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Abstract

We consider k-dimensional knots with ends at infinity and show that
such submanifolds are unknotted if they are globally δ-Reifenberg flat with
small δ or if their Gromov distortion is small and they satisfy a certain
Ahlfors regularity condition.

1 Introduction

In [DS07] J. Sullivan and E. Denne showed that closed curves in R3 with Gromov
distortion less than 5

3π are unknotted. In this paper we will extend this result
to submanifolds of arbitrary dimension and codimension that contain the point
infinity. Inspired by the work of S. Semmes [Sem91a, Sem91b], we show that
these submanifolds are unknotted spheres if the higher dimensional analog of the
Gromov distortion is small and a certain Ahlfors regularity condition is satisfied.
In contrast to the one dimensional case, in the case of higher dimension even
showing that the submanifold is topologically a sphere is a nontrivial task.

By a k-dimensional knot with ends at infinity we understand a subset Γ ⊂ Rn

such that Γ∪ {∞} is a k-dimensional, compact, and connected C1 submanifold
of Rn ∪ {∞} ∼= Sn without boundary. More precisely, we will assume that
PN (Γ) ∪ {en+1} is a k-dimensional, compact, and connected submanifold of Sn

without boundary. Here,

PN : Rn → Sn − {en+1}, x 7→ 4
|x|2 + 4

· (x,−2) + en+1 (1.1)

is the inverse of the stereographic projection, and e1, . . . , en+1 is the standard
basis of Rn+1. We do not assume a priori that such knots are orientable or that
anything else is known about the topology of these knots.

For a k-dimensional knot Γ ⊂ Rn with ends at infinity we define

η1(Γ) := sup
{
dΓ(x, y)
‖x− y‖

− 1 : x, y ∈ Γ, x 6= y

}
, (1.2)

η2(Γ) := sup
{∣∣∣∣Hk(Γ ∩BR(x))

ωkRk
− 1
∣∣∣∣ : x ∈ Γ, R > 0

}
, (1.3)

and

η(Γ) := max{η1(Γ), η2(Γ)}. (1.4)
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Here, dΓ is the Riemannian distance on Γ, Hk denotes the k-dimensional
Hausdorff measure, BR(x) is the open ball around x with radius r, and ωk

denotes the volume of the k-dimensional unit ball. If η2(Γ) < 1, the submanifold
Γ is Ahlfors regular.

For curves, the constant η1(Γ) + 1 is known as Gromov distortion and the
quantity η1(Γ) is referred to as chord-arc constant or Lavrent’ev constant. It
plays a major role in the context of boundary regularity of holomorphic and
clifford holomorphic functions [Lav63, Pom78, Sem91a, KT97], of minimal sur-
faces [HN80, DHKW92, Kapitel 7.5], minima of Cartan functionals [HvdM03],
regularity of free boundaries [KT99, KT03, KT04], and geometric knot theory
[Gro78, Gro81, Gro83, KS98, DS07, BS].

The main result of this paper is

Theorem 1.1. There is a constant ε = ε(n, k) such that for all k-dimensional
knots Γ ⊂ Rn with ends at infinity and

η(Γ) ≤ ε

the set Γ ∪ {∞} considered as submanifolds of Rn ∪ {∞} ∼= Sn is an unknot-
ted k-dimensional sphere. More precisely, there is a C1 isotopy H : Sn ×
[0, 1] → Sn such that H(·, 0) = idSn , H(en+1, t) = en+1 for all t ∈ [0, 1], and
H(PN (Rk), 1) = PN (Γ).

Although A. Haeflinger showed that all embeddings of Sk into Sn are C1

ambient isotopic if n > 3
2 (k + 1) [Hae62], even in this case of high codimension

Theorem 1.1 tells us that Γ ∪ {∞} is diffeomorphic to a k-dimensional sphere.
Note that we did not even assume a priori that Γ was orientable.

The proof of Theorem 1.1 relies on the fact that knots with ends at infinity
and small constant η are globally δ-Reifenberg flat with small δ. For hypersur-
faces, this result is contained in [Sem91a, Main Theorem] while the correspond-
ing statement for submanifolds of higher codimensions can be found in [Bla08,
Theorem 4.13]. Using the topological disc theorem of E.R. Reifenberg [Rei60]
one can deduce that these knots are diffeomorphic to spheres. T. Toro pointed
out that δ-Reifenberg flat sets are tame using smooth orthogonal frames [Tor95,
Remark 4.2]. We will prove

Theorem 1.2. There is a constant ε = ε(n, k) > 0 such that for every k-di-
mensional knot Γ ⊂ Rn with ends at infinity that is globally δ-Reifenberg flat
with

δ < ε,

the set Γ ∪ {∞} considered as a submanifold of Rn ∪ {∞} ∼= Sn is an un-
knotted k-dimensional sphere. More precisely, there is a C1 isotopy H : Sn ×
[0, 1] → Sn such that H(·, 0) = idSn , H(en+1, t) = en+1 for all t ∈ [0, 1], and
H(PN (Rk), 1) = PN (Γ).

One way to prove that globally δ-Reifenberg flat knots with ends at infinity
are unknotted in the sense of the above theorems could be to adopt the technique
of smooth orthogonal frames used by Morrey and Toro [Mor66, Tor95] and make
it applicable to k-dimensional knots with ends at infinity. One would start with
a plane and, following Reifenberg, one would deform this plane successively
such that one gets new submanifolds isotopic to the plane which converge to
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the original submanifold with respect to Hausdorff distance. But actually the
convergence in Hausdorff measure does not guarantee that one remains in the
given knot class.

We want to present a different approach to prove Theorem 1.1, which is
inspired by an approximation technique, used by Semmes, to show the existence
of good parametrizations of so called chord-arc surfaces with small chord-arc
constants [Sem91b]. This technique can also be used to reprove the topological
disc theorem of Reifenberg.

For an arbitrary r > 0, we will construct approximating submanifolds Γr

that are equal to the graph of a C1 function inside of balls of radius r centered
on Γ. These submanifolds approximate Γ in the sense of Hausdorff distance
and we coin the name (r, Cδ)-approximation to refer to these properties. We
build these submanifolds in Section 3 by patching together the approximating
affine subspaces coming from the definition of global δ-Reifenberg flatness. One
starts with the affine subspaces inside of balls that are so far away from each
other that they do not overlap. It is a difficult and technical challenging task
to interatively fill the holes between the portions of these affine spaces to finally
get a complete C1 submanifold with the desired properties.

Section 4 is devoted to the proof of Theorem 1.2. First we show that on
the one hand Γ itself is a (r, Cδ)-approximation for r small, and on the other
hand that for r large the (r, Cδ)-approximations are globally graphs over a lin-
ear subspace Γ whose differential vanishes at ∞. Using an elaborate recursive
construction, we then show that all (r, Cδ)-approximations are C1 ambient iso-
topic. Together with the fact that the graph of a C1 function over a linear
subspace whose differential vanishes at infinity is unknotted, this shows that Γ
is unknotted as well.

We give a precise definition of globally δ-Reifenberg flat sets in Section 2 and
rigorously prove how to control the distance between the linear subspaces used
in this definition can be controled (cf. Lemma 2.5). The appendix contains a
stability result for Lipschitz graphs and we cite Lemma 4.3 form [Bla08] that
will help us to deal with the change of coordinate systems on Sn.

2 Preliminary Facts

Since we do not want to work with the image of Γ under the stereographic
projection, we give another characterization of a knot with ends at infinity. For
a linear subspace L ⊂ Rn we denote by L⊥ := {x ∈ Rn : 〈x, y〉 = 0,∀y ∈ L} the
orthogonal complement of L and let ΠL be the orthogonal projection of Rn onto
L.

