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Abstract
In this article we show that for k-dimensional submanifolds of R"™ which
go through infinity in a smooth way, smallness of the Gromov distortion
and some Ahlfors regularity is equivalent to smallness of the BMO norm of
the unit normal and globally §-Reifenberg flatness with small §. This gen-
eralizes an result due to Semmes for hypersurfaces to surfaces of arbitrary
codimension.
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1 Introduction

In 1991 Stephen Semmes published three articles [30, 31, 32] in which he ex-
tended the well-known chord-arc condition for curves to hypersurfaces of the
Euclidean space. These articles had a deep impact in various fields of mathe-
matics like the study of harmonic measures and the regularity of free bound-
aries (cf. [20, 21, 22, 23, 5, 19]) or in the search for a sufficient criterion for
the existence of bi-Lipschitz parametrizations of two-dimensional manifolds (cf.
[34, 12, 4]).

In the present work, we extend the definitions of Semmes’ constants to sub-
manifolds of arbitrary codimension and prove that the statement of the main
theorem in [30] still holds, i.e. that all of the these constants are small if only
one of them is sufficiently small.

Semmes considered complete, connected, and embedded C? hypersurfaces
I' C R" without boundary. Furthermore, he assumed that I' U {cc} is a C?
hypersurface of R*U{co} 2 S"™. Among other things, this guarantees that I" goes
through infinity and that T' is an orientable manifold that divides the ambient
space R™ into two connected components Q0 and Q_ . Semmes extended the
definition of the chord-arc constant of curves to hypersurfaces by setting

dr(z,y) H" YT N Bgr(z)) 1
[z -yl w1 R ’

— 1|, sup

7(I") := max< sup
ze€l,R>0

z#yel
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where dr is the geodesic distance on I', H* the k-dimensional Hausdorff measure,
and wy, denotes the volume of a k-dimensional ball with radius one. Furthermore,
he defined

1
(') := max su
) { v R0 H (T A Bal@)
(T =Y, VBp())

sup sup 7

zel', R>0 <yEFF‘IBR(w)

/ lv(z) — VBR(I)|dH”_1(z)7
I'nBgr(x)
where v denotes the unit normal and

1

S v(z)dH" 1 (2).
Br(z) HTL—l(FmBR(x)) /FQBR(I) * -

So «y controls the BMO norm of the unit normal and contains some flatness
condition. Finally, Semmes introduced two other constants a(I") and 5(T") that
reflect the boundary behavior of Clifford holomorphic functions on Q; and Q_
(cf. [30, p. 200] for more details). His main theorem in this context is that all
four constants «(T"), S(T"), 4(T'), and 7(T") are small if any of them is sufficiently
small. Thus, he proved analogs to some of the well-known relations between
the chord-arc constant for curves, the geometry of and the operator theory on
such curves, and function theory on the corresponding chord-arc domains (cf.
[26, 35, 6, 9, 18, 28, 29]).

For curves, the constant 7 (I') + 1 is known as Gromov distortion and the
quantity 7;(T) is referred to as chord-arc constant or Lavrent’ev constant. It
plays a major role in the context of boundary regularity of of minimal surfaces
[16, 11, Kapitel 7.5], minima of Cartan functionals [17], and geometric knot
theory [13, 14, 15, 25, 10, 1].

In the present work, we consider k-dimensional complete, connected, and
embedded C! submanifolds I' € R™ without boundary such that I' U {co} is a
k-dimensional C'' submanifold of R™ U {cc} 22 S™. Let us call such objects k-
dimensional chord-arc submanifolds or k-dimensional knots with ends at infinity.
More precisely, we will assume that Py (I')U{e,+1} is a k-dimensional, compact,
and connected submanifold of S™ without boundary. Here,

4
Py :R" - S" —{e , Tr— ——— (r,—2)+e 1.1
N - {TL+1} |.’E‘2+4 ( )+ n+1 ( )
is the inverse of the stereographic projection, and ey, ..., e,4+1 is the standard

basis of R*T1. Note, that we do not assume a priori that these submanifolds are
orientable or that anything else is known about the topology of these objects.

We do not have a chance to generalize the definition of o and 3 to subman-
ifolds of codimension greater than one since such submanifolds do not partition
R™ into two connected components Q0 and Q_. So we concentrate our effort
on generalizing the constants 7 and 4 to quantities defined on chord-arc sub-
manifolds of arbitrary codimension. The straightforward generalization of 7 is
given by

m (T) :—sup{M—l:x,yEF,w#y}, (1.2)
k
n2(T) ::sup{‘W—l‘:xef,R>O}, (1.3)



ha—— Im(7T,,. p)
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Figure 1: The constant 2 (I") guarantees that for every « € I' and every R > 0
the distance between a point in I' N Kz(z) and the affine space = + Im(7, g) is
less or equal to Rys(T).

and

n(I) = max{n, ('), n2(I') }- (1.4)

Here, Kr(x) is the closed ball around z with radius r.
For the generalization of ¥, let G; ; be the set of all orthogonal projections
of R* onto j-dimensional subspaces of R? and let

N:T — Gn,k
map points x € I to the orthogonal projection of R™ onto the normal space

at ‘e and T(z) := idg» — N(x) be the projection onto the tangent space. By
Nz r C Gpn—k we denote the set of all N, g € Gy, ,—i which satisfy

[ N Neglart ) = it $ NG - Slant)
TNK g (z) S€Gnn—k | JTNKR(z)

and T, g := {idrn — Ny g : Ny € Ny r}. Then we set

Jeokn 1N (@) = NoglldH" (y)
Hi=s sup ; . (15
) ;gE{Nm,Regzz,R HE(T N Kg(x)) (L.5)
N, _
Yo(l) :=  sup sup INa.r(z — y)| , (1.6)
zel', R>0 yeKR(x)ﬁF,Nm,RE‘J?,,,R R
and
Y(I') := max(y1(I), y2(I)). (1.7)

Since an integral mean of the function N does not necessarily correspond
to a k-dimensional subspace of R" as the Grassmannian G,, i is not convex, we



exchanged it by an element of 91, , in the definition of . Nevertheless, we will
see in the next section that ; can be estimated from above and below by the
BMO norm of the unit normal.

The main result of this article is the following generalization of Semmes’
result for hypersurfaces in [30]:

Theorem 1.1. 1. There are constants ¢ = e(n, k) > 0 and C = C(n,k) <
oo such that every k-dimensional chord-arc submanifold T' C R™ with
(') < e satisfies
1
n(T") < C~(T 10g<).
(1) = s {5
2. There are constants € = e(n, k) > 0 and C = C(n, k) < oo such that for
every k-dimensional chord-arc submanifold T C R" the inequality n(T") < e
implies )
y(T) < Cp(T)=.

The main tool in the proof of the first part of Theorem 1.1 is that chord-
arc submanifolds with small constants v(T") contain big portions of C! graphs
with explicit control over their Lipschitz constant (cf. Theorem 3.1) which also
strengthens Semmes’ corresponding result for hypersurfaces (cf. [30, Proposi-
tion 5.1]). We show that — except for a small bad set — the part of such a
k-dimensional submanifold inside of a ball is contained in the graph of a C*
function whereas Semmes only obtains Lipschitz graphs for &k =n — 1.

A set A C R"™ is called globally 6-Reifenberg flat if and only if for every x € A
and every R > 0 there is a k-dimensional linear subspace L, r C R™ such that

drn (AN Bg(x), (Lw,R + )N Br(z)) < RS.

Here, dy; denotes the Hausdorfl distance between sets. After the proof of The-
orem 3.1, we will see that smallness of « implies global Reifenberg flatness with
small § (cf. Corollary 3.4). Thus we derive the following corollary from Theo-
rem 1.1

Corollary 1.2. For every § > 0 there is a constant € = e(n, k,0) > 0 such that
the following holds:

If T C R" is a k-dimensional knot with ends at infinity and n(T') < e, then
T is globally §-Reifenberg flat.

In [3], Corollary 1.2 is used to show that k-dimensional knots with ends at in-
finity are diffeomorphic to spheres and unknotted if the constant 7 is small. This
extends a corresponding results in [10] and [1] for curves in R3 to submanifolds
of arbitrary dimension and codimension.

