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We prove the existence of a drag minimizing shape of a rigid body with
a prescribed volume that is fully submerged in an incompressible fluid via
the direct method of the calculus of variations. The result has already been
obtained by Berselli and Guasoni in [1] but we investigate the problem from
a slightly different angle. Guasoni and Berselli first discussed the Burgers
equation and then added the incompressibility of the fluid, obtaining an
optimal shape for the Navier-Stokes equations. In this paper we start
with an incompressible fluid but in the first step we discuss the linear
Stokes equation and extend this result to the case of the Navier-Stokes
equations. Furthermore we only consider bodies that have a Lipschitz-
boundary instead of more general classes that have been discussed in [1].
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1 Introduction and notation

1.1 Functionspaces

Before we start to formulate the problem, we give a short overview of the required
functionspaces. Furthermore we present the notations used throughout the paper. For
a set A ⊂ RN we denote by C∞0 (A) all functions v : A → R, which are infinitly
differentiable and which have compact support in A. We distinguish between spaces
containing scalar functions and spaces that contain vector valued functions by printing
the latter in bold symbols. That means

C∞0 (A) = {C∞0 (A)}N .

In addition to that we introduce

C∞0,σ(A) := {v ∈ C∞0 (A); div v = 0} .

Analogously we have

Lp(A) = {Lp(A)}N ,

H1,2(A) =
{
H1,2(A)

}N
,

H1,2
0 (A) =

{
H1,2

0 (A)
}N

.

For functions u,v ∈H1,2(A) we denote the scalar product in the following way:

(u,v)H1,2 =
∫
A

u.v dx+
∫
A

D(u) :D(v) dx

=
∫
A

uivi dx+
∫
A

∂iuj∂ivj dx

With the usual convention that we sum over all indices, that appear twice in a single
term. We recall the fact that for a bounded domain A and for functions u,v ∈
H1,2

0 (A) Poincaré’s inequality holds. Therefore it suffices to take the second term as
an equivalent scalar product. Finally we introduce

H1,2
0,σ(A) :=

{
v ∈H1,2

0 (A); div v = 0
}
.

Note that for A being a Lipschitz set, it is true that H1,2
0,σ(A) is the closure of C∞0,σ(A)

in the strong topology of H1,2. For a proof of this identity look at [4](Theorem 1.6).
This is one of the reasons why we choose all sets in this paper to be at least Lipschitz.
In the first part of the paper we work in any space dimension N , while in the second
part we restrict ourselves to the dimension N = 3.
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Figure 1: The body K immersed in the fluid

1.2 Formulation of the problem

We consider a bodyK immersed in an incompressible fluid. In order to avoid difficulties
with unbounded domains, let the fluid be contained in a bounded domain D ⊂ RN ,
with smooth boundary. We assume that the body K ⊂ D is a compact set and that
its boundary is lipschitz. Since D is an open set, we find that Ω := D \K is open as
well. To emphasize the main ideas we will restrict ourselves to a situation where the
velocity field u of the fluid is obtained as the solution of the Stokes equations. If we
prescribe a constant velocity u∞ on the boundary of D and neglect external forces,
the velocity field of the fluid can be found as the solution of the following system.

(1)


−ν∆u+∇p = 0 in Ω

divu = 0 in Ω
u = u∞ on ∂D
u = 0 on ∂K

In this formulation the scalar function p is the pressure, the constant ν > 0 is the
viscosity and, as mentioned before, the vector u is the velocity. The first equation
−ν∆u+∇p = 0 has to be understood for each component of the velocity.

1.3 Drag functional

Consider the Tensor T , defined as

Tij = −pδij + 2νεij ,

with εij = 1
2 (∂iuj + ∂jui). Then the Stokes system

−ν∆u+∇p = 0,(2)

for an incompressible fluid, can be written as divT = 0, because
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div Tj = ∂iTij = ∂i (−pδij + ν (∂iuj + ∂jui))
= (−∇p)j + ν∂iiuj + ν∂ijui

= (−∇p)j + ν∆uj + ∂j divu

= (−∇p)j + ν∆uj ,

since divu = 0. This holds for each component j and therefore

divT = −∇p+ ν∆u.