If L ⊂ Rn is a k-dimensional linear subspace, a mapping f : L→ L⊥ is called
a function over L. In this case, we call the set graph(f) := {x+ f(x) : x ∈ L}
graph of the function f .

The next proposition tells us that a complete, connected, and embedded
C1 submanifold without boundary is a knot with ends at infinity if and only if
outside of a large ball around the origin it is the graph of a C1 function over a
k-dimensional linear subspace of Rn whose differential vanishes at ∞.

Proposition 2.1 ([Bla08, Proposition 4.2]). A set Γ ⊂ Rn is a k-dimensional
knot with ends at infinity if and only if the following two conditions are satisfied:
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• Γ is an embedded, complete, connected, k-dimensional C1 submanifold of
Rn that has no boundary.

• There is a k-dimensional linear subspace L ⊂ Rn, φ ∈ C1(L,L⊥), and
R <∞ such that

lim
x∈L
|x|→∞

Dφ(x) = 0

and
Γ−BR(0) = graph(φ)−BR(0).

The Hausdorff distance between two subset A,B ⊂ Rn is given by

dH(A,B) := max
{

sup
x∈A

(
inf
y∈B

‖x− y‖
)
, sup
x∈B

(
inf
y∈A

‖x− y‖
)}

.

Let us introduce the notion of a globally δ-Reifenberg flat set.

Definition 2.2 (Global Reifenberg flatness). A set A ⊂ Rn is called globally
δ-Reifenberg flat if and only if for every x ∈ A and every R > 0 there is a
k-dimensional linear subspace Lx,R ⊂ Rn such that

dH(A ∩BR(x), (Lx,R + x) ∩BR(x)) ≤ Rδ.

Next, we derive estimates for the distance between two linear subspaces
Lx1,R1 and Lx2,R2 in the above definition. For k-dimensional linear subspaces
L1, L2 ⊂ Rn we define the distance

d(L1, L2) := dH(L1 ∩B1(0), L2 ∩B1(0)).

Lemma 2.3. Let L ⊂ Rn be a linear subspace, A,S ⊂ Rn, and R > 0 be such
that

S ⊃ BR(0)

and
dH(A ∩ S,L ∩ S) < R.

Then,
dH(A ∩BR(0), L ∩BR(0)) ≤ 2dH(A ∩ S,L ∩ S).

One can see that this estimate is sharp taking n = 1, L = S = R, A = Z,
and R = 1.

Proof. Let x ∈ A ∩BR(0) ⊂ A ∩ S. There are ỹn ∈ L ∩ S with

lim
n→∞

‖x− ỹn‖ ≤ dH(A ∩ S,L ∩ S).

Since
lim

n→∞
‖ỹn‖ ≤ lim

n→∞
‖ỹn − x‖+ ‖x‖ < R+ dH(A ∩ S,L ∩ S),

there are yn ∈ L ∩BR(0) with

lim
n→∞

‖ỹn − yn‖ ≤ dH(A ∩ S,L ∩ S).
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Thus

d(x, L ∩BR(0)) ≤ lim
n→∞

‖x− yn‖ ≤ lim
n→∞

(‖x− ỹn‖+ ‖ỹn − yn‖)

≤ 2dH(A ∩ S,L ∩ S)

for all x ∈ A ∩BR(0).
For x ∈ L ∩BR(0) we first choose x̃ ∈ BR−dH(A∩S,L∩S)(0) with

‖x− x̃‖ ≤ dH(A ∩ S,L ∩ S).

Then there exist yn ∈ A ∩ S with

lim
n→∞

‖x̃− yn‖ ≤ dH(A ∩ S,L ∩ S)

and thus
lim

n→∞
‖yn‖ ≤ lim

n→∞
‖yn − x̃‖+ ‖x̃‖ < R.

Hence, yn ∈ A ∩BR(0) and

d(x,A ∩BR(0)) ≤ lim
n→∞

‖x− yn‖ ≤ lim
n→∞

(‖x− x̃‖+ ‖x̃− yn‖)

≤ 2dH(A ∩ S,L ∩ S).

Lemma 2.4. Let L ⊂ Rn be a linear subspace and ζ1, ζ2 ∈ Rn. Then

dH(L+ ζ1, L+ ζ2) = d(ζ1 − ζ2, L)

and for R > d(ζ1 − ζ2, L)

dH((L+ ζ1) ∩BR(ζ1), (L+ ζ2) ∩BR(ζ1)) ≤ 2d(ζ1 − ζ2, L)

Proof. The first estimate is obvious, and the second estimate follows from Lem-
ma 2.3 with S = Rn and A = ζ1 − ζ2.

Lemma 2.5. 1. For all k-dimensional globally δ-Reifenberg flat subsets A ⊂
Rn, R2 > R1 > 0, and ζ ∈ A we have

d(Lζ,R1 , Lζ,R2) ≤ 3δ
R2

R1
.

2. For all k-dimensional globally δ-Reifenberg flat subsets A ⊂ Rn, δ ∈ (0, 1
8 ],

R > 0, and ζ1, ζ2 ∈ A with |ζ1 − ζ2| ≤ R
3 we have

d(Lζ1,R, Lζ2,R) ≤ 24δ.

3. For all k-dimensional globally δ-Reifenberg flat subsets A ⊂ Rn, δ ∈ (0, 1
8 ],

R2 ≥ R1 > 0, and ζ1, ζ2 ∈ A we have

d(Lζ1,R1 , Lζ2,R2) ≤ 30
(
R2

R1
+
‖ζ2 − ζ1‖

R1

)
δ.
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Proof. Using Lemma 2.3, we obtain

dH((Lζ,R1 + ζ) ∩BR1(ζ), (Lζ,R2 + ζ) ∩BR1(ζ))
≤ dH((Lζ,R1 + ζ) ∩BR1(ζ), A ∩BR1(ζ))

+ dH(A ∩BR1(ζ), (Lζ,R2 + ζ) ∩BR1(ζ))
≤ δR1 + 2dH(A ∩BR2(ζ), (Lζ,R2 + ζ) ∩BR2(ζ)) ≤ δR1 + 2δR2.

Hence,

d(Lζ,R1 , Lζ,R2) ≤
(

1 + 2
R2

R1

)
δ ≤ 3

R2

R1
δ.

For the second part, we show that for every x ∈ Lζ1,R ∩BR
3
(0) we have

d(x, Lζ2,R ∩BR
3
(0)) ≤ 8δ.

Since
BδR(x+ ζ1) ⊂ B(1/3+δ)R(ζ1) ⊂ BR(ζ2),

and
d(x+ ζ1, A) ≤ dH((Lζ1,R + ζ1) ∩BR(ζ1), A ∩BR(ζ1)) ≤ δR

we get

d(x+ ζ1, A) = d(x+ ζ1, A ∩BδR(x+ ζ1)) = d(x+ ζ1, A ∩BR(ζ2)) ≤ δR.

Using Lemma 2.3 and Lemma 2.4, we obtain

d(x, Lζ2,R) ≤ d(x+ ζ1, (Lζ2,R + ζ1) ∩BR(ζ2)) ≤ d (x+ ζ1, A ∩BR(ζ2))
+ dH(A ∩B(ζ2), (Lζ2,R + ζ2) ∩BR(ζ2))
+ dH((Lζ2,R + ζ2) ∩BR(ζ2), (Lζ2,R + ζ1) ∩BR(ζ2))

≤ 2δR+ 2d(ζ1 − ζ2, Lζ2,R ∩BR(0))
= 2δR+ 2d(ζ1, (Lζ2,R + ζ2) ∩BR(ζ2))
≤ 2δR+ 2dH(A ∩BR(ζ2), (Lζ2,R + ζ1) ∩BR(ζ2)) ≤ 4δR.

