val)
<2dy(ANS,LNS)

for all z € AN Bgr(0).
For z € L N Br(0) we first choose & € Br_4,,(ans,Lns)(0) with

lz — 2| <dn(ANS,LNS).
Then there exist y, € AN S with
lim ||Z — yn|| <dn(ANS,LNS)

and thus
lim ||y,|| < lim [y, —Z|| + [|Z] < R.
n—oo n—oo

Hence, y, € AN Br(0) and
d(w, AN Bp(0)) < lim o = yu| < lim (o = 31|+ | = gl
<2dn(ANS,LNS).

Lemma 2.4. Let L C R"™ be a linear subspace and (1,(2 € R™. Then

dn(L+ (1, L+ Co) = d(¢1 — (2, L)

and for R > d((1 — (2, L)

dr((L+¢1) N Br(C1), (L 4 ¢2) N Br(¢1)) < 2d(¢1 — ¢, L)

Proof. The first estimate is obvious, and the second estimate follows from Lem-
ma 2.3 with S =R™ and A = {1 — (s. O

Lemma 2.5. 1. For all k-dimensional globally §-Reifenberg flat subsets A C
R™, Ry > Ry >0, and { € A we have

R
d(L¢,rys Le,ry) < 35]72-
1

2. For all k-dimensional globally 0-Reifenberg flat subsets A C R™, § € (0, %],
R >0, and (1,( € A with |1 — (2] < % we have

d(L¢y ry Ley r) < 246.

3. For all k-dimensional globally 0-Reifenberg flat subsets A C R™, § € (0, %],
Ry > R; >0, and (1,(> € A we have

Ry [IG2— ¢l
d(L L <30 é.
( ¢1,R1s <27R2) — (Rl + Rl



Proof. Using Lemma 2.3, we obtain

dr((L¢,ry +€) N Br, (), (L¢,r, +¢) N Br,(C))
< dn((L¢,r, +¢) N Bg, (), AN Bg,(())
+ dy (AN Bg,(¢), (L¢,r, +¢) N Br, (€))
<Ry + 2dn (AN Bgr,(C), (Le,ry, +¢) N BRr, () <Ry + 20R;.

Hence,

Rs Rs
d(L L < (14+2=")6§<3=6.
(L¢,Rys c,R2)_( + R1> <3%

For the second part, we show that for every = € L¢, r N Bz (0) we have

d(z, L¢eyrN B% (0)) < 8.

Since
Bsr(x + ¢1) C B(i3+)r(C1) C Br(G2),
and
d(z + ¢, A) < dn((Ley,r + ) N Br(C1), AN Br(G1)) < 0R
we get

d(l‘ + Cl,A) = d(l‘ + CI,A n B(;R(l‘ + Cl)) = d(l‘ + (1, AN BR(CQ)) <JR.
Using Lemma 2.3 and Lemma 2.4, we obtain

d(z,L¢y,r) < d(z+ G, (Ley,r +G) N Br(G2)) < d(z+ G, AN Br((2))
+ dn (AN B(C2), (Les,r + C2) N Br((2))
+ dn((Ley,r + C2) N Br(C2), (Ley,r + G1) N Br(G2))
< 20R+2d(¢1 — (o, Le,,rN Bgr(0))
=20R +2d(¢1, (Ley,r + C2) N Br($2))
< 20R +2dn (AN Br(C2), (Ley,r +C1) N Br((2)) < 40R.

Hence,
d(z,L¢, RN Bg(())) <2d(z,L¢yr) <8R Vx €Ly rpN B%(O).
By symmetry and scaling
d(L¢, Ry Ley r) < 246

which proves the second part of the lemma.
Concerning the third part, we use the first and second part to obtain

d(LCthLCz»Rz) < d(LCth’LC1,32+3|C1*C2\)
+ d(LC1,R2+3\C1*C2|’LC2,32+3|C1*C2\)
+ d(L¢y Ry +31¢1— ol Lo, Ra)

§332+3\C1—C2|§+245+3R2+3|C1—C2|5
R1 R2
Ry |C1C2|)5

<30 (=
a0 la




3 Approximation of Reifenberg Flat Knots

In this section we prove that globally J-Reifenberg flat knots with ends at infinity
have an (r, C§)-approximation for all r > 0 if § is small enough. By lipg we
denote the Lipschitz constant of a function g. For a linear operator A : Vi — V;
from one euclidean space into another, ||A|| will always denote the operator
norm, i.e.

[Az|

zcVi—0 ||(EH .