Comparing v with 7 in the case of hypersurfaces I', one obviously has v < 27,
while it is not even clear whether the constant 4 is small if  is small, since the
new constant v does not take the orientation of the normal into account. For
instance, let T'N K (0) consist of two parallel hyperplanes near to the origin but
such that the unit normal v on these planes point in opposite directions. Then

we get
1

— lv —vg, |d7‘l”71 ~1
H"=1(T' N B,(0)) ./m(m ©




which enters the definition of Semmes’ constant 4 while

1 / B
— |N — Noa|ldH" ™" =0.
H= 1T N K1(0) Jrak, o) o

Hence, our generalization of Semmes’ main result in [30] is even new in the
hypersurface case.

In Section 2 we provide variants of the Hardy- Littlewood maximal theo-
rem and the inequality of John and Nirenberg for spaces with a local doubling
property. Later on we apply these results to the intersection of a ball with a
chord-arc submanifold IT" with small constant v(I") to prove that I' contains big
portions of C! graphs. Although these intersections are spaces of homogeneous
type for which corresponding results are available in the literature (cf. [7, 8], we
cannot use those since in our context it is not at all obvious how to control the
defining constants of the spaces of homogeneous type. Furthermore, we gather
some elementary facts about the constant v(I") and cite a very useful charac-
terization of chord-arc submanifolds which tells us that a C' submanifold is a
chord-arc submanifold if near infinity it is equal to the graph of a C' function
whose differential vanishes at co. For proofs of these statements we refer to [2].

After that we prove in Section 3 that chord-arc submanifolds with a small
constant v(I') contain big portions of C'! graphs. It will be of great importance
in the following chapters that we are able to show that these graphs are graphs of
C! functions and not only of Lipschitz continuous functions. As an application
of this result, we show in Section 4 that n is small if v is sufficiently small.

To show that the inverse of this statement is true as well, i.e. that ~ is small
if i is sufficiently small, we carefully carry over an iteration technique due to
Semmes from the hypersurface case to our situation of chord-arc submanifolds
of arbitrary codimensions in Section 5. Here, the difficulty is to find the cor-
responding inequalities for the case of codimension greater than one where we
cannot work with the unit normal as Semmes does.

2 Some Preparations

Let (X, d) be a metric space. We denote by B,.(z) := {y € X : d(y,z) < r} the
open ball of radius r > 0 around z € X and by K, (z) :={y € X : d(y,x) < r}
the closed ball of radius » > 0 around x € X. We call such a ball non-degenerate
if r > 0. For a closed ball K with center z and radius r in a metric space (X, d)
and a > 0 let oK = K, (x). For a measure y on some set X, a y-measurable
subset A of X with 0 < u(A) < oo, and a p- integrable function f : X — R”

we set 1
fai= ][ fp = —— / fu.
A 1(A) Ja
Furthermore, we denote by | - | the Euclidean norm on R™ and for a linear
mapping A : R” — R* we define
Av
ja) = sup AW

vern—{0} |Vl



2.1 Local Doubling Spaces

Let us gather some facts about spaces which satisfy a local doubling constant.
We will use these facts to show that chord-arc submanifolds contain big portions
of C'-graphs. For detailed proves we referr to [2, Section 2.2]

Definition 2.1 (Local doubling property). We say that a metric space (X, d)
with measure p has the local doubling property on scale R with doubling constant
1< Cy=Cy(R) < oo if and only if

W(Kap(2)) < Ca - p(Kp()) < o0 2.1)
for all 0 < p < &, z € spt(p).

Definition 2.2 (Variant of the Hardy-Littlewood maximal function). Let R > 0
and p be a measure on some metric space (X,d) with p(K,(z)) < oo for all
z € X and 0 <7 < R. Then we set for a y-measurable function f: X — R

SUpPg,. o 1 fldp if z € spt(u)
M f)(a) 1= § S"Posra e 1k
0 if v € X — spt(p).

Following the lines of the proof of the classical Hardy-Littlewood maximal
theorem one gets

Lemma 2.3 (Hardy-Littlewood maximal theorem for local doubling spaces).
Let 11 be a measure on a separable metric space (X, d) such that (X,d, p) pos-
sesses the local doubling property on scale 5R > 0 with doubling constant Cy <
oo. Then

1/p
p
(e <2 (CHL7) T Ifllrns

forall f € LP((X,p),R), 1 < p < oo.

Definition 2.4 (BMO norm). Let 1 be a measure on the metric space (X, d)
with p(K,(z)) <ooforallz € X, r >0, and let f: X — R” be a y-measurable
function. We set

”fHBMO((X,u),]R") = sup ][ ( )|f - fK,~(m)|d/u (2-2)
K, (x

z€spt(p),r>0
and let BMO((X, 1), R™) be the set of all y-measurable functions f : X — R”

for which || fllsmo((x,u),rm) < o0

Observing that actually only the local doubling constant is need for the
proves of the inequality of John and Nirenberg, we are let to

Lemma 2.5 (Inequality of John and Nirenberg on local doubling spaces). Let
(X, d) be a separable metric space and p be a Radon measure on X such that the
triple (X, d, 1) has the local doubling property up to scale 4R > 0 with doubling
constant Cy < co. Then there is constant b = b(n, Cy) depending only on n and

Cy such that
][ exp (b 1f(y) = fKr@)] ) 5
Kr(z) Il fll Baro((x u)mm)

for all x € spt(n), and f € BMO((X, n),R™).




For subsets of a Euclidean space a local Ahlfors regularity condition implies
that the set satisfies a local doubling condition on any scale. Later on, this fact
will allow us to use the Hardy-Littlewood maximal theorem and the inequality
of John and Nirenberg for chord-arc submanifolds.

Lemma 2.6. Let u be a measure on the Fuclidean n-space and let Ry > 0,
k € N be such that there are M < oo, m > 0 with

mp® < u(K,(z)) < Mp* Va € spt(p),0 < p < Ry.

Then (R™,| - |, 1) has the doubling property on any scale R > 0 with doubling

constant

cumy =z [ SRS
T M (&) i R> R

2.2 Chord-arc submanifolds and constants

When dealing with chord-arc submanifolds we do not want to work with the
image of I' under the stereographic projection. The next Proposition tells us
that a complete, connected, and embedded C' submanifold without boundary
is a chord-arc submanifold if and only if outside of a large ball around the origin
it is the graph of a C' function over a k-dimensional subspace of R™ whose
differential vanishes at oco.

Proposition 2.7 (Proposition 4.2 in [2]). A set I' C R" is a k-dimensional
chord-arc submanifold if and only if the following two conditions are satisfied:

o T is an embedded, complete, connected, k-dimensional C* submanifold of
R™ that has no boundary.

e There are A € SO(n), R < o0, ¢ € CH(R* R"™%), such that A(T) —
Kg(0) = graph(¢) — Kr(0) and lim|,| o Dé(x) = 0.

The next Lemma tells how ~; is related to the BMO norm of the normal
spaces.

Lemma 2.8. For k-dimensional chord-arc submanifolds ' C R"™ we have

1
5’71(F) <INl sro@sry < 271(T).

Proof. For x € I', R > 0, and Ny g € 91, r one estimates
Fo NN < N = Neal [ Nea N
INKg(z) INK g (z)
< 2][ IN — Np.o|HF < 21(T)
I'NnKgr(x)

f |W—SHﬂ
FQKR(I)

IN=Ng.||H* = inf
\%];OKR(I’) " SEGH n—k

S][ IN = Ngp I+ inf  [[Ngp@) — S|
INK g (x) S€Gnn—k

n,n

On the other hand

<2f N Ny I
I'nKr (I)



3 Big Portions of Graphs

Let us set Kg)(m) ={yeR¥:|y—z| <R}, Bg)(x) ={y eRF: ly—z| < R},
wg = Hk(KYC)(O)), and Cr = Kgf) (O)XKJ(;_I") (0). For T € G, ), we say that
a function g : Im(T) — Im(T)* is a function over T. In this case we define the
graph of g by graph(g) := {v+g(v) : v € Im(T)}.