Hence,

d(x, Lζ2,R ∩BR
3
(0)) ≤ 2d(x, Lζ2,R) ≤ 8δR ∀x ∈ Lζ1,R ∩BR

3
(0).

By symmetry and scaling

d(Lζ1,R, Lζ2,R) ≤ 24δ

which proves the second part of the lemma.
Concerning the third part, we use the first and second part to obtain

d(Lζ1,R1 , Lζ2,R2) ≤ d(Lζ1,R1 , Lζ1,R2+3|ζ1−ζ2|)
+ d(Lζ1,R2+3|ζ1−ζ2|, Lζ2,R2+3|ζ1−ζ2|)
+ d(Lζ2,R2+3|ζ1−ζ2|, Lζ2,R2)

≤ 3
R2 + 3|ζ1 − ζ2|

R1
δ + 24δ + 3

R2 + 3|ζ1 − ζ2|
R2

δ

≤ 30
(
R2

R1
+
|ζ1 − ζ2|
R1

)
δ.
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3 Approximation of Reifenberg Flat Knots

In this section we prove that globally δ-Reifenberg flat knots with ends at infinity
have an (r, Cδ)-approximation for all r > 0 if δ is small enough. By lip g we
denote the Lipschitz constant of a function g. For a linear operator A : V1 → V2

from one euclidean space into another, ‖A‖ will always denote the operator
norm, i.e.

‖A‖ := sup
x∈V1−0

‖Ax‖
‖x‖

.

Definition 3.1 ((r, µ)-approximation). Let Γ ⊂ Rn be a k-dimensional knot
with ends at infinity and r, µ ∈ (0,∞). We call M ⊂ Rn an (r, µ)-approximation
of Γ ifM is a complete and embedded C1 submanifold that satisfies the following
three conditions:

(M1) There is an R ∈ (0,∞) such that

M −BR(0) = Γ−BR(0).

(M2)
dH(Γ,M) ≤ µr.

(M3) For all y ∈ Γ there is a function gy ∈ C1(L,L⊥) over a k-dimensional
linear subspace L ⊂ Rn such that

lip gy ≤ µ

and
M ∩Br(y) = (graph gy) ∩Br(y).

Now we can state

Theorem 3.2. Let Γ ⊂ Rn be a knot with ends at infinity which is globally δ-
Reifenberg flat. Then there are constants ε = ε(n, k) > 0 and C = C(n, k) <∞
such that there is a k-dimensional (r, Cδ)-approximation Γr of Γ if δ < ε.

For x ∈ R, let dxe denote the smallest natural number l with l ≥ x.

Lemma 3.3. For every set A ⊂ Rn, ρ1 > ρ2 > 0 there are subsets Ji ⊂ A,
i = 1, . . . , Q(n, ρ1/ρ2), Q(n, σ) := (d2σ

√
n e+ 1)n, such that

A ⊂
Q(n,ρ1/ρ2)⋃

i=1

⋃
z∈Ji

Bρ2(z)

and for every i ∈ {1, . . . , Q(n, ρ1/ρ2)}

‖z1 − z2‖ > ρ1 ∀z1, z2 ∈ Ji, z1 6= z2.

Proof. Let

J̃ :=
{
z ∈ Zn :

(
ρ2

2
√
n
z + [0, ρ2/(2

√
n)]n

)
∩A 6= ∅

}
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and let f : J̃ → Rn be such that

f(z) ∈
(

ρ2

2
√
n
z + [0, ρ2/(2

√
n)]n

)
∩A ∀z ∈ J̃ .

Now let

τ :
{

1, . . . ,
(⌈

2
√
n
ρ1

ρ2

⌉
+ 1
)n}

→
{

0, . . . ,
⌈
2
√
n
ρ1

ρ2

⌉}n

be a bijection,

J̃i := J̃ ∩
((⌈

2
√
n
ρ1

ρ2

⌉
+ 1
)

Zn + τ(i)
)

and
Ji = f(J̃i).

Then

A ⊂
⋃
x∈J̃

(
ρ2

2
√
n
x+ [0, ρ2/(2

√
n)]n

)
⊂
⋃
x∈J̃

Bρ2(f(x)) =
⋃

i∈{0,...,Q(n,ρ1/ρ2)}
z∈Ji

Bρ2(z)

and for z1 6= z2 ∈ Ji we have

‖z1 − z2‖ ≥
ρ2

2
√
n

(⌈
2
√
n
ρ1

ρ2

⌉
+ 1− 1

)
≥ ρ1.

We apply Lemma 3.3 with A = Γ, ρ1 = 14r, and ρ2 = r/2 to get sets
J0 = ∅, J1, . . . JQ(n), J :=

⋃Q(n)
i=0 Ji such that

Γ ⊂
⋃
z∈J

Br/2(z) (3.1)

and for every i ∈ {0, Q(n)}

‖z1 − z2‖ > 14r ∀z1 6= z2 ∈ Ji. (3.2)

Now we will recursively construct sets Γr by patching together the affine sub-
spaces Lz,5r, z ∈ J , we get from Definition 2.2.

Proposition 3.4. There are constants ε = ε(n, k) > 0 and C = C(n, k) < ∞
such that for every k-dimensional globally δ-Reifenberg flat knot Γ ⊂ Rn with
ends at infinity, δ ≤ ε and every r > 0 there are a closed sets Γi

r, i = 0, . . . , Q(n),
Γi

r ⊂ Γi+1
r with the following properties:

I There is an R > 0 such that

Γ0
r = Γ−BR(0).

II For all z ∈ Γi
r we have

d(z,Γ) ≤ Cδr.
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III For all y ∈ Γ there is a function gi,y ∈ C1(Ly,5r, L
⊥
y,5r) such that

Γi
r ∩B5r(y) ⊂ graph(gi,y),

lip gi,y ≤ Cδr,

and
dH(graph(g) ∩B5r(y), (Ly.5r + y) ∩B5r(y)) ≤ Cδr.

Furthermore,

Γi
r ∩B2r(z) = graph(gi,z) ∩B2r(z) ∀z ∈

i⋃
j=0

Jj .

Proof. From Lemma 2.1, we get a k-dimensional linear subspace L ⊂ Rn, a
function φ ∈ C1(L,L⊥), and an R1 > 0 such that

‖Dφ‖L∞(Rn−BR1 (0)) ≤ δ

and
Γ−BR1(0) = (graphφ)−BR1(0).

For all y ∈ Γ−BR(0), R := R1 + 5r, this guarantees

dH(Γ ∩B5r(y), (L+ y) ∩B5r(y)) ≤ 10δr.