1Al =

Definition 3.1 ((r, u)-approximation). Let I' C R™ be a k-dimensional knot
with ends at infinity and r, p € (0, 00). We call M C R™ an (r, p)-approzimation
of I' if M is a complete and embedded C* submanifold that satisfies the following
three conditions:

(M1) Thereis an R € (0,00) such that
M — Bgr(0) =T — Bgr(0).
(M2)
dy (Fv M) < pr.

(M3) For all y € T there is a function g, € C'(L, L") over a k-dimensional
linear subspace L C R"™ such that

lipgy < p

and
M N B, (y) = (graph g,) N B, (y).

Now we can state

Theorem 3.2. Let I' C R™ be a knot with ends at infinity which is globally J-
Reifenberg flat. Then there are constants € = €(n, k) > 0 and C = C(n, k) < oo
such that there is a k-dimensional (r, C)-approzimation T, of T if § < e.

For z € R, let [x] denote the smallest natural number [ with [ > .

Lemma 3.3. For every set A C R™, p1 > pa > 0 there are subsets J; C A,
i=1,...,Q(n,p1/p2), Q(n,0) := ([20y/n 1+ 1)", such that

Q(n,p1/p2)
Ac U U Bn)
=1 zeJ;
and for every i € {1,...,Q(n,p1/p2)}

HZl — 22” > p1 Vzl,ZQ S Ji,Zl 7é 29.

Proof. Let

J = {z ez (2%2 + [o,pg/(z\/ﬁ)}”) NA# @}



and let f : J — R™ be such that

f(z) € (2fz+[0 p2/(2y/n)]" )ﬂA Vz e J.

T;{1,...7U2ﬁm +1)n}—’{0“'"{2\/ﬁm}n
|

Now let

be a bijection,

Ji:=Jn (d?ﬁil + 1> A +T(z))
2
and ~
Then
AcC U <.’E+ 0 p2/ 2\[ > U BPz U sz(z)
zeJ zeJ i€{0,...,Q(n,p1/p2)}

z€J,;

and for z; # 29 € J; we have

21 — 22| > 2’\’/25 qz\/ﬁ’p’j +1- 1) > 1.

O

We apply Lemma 3.3 with A = T, p; = 14r, and ps = r/2 to get sets
Jo=0,J,... JQ(n), J = U?:(g) J; such that

I c|JB) (3.1)
zeJ
and for every i € {0,Q(n)}
Hz1 — 2’2” > 14r Vz 75 z9 € J;. (32)

Now we will recursively construct sets I',. by patching together the affine sub-
spaces L, 5., 2 € J, we get from Definition 2.2.

Proposition 3.4. There are constants € = e(n, k) > 0 and C = C(n, k) < o0
such that for every k-dimensional globally 0-Reifenberg flat knot T' C R™ with
ends at infinity, § < ¢ and everyr > 0 there are a closed setsT%, i =0,...,Q(n),
It C TérY with the following properties:

I There is an R > 0 such that

I'% =T — Br(0).

I For all z € Y we have
d(z,T) < Cor.



IIT For ally € T there is a function g;,, € C'(Ly 5., Ly 5,.) such that

I’ N Bs,(y) C graph(gi,y),
lip g; , < Cér,
and
dy(graph(g) N Bs,(y), (Ly.s5r +y) N Bs(y)) < Cor.

Furthermore,
I} N Bay(2) = graph(gi -) N Bar(2) Vze (] J;.
j=0

Proof. From Lemma 2.1, we get a k-dimensional linear subspace L C R™, a
function ¢ € C'(L, L"), and an R; > 0 such that

Dl Lo ®n—Bg, (0)) <6
and
r— BR1 (O) = (gra‘ph ¢) - BRl (O)
For all y € T' — Br(0), R := R; + 5r, this guarantees

Thus,

U Lya) < o (4L )0 By (00,00 B 1)

T d5o(T 0\ By (), (L + ) N B5r<y>>)

11
< —6
)

and hence by Lemma A.2 there is a go, € C'(Ly 57, Ly 5:) such that

graph gy 5, = graph ¢,
lipg < C4,

and
d'H(graph 9o,y N BST(y)7 (Ly,5r + y) N B5r(0)) § Cér

if § is small. Setting T'Y := T' — Br(0),

1

o,y * Ly,57’ - Ly,5r

w1 (y),

y.5r

for all y € Brys,(0), and keeping in mind that Jy = (), one sees that ' and the
functions go , possess all the properties stated in III.