Now one can consider two functionals. The first one is the energy, dissipated by the
fluid

J(u) = ν

∫
Ω

|ε(u)|2 dx,(3)

and the second one is the drag of the body K

F (u) = −
∫
∂K

Tn.u∞ ds,(4)

where n denotes the outward normal unit vector of K, which exists HN−1 almost
everywhere since K is a Lipschitz set. In our setting the functionals differ only by a
factor 2, because there are no external forces. If we have external forces additional
terms arise. See Remark (3.3) for details. This is stated in the following lemma.

1.1 Lemma. For F and J , defined as obove, the following identity holds:

2 · J(u)− F (u) =
∫
∂Ω

Tn.u∞ ds

Proof. The Proof is a basic calculation. First we look at the functional J .

2 · J(u) = 2 · ν
∫

Ω

1
4

(∂iuj + ∂jui)
2
dx

=
ν

2

∫
Ω

(∂iuj + ∂jui) (∂iuj + ∂jui) dx

=
ν

2

∫
Ω

2 · (∂iuj∂iuj + ∂iuj∂jui) dx

= ν

∫
Ω

∂iuj∂iuj dx+ ν

∫
Ω

∂iuj∂jui dx

Using integration by parts, the incompressibility of the fluid and the fact that u solves
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the Stokes equation on Ω, we obtain for the first expression on the right hand side

ν

∫
Ω

∂iuj∂iuj dx = ν

∫
∂Ω

∂iujniuj ds− ν
∫

Ω

∂iiuj · uj dx

= ν

∫
∂D

∂iujniu
∞
j ds− ν

∫
Ω

∆u.u dx

= ν

∫
∂D

∂iujniu
∞
j ds−

∫
Ω

∇p.u dx

= ν

∫
∂D

∂iujniu
∞
j ds−

∫
Ω

∂jp · uj dx

= ν

∫
∂D

∂iujniu
∞
j ds−

∫
∂Ω

pnjuj ds+
∫

Ω

p divu dx

= ν

∫
∂D

∂iujniu
∞
j ds−

∫
∂D

pnju
∞
j ds.

For the second term we get in an analogous way

ν

∫
Ω

∂iuj∂jui dx = ν

∫
∂D

∂juiniu
∞
j ds.

Taking both identities together we obtain

2 · J(u) = ν

∫
∂D

∂iujniu
∞
j ds−

∫
∂D

pnju
∞
j ds+ ν

∫
∂D

∂juiniu
∞
j ds

= −
∫
∂D

p (n.u∞) ds+ 2 · ν
∫
∂D

εijniu
∞
j ds

=
∫
∂D

Tn.u∞ ds

On the other hand we find that

F (u) = −
∫
∂K

Tn.u∞ ds

= −
∫
∂Ω

Tn.u∞ ds+
∫
∂D

Tn.u∞ ds,

which completes the proof.

Now we take a closer look at the right hand side of the lemma. Integrating by parts,
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we obtain ∫
∂Ω

Tn.u∞ ds =
∫
∂Ω

Tijniu
∞
j ds

=
∫

Ω

(∂iTij)u∞j dx

=
∫

Ω

(divT ) .u∞ dx

= 0,

since divT = 0 is the Stokes system, as mentioned in the beginning.

1.4 Considered shapes and convergence of domains

If we denote by C a class of admissible domains e.g. all compact subsets of D, our aim
is to find a K∗ ∈ C such that

J(K∗) = inf {J(K); K ⊂ C} .(5)

To prove the existence of such a K∗ we follow the classical variational approach. We
take a minimizing sequence (Kn)n≥1 ⊂ C, that means

lim
n→∞

J(Kn) = inf {J(K); K ⊂ C} .

Now we have to find a topology, such thatKn converges in some sense to aK∗ ∈ C. The
most interesting question, that arises, is whether solutions un of the Stokes equations
on Ωn = D \ Kn converge in any sense to a function u and whether this function
u solves the Stokes equation on Ω = D \ K∗. Finally we have to ensure that the
functional J is lower semicontinous with respect to this convergence. First of all we
introduce the complementary Hausdorff topology.