Thus,

d(L,Ly,5r) ≤
1
5r

(
dH((L+ y) ∩B5r(y),Γ ∩B5r(y))

+ dH(Γ ∩B5r(y), (Ly,5r + y) ∩B5r(y))
)

≤ 11
5
δ

and hence by Lemma A.2 there is a g0,y ∈ C1(Ly,5r, Ly,5r) such that

graph gy,5r = graphφ,
lip g ≤ Cδ,

and
dH(graph g0,y ∩B5r(y), (Ly,5r + y) ∩B5r(0)) ≤ Cδr

if δ is small. Setting Γ0
r := Γ−BR(0),

g0,y : Ly,5r → L⊥y,5r

x 7→ ΠL⊥y,5r
(y),

for all y ∈ BR+5r(0), and keeping in mind that J0 = ∅, one sees that Γ0
r and the

functions g0,y possess all the properties stated in III.
For i = 0, . . . , Q− 1 let Γi

r and gi,y, y ∈ Γ, be already constructed with the
three properties stated in the lemma. We define

Γi+1
r := Γi

r ∪

( ⋃
z∈Ji+1

(
graph(gi,z) ∩B2r(z)

))

9



and observe that this is a closed set. The set Γi+1
r satisfies Property II since

d(y,Γ) ≤ Cδr, ∀y ∈ Γi+1
r −

 ⋃
z∈Ji+1

B2r(z)

 ⊂ Γi
r

and for all y ∈ Γi+1
r ∩B2r(z), z ∈ Ji+1, we have

d(y,Γ) ≤ dH(graph(gz) ∩B5r(z), (Lz,5r + z) ∩B5r(z))
+ dH((Lz,5r + z) ∩B5r(z),Γ ∩B5r(z))

≤ Cδr.

To show that Γi+1
r has the Property III consider y ∈ Γ. In the case that

B5r(y) ∩
( ⋃

z∈Ji+1

B2r(z)
)

= ∅

the set Γi+1
r satisfies III since Γi

r does. So let there be a z ∈ Ji+1 such that

B2r(z) ∩B5r(y) 6= ∅. (3.3)

Since for all z̃ ∈ Ji+1 − {z} we have ‖z̃ − z‖ > 14r, we get

Γi+1
r ∩B5r(y) =(

Γi
r ∩B5r(y)

)
∪
(

graph(gi,z) ∩B2r(z) ∩B5r(y)
)
.

(3.4)

Let us set
Y := Γi

r ∩B5r(y),

Z :=
(

Γi+1
r ∩B5r(z)

)
∩B5r(y).

and note that
Γi+1

r ∩B5r(y) ⊂ Y ∪ Z.

So it is enough to show that Y ∪ Z is contained in the graph of a C1 function
gi+1,y over Ly,5r with the properties we desire. From the way we constructed
Γi+1

r we know that
Z ⊂ graph(gi,z)

where gi,z ∈ C1(Lz,5r, L
⊥
z,5r) and we know

Y ⊂ graph(gi,y)

with gi,y ∈ C1(Ly,5r, L
⊥
y,5r).

Lemma 2.4 and Lemma A.2 tell us that there is a g̃i,z ∈ C1(Ly,5r, L
⊥
y,5r)

with
graph(gi,z) = graph(g̃i,z)

and
lip g̃i,y ≤ Cδr,
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if δ is small enough. From dH(graph gi,y ∩ B5r(y), (Ly,5r + y) ∩ B5r(y)) ≤
Cδr, dH(graph g̃i,z ∩ B5r(z), (Lz,5r + z) ∩ B5r(z)) ≤ Cδr, z ∈ A ∩ Br(y), and
dH(A ∩B5r(y), (Ly,5r + y) ∩B5r(y)) ≤ Cδr we derive

‖gi,y −ΠL⊥y,5r
(y)‖L∞(B5r(ΠLy,5r

(y))) ≤ Cδr (3.5)

and
‖g̃i,z −ΠL⊥y,5r

(y)‖L∞(B5r(ΠLy,5r
(y))) ≤ Cδr (3.6)

if δ is suffinciently small. Thus,

Y − Z ⊂ graph(gi,y)−B5r(z) ⊂ graph
(
gi,y|Ly,5r−B5r−Cδr(ΠLy,5r

(z))

)
⊂ graph

(
gi,y|Ly,5r−B4r(ΠLy,5r

(z))

) (3.7)

and

Z − Y ⊂ graph(g̃i,z) ∩B2r(z) ⊂ graph
(
g̃i,z|Ly,5r∩B2R(ΠLy,5r

(z))

)
⊂ graph

(
g̃i,z|Ly,5r∩B3r(ΠLy,5r

(z))

) (3.8)

if δ is small enough. Now, let φ ∈ C∞([0,∞), [0, 1]) be a function with

φ(x) =

{
0 if |x| ≥ 4r
1 if |x| ≤ 3r

and
‖∇φ‖ ≤ 2

r
.

We set

gi+1,y := gi,y + φ(‖ · −ΠLy,r (z)‖)(g̃i,z − gi,y) ∈ C1(Ly,5r, L
⊥
y,5r).

Using (3.5) and (3.6), we get ‖Dgi+1,y‖ ≤ Cδ and

dH(graph gi+1,y ∩B5r(y), (Ly,5r + y) ∩B5r(y)) ≤ Cδ.

Equation (3.7), (3.8), and the fact that Y ∩Z ⊂ graph(gi,y)∩graph(g̃i,z) finally
show

Y ∪ Z ⊂ graph(gi+1,y).

Proof of Theorem 3.2. Let δ be so small that we can apply Proposition 3.4 and
let Γi

r, i = 0, . . . , Q = Q(n), be the closed sets from Proposition 3.4. We set

Γr := ΓQ
r

and get from Property II in Proposition 3.4 that

Γr ⊂
⋃
y∈Γ

B r
2
(y) (3.9)
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if we assume that Cδ ≤ 1
2 . Let x ∈ Γr. There is a y ∈ Γ with

‖x− y‖ < r

2
.

From (3.1) we obtain a z ∈ J with

‖y − z‖ < r

2

and hence
‖x− z‖ < r.

We know from III in Proposition 3.4 that

Γr ∩B2r(z) = graph(gQ,z) ∩B2r(z).

This implies
Γr ∩Br(x) = graph(gQ,z) ∩Br(x)

and thus Γr is an embedded C1 manifold without boundary. Since Γr is closed
in Rn, it is a complete manifold.

With Lemma 2.4 and Lemma A.2, we get for δ sufficiently small

Γr ∩Br(x) = graph(gx) ∩Br(x)

where gx ∈ C1(Lx,5r, L
⊥
x,5r) satisfies

lip gx ≤ Cδ

and
dH(graph gx ∩Br(x), (Lx,r + x) ∩Br(r)) ≤ Cδr.

This proves (M3). Furthermore,

d(x,Γr) ≤ dH((Lx,r + x) ∩Br(x)),Γr ∩Br(x))
≤ Cδr.

Together with Property II in Proposition 3.4, this implies (M2).

We end this section proving that (r, µ)-approximations of connected sets are
pathwise connected.

Lemma 3.5. Let A ⊂ Rn be a connected set and Ar be a (r, µ)-approximation
of A with µ ∈ (0, 1

2 ). Then Ar is pathwise connected.

Proof. We define an equivalence relation ∼conn on A by setting x ∼conn y if and
only if for all points

zx ∈ Ar ∩B 1
2 r(x), zy ∈ Ar ∩B 1

2 r(y)

there is a continuous curve on Ar joining the points zx and zy. This relation is
obviously symmetric. Since for every point x ∈ Γ one knows that Ar∩B 1

2 r(x) 6=
∅, the relation is transitive as well.
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To show that ∼conn is reflexive, let x ∈ A, z1, z2 ∈ Ar ∩B 1
2 r

(x). We have to
show that there exists a curve on Ar joining z1 and z2. From (M3) we obtain a
function gx ∈ C1(L,L⊥) over a k-dimensional linear subspace L such that

lip gx ≤ µ

dH(graph gx ∩Br(x), (Lx,R + x) ∩Br(x)) ≤ µ

and
Ar ∩Br(x) = graph(g) ∩Br(x).

Hence,

‖gx(·)−Π⊥
Lx,R

(x)‖L∞(L∩B 1
2 r

(ΠLx,R
(x))) ≤ µr <

1
2
r.