Fori=0,...,Q —1let I' and 9iy, ¥ €T, be already constructed with the
three properties stated in the lemma. We define

Fiﬂ — Fi U ( U (graph(gi,z) 0827*(2)>>

z€Ji41



and observe that this is a closed set. The set I'“*! satisfies Property II since

d(y,T) < Cor, VyeTi™ — | |J Ba(z) | CTi
z€Ji41

and for all y € T N By,.(2), 2z € Ji11, we have

d(y,T') < dp(graph(g.) N Bsr(2), (Lz,5r + 2) N Bsr(2))
+ dH((Lz,Br + Z) N BST(2)7 rn B5T‘(Z))
< Cér.

To show that Ti*! has the Property III consider y € T'. In the case that

Bsr(y)ﬁ( U Bw(Z‘)) =0

z€Ji41

the set ['“*1 satisfies 111 since T does. So let there be a z € J;1 such that

Bar(2) N Bsy(y) # 0. (3-3)

Since for all Z € J; 11 — {z} we have ||Z — z|| > 14r, we get
Pi’+1 N Bsr(y) =

(ri n B5r(y)> u <graph(gi,z) N Bar(2) N Bw(y)), (3.4)

Let us set 4
Y = F:, N B5T(y),

Z = (r;’.“ N 357.(,3)) N Bs,(y).

and note that _
N Bs.(y) CYUZ.

So it is enough to show that Y U Z is contained in the graph of a C! function
Gi+1,y over Ly s, with the properties we desire. From the way we constructed
'+ we know that

Z C graph(g; -)

where g; . € CY(L, 5., L

~5) and we know

Y C graph(g;,y)

with iy S Cl(Ly,5Ta L;_,5r)'
Lemma 2.4 and Lemma A.2 tell us that there is a g; , € Cl(Ly,57‘aL;5r)
with
graph(g; .) = graph(g;,.)
and
lip g; , < Cér,

10



if § is small enough. From dy(graphg;, N Bsr(y), (Lysr + y) N Bsr(y)) <
Cér, dr(graph g; . N Bs,(2), (Ly 5 + 2) N Bsr(2)) < Cor, z € AN B,(y), and
d (AN Bsr(y), (Ly,5r +y) N Bs,(y)) < Cér we derive

19iy = Tps (WllL=(Bs, (12, 5, ) < COF (3.5)
and
19i,> — HL;ﬁT@)HLM(BE,T(HLMT(y))) < Cor (3.6)

if § is suffinciently small. Thus,

Y — Z C graph(g;,y) — Bsr(2) C graph (gi,y Ly,sr—Bg,T,cér(HLyWST(z))>

C graph <9i,y | Ly sr—Bar(llp, 5, (z)))

and

Z-Y C graph(gaz) N BQT(Z) C graph (gi’Z|Ly,5rﬂm>

C graph (gi,z|Ly,5,,ﬂB3,v(HLy,5T(z)))
if 0 is small enough. Now, let ¢ € C*°([0, c0), [0,1]) be a function with
0 if |x| > 4r
5(r) = { -

1 if || < 3r

and

Vel <

<IN

We set
i1y = iy + (- —Tr, ()N @Giz = i) € C (Lysrs Lysy)-
Using (3.5) and (3.6), we get ||[Dg;11,,]| < Cé and
dw(graph giy1,y N Bs,(y), (Ly,5r +v) N Bs,(y)) < C6.

Equation (3.7), (3.8), and the fact that Y N Z C graph(g; ) Ngraph(g; ) finally
show
Y UZ C graph(git1,y)-

O

Proof of Theorem 3.2. Let § be so small that we can apply Proposition 3.4 and
let T¢,i=0,...,Q = Q(n), be the closed sets from Proposition 3.4. We set

I, :=T%
and get from Property II in Proposition 3.4 that

rrc U B: ) (3.9)

yel

11



if we assume that C§ < % Let x € T',.. There is a y € T" with

[z —yll <

N3

From (3.1) we obtain a z € J with

ly — 2]l <

N3

and hence
|l —z|| <

We know from III in Proposition 3.4 that

I, N Ba,(2) = graph(gg,.) N Bar(2).

This implies
I, N B, (z) = graph(gg,,) N B-(z)

and thus T, is an embedded C' manifold without boundary. Since I, is closed
in R™, it is a complete manifold.
With Lemma 2.4 and Lemma A.2, we get for ¢ sufficiently small

I, N B,(z) = graph(g,) N B, (x)
where g, € C'(Ly 5, L 5,) satisfies

and
dy(graph g, N By (), (Lyr + ) N By(r)) < Cor.

This proves (M3). Furthermore,

d(z,T'y) < dw((Le,r +2) N Br(2)), Ty N Br(2))
< Cér.