Theorem 3.1 (Decomposition Theorem). There are constants € = (n, k) > 0,
C=C(nk) < o0, 0<a=a(n,k) such that the following holds:

If ' C R™ is a k-dimensional chord-arc submanifold with v := v(T) < ¢
then T has the following properties:

1. The space (I, |-|, H*|T) is Ahlfors regular. More precisely, for every z € T
and every R > 0 we have the estimates

(1 —Cy)wiR* < HM(T N Kl(%n)(z)) < (1+Cylog(1/y))weR*.  (3.1)

2. Let ze€ T, R>0, T, ur € T, 4r, and p € [10v,1/3]. After some trans-
lation and rotation we can assume that z = 0 and Im(Tp 4r) = R x {0}.
We set

F .= {LU eCgrNT: i)ﬁ4R(T — TO,4R)($) < /L},

B:=(CrNT)-F.
Then

[Noar(y — x)| <3u|Toar(y —x)| forallz e F,yeCrNT, (3.2)

H*(B) < Cexp <a:> R", (3.3)

and
Tour(CrNT) = K (0) x {0}. (3.4)

Furthermore, there is a function g € C1(R¥ R"F) with |Vg|r~ < Cu
such that the graph G of g satisfies F C G and T,G = T,T" for all x €
F. Here T,G and T, I' denote the tangential spaces in x of G and T’
respectively.

The proof relies on an iteration technique. Due to our a priori assumptions,
a po := po(T') > 0 exists such that

1
SukRN < HNT N KM (2)) < 2wpRF forall 0 < R < po.

This follows from the fact that I' is an embedded C' submanifold that is -
outside of a large ball around the origin - the graph of a C' function over some
k-dimensional subspace whose gradient has a limit at oo (cf. Proposition 2.7).

Then the following lemma shows that the conclusions of Theorem 3.1 hold
for all 0 < R < 2pg. Since under these conclusions there is an Ahlfors regularity
condition, we can iterate this argument to prove that the conclusion of Theorem
3.1 holds in fact for all R > 0.



Lemma 3.2. There is an g9 = €9(n, k) > 0 and a constant C = C(n, k) < oo
such that the following is true:

IfT' C R™ is a chord-arc submanifold of dimension k, v(T') < €9, and if there
is a p > 0 with

1 n c
@RS <HETN KM (2)) < 2wk R* forall0 < R<p,z€Tl (3.5)

then all the conclusions of Theorem 3.1 hold for 0 < R < 2p.

Proof. Let z € I', 0 < R < 2p, and T, 4p € T, ar. After applying a suitable
rotation and translation, we can assume that z = 0 and Im(T}, 4g) = R* x {0}.
Then the definition of y2(T") (cf. (1.6)) leads to

INCr CTNE(0) C K 0)x K" (0). (3.6)

Let us furthermore note that F is closed since the Hardy-Littlewood maximal
function as the supremum of continuous functions is lower semicontinuous.

Step 1:

There are constants 0 < a = a(n, k) and C = C(n,k) < oo such
that H*(B) < Cexp(—auy~')RF.

Proof. This estimate will be proved using the inequality of John and Nirenberg
on balls of radius 8 R and the Hardy-Littlewood maximal theorem for 9,z on
the metric space R™ equipped with the measure H*|T' (cf. Lemma 2.3 and
Lemma 2.5). Lemma 2.6 and (3.5) tell us that H*|T" has the local doubling
property on scale 32R with doubling constant Cy = Cy(n, k) = 28T2256™. That
is all we need to apply Lemma 2.5 and Lemma 2.3 as we do below.

From (2.8) we get ||T(|parorr) = INlBmo@erry < 2y(I'). Using the
inequality of John and Nirenberg in the form of Lemma 2.5, we get a constant
0 < b=0b(n,k) < oo such that

" b
exp | —||T(z) — T,.cm) ||) dH*(z) < C (3.7
]kag”;g(o) <’7 Ksr (0)
— k .
where TKé’]??(o) = anKé?(O) TdH*. Let Ty sr € To.sr- Since
1To.4r = Treem o) |
< M- T@IEE@ 4T - Tl
K% (0) rnK{%(0)

4 ][ |Tosr — T(@)|ldH* )
K™ (0)

HH( N K (0))
HE( N K (0)

& doubling
Foo @)~ Tosallart @' O,
K™ (0)
we get from (3.7)

b
][ exp (T(x) — T0,4R> de(x) <C. (3.8)
Ky (0) Yy



Let Xk (™ (0) be the characteristic function of the set K(n)( 0). We now apply the
Hardy-Littlewood maximal theorem (Lemma 2.3) to ||T — Tp 4RHXK(W>(O) and
use the fact that for all z € Kg%)(O)

Mar((IT = To.arllX g ) (@) = Mar(IT = To.arl) (z)

K5 (0)
to get
P
[ (S =~ Toanl)(a)) dr* )
rni{y(0) (3.9)

< ¥Ci- / I7() = To.aglPdH* )
=1 Jrakr( (0

for all p > 1. Since for a measure v on €2, a v-measurable function f: Q — R”,
and a v-measurable set A C Q we have

dy = d d 2d A )
/Alfl v /Awwﬂ v+/m“f|§] I ug/Am v u(A),  (3.10)

we get for a :=b/2

][ L ew (a 93?4R(|T—T074R|)($)> M ()
Nk, (0) v

CL 1\l
_ZJ[W«» L (a1~ Toan @) ()

(3.10)

-1\l
< {1 + Z ]ng(n) O (a7 - T0,4R||)(x))ldﬁk(x)}
5 2{1 + chcgzl“][ (“’V:l)l IT(x) - To,4R||ldH’<f(x)}

1=2 rr(p o) !

_ (3.8)
< 40&1][ exp (b”T(w)TO’“ﬂD) dH*(z) < C.
rnk{? (0) Y

Since Cr C Ki;? (0), we finally get by repeated use of the doubling property

L exp(ay ' Mur(|T — To4rl)(®)) )k .
HY(B) = /me)() exp(ay=1p) =)
< Cexp(—ay~ ,u)Hk(FﬂK(n)( 0))

(3.5) & doubling
< Cexp(—ay~'u)RF.

Step 2:

For every x € F and y € T' N Cg we have |No4r(z — y)| <
3u|To,ar(x —y)|. (cf. Figure 2)

10



Figure 2: This picture illustrates the statement proven in Step 2. For every

point x belonging to the

good set F' C I', we show that I' N Cp is contained in

the cone {y € R™ : |Noar(y — z)| < 3u|To4r(y — )|}

Proof. Let x #y € 'NCr and x € F. We choose an N, |,y € Ny |z—y|- Then

|Noar(z — y)| < [Najo—y|( = Y)| + [Ny jo—y| (T — y) = Noar(z —y)|

def. of v (T

Using

”NT,\r—y| - NO,4R||

</ 1Nz o
K™ (@)

xEF
< v+p,

we get

)
YNz =yl + [INe,ja—y) = Noarll - [ —yl.

— N(©)lldH () + ]{ gy INEE) = Noarll M (6)
lo—y|\T

INoar(r —y)| < (27 + p)|z —yl.
With |z — y| < |Noar(z — y)| + [Toar(z — y)|, we get

|Noar(z —y)| < 7

if v <4/30 and p € [10~,

Step 3:

27+ p
—2v—p
1/3] . O

|To,ar(x — y)| < 3u|Toar(z —y)|

Toar(T NCr) = K¥(0) x {0}

11



Proof. We will use the modulo 2 degree deg [2, Section 3.2] to show that the
function

f:TNCr— KW (0)x {0}, x> Toar(z)

is surjective. From (3.6) we get T NCr C Kl(%k)(O) X Ki:;%k) (0). If v < 1/4, we
thus have 3
F (@ (T NCR)) © (D (KL (0))) x {0} (3.11)

We will now show that there is a yg € Bl(zk)(()) x {0} such that
deg(f, T NCr,y0) =1 mod 2.

It then follows from property the properties of the degree and (3.11) that
deg(f,I'NCr,y) =1 mod 2forally € Bg) (0). From this and known properties
of the degree our assertion follows.

Let us fix 4 = 1/3 in Steps 1 and 2 until the end of the current step. Using
(3.5) and Step 1 we get

k
HM(F) = H*(T'NCr) — H*(B) > %wk (5) — Cexp<—£> R >0

if v is sufficiently small. So there is an xy € F' and we set yo := Tp ar(zo). We
have

M (IT = Tourl)(wo) = sup ][ IT = Ty amlldH* < < 1/3.
0<r<4RJTNK™ (z0)

Sending r — 0 we get from the C! smoothness of T

1T (z0) — Toar| <

W =

We know from Step 2 that f~1(yo) = {xo} since xop € F. Thus vy is a regular
value of f and we have

deg(f,T'NCgr,y0) =1 mod 2.