We define a curve c ∈ C0([0, 1],Rn) with c ([0, 1]) ∈ graph(g) by

c(τ) := ΠLx,r (z1 + τ · (z2 − z1))

+ g
(
ΠLx,r

(z1 + τ · (z2 − z1))
)
, ∀τ ∈ [0, 1]

and get
c([0, 1]) ⊂ graph(g) ∩Br(x) ⊂ Ar.

Hence ∼conn is reflexive.
Let x ∈ A. Since

dH(A,Ar) ≤ µr,

we know that there is a point z ∈ Ar ∩B 1
2 r(x). Then for some ε0 > 0

z ∈ B 1
2 r(y) ∀y ∈ Bε0(x).

Thus, for y ∈ A ∩ Bε0(x) and points zx ∈ B 1
2 r(x), zy ∈ B 1

2 r(y) the reflexivity
of ∼conn gives us a continuous curve on Γα

δ joining zx and z, and a continuous
curve on Γα

t joining zy and z. But this implies that a continuous curve on Γα
t

joining zx and zy exists and hence

y ∼conn x, ∀y ∈ Bε0(x).

This proves that every equivalence class of ∼conn is open in Γ. For x ∈ A we
denote by [x]conn the equivalence class containing x. Let x0 ∈ Γ. Then [x0]conn

is an open set and since

[x0]conn = A−

 ⋃
y/∈[x0]conn

[y]conn


the set [x0]conn is closed. Since A is a connected set we thus get [x0]conn = A
and hence

x ∼conn y, ∀x, y ∈ A.
Now let x1, x2 ∈ Ar. Then there are points y1, y2 ∈ A such that

xi ∈ Ar ∩B r
2
(yi)

and hence there is a continuous curve on Ar joining x1 and x2. This proves that
Ar is pathwise connected.
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4 Reifenberg Flat Knots are Unknotted

This section is devoted to the proof of Theorem 1.2. Using that Γ is of class C1

one immediately gets using Proposition 2.1

Lemma 4.1. Let Γ be a k-dimensional knot with ends at infinity and µ > 0.
Then there is an r−(Γ, µ) > 0 such that Γ is an (r, µ)-approximation of itself.

On the other hand, if r is big enough Γr is equal to the graph of a C1 function
over a k-dimensional linear subspace whose differential vanishes at infinity.

Lemma 4.2. Let Γ be an k-dimensional knot with ends at infinity that is δ-
Reifenberg flat with δ ≤ 1

8 . There is a constant r+ = r+(Γ) < ∞ such that
for 0 < r ≤ r+ and every (r, µ)-approximation Γr of Γ with µ < 1

8 there is a
function f ∈ C1(L,L⊥) over a k-dimensional linear subspaces L ⊂ R with

Γ = graph f

and
Df(x) → 0 for |x| → ∞.

Proof. Since Γ is a knot with ends at infinity, we know from Proposition 2.1
that there is a function φ ∈ C1(L,L⊥) over some k-dimensional linear subspace
L and an R1 <∞ such that

Γ−BR1(0) = graphφ−BR1(0)

and

lim
y∈L

‖y‖→∞

Dφ(z) = 0.

For x, y ∈ L, r <∞, we estimate

‖φ(x)− φ(y)‖ ≤
∫ 1

0

‖Dφ(x+ t(y − x))‖‖x− y‖dt

≤
∫ 1

0

χB√r(0)(x+ t(y − x))‖Dφ‖L∞(L)‖x− y‖

+ χRn−B√r(0)(x+ t(y − x))‖Dφ‖L∞(L−B√r(0))dt

≤ 2
√
r‖Dφ‖L∞(L) + ‖x− y‖‖Dφ‖L∞(L−B√r(0)).

(4.1)

and thus

‖φ(·)− φ(x)‖L∞(Br(x)) ≤ 2
√
r‖Dφ‖L∞(L) + r‖Dφ‖L∞(L−B√r(0)).

Furthermore, for r > 0 and x ∈ graphφ

sup
y∈graph φ∩Br(x)

d(y, (L+ x) ∩Br(x)) ≤ ‖φ(·)− φ(ΠLx)‖L∞(Br(ΠLx))
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and if r̃ := r − ‖φ(·)− φ(ΠLx)‖L∞(L∩Br(ΠLx)) > 0 we have

sup
y∈(L+x)∩Br(x)

d(y, graph g ∩Br(x))

≤ sup
y∈(L+x)∩Br̃(x)

d(y, graph g ∩Br(x))

+ ‖φ(·)− φ(ΠLx)‖L∞(L∩Br(ΠLx))

≤ 2‖φ(·)− φ(ΠLx)‖L∞(L∩Br(ΠLx)).

Together with (4.1) this leads to

sup
x∈Γ

dH(Γ ∩Br(x), L ∩Br(x))
r

≤ 2 sup
x∈Γ

‖φ(·)− φ(ΠLx)‖L∞(L∩Br(ΠLx))

r

≤ 2r−
1
2 ‖Dφ‖L∞(L) + ‖Dφ‖L∞(L−B√r(0))

r→∞−−−→ 0.

Hence, we obtain

d(L,Lx,r) =
dH((L+ x) ∩Br(x), (Lx,r + x) ∩Br(x))

r

≤ dH((L+ x) ∩Br(x),Γ ∩Br(x))
r

+
dH(Γ ∩Br(x),Γr ∩Br(x))

r

+
dH(Γr ∩Br(x), Lx,r ∩Br(x))

r

≤ dH(L ∩Br(x),Γ ∩Br(x))
r

+ 3µ→ 3µ <
3
8

uniformly in x. Let us choose r+(Γ) ≥ 2R1 such that

sup
x∈Γ

d(L,Lx.r) <
3
8

∀r ≥ 7
8
r+(Γ) (4.2)

and assume that r ≥ r+(Γ). Then by Lemma A.2 and using d(L,Lx,r)(1+µ) < 1
we get that for every x ∈ Γ there is a g̃x ∈ C1(L,L⊥) such that

Γr ∩Br(x̃) = graph g̃x ∩Br(x̃). (4.3)

Let x 6= y ∈ Rn ∩ Γr and assume that ΠL(x) = ΠL(y). Then there is an
x̃ ∈ Γ such that ‖x − x̃‖ ≤ r/8. By (4.3), we obtain ‖y − x̃‖ ≥ r and hence
‖x− y‖ ≥ 7/8r. Using (4.2), we obtain for all ε > 0,

‖ΠL(x− y)‖ ≤ ‖ΠL⊥
x,‖x−y‖−ε

(x− y)‖+ ‖ΠL(x− y)−ΠL⊥
x,‖x−y‖−ε

(x− y)‖

≤ µ(‖x− y‖+ ε) +
6
8
‖x− y‖ →

(
µ+

6
8

)
‖x− y‖ ≤ 7

8
‖x− y‖.

hence
‖ΠL(x− y)‖ ≥ 1

8
‖x− y‖.
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Thus ΠL|ΓR
is injective. Hence there is a function f such that

Γr ⊂ graph f

Since Γr is complete and has no boundary, we get

Γr = graph f

and by (4.3) f ∈ C1(L,L⊥). Furthermore,

lim
|x|→∞

Df(x) = lim
|x|→∞

Dφ(x) = 0.

Let e1, . . . , en+1 be the standard basis of Rn+1 and let us set

PN : Rn → Sn − {en+1}

x 7→ 4
|x|2 + 4

· (x,−2) + en+1

and

PS : Rn → Sn − {−en+1}

x 7→ 4
|x|2 + 4

· (x, 2)− en+1.