1.2 Definition (Hausdorff distance). Let D ⊂ RN be a bounded domain and K,L ⊂ D
compact sets. We set

d(x,K) := inf
y∈K

|x− y| , for every x ∈ D

ρ(K,L) := sup
x∈K

d(x, L).

Then the Hausdorff distance between K and L is defined as

dH(K,L) := max {ρ(K,L), ρ(L,K)} .(6)

Now we introduce the Hausdorff convergence for open subsets of a bounded reference
domain D.

1.3 Definition (Hausdorff convergence). Let D ⊂ RN be a bounded domain and
(Ωn)n≥1 and Ω be open subsets of D. Then D \ Ωn and D \ Ω are compact subsets of

D. We say that Ωn converges to Ω in the sense of Hausdorff, and write Ωn
Hc−−→ Ω, if

dH(D \ Ωn, D \ Ω) −−−−→
n→∞

0.
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The next theorem gives the desired compactness result for the complementary Haus-
dorff topology. Look at [3](Theorem 2.2.23) for a proof.

1.4 Theorem. Let Kn be a sequence of compact sets, that are contained in a domain
D. Then there exists a compact set K ⊂ D and a subsequence Knk that converges to
K in the sense of Hausdorff, if k →∞.

In order to obtain the convergence of the solutions, discussed in the next parapgraph,
we have to constrain the class of admissible bodies to compact sets with Lipschitz
boundary. Furthermore we can not deal with bodies that touch the boundary of D,
so we consider the following class of admissible shapes:

Cδ,γ(D) := {K ⊂ D; K is compact, K has Lipschitz boundary,
dist(K, ∂D) ≥ δ, |K| = γ}

Now we say that a domain Ω is of the class Cδ,γ(D) if we can write Ω = D \ K for
a K ∈ Cδ,γ(D). Since K has a Lipschitz boundary, Ω = D \K satisfies the so called
ε−cone property. Therefore we can apply Theorem 2.4.10 in [3] to our class of domains
and obtain the following result.

1.5 Theorem. Let Ωn be a sequence of sets of the class Cδ,γ(D). Then there exists
an open set Ω of the class Cδ,γ(D) and a subsequence Ωnk , which converges to Ω in the
sense of Hausdorff, in the sense of characteristic functions and in the sense of compact
sets.

The convergence in the sense of characteristic functions means, that the functions χΩn

converge to χΩ, strongly in L1(D) (and therefore in Lp(D) for all p > 1). Therefore
the volume constrain of the class Cδ,γ(D) will be preserved. We say that Ωn converges

to Ω in the sense of compact sets, and note Ωn
K−→ Ω, if the following two conditions

are fulfilled.

i) ∀M compact ⊂ Ω, we have M ⊂ Ωn for sufficiently large n

ii) ∀N compact ⊂ Ω
c
, we have N ⊂ Ω

c

n for sufficiently large n

Especially the convergence in the sense of compact sets combined with the already
mentioned fact, that H1,2

0,σ(A) is the closure of C∞0,σ(A) in the strong topology for all
Lipschitz sets A, will be needed to obtain the main result of the next paragraph.
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Figure 2: Distance of K to the boundary

2 Convergence of the solutions

From now on we denote by Kn and accordingly Ωn a minimizing sequence in the class
Cδ,γ(D). We can solve the Stokes equations (1) for each n ∈ N. The question that
arises is, whether these solutions converge to the solution of the domain Ω. In a first
step we will reduce the problem to a problem with Dirichlet boundary conditions. In
order to do so, we introduce the following function ϕ, using the fact that the distance
from all bodies Kn to ∂D is at least δ. Let

Dδ := {x ∈ D; dist(x, ∂D) ≥ δ} ,

and take ϕ ∈H1,2(D), satisfying

(7)

 divϕ = 0 in D
ϕ = u∞ on ∂D
ϕ = 0 on Dδ.

Since ϕ ∈ H1,2(D), it is clear that ∆ϕ ∈ H−1(D) for each component. Furthermore
ϕ vanishes on Kn for every n ∈ N and therfore ∆ϕ ∈ H−1(Ωn). Now we solve for
every n ∈ N the following Stokes system.