Step 4:

’ Construction of g ‘

Let E := {z € R¥ : (2,0) € To 4r(F)}. Step 2 shows us that for every z € F
there is a unique point y € F' such that Tp 4r(y) = (z,0). We set

9(x) = (Yk+15- - Yn)-

From Step 2 we get [g(z) — g(y)| < 3pulz —y| and |T(z,§(x)) — To4rll < p for
al z,y € F.

Using that § is a Lipschitz function who’s graph is contained in the C!
submanifold I" and the last two estimates, it can be shown that there is an open
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set ED FEand h e Cl(E,R”_k) with Lipschitz constant < Cu, g = h|g, and
graphh C T'. Using Kirszbraun’s theorem (cf. [24, Hauptsatz 2 1]), we get
a Lipschitz continuous extension h : R¥ — R"~* of h with |Vh| < Cu almost
everywhere. Folding this function with a smooth kernel we get smooth functions

B : RF — R * with |Vh,,| < Cpand h,, — hin L%°(R* R"*). Now let Ebe
an open subset with £ CC E CC E and ¢ € C®(R¥,[0,1] be a cutoff function
satisfying Xz <% < xp. For m large enough we set g := ¢)h+ (1 =4)hy,. Then
g € CHR* R" %), g|p = g, and for almost all z € R¥

Vg(@)| < |V||h(x) = hm ()] + [VA(@)| + |Vhn(2)] < Cp

if m is big enough. Let G = graph(g). Then F C G and since g(l%) = h(l%) cr
we furthermore obtain
T.G=T,I' VzeF.

Step 5:

(1 — Cy)wpRF < HHT N KW (2)) < (1+ Cylog (1/7)) wi R

For the upper bound we set u = a~!ylog(1/v) in the estimates we have
derived so far. Since ylog(1/y) — 0 and log(1/y) — o0 as v — 0, we get
a~lvylog(1/v) € [107,1/3] if «y is small enough. Therefore,

Step 1

HF(B) < Cexp(—log(1/y)) R = CyR* < Cylog(1/7) R*

if v < 1. Since F' is part of the graph of a Lipschitz function on Bg)(O) with
Lipschitz constant smaller than C~ylog(1/7), we get

H*(F) < (14 Cylog(1/7))wrRE.
This yields
HET N K (0) < H¥(B) + HE(F) < (1+ Cylog(1/7))ws RF.

For the lower bound we first observe that

3.6 X
KM(0)NT < CrNT N K (0)x K5 (0).

(k)
Letx € KR\/W

Thus, thereis a y € Ki:l_%k)(O) such that (z,y) € I' N Cr. We calculate

(0). From Step 3 we know that Ty 4r(I'NCr) = Kl(%k)(O) x{0}.

|(z,9)]? < (1 —167%)R? + 167°R? = R?

and see that (z,y) € Kl(%n)(O) NI and To 4r((x,y)) = (x,0). So we have shown
that

k n
K;W(O)X{O} C Tour(K4)(0)NT).

13



Hence,

HA(E O K2 (0) = HA(To (K5 (0) NT)) > HE(K (0) x {0})

1-16~2

= (1-169*)*2wp R* > (1 = C(k)y)wi R®

for v sufficiently small.
O

Proof of Theorem 3.1. Let C(n, k), a(n,
the last lemma. We choose ¢ = &(n,
C(n,k)y < %7 and C(n, k)ylog(1/y) <
there is a pg = po(T") > 0 such that

k), and eo(n, k) be the constants from
k) such that v < ¢ implies v < ¢y,
1. Due to our a priori assumptions,

1
ikak <HMT N Kg(2) < 2w, R*

for all 0 < R < pg. Using induction and Lemma 3.2, the conclusion of the
theorem follows. O

Corollary 3.3. In the situation of Part 2 of Theorem 3.1 we furthermore have
the following estimates:

1
H*CrN{(T' — G)U (G ~T)}) < Cexp(—ap/~)R*

2. For ally e T NCr we have
ly — (W1, Uk 91, -5 un))| < Cdist(To,ar(y), To,ar(F)).
Proof. Since Cp N (' — G) C B, we get
HF(CrN (T - G)) < H¥(B). (3.12)

Using the fact that G is the graph of a Lipschitz function with Lipschitz constant
smaller than C'p < C, we get

H¥(CrN (G —T)) < CH¥(To.4r(CrN (G —T))).

Since Tpun(F U B) = Tour(CrnT) 2 KW (0) x {0} and F ¢ GNT we

conclude that Ty 4r(Cr N (G —T')) C Ty 4r(B) and thus
H*(To.4r(Cr N (G —T))) < CH*(Ty 4r(B)) < CH¥(B).
Together with (3.12) this leads to
HMCRN{(N = G)U (G ~T)}) < CHM(B) < C - exp(—ap/7)R"

and the first estimate is shown.
Let y € T. As Tpar(F') is a closed set, there is a z € F' with

To,4r(y) — To,ar(2)| = dist(T0,4r(Y), To,ar(F)).

14



Weset § := (y1,...,yx) and 2 := (21, ..., 2). Since z € F, we know z = (Z, g(%))
and hence

ly = (9,9(1)| = [Noar(y — (4,9(1)))]
< [Noar(y — 2)| + [Noar(z — (9, 9(9)))]

(3.2)
= [Noar(y — 2)| +19(2) —9(@)| < CulToar(y — 2)|

= Clu diSt(TOAR(y), TO,4R(F))'
O

Furthermore, we get the following relation between the constant v2(T") and
the constant

§(T) := inf{§ € [0,00) : T is globally d-Reifenberg flat}

Corollary 3.4. There is an e(n,k) > 0 such that for every k-dimensional
chord-arc submanifold with v(I') < ¢ we have

6(I') < 82(T). (3.13)

Proof. Let x € ' and R > 0. After some rotation and translation we can assume
that 2 = 0 and Im(7}, 4r) = R* x {0}. From the definition of 72(T') one gets

sup  d(y,Im(Ty.4r) N BY (2)) < 47a(D).
yernB (z)

Applying Proposition 3.1 we get that Tp4r(Cr NT) = K%&(0) x {0} if v(T) is
small enough.

Let y € Im(Tp.4r) N (BE(0) x{0}), If 72 < % thereis an § € By, (0) with
ly—7| < v2. Then we get an z € I'NCg with T, 4r(2) = § and using the definition
of ¥2(T") and Cr C K&) (0) one gets |z — §| < 4R7y, and hencez € I'N B;") (0).
From |y — z| < |y — g| + |§ — 2|8R~2 we finally derive

sup d(y,T N BYY(0)) < 87
yEIIn(TIAR)mBgL)(x)

4 Proof of the first part of Theorem 1.1

Let us briefly sketch the idea of the proof. For u,v € I' we have to construct a

short curve on I' joining v and v. If " were the graph of a Lipschitz function
with small constant, this would be easy. Theorem 3.1 implies that FﬂKz(ru)fm (u)
looks like the graph G of such a function, except on a small bad set. The idea
is, to start with a curve on this graph and then manipulate it on the bad set to
get a curve on I'. Using that the bad set is small, we can control the growth of

length in this last step.
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Proof of the first part of Theorem 1.1. Let us set v := ('), n := n([), m =
(L), and 1y := n2(T"). From Theorem 3.1, inequality (3.1), and ylog (1/v) — 0
as v\, 0 we get 3 < Cylog (1/7) if v is small enough.
Let us set
~ dr(l‘,y)
i1 := sup

z#y€el |z — y

=m+1

and let u,v €T, u # v, R:=2|u—v| >0, and T, 4r € Ty 4r- After a suitable
translation and rotation we can assume that u = 0, Im(Tp 4r) = R* x {0}, and
0= T0,4R(U) = )deg fora \ € RT.