Using Lemma A.3, we now prove that the graph of a C1 function whose
differential vanishes at ∞ is unknotted. For a function ψ : Rn× [0, 1] we denote
by Dxψ(x, t) ∈ L(Rn,Rn+1) the derivative with respect to the first n variables
at (x, t) and with Dtψ(x, t) ∈ L(R,Rn+1) the derivative with respect to the last
variable at (x, t).

Lemma 4.3. The graph of a C1 function f : L → L⊥ over a k-dimensional
linear subspace L ⊂ Rn with

lim
‖x‖→∞

x∈L

Df(x) = 0

is unknotted in the following sense: There is a C1 isotopy H : Sn × [0, 1] → Sn

such that
H(·, 0) = idSn , (4.4)

H(en+1, t) = en+1 ∀t ∈ [0, 1], (4.5)

and
(PN )−1 (H (PN (L), 1)) = graph(f). (4.6)

Proof. Using a translation, we can reduce the proof to the case f(0) = 0 and
hence

‖f(ζ)‖ ≤ ‖Df‖L∞(L)‖ζ‖.
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Furthermore, we can assume that ‖Df‖L∞(L) > 0 since otherwise the statement
of the lemma trivially holds. Recapitulate that

lim
‖x‖→∞

x∈L

Df(x) = 0

implies

lim
ζ∈L

ζ→∞

‖f(ζ)‖
‖ζ‖

→ 0.

We pick φ ∈ C∞(R+, [0, 1]) , φ(t) = 1 for t ∈ [0, 1], φ(x) = 0 for all t ∈ [3,∞),
‖φ′‖L∞ < 1, and set

ψ : Rn × [0, 1] → Rn

ψ(x, t) := x+ tφ

(
c‖ΠL⊥x‖

(‖ΠLx‖2 + 1)
1
4 (‖f(ΠLx)‖2 + 1)

1
4

)
f(ΠLx)

for c := ‖Df‖L∞/2. Furthermore,

H : Sn × [0, 1] → Sn

H(x, t) :=

{
en+1 if x = en+1

(PN )
(
ψ
(
P−1

N x, t
))

else.

For x ∈ Rn with ‖ΠL⊥(x)‖ > 3
c

(
‖ΠLx‖2 + 1

) 1
4
(
‖f(ΠLx)‖2 + 1

) 1
4 we know that

Dxψ(x, t) = idRn

and for ‖ΠL⊥(x)‖ ≤ 3
c

(
‖x‖2 + 1

) 1
4
(
‖f(ΠLx)‖2 + 1

) 1
4 one calculate

(Dxψ(x, t)− idRn) (z)

= tcφ
′

(
c‖ΠL⊥x‖

(‖ΠLx‖2 + 1)
1
4 (‖f(ΠLx)‖2 + 1)

1
4

)( 〈
Π

L⊥x

‖Π
L⊥x‖ , z

〉
(‖ΠLx‖2 + 1)

1
4 (‖f(ΠLx)‖2 + 1)

1
4

− ‖ΠL⊥x‖
2 (‖ΠLx‖2 + 1)

5
4 (‖f(ΠLx)‖2 + 1)

5
4

(
〈ΠLx,ΠLz〉

(
‖f(ΠLx)‖2 + 1

)
+
(
‖ΠLx‖2 + 1

)
〈f(ΠLx), DΠLzf(ΠLx)〉

))
f(ΠLx)

+ tφ

(
c‖ΠL⊥x‖

(‖ΠLx‖2 + 1)
1
4 (‖f(ΠLx)‖2 + 1)

1
4

)
DΠLzf(ΠLx)
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and hence

‖Dxψ(x, t)− idRn‖

≤ c‖f(ΠLx)‖
(‖ΠLx‖2 + 1)

1
4 (‖f(ΠLx)‖2 + 1)

1
4

+
3
(
‖ΠLx‖2 + 1

) 1
4
(
‖f(ΠLx)‖2 + 1

) 1
4

2 (‖ΠLx‖2 + 1)
5
4 (‖f(ΠLx)‖2 + 1)

5
4

(
‖ΠLx‖

(
‖f(ΠLx)‖2 + 1

)
‖f(ΠLx)‖

+
(
‖ΠLx‖2 + 1

)
‖f(ΠLx)‖2‖DΠLzf(ΠLx)‖

)
+ ‖Df(ΠLx)‖

≤ c
(‖f(ΠLx)‖+ 1)

1
4

(‖ΠLx‖2 + 1)
1
4

+
3
(
‖f(ΠLx)‖2 + 1

) 1
2

2 (‖ΠLx‖2 + 1)
1
2

+ 2‖Df(ΠLx)‖ → 0

if ‖ΠLx‖ → 0. Since ‖ΠL⊥x‖ ≤ 3
c

(
‖ΠLx‖2 + 1

) 1
4
(
‖f(ΠLx)‖2 + 1

) 1
4 implies

‖x‖ ≤ ‖ΠLx‖+
(
‖ΠLx‖2 + 1

) 1
2 , we conclude that

sup
t∈[0,1]

‖Dxψ(x, t)− idRn‖ → 0 as ‖x‖ → ∞

Let us show that ψ(·, t) is a diffeomorphism for all t. For z ∈ Rn we calculate

ΠL ((Dzψ(x, t)) (z)) = ΠLz,

and for z ∈ L⊥ we obtain

‖ΠL⊥ (Dxψ(x, t)(z))− z‖ ≤ c
‖f(ΠLx)‖

(‖ΠLx‖2 + 1)
1
4 (‖f(ΠLx)‖2 + 1)

1
4
‖z‖

< c

(
‖Df‖L∞(L)‖ΠLx‖

) 1
2 ‖f(ΠLx)‖

1
2

(‖ΠLx‖2 + 1)
1
4 (‖f(ΠLx)‖2 + 1)

1
4
‖z‖

≤ 1
2
‖z‖

since c = 1
2‖Df‖L∞(L). Hence, ker(Dxψ(x, t)) = {0}.

For x, y ∈ Rn with ψ(x, t) = ψ(y, t) one gets

ΠLx = ΠLy

and

0 = ‖ΠL⊥(ψ(x, t)− ψ(y, t))‖ =
∥∥∥∥∫ 1

0

ΠL⊥ (Dxψ(y + s(x− y), t)(x− y)) ds
∥∥∥∥

≥ (1− ‖ΠL(Dxψ(z, t))− idRn‖L∞) ‖x− y‖ ≥ 1
2
‖x− y‖

finally implies x = y. So ψ(·.t) is injective and hence a diffeomorphism.
Obviously H satisfies (4.4), (4.5), and (4.6), but we have to show that H is in

fact a C1 isotopy. As ψ(·, t) is a diffeomorphism, we get that H|(Sn−{en+1})×[0,1]

is a C1 isotopy and that the functions H(·, t) are injective for all t ∈ [0, 1]. So
we only have to show that H is C1 in the neighborhood of en+1× [0, 1] and that
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the differential of the function H(·, t) at the point en+1 has full rank. Since PS

is a parameterization of a neighborhood of en+1 in Sn and PS(0) = en+1, it is
enough to prove that the function

H̃ : Rn × [0, 1] → Rn

H̃(t, x) = P−1
S (hH (PS(x), t))

is C1 and that the differential of the function H̃(·, t) in the point 0 has full rank.
We will use Lemma A.3 to show this.

We see that

H̃(x, t) =
ψ
(

x
4|x|2 , t

)
4
∣∣∣ψ ( x

4|x|2 , t
)∣∣∣2 ∀(x, t) ∈

(
Rk − {0}

)
× [0, 1],

since

(PS)−1 ◦ (PN ) (x) = (PN )−1 ◦ (PS) (x) =
x

4 |x|2
, ∀x ∈ Rn − {0} .