Together with Property IT in Proposition 3.4, this implies (M2).
O

We end this section proving that (r, u)-approximations of connected sets are
pathwise connected.

Lemma 3.5. Let A C R™ be a connected set and A, be a (r, pu)-approximation
of A with p € (0, %) Then A, is pathwise connected.

Proof. We define an equivalence relation ~yy,,, on A by setting x ~onn v if and
only if for all points

ZJCEATHB%T(.I), ZyEArﬂB%T(y)

there is a continuous curve on A, joining the points z, and z,. This relation is
obviously symmetric. Since for every point x € I" one knows that A,.NB %T(I) #*

(), the relation is transitive as well.

12



To show that ~.ony, is reflexive, let © € A, 21,20 € AN Blr(x). We have to
2

show that there exists a curve on A, joining z; and zo. From (M3) we obtain a
function g, € CY(L, L") over a k-dimensional linear subspace L such that

lipg, < p
dy(graph g, N Br(z), (Ly,r + ) N By(x)) < p

and
A, N B.(z) = graph(g) N B,(z).

Hence,

l900) = T @)z, s,y < 7 < 57
We define a curve ¢ € C°([0, 1], R™) with ¢ ([0,1]) € graph(g) by

c(r) :==Hg,, (21 4+ 7 (22— 21))

+g(Uz,, (2147 (22— 21)), Yrel0,1]
and get
¢([0,1]) C graph(g) N B,(x) C A,.

Hence ~ony is reflexive.
Let x € A. Since
dH(Aﬂ A’F) < ur,

we know that there is a point z € A, N By, (). Then for some g9 > 0
z € B1,(y) Vy € B, ().

Thus, for y € AN B, () and points 2z, € By1,.(x), 2y € B1,(y) the reflexivity
of ~conn gives us a continuous curve on I'§ joining z, and z, and a continuous
curve on I'f" joining 2z, and z. But this implies that a continuous curve on I'¢
joining z, and z, exists and hence

Y ~conn T, Vy € BEo (1‘)

This proves that every equivalence class of ~yn, i open in I'. For x € A we
denote by []conn the equivalence class containing x. Let xg € I'. Then [2¢]conn
is an open set and since

[xO]conn =A- U [y}conn

yéE[oleonn

the set [xo]conn 1s closed. Since A is a connected set we thus get [xolconn = A
and hence
T ~conn Y, vay € A

Now let z1, 29 € A,.. Then there are points yq,y2 € A such that

and hence there is a continuous curve on A, joining xy and xo. This proves that
A, is pathwise connected.
O
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4 Reifenberg Flat Knots are Unknotted

This section is devoted to the proof of Theorem 1.2. Using that I is of class C*
one immediately gets using Proposition 2.1

Lemma 4.1. Let I' be a k-dimensional knot with ends at infinity and p > 0.
Then there is an r—_(T', ) > 0 such that T is an (r, p)-approximation of itself.

On the other hand, if r is big enough T',. is equal to the graph of a C! function
over a k-dimensional linear subspace whose differential vanishes at infinity.

Lemma 4.2. Let I' be an k-dimensional knot with ends at infinity that is -

Reifenberg flat with § < %, There is a constant r+ = r4(I') < oo such that

for 0 < r < ry and every (r,u)-approzimation I'y. of T with p < % there is a
function f € C*(L,L*) over a k-dimensional linear subspaces L C R with
I' = graph f

and
Df(x) =0 for|z| — oc.

Proof. Since T' is a knot with ends at infinity, we know from Proposition 2.1
that there is a function ¢ € C1(L, L*) over some k-dimensional linear subspace
L and an Ry < oo such that

I' — Bg, (0) = graph ¢ — Bg, (0)
and

| 1%&1 D¢(z) = 0.

For x,y € L, r < oo, we estimate

1
[o(2) = oY)l S/O 1Dz + t(y — x))[l[[« — yl|dt

1
< / X80 + Hy — ) [DS] o (n 1 — vl (4.1)

+ Xrn-B _(0)(@ + ty — @) Dol (1B (0))dl
< 2vr||Do|| oo (ry + Iz — Yl Dol L (2B (0)-

and thus

[6(-) = (@)l oo (B, (2)) < 2V 1DP| Ly + 71Dl oo (- B (0))-

Furthermore, for > 0 and z € graph ¢

sup d(y, (L +2) N Br(x)) < l¢() = $(HL)| Lo (B, (11,0))
yEgraph ¢NB,.(z)
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and if 7 :=r — ||¢(-) — ¢(IIL2)|| oo (LB, (11, 2)) > O we have
sup  d(y,graphg N By(z))
yE(L+z)NB,(z)

< sup d(y, graph g N B.(z))
yEe(L+x)NBi(x)

+6() = oMLz)|| oo (£, (m12))
<2|[¢(-) = ¢(Hrz)| Lo (LB, (11,2))-

Together with (4.1) this leads to

dw (T N By(z), L N By(z)) |9(-) — dLL2) || oo (LB, (11L2))

sup < 2sup
z€el r z€l r
1
< 2r 2| Dgllpe () + Dol (-5 - (0))
> 0.