Let F:={z € I'NCr: Muyr(T — Toar)(z) < p} and B := (I'NCg) — F.
Theorem 3.1 tells us that

Toar(T NCr) = Ky x {0} (4.1)
and that the set F is contained in the graph of a function g € C'(R* R"~F)
with |Vg||L~ < Cp and

k HY pk
H*(B) < Cexp (—a) R".
v
USil’lg (K}]%(O) X {O}) - T074R(F) C TO,4R((F N CR) - F) = TO74R(B) we get

HE(K5(0) x {0}) — To.ar(F)) < H*(B) < Cexp <—a:> R". (4.2)

Because of (4.1), for every ¢ € K}gf) (0) x {0} C R™ there is an z¢ € ' NCg such
that

To,ar(ze) = C.
Let 0 < e < £. We then get for € B%)(0) x {0} c R"
dr(u,v) = dr(0,v) < dr(0,29) + dr(z¢, Zs10) + dr(Ts4e,v)
< i (|ze| + 2540 — v|) + dr(ze, Tite)-

Since 'NCr C K,%’“’(O) X Kg;k) (0) and Im(Tp4r) = R* x {0}, we get using
the definition of v (cf. 1.6)

|254+0 — v| < |To,ar(T54+0 — V)| + [Noar(T549 — V)|
< 10| + [Noar(xs+0)| + [Noar(v)| < eR +8yR
and
lzg| < |To.ar(70)| + |Noar(we)| < eR + 4yR.
Consequently,

dr(u,v) <71 (127 + 2e)R + dr (w6, Ti40)

R=2|u—v| _
L7 (24 + 4e) - |u— o] + dr (29, 2r40).

(4.3)

To estimate the last term, we need to find a curve ¢y : [0, \] = T’ on T from x¢ to
Zy40 using the graph of g whose length we can estimate. To construct this curve,
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we set E 1= Ty 4p(F), Eg := {t € [0,\] : 0 + te,, € E}, and ES := (0,)) — Ey.
We know from (4.2) that

HE(KF(0) x {0}) — E) < exp (—a/;) RF. (4.4)

Since E is a closed set and the function ¢t — 6 + tey is continuous, the
set EY is open and thus the union of countably many disjoint open intervals
I; = (aj,b;), j € J C N. Now let us define ¢p in the following way:

1. If t € Ejy, then cy(t) is the unique point in I'NCr with To ar(c(t)) = 0+tey.

2. For j € J let ¢; : [aj,b;] — I be one of the shortest Lipschitz curves of
constant velocity joining the points

e cy(a;) and cy(b;) it 0 < a; and b; < 1,
o cy(a;) and z549 if 0 < aj and b; =1,
e 1y and cg(b;) if 0 = a; and b; < 1,

® Ty and Ty+6 if a; = 0, bj =1.
We set co(t) := ¢;(t) if t € [aj,b;].

From the construction of the curve, we get that ¢(0) = zp and c(\) = z4549.
For tq1,ty € Ey we get from Step 3 in the proof of Theorem 3.1

lco(t1) — co(t2)| < [To,ar(co(t1) — co(t2))| + [Noar(co(t1) — co(t2))]

< (1+3p) - [Toar(co(tr) — co(ta))] = (L +3p) - [ty — to.
(4.5)
So ¢y is Lipschitz continuous on Ey. Next we want to derive a Lipschitz estimate
for ¢y on one of the components [a;, b;].
Let j € J. If a;,b; € Ey, inequality (4.5) proves

[co(az) = ca(bs)] < (1+3p) - [t — ta.

In the case that a; = 0 and b; € Ep, or a; € Ep and b; = 1 we get using
|To,4r(co(a;j) — co(b;))| = |a; — b;| and Step 3 in the proof of Theorem (3.1)

lco(aj) — ca(bj)| < |To,ar(co(as) — co(b;))] + [Noar(co(as) — co(b)))]
< (1+3p) - [Toar(co(aj) — co(bj))| < (14 3p) - |a; — byl.

In the case that a; = 0 and b; = 1 we get using

R R R
v| > — |V, = 8= =(1-— =
9] > |v] — [Noar(v)] 5 ~ 815 = (1-8)3
that
R 1 N .
co(aj) — ca(bj)| = |u—v| = 3 S0 87'”‘ < (14 169)[0] = (1 + 167)[a; — bj|

if v is small enough.
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Since p > 107, we have in either case

H'(co([aj, b;])) = length(calia, 1) < lcalaz) — co(bs)] < 71 (1 + 3p)la; — byl.
(4.6)
As Co|[aj,bj] has constant velocity, we get

|Cg(t1) - 09(t2)| § 771(1 + 3u)|t1 - t2‘ for all tl,tz S [aj,bj]. (47)

The estimates (4.5) and (4.7) show that ¢y is Lipschitz continuous on the
whole interval [0, A]. Inequality (4.5) implies

M (co(Ep)) < (1+3u)H' (Ep) < (1 + 31)|Toar(u —v)| < (1+3p)u —vl.
Combining this with (4.7), we get
dr (29, 2549) < length(co) = H'(co(Ep)) + H' (co(EF))
=H"(co(Eg)) + Y _ H'(co(lay, b)) < (L+3u)lu— v+ (1 + 1)1 Y laj — by

Jjel jeJ

= (143p)u— | + (1 + p)in H' (EF).
(4.8)
Then (4.3) and (4.8) yield

dp(u,v) < [u—wv|- (14 3u+ 71 (24y + 4e)) + (1 + p)inH' (Ef )

forall § € Ké? (0)x{0} C R™. Taking the integral mean over all § € Bg{l)(O) X

{0} c B%)(0) x {0} € R™ and using B 1(0) x [0,A] ¢ K¥(0) and p < 1/3,

€
we get

dr(u,v) <|u—v|- (14 3p+ 71 (247 + 4e))

1
+ 27 —/ HY(ES)dHF1 (0
(vl A S L

= Ju—v|- (14 3p+ 71 (247 + 4e))
2m 1(((d _ k=17
T g P X 0 x 0]~ B )

<Ju—v| - (1+ 3+ (247 + 4e))

_ 1 (k)
+ 2U1mHk((KR (0) x {0}) — E)

(4.4)
< Ju—v|- (1+Cu+ (24 +4e)) + Cije’ "R exp <af;> .

If we divide through |u — v|, take the supremum, and set p = %’ylog(%) and
e = v, we derive

1 1
i <1+ Cylog (7> +171 (287 + Cy' FyF) =1+ Cylog <7> + Oy

The C' smoothness of I and Proposition 2.7 imply 7; < co. Hence,

1 +C'ylog(%)

<
m = 1-Cxv

<1+ Cvylog <1)
Y
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if v is small enough and thus n; =7 — 1 < Cylog (%)

5 Proof of the second part of Theorem 1.1

As the first part, also the second part will be proved using an iteration argument
that starts using the C! smoothness of the manifold I'. Let us introduce some
notation and then sketch the structure of the lengthy proof.

For a k-dimensional chord-arc submanifold I' C R™ we set

6=

N, .
sup inf  max sup ‘ oy — )‘ |N — No||dH*
};%i% No€Gn,n—k yeFng‘)(m) R FOKI(;)(QC)
(5.1)
and
d(R) :=

N
sup { inf  max ( sup Noly = )] )| N — N0||d7'(k>}
R;Erl;o No€Gn,n—k yanKﬁn)(l) r FﬂK£W'>(w)
(5.2)

for R > 0. Thus, § = suppsod(R). We will show below that it is enough to
control ¢ since in fact
~v < 54. (5.3)

For x € T" and R > 0 let ‘.YII,R be the set of all projections NI’R € Gon—tk
satisfying

max sup M, |N — N, gl|dH*
yernK ™ (z) R Ik (z)
=\ inf  max sup M ][ HN Nol|dH*
0€EGn n—k yGFﬂKgl)(z) K(n)
(5.4)
We set
Tor = {idgn — Ny.r : Nor € My g} (5.5)

Hence to prove the second part of Theorem 1.1 it is enough to show

d=supd(R) < Cn(F)%
R>0

if n is sufficiently small.

In the proof, we will use the C' smoothness of I' and Proposition 2.7 to
get a po := po(I") such that d(pg) is arbitrarily small. Lemma 5.7 then shows
that there is a constant a = a(n, k) > 1 such that d(apg) can still be estimated.
But of course this is not enough to prove the theorem using iteration since the
estimate of §(app) is not as good as the estimate of §(pp)-
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To bridge this gap, we will spend almost all of this section to show that the
smallness of 7 and 0(R) for some R > 0 even implies §(R) < Cnz. This state-
ment is the content of Lemma 5.6. Using this, the theorem follows immediately
by iteration.