We estimate

max
t∈[0,1]

‖Dtψ(x, t)‖
|x|2

≤ max
t∈[0,1]

|f(ΠL(x))|
|x|2

≤ max
t∈[0,1]

|f(0)|+ ‖Df‖L∞ · |x|
|x|2

|x|→∞−−−−→ 0.

Since H̃(0, t) = 0 for all t ∈ [0, 1], Lemma A.3 tells us that H̃ is a C1 function
on Rk × [0, 1] and DxH̃(0, t) = Ik for all t ∈ [0, 1]. So the differential of the
function H̃(·, t) in the point 0 has full rank. As mentioned above, this implies
that H is a C1 isotopy.

Now, we show that two (r, µ)-approximations are ambiently isotopic in Γ ∩
{∞} ∼= Sn if µ is small enough.

Proposition 4.4. There is an ε0 = ε0(n, k) > 0 such that the following holds:
Let M̃1 and M̃2 be (r, µ)-approximations of a k-dimensional knot with ends

at infinity that is globally δ-Reifenberg flat with δ, µ ≤ ε̃0.Then there is a C1

isotopy
H : Rn × [0, 1] → Rn

such that
H(·, 0) = idRn ,

H(M1, 1) = M2,

and
H(p, t) = p ∀(p, t) ∈ (M1 ∩M2)× [0, 1].

Furthermore, spt (H − idRn) is compact.

The next lemma is the basic building block for the proof of Proposition 4.4.

19



Lemma 4.5. There are constants ε̃ = ε̃(n, k) > 0 and C̃ = C̃(n, k) such that
the following holds:

Let Γ be k-dimensional knot that is globally δ-Reifenberg flat, M̃1, M̃2 be
(r, µ)-approximations of Γ, δ, µ ≤ ε̃ and J ⊂ Γ be such that

‖z1 − z2‖ ≥ 5r ∀z1 6= z2 ∈ J.

Then there is a C1 isotopy H ∈ C1(Rn × [0, 1],Rn) with H(·, 0) = IdRn ,

H(x, t) = x ∀x ∈
(
M̃1 ∩ M̃2

)
∪

(
Rn −

⋃
z∈J

B 2
3 r(z)

)
, (4.7)

H(M̃1, 1) ∩

(⋃
z∈J

B 1
12 r(z)

)
= M̃2 ∩

(⋃
z∈J

B 1
12 r(z)

)
, (4.8)

and H(M̃1, 1) is an (r, C(µ+ δ)-approximation of Γ.

Proof. Since M̃i is a (r, µ)-approximation of Γ, for every z ∈ A there is a g(i)
z ∈

C1(Lz,r, L
⊥
z,r) with

lip g(i)
z ≤ µ,

M̃i ∩Br(z) = graph(g(i)
z ) ∩Br(z), (4.9)

and
dH(graph g(i)

z ∩Br(z), (Lz,r + z) ∩Br(z)) ≤ µ.

One sees that

‖g(i)
z (·)−ΠLz,r (z)‖L∞(Br(ΠLz,r (z))) ≤ 2µr ≤ 1

6
r (4.10)

for small µ. Let θ ∈ C∞(Rk, [0, 1]) with

θ(x) =

{
0 for |x| ≥ 1

3r

1 for |x| ≤ 1
6r

and
‖Dθ‖L∞ ≤ C

r
.

We define
H : Rn × [0, 1] → Rn

by

H(x, t) := x+
∑
z∈J

(
t · θ(‖ΠLz,r (x− z)‖)θ(‖ΠL⊥z,r

(x− z)‖)

(
g(2)

z (ΠLz,r (x))− g(1)
z (ΠLz,r (x))

))

Now, H(·, 0) = idRn , H ∈ C1(Rn × [0, 1],Rn),

‖H(x, t)− x‖ ≤ Cµr <
1
6
r
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and
‖DxH(·, t)(x)− idRn‖ ≤ Cµ < 1

if µ is small enough. The last estimate implies that H(·, t) is a diffeomorphism
and one gets

H(Br(z), t) = Br(z) ∀z ∈ J

and
H(M̃, 1) ∩Br(z) = graphhz ∩Br(z)

where hz ∈ C1(Lr,z, L
⊥
r,z) is defined by

hz(y) := g(1)
z (y) + θ(‖y −ΠLr,z (z)‖) · (g(2)

z (y)− g(1)
z (y)).

Furthermore,
H(x, t) = x ∀x ∈ Rn −

⋃
z∈J

B 2r
3

(z)

To prove Equation (4.8), let z ∈ J . Then

H(M̃1, 1) ∩B 1
12 r(z) = H(M̃ ∩Br(z), 1) ∩B 1

12 r(z)

= graphhz ∩B 1
12 r(z)

= graph g(2)
z ∩B 1

12 r(z) = M̃2 ∩B 1
12 r(z).

Finally, we have to show that H(M̃1, 1) is in fact a (δ, C(µ+ δ))-approxima-
tion of Γ. Properties (M1) and (M2) follow from the definition of H and from
the estimates for the functions g(i)

r,z. So we only have to show that for every
x ∈ Γ, there is a g̃x ∈ C1(Lx,r, L

⊥
x,r) such that

lip g̃x ≤ Cµ,

dH(graph gx ∩Br(x), (Lx,r + x) ∩Br(x)) ≤ C(µ+ δ),

and
H(M̃1, 1) ∩Br(x) = graph gx ∩Br(x).

If Br(x) ∩
(⋃

z∈J Br(z)
)

= ∅, this follows from

H(M̃1, 1) ∩Br(x) = M̃1 ∩Br(x)

and the fact that M̃1 is a (δ, µ)-approximation of Γ. Let us assume that there
is a z ∈ J such that Br(x) ∩Br(z) 6= ∅. We set

Z := H(M̃1, 1) ∩Br(z)

and

X : =
(
H(M̃1, 1) ∩Br(x)

)
−B r

3
(z)

=
(
M̃1 ∩Br(x)

)
−B r

3
(z).

We know that

Z = graph(hz) ∩Br(z)
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with hz ∈ C1(Lz,r, L
⊥
z,r). For δ and µ small enough, we get using Lemma 2.4

and Lemma A.2 that there is a h̃z ∈ C1(Lx,r, Lx,r) with

graphhz = graph h̃z

and
lip h̃Z ≤ C(µ+ δ).

Furthermore, we have

X =
(
graph g(1)

x ∩Br(x)
)
−B 2r

3
(z).

Thus
Z −X ⊂ graph(h̃z) ∩B 2r

3
(z) ⊂ graph(h̃z|B 2r

3
(ΠLz,r (z)))

and

X − Z ⊂ graph(g̃x)−Br(z) ⊂ graph(g̃x|L−Br−Cµ(ΠLr,z(z)))

⊂ graph(g̃x|L−B 8
9 r

(ΠLr,z(z)))

if µ is small enough. Let now ψ ∈ C∞(R, [0, 1]) with

ψ(ξ) =

{
1 if ξ ≤ 7

9r,

0 if ξ ≥ 8
9r,

and
‖∇ψ‖L∞ ≤ C

r
.

We set

g : Lx,r → Lx,r

ξ 7→ g̃x(ξ) + ψ(‖ξ −ΠLx,r (z)‖) · (g̃0(ξ)− g̃x(ξ)) .

This is a well-defined C1 function with Lipschitz constant smaller or equal to
C(µ+ δ),

∣∣g(ΠLz,r (z))
∣∣ ≤ C(µ+ δ)r and

H(M̃1, 1) ∩Br(x) = (graph(g) ∩Br(x)) .

Hence, H(M̃1, 1) satisfies (M3).