Hence, we obtain

dH((L + x) N Br(x)a (Lac,r + :L') N Br(x))
dn((L+ 2) N By(z),T' N B.(x))

N dn(T'N Br(xl, T N B.(z))

 dn(Dr 0By (w), Ly 0 Bi(2))

B dH(LﬂBr(mr),Fﬁ Bo@) L g 5o %

d(L,Ly ) =

<

uniformly in 2. Let us choose r,(I") > 2Ry such that
3 7
supd(L,Ly,) < = Vr>—r (T) (4.2)
zel 8 8

and assume that r > 4 (T"). Then by Lemma A.2 and using d(L, L, ,)(14u) < 1
we get that for every x € I there is a g, € C'(L, L*) such that

I, N B.(%) = graph g, N B-(Z). (4.3)

Let © # y € R*"N T, and assume that II;(z) = IIp(y). Then there is an
7 € T such that ||z — Z|| < r/8. By (4.3), we obtain ||y — Z|| > r and hence
|z —y|| > 7/8r. Using (4.2), we obtain for all £ > 0,

ez =yl <[pe - (@ =yl + [z —y) - (z =yl

—yll—e zlz—yll—e

6 6 7
< ullle =yl +e)+ gl —yll = { n+ g ) llz =yl < glle =yl

hence 1
M (z =)l = glle =yl

15



Thus I |r,, is injective. Hence there is a function f such that
I’ C graph f
Since T';. is complete and has no boundary, we get
I', = graph f
and by (4.3) f € CY(L, L*). Furthermore,

lim Df(z) = lim D¢(x) =0.

Let eq,...,e,41 be the standard basis of R"*! and let us set

Py :R" = S" —{ent1}
4

o nErd W) e

and

PS . Rn — Sn — {—6n+1}
4
T — P (2,2) — ent1-

Using Lemma A.3, we now prove that the graph of a C' function whose
differential vanishes at oo is unknotted. For a function v : R™ x [0, 1] we denote
by Dy(x,t) € L(R™,R"1) the derivative with respect to the first n variables
at (z,t) and with Dytp(x,t) € L(R,R"*1) the derivative with respect to the last
variable at (z,t).

Lemma 4.3. The graph of a C' function f : L — L* over a k-dimensional
linear subspace L C R™ with

lim Df(z) =0

Izl —oo
xE€L

is unknotted in the following sense: There is a C' isotopy H : S™ x [0,1] — S™
such that

H(-,0) = idgn, (4.4)
H(ept1,t) =ent1 YVt €[0,1], (4.5)

and
(Pn)™" (H (Py(L),1)) = graph(f). (4.6)

Proof. Using a translation, we can reduce the proof to the case f(0) = 0 and
hence

IFOI <MD fllzoe ) lI<]I-
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Furthermore, we can assume that || D f|| o (ry > 0 since otherwise the statement
of the lemma trivially holds. Recapitulate that

lim Df(z)=0
e —oo
implies
E(ST I
st lIcll

We pick ¢ € C*(R4,[0,1]) , ¢(t) =1 for t € [0,1], ¢(z) = 0 for all ¢ € [3,00),
|¢/|| = < 1, and set

Y :R" x[0,1] - R"

o . a )
wet): +t¢<(|HLSEIP+1)i(||f(HL:v)II2+1)i)f(HL :

for ¢ :=||Df| s /2. Furthermore,

H:S"x[0,1] —S"

o en+1 if x = En+1
H(z,1) = {(PN) (v (Py'z,t))  else.