The keys to the proof of Lemma 5.6 are the Proposition 5.4 and Lemma 5.5.

Proposition 5.4 tells us that if there are points xg, 1, ...,z € I’ such that the
vectors v; 1= #E* i = 1,...,k are almost orthogonal in the sense that the
quantities

| {vi, v5) — dij

are small for all 4,j = 1,...,k, then there is an Ny € G,, ,_j, such that
[No(y —x0)| < C(n. k) R

for all y € K}(%L)(:Eo) NT.

We will then use Lemma 5.5 to find such points xg,x1,...,x; under the
assumption that §(R) and n are small.

The next Lemma is the basic step that will finally lead to the proof of
Proposition 5.4.

Lemma 5.1 (cf. Lemma 8.5 in [30]). For ! > 0 let ¢ : [0,I] — R™ be a curve
parametrized by arc-length and let P := ¢(0) and Q := c(l). Then we obtain for
all t €10,1]

() — (P+§(QP))‘ <3 <Z|PZQ|)%.

Proof. Applying a rotation and a translation, we may assume P = 0, QQ =
|P — Qlen. For t € [0,1] we estimate vector é(t) := (c1(t),...,cn_1(t)) € R?1
by

1
2

1 l
|é(t)] S/o [(E1 (), ...y énr (8)]dt < VI (/0 (él(t),...,én_l(t)|2dt>

= g </l(1 _ éi)dt> ’ <Vi (2/l(1 - c'n(t))dt>

:@(Z_P_Q|)§§\/§.Z(Z_|P;_Cg|>2_

2

Now ¢, (1) — cn(t) < |en(l) — cn(t)| <1 —tyields e, (t) > |P— Q| — (I —t) and
ealt) = HP =0l 2 (- 1P=Q) (§-1) 2 =~ 1P - Q.
On the other hand, ¢, (t) < |c(t)| < t implies

t t t
cn(t) — i|P—Q\6n <t- Z'P_Q‘ =7

(—=IP=Q)<l-[P-Q|
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Hence, |c,(t) — 4P — Qlen| < l(@). Using the estimate for é(t), we

conclude
)~ (P+1@-P)| <ol +

ELEC R NS

enlt) - 1P @

Since z < /x for = € [0, 1], we obtain the desired estimate. O

For A C R™ let conv(A) denote the convex hull of A. Iterating the above
Lemma we now prove

Lemma 5.2 (Analog to Lemma 8.4 in [30]). Let ' C R™ be a k-dimensional
chord-arc submanifold with 18n77% < 1. Then for all x € I' and R > 0 we have

conv(I'N Kl(an) (x)) C {z e R" : dist(2,T) < 18nn%R} .

Proof. Let y € conv(FﬂK}(%") (x)). From Carathéodory’s theorem (c.f. Theorem
17.1 in [27]) we get that there are a1,...,a, € FﬂK}(%")(x) and 0 < Aq,..., A\, <
L, v <n+1, with >3/, A\; = 1 such that y = >0, \ja;. We show now
inductively that for j = 1,...,v we have

J .
=17

1 N
dist <—1“F> <18(j — )R

and thus prove the Lemma. The estimate is trivial for j = 1. So let the estimate
be true for 1 < j < v, i.e. let us assume that there is a point P € " with

Zgzl Aia
J i

i=1

— P| <18(j — )n*R.

_ i aas
Let us put P := Z?ﬂ Then the above estimate reads

|P— P| <18(j — 1) R. (5.6)
Furthermore we set Q := Q := a;j+1 and thus get
~ )\x+1 ~ ~ jjl )\iai
P+/7(Q—P>:# (5.7)
YD APY PRAIPY
and |[P—Q| < |P—P|+|P—Q| < 3R. Since P,Q €T, there is a Lipschitz curve
¢ :10,1] — I parametrized by arc-length joining P and Q with [ < (1+n)|P—Q)|.

If we now apply Lemma 5.1 with ¢y = Z’}gﬁ/\il to this curve we get

<3 (Z—IPZ—QI)

n<3,|P-QI<3R

Aii1
c(to) — <P R e (A P))
Zfi1 Ai
|P-QI<I<(14+n)|P-Q)) ) f
< 3(1+n)|P—Qn> < 1872 R.
(5.8)
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=2 | e(to) — <P+tlo(Q—P))‘+|I5—P|

(5.8)&(5.6) 1 , 1 1
< 18Rnz +18R(j — 1)nz = 18Rjn=.

O

A consequence of the last lemma is the following estimate for the volume of
the convex hull of I'N KI(%”) ().

Lemma 5.3 (Analog to Lemma 8.7 in [30]). Let I' C R™ be a k-dimensional

chord-arc submanifold, 18m7% <1, and let V be a (k + 1)-dimensional affine
subspace. Then we have

HE (conv(T N K (2)) N V) < Cn, k)n? R
where C(n, k) :=3-36 - w41 - 8% - n.
Proof. From Lemma 5.2 we get

conv(FﬁK(n U Kls R (2)
nn2

Since conv(I' N Kgl)(x)) C KI(;)(I) and 18n77 < 1 we obtain

comv(PNKG @) c Ki;)] ol (5.9)
zEFﬂKé?(m) "

Using Zorn’s lemma, we can find a maximal subset L C I‘ﬂKé}?(m) with respect
to the order ”C” with the property that u # v € L implies [u — v| > 18nnz R.
From the maximality of the set we deduce that

(n)
I'NK (z) ¢ | waR z
z€L
and hence
conv(I' N K(2)) | K;ZT)W]%R(Z). (5.10)
z€L )

Since 18nmz < 1, we get R4 9nnzR < 2R and thus B;n) . (2) C Bg}g (z) for
nn2
all z € L. Using the definition of 72 (cf. (1.3)) and the fact that the balls

Inn2 R
k K(") T k K(n "
oyt (B 0T HAED 0D e iy
- n — 1 =~
zeL Hk(K;n;%R(Z) nr) = 2“’16(9”772R)k 2“’@(9”772R)k
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Combining this with (5.9) and (5.10), we finally get

HE (conv(T N K (2)) N V) < HEH (U K™ | (z)n v)

1
36nn2 R
zeL

k+1( (1) L pVk+1
< ;H (K2 4 o(2) V) < (L)@ (36mn° R)

k
2 1 1
<3( > Wi (36n2 R = C(n, k)t RV
9nn2

where C(n, k) := 336 - wiy1 - 8* - n. O

Proposition 5.4 (Analog to Lemma 8.7 in [30]). Let xo,z1,...,2r C T be such
that the vectors v; := 5% i =1,...,k are almost orthogonal, i.e. that

| (vi, v5) — 5| < ex
foralli,j =1,...,k, where gj, :== min{lfl/Q(Qﬁ —1),k=2/4}. Furthermore,
let 18n77% < 1 and Ny denote the orthogonal projection of R™ onto the vector
space spanned by vy, ...,vi. Then
[No(y — x0)| < C(n. k) R
forallyeI'N K}(%n)(xo) with C(n, k) :== 1236 - w11 - 32% - n.

Proof. Let us translate the whole setting such that 2o = 0. Let y € I‘ﬂKI(%n) (x0)
with g := Np(y) # 0 and V be the vector space spanned by y and the vectors
V1,...,v,. Then there is a unit vector v+ with <vl,vi> =0foralli=1,...k

and vy,...,v; € R such that y = Zle viz; + pot. Let us consider the map

k+1
g1 Apir = {(An o Aepn) € (R 3TN < 1) — conv(T N KSR (0) NV
i=1
k
()\1, ey )\k‘+1) — Z NiTi + >\k+1y~
=1

Using y = Z?Zl viz; + po* the Jacobian determinant of the function g can be
shown to satisfy

det ((Dg)* o Dg)) = p* - det((zi, 25); iy )
= u2R% . det((vi,vj>i7j:1,m7k).

We set w; = ((vi,vs),...,{vk,v;))T and let eq,..., e, denote the standard
basis of R¥. Using the inequality of Hadamard and the multilinearity of the
determinant, we obtain

det((vi, v5); sy ) = det(wy, ... wg)

> det(eq,...,ex) — |det(ws,...,wg) — det(e,. .., ex)]

k
=1- |Zdet(el,...,ei,1,wi — ei,le,...,wk)\
i=1

k
> 1 — (sup{1,|w1],. .., [wg|})*! Z |w; — e;].
=0
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Combining this with |w; — ¢;] < Vk e and |w;| <1+ Ve, we get

o 11
det({vi,vy); oy, ) = 1= L+ VRe) e > 1-2. 2 = 2.