Proof of Lemma 4.4. Let ε̃ and C̃ be the constants from Lemma 4.4 and let

ε :=
ε̃

1 + (2C̃)Q(n)
.

Since the Mi are (r, µ)-approximations of A there is an R > 0 such that

M̃i −BR(0) = Γ−BR(0).

Applying Lemma 3.3 with A = Γ − BR(0), ρ1 = 4r, and ρ2 = r
24 we get

J1, . . . JQ(n) ⊂ Γ−BR(0) such that

Γ−BR+r(0) ⊂
⋃

z∈Ji
i=1,...,Q(n)

B 1
24 r(z)
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‖z1 − z2‖ ≥ 5r ∀z1 6= z2 ∈ Ji.

Using Proposition 4.4 with M̃1 = Ni, M̃2 := M2, µ̃ = (2C)iε starting with
N0 = Γ, we recursively get (r, (2C)iε)-approximations Ni, i = 0, . . . , Qn and
ambient C1-isotopies Hi ∈ C1(Rn × [0, 1],Rn) with Ni+1 = Hi+1(Ni, 1),

sptHi − idRn ⊂
⋃

z∈Ji

Br(z) ⊂ BR+r(0),

Hi+1(Ni, 1) ∩
⋃

z∈Ji

B r
12

(z) = M2 ∩
⋃

z∈Ji

B r
12

(z),

and
Hi+1(Ni, 1) ⊃ Ni ∩M2.

This leads to

NQ(n) ⊃ (M2 −BR(0)) ∪

M2 ∩
⋃

z∈Ji
i=1,...,Q(n)

B r
12

(z)

 = M2,

which implies NQ = M2 since both are connected, complete and open submani-
folds of dimension k. Since all the Ni are ambient isotopic, we get that N0 = M1

and NQ = M2 are ambient isotopic.

Proof of Theorem 1.2. Let δ be so small that we can apply Theorem 3.2 to get
(r, Cδ)-approximations. Since every (r, µ)-approximation is a (σr, 2µ)-approxi-
mation for all σ ∈ [ 12 , 1] we get that all (r, Cδ)-approximations are ambient
isotopic by Lemma 4.4. Applying Lemma 4.2, we get that Γr is unknotted
in the sense of the theorem for r large enough. Furthermore, Γ is an (r, Cδ)-
approximation for r sufficiently small. Hence, Γ is unknotted in the sense of the
theorem.

Theorem 1.1 follows from Theorem 1.2 and

Theorem 4.6 (Small Gromov Disortion implies Reifenberg flatness[Bla08, The-
orem 4.13]). For every δ > 0 there is a constant ε = ε(n, k) > 0 such that the
following holds:

If Γ ⊂ Rn is a k-dimensional knot with ends at infinity and η(Γ) < ε, then
Γ is globally δ-Reifenberg flat.

A Appendix

Lemma A.1. For k-dimensional linear subspaces L1, L2 ⊂ Rn we have

d(L1, L2) = d(L⊥1 , L
⊥
2 ).
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Proof. Observe that

sup
x∈L1∩B1(0)

d(x, L2 ∩B1(0)) = sup
x∈L1∩B1(0)

∥∥∥ΠL⊥2
(x)
∥∥∥ = sup

x∈B1(0)

∥∥∥ΠL⊥2
(ΠL1(x))

∥∥∥
= sup

x,y∈B1(0)

〈
ΠL⊥2

(ΠL1(x)), y
〉

= sup
x,y∈B1(0)

〈
x,ΠL1 ◦ΠL⊥2

(y)
〉

= sup
y∈B1(0)

∥∥∥ΠL1(ΠL⊥2
(x))

∥∥∥ = sup
x∈L⊥2 ∩B1(0)

‖ΠL1(x)‖

= sup
x∈L⊥2 ∩B1(0)

d(x, L⊥1 ∩B1(0))

and interchanging L1 and L2 we get

sup
x∈L2∩B1(0)

d(x, L1 ∩B1(0)) = sup
x∈L⊥1 ∩B1(0)

d(x, L⊥2 ∩B1(0)).

Thus
d(L1, L2) = d(L⊥1 , L

⊥
2 ).

Lemma A.2 (Stability of Lipschitz graphs). Let f be a function over the k-
dimensional linear subspace L ⊂ Rn. If L̃ ⊂ Rn is another k-dimensional with

d(L, L̃)(1 + lip f) < 1,

then graph(f) is equal to the graph of a Lipschitz function f̃ over L̃ with

lip f̃ ≤ 1
1− d(L̃, L)(1 + lip f)

(
lip f + d(L̃, L)(1 + lip f)

)
Proof. First we calculate for x ∈ Rn

‖(ΠL̃ −ΠL) (x)‖ ≤ ‖(ΠL̃ −ΠL) (ΠLx)‖+ ‖(ΠL̃ −ΠL) (ΠL⊥(x))‖
= ‖(ΠL̃⊥ −ΠL⊥) (ΠLx)‖+ ‖(ΠL̃ −ΠL) (ΠL⊥(x))‖
= ‖(ΠL̃⊥) (ΠLx)‖+ ‖(ΠL̃) (ΠL⊥(x))‖
≤ d(L̃, L)‖x‖+ d(L̃⊥, L⊥)‖x‖.

Hence, for x ∈ graph f

‖ΠL̃⊥(x)‖ ≤ 2d(L̃, L)‖x‖+ ‖ΠL⊥(x)‖
≤ 2d(L̃, L)‖x‖+ lip f‖ΠL(x)‖
≤ lip f‖ΠL̃(x)‖+ d(L̃, L)(1 + lip f)(‖ΠL̃(x)‖+ ‖ΠL̃⊥(x)‖)

and so

‖ΠL̃⊥(x)‖ ≤ 1
1− d(L̃, L)(1 + lip f)

(
lip f + d(L̃, L)(1 + lip f)

)
‖ΠL̃(x)‖.
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For k ≤ n let

Ik : Rn → Rn

(x1, . . . , xn) 7→ (x1, . . . , xk).

Lemma A.3 ([Bla08, Lemma 4.3]). For a given C1 function ψ : Rk×[0, 1] → Rn

we set

h : (Rk − {0})×[0, 1] → Rn, (x, t) 7→
ψ
(

x
|x|2 , t

)∣∣ψ( x
|x|2 , t

)∣∣2 .
If

min
t∈[0,1]

|ψ(z, t)| |z|→∞−−−−→∞,

max
t∈[0,1]

‖Dzψ(z, t)− Ik‖
|z|→∞−−−−→ 0,

and

max
t∈[0,1]

‖Dtψ(z, t)‖
|z|2

|z|→∞−−−−→ 0, (A.1)

then h can be extended to a C1 function on the whole Rk×[0, 1] by setting
h(0, t) := 0 for all t ∈ [0, 1], and one gets Dxh(0, t) = Ik, Dth(0, 1) = 0 for
all t ∈ [0, 1].
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Wohlrab. Minimal surfaces. I, volume 295 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, 1992.

[DS07] Elizabeth Denne and John M Sullivan. The distortion of a knotted
curve. arxiv:math/0409438v2, September 2007.

[Gro78] Mikhael Gromov. Homotopical effects of dilatation. Journal of
Differential Geometry, 13:303–310, 1978.

[Gro81] Mikhael Gromov. Structures métriques pour les variétés rieman-
niennes, volume 1 of Textes Mathématiques [Mathematical Texts].
CEDIC, Paris, 1981. Edited by J. Lafontaine and P. Pansu.

25



[Gro83] Mikhael Gromov. Filling riemannian manifolds. Journal of Differ-
ential Geometry, 18:1–147, 1983.
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