1 1
For z € R"™ with [[II. (2)[| > 2 (|Iza|? + 1) (||fpa)[* + 1) * we know that
Dﬂ,/)(m,t) = idR7z

1 1
and for [Tz (z)| < 2 (||« +1)* (||f(Tga)||?> + 1)* one calculate

(wa(mvt) - id]R") (Z)

I, .z
o ( My 2] )( <|nlma> 1
(e )2 + 1% (If (Me2))2 +1)% ) \(Tez )2 + 1)F (I (Tez)|2 + 1)
- T,
2 (||pz )2 + 1)% (|| (p)|2 + 1)

(el + 1) (f(Tpe), D, . f(TTLa)) ))f(HLx)

120 < C||1HLMC|| 1> D, . f(Hpx)
([Mzzl? + D) (J[f(r2)|[? +1)7

= (Mo, Tz (|1 (Mpw)|* + 1)

17



and hence

| Dutp(x, 1) — idgn
. ]
~ (Ml + ¥ (o) + 1)
3 (Il + 0)* (I o)+ 1)F (o :
5 5 x flpz + 1) | f(TI x
e T sy (el (P 41) L)

+ (M) + 1) || f(Tz2)]| IIDanf(HLx)|> + [ DfIz)|

B0 e X (F 720 VP
(el + D)% 2(ga]? +1)3

1 1
if |pz|| — 0. Since |[Hpra| < 2 (|[Hpz|®>+1)* (|| f(MLz)|[*+1)* implies
x|l < |zl + (Jzz]? +1)?, we conclude that

sup ||Dy(z,t) —idgn|]| — 0 as |z|]| — o0
t€(0,1]

Let us show that ¢ (-, ) is a diffeomorphism for all ¢. For z € R™ we calculate

I (Dz4)(x, 1)) (2)) = Lz,
and for z € L+ we obtain
()] e
(Mzz|* +1)* (IIf(HLfC)II2 +1)*
(22120 ||HL:EH) Hf(HLw)H% 2l
(IIHLxH2 1) (| (2)|2 + )T

Mpe (Datp(,t)(2)) — 2| < ¢

< 3l

since ¢ = 3||Df| po(r). Hence, ker(Dy(x,t)) = {0}.
For z,y € R™ with ¢(z,t) = ¥(y,t) one gets

Mz =1ry

and

0 = M. (e ) — p(5,0)] = H [ o Dty st = )= ) s
> (1= [HL(Dob(z. ) — o 1) [ =yl > Sz — ]

finally implies & = y. So ¥(-.t) is injective and hence a diffeomorphism.
Obviously H satisfies (4.4), (4.5), and (4.6), but we have to show that H is in
fact a O isotopy. As (-,t) is a diffeomorphism, we get that Hsn—{eni1})x[0,1]
is a C! isotopy and that the functions H (-, t) are injective for all ¢ € [0,1]. So
we only have to show that H is C! in the neighborhood of e, 11 x [0, 1] and that

18



the differential of the function H(-,t) at the point e, has full rank. Since Pg
is a parameterization of a neighborhood of e, 1 in S™ and Ps(0) = ej,41, it is
enough to prove that the function
H:R"™ x [0,1] = R"
H(t,z) = Pg' (hH (Ps(x),t))

is C' and that the differential of the function H(-,t) in the point 0 has full rank.
We will use Lemma A.3 to show this.

We see that
) .
H(z,t) = ————— V(x,t) € (R* — {0}) x [0, 1],
4] (1)
since
(Ps)™ o (Py) (z) = (Pn) "' o (Ps) (z) = e Vo € R" — {0}.
T
We estimate
s 12O (01 ()
t€[0,1] |z|2 tef0,1]  |x|?
< e FOI1Dfloo - Jo] oo
te[0,1] ||

Since H(0,t) = 0 for all t € [0, 1], Lemma A.3 tells us that H is a C* function
on R¥ x [0,1] and D,H(0,t) = I for all t € [0,1]. So the differential of the
function H(-,t) in the point 0 has full rank. As mentioned above, this implies
that H is a C'! isotopy.

O

Now, we show that two (r, 1)-approximations are ambiently isotopic in I' N
{oo} = S™ if p is small enough.

Proposition 4.4. There is an g = go(n, k) > 0 such that the following holds:
Let My and My be (r, w)-approzimations of a k-dimensional knot with ends
at infinity that is globally §-Reifenberg flat with 6,1 < &y.Then there is a C*
isotopy
H:R"x[0,1] - R"

such that
H(-,0) = idgn,

H(M,1) = Mo,

and
H(p,t)=p VY(p,t) € (M1N M) x[0,1].

Furthermore, spt (H — idgn) is compact.

The next lemma is the basic building block for the proof of Proposition 4.4.
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Lemma 4.5. There are constants é = £(n, k) > 0 and C = C(n, k) such that
the following holds:

Let T' be k-dimensional knot that is globally 6-Reifenberg flat, My, Moy be
(r, u)-approzimations of T, 0,u < & and J C T be such that

|21 — 22| > 5r Vz1 # 20 € J.