Thus,
1
det(Dg* o Dg) > §u2R2k.

This implies that the function g is a diffeomorphism onto its image. Using
Lemma 5.3 and the area formula, we hence get

C(n, k)n? 2R)* > H* ! (conv(I N KW (20)) N V) > HF (Im(g))

k+1
1 1
:/ \/det(Dg* ODg)de+1 Z §[LRka+1(Ak+1) = (2) [JJRk
JAVHIE}

with C(n, k) := 3 - 36 wi+18n and thus p < 12 - 36 wy41325nn2 R. O

The next lemma will be used to prove the existence of points xg,...,xx
satisfying the assumptions of Proposition 5.4. Let

5(53, R) = inf max sup M

o T |N — No|dH*
0€Gn n—k yeFngl)(w) Fngz)(I)

(5.11)
Note that (5.2) and (5.11) imply 6(R) = sup,cr 6(z, R) and 6(z, R) < §(R) < 4.

Lemma 5.5. LetT' C R” be a k-dimensional chord-arc submanifold with n(T") <
%,xEF, and R > 0.

1. If §(R) < then

1
105-176% 7
To r(CNKG(2) D To r(K 50 myyn(@)

for all Tm_’R € ‘ixﬂ.

2. If 5(R) < 1g5s=gr and No € Gy i, with

and (3(R) + 1) < 155557 then
(TN KR (@) D To(K{ ) p(@))
where Ty := idgn — Ng.

Proof. The proof relies on degree theory combined with calculations that are
similar to those used in the proof of Theorem 3.1.

We consider the map f1 := Ty Rl 0, From (5.4), (5.5), and (5.11) we
. ’ r (z)

ge

(To.n(00@C O K @) 0 (Ton(BE 50y (@) = 0. (5.12)
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We will show, that there is a point wq € TI,R(B((;LL;(I ryr(®)) with

deg(f, T N K™ (2),wo) = 1 + 2.

From the properties of the degree and (5.12) we then get the conclusion of this
lemma. B ~
Let y#£2z€l'n KI(%") (z) and Ny |._y € Ny |.—y- We see that

Vo2 = 9)| < [Nyomai (2 = 9)| + | (Bgost = Norm) (2 = )|

< (5(R) + HNy,‘z_m —~ N:c,RH) |2 —y|

and
[t = ]
</ |94 = Nl + IN — Vol
k(™ () ek ()
|lz—y|<2R -
< O(R) + Man (N = Noyr)) (),

We are looking for a yo € I'N Kg) (x) with
2

Mar (N = Nor) ) (90) <
since for such a point we would get
X 1 n
|Nor(z = y0)| < 512 = wol V2 €T NER () (5.13)

if we combine the last two inequalities
Using the Hardy-Littlewood maximal theorem (cf. Lemma 2.3) and the fact
that H*|T has the doubling property we see that

Hk ({y c FHK%")(:E) - Man ((N— Nz,R)) (y) > i})

< HF ({y €T : Mag ((N - Nz,R)X;(%ﬂé(@) (y) > i}) (5.14)

g4-27-23k/ IN — N, gl dHE.
k() (@)
2

Here x ;.cm) (@) denotes the characteristic function of the set K(;g(a:) To estimate
SR 2

the last integral, let us choose a maximal subset L C I'N Kg}%(z) with the
2
property that u # v € L implies |u — v| > %R. From the maximality of the set
we get U, K(En)(z) > Kgg(x) NT'. Since the balls Bg’g(z), z € L are pairwise
2 2 4

disjoint and n < %, we get

HH(T N BY(2) (1)

2 (n)
=y Y2 s e B
SHHONBIGR) T w(3R) 4R (5.15)
(1.3)
2B (1) < 3118
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and we see that
/ IN = Ny plldHF < Z/ IN = N, gldnt.  (5.16)
FmK%"};(m) L mK(%";(z)

For 2z € FﬂKgg(x) there is a curve ¢ : [0,{] — T parametrized by the arc-length
2

joining z and z, i.e. with ¢(0) = z and ¢(l) = z, and with | < (1+7)-3R < 4R.

We set 7; 1= é -ifori=0,...,8. For Nc(n)g €M

(), 3 We gef

sl + N, 5 — Ko gl

e(riz1),

8
IN = Nl < IN = N, g+ 3 1N 2 — N
=1

8

< HN - Nz,%H + Z (”Nc(n),% - C(‘I’i_l),RH + ”NC(Ti—l)-,R - Nc(n,l),%”)
=1

|

For v,u € I" with Kg) (v) C KI(;) (u) we have

1Nog = Nurl <f IS,
FI"WK%' (v)

K% (v)CKRr(u)
< I(R) +

+ HN;mg - NJ%R

vl

— N||H* + IN = Ny glH"
k) (v) '

HF rnE™ @ -
COF D [N = Nl
HE(T N Ky (v)) JTnES (u)

1+n

<
<o(R) +

255(R) < (1+3-2%)-6(R),
and we obtain, since [c¢(7(i)) — ¢(7(i — 1))| < iR,
IN = Nogl <IN = N_gl+17-(143-2)-6(R).  (517)
Combining the inequalities (5.14) — (5.17) one gets
e ({ye TN K@) Man (N = Nor)) () > 4
HEE N K (2))

'S

}) <10°-176%§(R) < 1.

So we can find ayp € I'N K(E")(:c) such that

- 1
— e < —
“mm ((N NL,R)) (Z/o)‘ <7
and we have by (5.13)
]' n
IN(z = y0)| < 51z~ wol VzeTNKW (z) (5.18)
and
oo =, -
K oy (5.19)

< ‘93721% ((N - Nz,R)) (l/o)‘ < i
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From (5.18) and (5.19) one can now deduce that deg(f1, I'YWKI(%H)(:I:)7 wp) = 1427
for wp := f1(yo) and so we the first part of the lemma is shown.

To prove the second part, we set fy := To\m K () and translate R™ such
that we can assume x = 0. Arguing as above, it is enough to find a point
wg € TO(B((QM)R(O)) with deg(f2,T'N Kg)(()),u)o) =1+ 27Z since

To(Ar (T N K (0)) N To(B ) (0) = 0.

First we estimate ||[Ny — NO,RH. Let €1,...,€; be an orthonormal basis of
Im(Tp,r). Using the first part, we can find vy,...,vp € T'N KI(%")(O) with
TOA,R(Ui) = (1 — (S(RDRél If we fix w; = m]ﬂo(vi), we get

_ m ‘To(vi) — To.r(v:)

< 2 [Nown) — Non(wi)

2 -
< = (‘NO,R('Ui)

+ [No(v:)]) < 2(8(R) + )

for i =1,...k. Let A, B : R¥ — R" be the linear mappings represented by the

matrices (wy,...,wg) and (e1,...,ex). Then we get
|A - BI| < 2k(5(R) + ) < —— < 1.
12-8
Hence, the vectors wq,...,wy are linearly independent since otherwise there

would be a vector u € S¥~! with
A(u) =0
and thus
[A—= Bl = [(A—B)(u)| 2 |B(u)| — |A(u)| = 1.
Hence, we can apply the normal equations (cf. [33, p. 235-237])
To=Ao(A* 0 A) 1o A*

and }
Tor=Bo(B"o B)_1 o B*

and we can estimate
|70~ Tl <14 - BI (a7 0 )7 | 147

+ 1Bl ||(a* 0 )7 = (B* o B) | 14711 + 18Il || (B 0 B) ' | 147 - B
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Combining this with

1B =1,
|A*[| = |All < [|B] + |4 — Bl <2,

1
id, — A Al < 5k(6 < —
lidi — A*All < 5K(3(R) + 1) < 5.