2.1 Lemma. For each n ∈ N and Ωn ∈ Cδ,γ(D) and ϕ satisfying (7) there exists a
unique weak solution of the system

(8)

 −ν∆vn +∇p = ν∆ϕ in Ωn
div vn = 0 in Ωn

vn = 0 on ∂Ωn.

For a proof look, for instance at [4] (Chapter I, §2, Theorem 2.1). The weak formulation
means, that there exists one unique function vn ∈H1,2

0,σ(Ωn), such that∫
Ωn

D(vn) :D(w) dx = −
∫

Ωn

D(ϕ) :D(w) dx
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holds for every function w ∈H1,2
0,σ(Ωn). Since every w ∈H1,2

0,σ(Ωn) vanishes in D\Ωn,
we can rewrite this equation to∫

D

D(vn) :D(w) dx = −
∫
D

D(ϕ) :D(w) dx.(9)

The next step is to obtain an a-priori estimate for the solutions vn.

2.2 Lemma. There exists a positive constant c, which depends only on ϕ, such that
for vn satisfying (9), the estimate

‖vn‖H1,2
0 (D) ≤ c(ϕ)(10)

holds for every n ∈ N.

Proof. Since vn ∈H1,2
0,σ(Ωn) we choose w = vn in (9) and obtain∫
D

D(vn) :D(vn) dx = −
∫
D

D(ϕ) :D(vn) dx.

First we look at the left side of this equation. Since vn ∈H1,2
0 (D) and D is a bounded

domain Poincaré’s inequality holds. Therefore we have

‖vn‖2H1,2
0 (D) =

∫
D

(
∂iv

j
n

)2
dx

=
∫
D

D(vn) :D(vn) dx.

On the other hand we have, by Cauchy-Schwarz’s inequality,

−
∫
D

D(ϕ) :D(vn) dx ≤

√∫
D

(
∂iv

j
n

)2

dx ·

√∫
D

(∂iϕj)
2
dx

= ‖vn‖H1,2
0 (D) ·

(∫
D

D(ϕ) :D(ϕ) dx
) 1

2

.

Choosing c =
(∫
D
D(ϕ) :D(ϕ) dx

) 1
2 we obtain the estimate.

The lemma above shows that the sequence vn of solutions is bounded in H1,2
0 (D).

Thus we find an element v ∈H1,2
0 (D) and a subsequence, again denoted by vn, such

that vn ⇀ v in H1,2
0 (D). The essential question is, whether this v is a weak solution

of the Stokes system for the domain Ω.

2.3 Theorem. Let vn ∈ H1,2
0,σ(Ωn) be solutions of (9) for each n ∈ N. Assume that

Ωn
Hc−−→ Ω in the sense of Hausdorff and that vn ⇀ v in H1,2

0 (D) for n → ∞. Then
v ∈H1,2

0,σ(Ω) and it is a weak solution of the Stokes system in Ω.
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Proof. At first we show that v ∈H1,2
0,σ(Ω). For every n ∈ N we have

div vn = 0.

Therefore it is clear, that

div v = 0

because vn converges weakly to v. Furthermore we know that

vn −−−−→
n→∞

v

strongly in Lq(D) for every q ∈ [1, 2N
N−2 ). Since Ωn and Ω are of class Cδ,γ(D) and we

have

Ωn
Hc−−→ Ω,

we can assume that we have convergence in the sense of characteristic functions and
convergence in the sense of compact sets aswell (compare with Theorem (1.5)). That
means that we have

χΩn → χΩ

in Lp(D) for every p ∈ [1,∞). Together with the strong convergence of vn to v in
Lq that implies v = 0 almost everywhere in D \ Ω. Thus we have v ∈ H1,2

0,σ(Ω). It
remains to show that ∫

D

D(v) :D(w) dx = −
∫
D

D(ϕ) :D(w) dx

for everyw ∈H1,2
0,σ(Ω). The crucial point and the main reason why we have to consider

only Lipschitz sets is that every testfunction w ∈ H1,2
0,σ(Ω) is contained in H1,2

0,σ(Ωn)
for n larger than a certain n0(w). This is a consequence of the convergence in the
sense of compact sets. Consider

ψ ∈ C∞0,σ(Ω).