Then there is a C1 isotopy H € C*(R™ x [0,1],R™) with H(-,0) = Idgn,

H(z,t) =z Vz¢€ (Ml OMQ) U (]R” — U Bgr(z)> , (4.7)
zeJ
H(M;,1)n (U Bbr(z)> =M, N (U Bbr(z)> , (4.8)
zeJ zelJ

and H(My,1) is an (r,C(u + 6)-approzimation of T.

Proof. Since M; is a (r, u)-approximation of I', for every z € A there is a ggi) €
C’l(LZ,T,LZ{T) with

lipg < p,

M; N B, (2) = graph(g{") N B,(2), (4.9)

and
dH(graphgii) N B, (2),(L, .+ 2) N B.(2)) < p.

One sees that
i 1
lg$(-) — HL”(Z)||L°o(3,.(an,T(z))) < 2ur < 5" (4.10)

for small p. Let € C°°(R¥,[0,1]) with

o) 0 for |z| > %r
1 for |z < gr
and o
DO < —.
r
We define
H:R"x[0,1] — R"
by

H(wt):=x+) (t SOz, (= 2) DO, (x—2)])

zedJ
(62 (M., (@) = gD (MW, (2))) )
Now, H(-,0) = idgn, H € C*(R™ x [0,1],R"),

1
|H(2,1) — 2] < Cur < 2
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and
||DIH(', t)(.%‘) - 'L’an

<Cu<l1

if v is small enough. The last estimate implies that H(-,t) is a diffeomorphism

and one gets
H(B,(2),t) = B.(2) VzelJ

and R
H(M,1)N B,(z) = graphh, N B,(2)

where h, € CY(L, ., LTL’Z) is defined by

ha(y) == g () + 0y — i, . (2)]) - (62 () — 9 ().

Furthermore,
H(z,t) =2z VYzreR"-— U B (z)
z€J

To prove Equation (4.8), let z € J. Then
H(My,1)N By, (2) = H(M N By(2),1) N B,(2)
= graphh. N B1,.(2)
= graph ¢® n B,(2) = My N B ,.(2).

Finally, we have to show that H(M;,1) is in fact a (8, C(u+ 0))-approxima-

tion of I'. Properties (M1) and (M2) follow from the definition of H and from

the estimates for the functions gg So we only have to show that for every

z €T, there is a §, € C*(L,., Li,) such that

z,ry H

lip g. < Cu,
dy(graph g, N By(x), (Lg,r + ) N By(z)) < C(p+9),

and y
H(M,1) N B,(z) = graph g, N B,.(z).

If B,(z) N (U,c; Br(2)) =0, this follows from
H(Mjy,1) N B,.(z) = M, N B,.(x)

and the fact that M; is a (6, p)-approximation of I'. Let us assume that there
is a z € J such that B,.(z) N B.(z) # 0. We set

Z := H(M;,1) N B,.(2)

and

We know that

Z = graph(h,) N B,(z)
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with h, € C*(L., Lj’r). For § and p small enough, we get using Lemma 2.4
and Lemma A.2 that there is a h, € CY(Lyyy Ly ) with
graph h, = graphh,

and R
liphy < C(p+9).

Furthermore, we have
X = (graph gMn Br(x)) — Bz (2).

Thus ~ ~
Z — X C graph(h.) N Bz (2) C graph(h.|p,

r
3

(M., (2))

and

X — Z C graph(gy) — Br(2) C graph(gzlo—p, c,m,, )
C graph(gw\LfB%T(HLm(Z)))

if u is small enough. Let now 1 € C*°(R, [0, 1]) with

1 ife<Ir
w(e) = {o if € > 8r,
and o
[VY][pe < —.
,
We set
g: Lz,r - LZE,T‘

£ g:(8) +o(ll€ =Tz, (2)I]) - (90(§) — 92(8)) -
This is a well-defined C*' function with Lipschitz constant smaller or equal to
C(u+9), |g(Iz_ , (2))| < C(u+6)r and
H(My,1) N B,(z) = (graph(g) N B,(x)).
Hence, H (M, 1) satisfies (M3). O
Proof of Lemma 4.4. Let & and C be the constants from Lemma 4.4 and let

=
14 (20)9M

Since the M; are (r, u)-approximations of A there is an R > 0 such that

M; — Br(0) =T — Bg(0).

Applying Lemma 3.3 with A = I' — Br(0), p1 = 4r, and p» = 53 we get
Ji, ... Jgm) C T — Br(0) such that

I —Bri(0)C  |J Bi,(»
izlf.é.{é<n)
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|21 — 22| > 5r Vz1 # 22 € J,.