’< 1 <2,
ST Jlider — Ao A] =

H(A* oAy~ (B*o B)—1H - H(A* 0 A)! —idgs

e

< H(A* oA>—1H Nlidzs — A% 0 Al < 10k - (5(R) + 1) < 5

we get

HTO _ TO’RH < (5.20)

1
5
In the proof of the first part we have shown that there is a yg € I'N KI(%”/Z (0) C

K (0) with ‘zmm ((N - NQR)) (yo)‘ < 1 and that this implies

- 1
[Nor(z=w0)| < 512wl ¥z eTNKF ()

and || N(yo) — No,r|| < ;. Combined with (5.20) this leads to

. - 7
[No(z = 90)| < | (No = No) (2 = 90)| + |No.r(z = 0)| < 12— ol
for all z € K;-:) (0) and
. . 3
IN (o) = Noll < ¥ (y0) = No.ll + || No = No.g|| < .
From these estimates and setting wo := To(yo) we get deg(fa, FﬁKI(?‘n)(O)7 wg) =
1+ 27Z. [
Let us now show that in fact
5(R) < Cn?
if §(R) and 7 are small enough.

Lemma 5.6. There is an ¢ = e(n,k) > 0 and a constant C = C(n, k) < oo

such that for every k-dimensional chord-arc submanifold I' C R™ of dimension
k, then n,6(R) < e implies 6(R) < C(n, k)nz.

Proof. Let x € T, R > 0, Tm’R S fLR, and let eq,...,er be an orthonormal

basis of Im(Tm’R). Lemma 5.5 shows that there are xq1,...,2p € I'N KI({L)(I)
such that T, g(z; — ) = (1 — §(R))Re;. We get

T, —T Tj—T
_61"
o) -

< ‘1;2 ( <T:1:,R(xi — @), Ty,r(z; — $)>

+ <1\7:,;,R($i — @), No.r(z; — x)>> = 0ij

<26(R)* < ey
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if 6(R) is small enough and e := min {%, 4k1§ } is as in Proposition 5.4.

By Proposition 5.4 there is an Ny € G, ,,—i such that [No(y — x)| < CU%R for
alyel'n Kgl)(x). So it remains to prove that

][ IN = No|ldH* < Cnz.
K (z)

Let us translate and rotate the whole picture in such a way that we get x = 0
and Im(7p) = R* x {0}. By Lemma 5.5

Ty n K (0) > KW 20 % {0}

(1-Cn2
Defining
— (n) (k) n—k (n)
X = (F NKY (0)) N (K(l_cn;)R(o) x R ) SraK® 0
we get

HE ((r N K (0)) - X) = H* (r K (0)) — M (X)

(1) . (5.21)
3 1 1
< (1 +n)wrpRY — (1 —n)wy, ((1 — Cnf)R) < CnzR*
if 7 is small enough since the function ¢ — 1+ &2 — (1 — €2)(1 — C&)* is 0 at
& = 0 and differentiable at this point.

Let J(y) be the Jacobian determinant of F' := Tp|p, i.e.

J(y) = /det(DF*(y) o DF (y)).
Using the area formula and the fact that by Lemma 5.5
Ty (y)n X #0

for all y € K((f)_Cn%)R(O) x {0} we get

[waw=[ (T () 1 X)dHE ()
X K(l—c\/T;)R(O)X{O} (522)

> wi((1 = Cn2)R)".
Now, we show that

W) - Tl

o (5.23)

J(y) <1
In order to prove (5.23) we first deduce
det(DF*(y) o DF(y)) = det(idgn — Tp o N(y) o Tp).
This is true because DF(y) = Ty|r,r, DF*(y) = T(y) o Ty and thus

det(DF*(y) o DF(y)) = det(T(y) o To|z,r) = det(T(y) o Ty o T(y) + N(y)).

29



Furthermore, we have used

T(y)oTooT(y)+ N(y) = T(y) o (idgn — No) o T(y) + N(y)
=T(y) + N(y) —T(y) o No o T(y) = idgn — T(y) o No o T'(y).

Since idgr — T(y) o Ng o T(y) is a symmetric matrix, the inequality between
arithmetic and geometric mean leads to

J2(y) = det(idgn — T(y) o No o T(y)) < (trace(idw —T(y)oNoo T(y)))" .

Now,
trace(T (y) o Ng o T(y)) = trace(T(y) — T(y) o Tp) = k — trace(T (y)Tp)

= £ trace ((T(y) ~ T0)°) > 1T () ~ o

yields

s < (1- WY o (MW =Ry 70 =T,

w3

Thus (5.23) is proven. Combining (5.23) with (5.22), we get

/X IT W) - Tol2dH*(y) < 4n /X 1 J(y)dH ()
< 4 (HH(X) = we((1 - Cn¥)R)")

<4n ((1 + n)kak —wi((1— Cn%)R)k) < Cn%Rk,

and thus [, [|N(y) — No|[>dH*(y) < Cnz RF. Using (5.21) we finally get

][ |N — Nol|ldH* 3][ |N — Nol|2dH*
K (0) K (0)

1
— AHF (T N KM (0) - X) +/ IN — No|2dH*
HHT N K (0) ( : x ’
(G21)
< Cn?

O

Lemma 5.7. Let 0 < ¢ < %, a:= Y1+e < 2 and assume that 5(R),n < ¢.
Then §(aR) < 17e.
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Proof. For R <r < aR and z € I we calculate

b N = N
k(™ (z)

1
AT N K™ (2))

/ IN = N lar+ IV = N, glldH*
CnE™ (2))-K 5 (2) K (z)

: (n) (n) ; (n)
- 2Hk((l“ NK"(x)) — K’ (z)) N HMT N KR (x) ][ IV — K, plldrt
HA( N K™ (@) HA(D 0K () Jros @)
(1 +n)(aR)* — (1 —n)R*

<2

= (L= RF +O(R) <4 (a* — 1+ (a" + 1)) + 6(R) < 17e.

Now let y € K™ (2)NT. If y € KI(%”)(J:), then we get

Nenly )| < S(R)R.

Ify¢ KJ({") (x), there is a curve ¢ : [0,{] — I parametrized by arc-length, with
c(0) =z, c(l) =yand ! < (1+4n)r and thereis a ty € [R, 1] with c(to) € 3Kg") (x).
We get

ld

B
=y

(y — )| < [Npr(c(l) = c(to))] + |Na, r(c(to) — ¢(0))]
< le(l) — e(to)] + S(R)R < (I — to) + S(R)R
<(A+4nr—R+6RR=r—R+5RR+nr
= (“; ! +5(R)+n)ra§1 (a—1+8(R) +n)r
< 3er

O

Proof of the second part of Theorem 1.1. Let 0 < £ := e(n, k) < % be so small
that the conclusions of Lemma 5.6 and Lemma 5.7 hold and let C' = C(n, k) be
the constant from Lemma 5.6. Let us now consider a k-dimensional chord-arc
submanifold with Cn2 < £.

Since chord-arc submanifolds are C! and since Lemma 2.7 holds, there is an
Ry > 0 such that §(Ry) < 5. Applying Lemma 5.7, we get d(alRy) < € for
a:= {/1+ = and hence Lemma 5.6 implies

) <COnt <=

(CLRo) < CT}Z =717

Repeating this procedure, we get inductively d(a'Ro) < Cnz. for all [ € N and
hence § < Cn2. By (5.3) we finally get v < 5Cnz. O
A Appendix

Let us state without proof the following simple facts about graphs of Lipschitz
functions over some T' € G, 1.

31



Lemma A.1. Let T € G, and N :=idpn — T

1. A set A C R"™ is contained in the graph of a Lipschitz function g over T
with Lipschitz constant smaller or equal to X if and only if

Nz -yl <AT(z—-y)l, Va,yecA

2. If A C R™ is such that there is a constant X € [0,1) with
|N($—y)|§)\|.’lﬁ—y|, V$,y€A7

then A is contained in the graph of a Lipschitz function over T with a
Lipschitz constant less or equal to ﬁ If we assume that A < %, the
set A is thus contained in the graph of a Lipschitz function over T with a

Lipschitz constant less or equal to 2\.

3. If A CR" is contained in the graph of a Lipschitz function g over T' with
a Lipschitz constant smaller or equal to A\, T' € G,, 1, and

AT -T| <1,

then A is contained in the graph of a Lipschitz function § over T with
A T=T

i 1= OHIT=T])

AT -T| < %, the set A is thus contained in the graph of a Lipschitz

function over T with a Lipschitz constant less or equal to 2\ + 2||T — T

a Lipschitz constant smaller or equal to If we assume that
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