Using Proposition 4.4 with My = N;, My = Mo, ji = (2C)%e starting with
No = T, we recursively get (r, (20)%)-approximations N;, i = 0,...,Q,, and
ambient Cl-isotopies H; € C1(R™ x [0, 1],R™) with N;11 = H;11(N;, 1),

spt H; — idgn C | J Br(2) C Brar(0),
z€J;

Hip (N, 1)n | By (2) = Mo | By (2),
z€J; z€J;
and
Hi+1(Nia 1) D N; N M.

This leads to

Now) D (My = Br(0)U [ Man | Bg(2) | =M,
¢=1,Z..E.‘,]éz(n)
which implies Ng = M> since both are connected, complete and open submani-
folds of dimension k. Since all the V; are ambient isotopic, we get that No = My
and Ng = M, are ambient isotopic.
O

Proof of Theorem 1.2. Let § be so small that we can apply Theorem 3.2 to get
(r, Cd)-approximations. Since every (r, u)-approximation is a (or, 2u)-approxi-
mation for all o € [%, 1] we get that all (r,Cd)-approximations are ambient
isotopic by Lemma 4.4. Applying Lemma 4.2, we get that I', is unknotted
in the sense of the theorem for r large enough. Furthermore, T' is an (r, Cd)-
approximation for r sufficiently small. Hence, I" is unknotted in the sense of the

theorem. O
Theorem 1.1 follows from Theorem 1.2 and

Theorem 4.6 (Small Gromov Disortion implies Reifenberg flatness[Bla08, The-
orem 4.13]). For every § > 0 there is a constant € = €(n, k) > 0 such that the
following holds:

If T C R" is a k-dimensional knot with ends at infinity and n(T") < e, then
T is globally 0-Reifenberg flat.

A Appendix
Lemma A.1. For k-dimensional linear subspaces Ly, Lo C R™ we have

d(Ly,L2) = d(Ly, Ly).
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Proof. Observe that

sup  d(z,LaNBi(0)) =  sup HHLQL(z)Hz sup HnLé(nLl(x))H
CEGleBl(O) CL‘GLlﬁBl((]) IGBl(())
= sup <HL§-(HL1($))79>: sup <w7HL1°HL,;(y)>
z,y€B1(0) z,y€B1(0)
= swp |, (@)= swp I, @)
y€B1(0) z€LFNB1(0)
= sup d(z,Li N Bi1(0))
x€L3y NB;1(0)

and interchanging L, and Lo we get

sup  d(z,Ly N B1(0)) = sup d(z, Ly N B(0)).
z€L2NB1(0) EEL%ﬂBl (0)

Thus
d(Lla LQ) = d(Lfa Lé_)

O

Lemma A.2 (Stability of Lipschitz graphs). Let f be a function over the k-
dimensional linear subspace L C R™. If L C R™ is another k-dimensional with

d(L,L)(1 +1lip f) < 1,
then graph(f) is equal to the graph of a Lipschitz function f over L with

o 1 . . .
L S I ATESTY] (lip £+ d(L, L)(1 +1ip f))

Proof. First we calculate for z € R"

(I, = T0.) ()| < |(Hg = z) (Hpz)|| + [[(Hg — ) (T2 ()|
= (Mg —Mpe) (M)l + |z — g) (Hpe (2))]
= [1(z) (Mp2) || + [(Tg) (ML (2)]]
< d(L,L)l|lz] +d(L*, L) ]

Hence, for € graph f
T2 (2)]| < 2d(L, L)||2]| + [T« ()
< 2d(L, L)l + lip £||Tr ()]
<lip f|TIz ()| + d(L, L)1 +lip £)(| 1 (2)]| + [T ()])

and so

1
—d(L, L)(1 +lip

Iz (@) < - 5 (g +dL DA +1ip ) 11 0],
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For &k <n let

I, :R" - R™

(1, Tn) — (T1,. .., Tk).

Lemma A.3 ([Bla08, Lemma 4.3]). For a given C! function : R¥x[0,1] — R"

we set ( )
Y(r,t
he (R {0)x[0,1] = R", (z,8) o —
% (1)
If
. |z|] =00
t
min v (2,t)| — oo,
max [ D4 (z,1) - I 2520,
te[0,1]
and D .
max || tw(z7 )H |Z‘~>OO 0, (Al)
t€[0,1] |z]2

then h can be estended to a C' function on the whole R¥x[0,1] by setting
h(0,t) := 0 for all t € [0,1], and one gets D, h(0,t) = I}, D:h(0,1) = 0 for
all t € [0, 1].
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