Then there exists a compact set M ⊂ Ω such that

supp(ψ) ⊂M.

Now we have M ⊂ Ωn for n large enough and therfore

ψ ∈ C∞0,σ(Ωn)

for n large enough. The assertion now follows because C∞0,σ(Ω) is dense in H1,2
0,σ(Ω)

since Ω has Lipschitz boundary. Now let w ∈H1,2
0,σ(Ω). Then we have∫

D

D(v) :D(w) dx =
∫
D

D(v − vn) :D(w) dx+
∫
D

D(vn) :D(w) dx
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The first term on the right side tends to zero for n → ∞, while the second term is
equal to

−
∫
D

D(ϕ) :D(w) dx,

since w ∈ H1,2
0,σ(Ωn) for n large enough. Hence v is a weak solution of the Stokes

system on Ω.

There are larger classes of domains for which it remains true that every compact subset
of the domain Ω is contained in Ωn for n sufficiently large. Unfortunately it is not
known whether the identity

H1,2
0,σ(Ω) = C∞0 (D)

‖·‖H1,2

holds for these classes.
To obtain the main result of this paragraph, we finally define for every n ∈ N the
function

un := vn +ϕ,

where vn are the weak solutions from Theorem (2.3). Obviously un ∈ H1,2(D) and
has the same boundary values as ϕ. In particular un = 0 on Kn for every n because
ϕ = 0 on Dδ and vn ∈ H1,2

0,σ(Ωn). Since vn ⇀ v and ϕ does not depend on n, we
have

un ⇀ u, in H1,2(D),

with u = v +ϕ. Now we compute:

−ν∆un +∇p = −ν∆vn − ν∆ϕ+∇p = 0 in Ωn
divun = div vn + divϕ = 0 in Ωn

The same computation holds for u and Ω. Thus we proved the following Theorem.

2.4 Theorem. Let Ωn,Ω be of class Cδ,γ(D), such that Ωn
Hc−−→ Ω and un ∈H1,2(D)

be the weak solutions of the system

(11)


−ν∆un +∇p = 0 in Ωn

divun = 0 in Ωn
un = u∞ on ∂D
un = 0 on Kn.

Then un converges weakly to a function u ∈ H1,2(D) which solves the analogues
system on Ω.
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2.5 Remark. The solutions un do not depend on the choice of ϕ. Let ϕ1,ϕ2 satisfy
(7) and let v1,v2 be the weak solutions of

(12)

 −ν∆vi +∇pi = ν∆ϕi in Ω
div vi = 0 in Ω

vi = 0 on ∂Ω.

Then we have u1 = v1 +ϕ1, and u2 = v2 +ϕ2 and we know that

u1 − u2 ∈H1,2
0,σ(Ω),

Therefore we can choose w = u1 − u2 as a testfunction, to get

‖D(u1 − u2)‖2L2 =
∫

Ω

D(u1 − u2) : D(u1 − u2) dx

=
∫

Ω

D(v1 +ϕ1 − v2 −ϕ2) : D(u1 − u2) dx

=
∫

Ω

D(v1 +ϕ1) : D(w) dx+
∫

Ω

D(v2 +ϕ2) : D(w) dx

= 0.

This means that we have ‖u1 − u2‖2H1,2
0

= 0 and therefore u1 = u2.
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3 Lower Semicontinuity

The last condition we need to prove, to gain the existence of an optimal shape, is the
lower semicontinuity of the functional J . Since the solutions un vanish on Kn = D\Ωn
and u is equal to zero on K, we can write

J(un) =
∫

Ωn

|ε(un)|2 dx =
∫
D

|ε(un)|2 dx.

Now it suffices to show that the inequality

∫
D

|ε(u)|2 dx ≤ lim inf
n→∞

∫
D

|ε(un)|2 dx

holds for every sequence un ∈ H1,2 (D), which converges weakly to u. We will show
this property in two steps. The key point is Korn’s inequality.

3.1 Lemma. The mapping

‖v‖J :=
(∫

D

|ε(v)|2 + |v|2 dx
) 1

2

is an equivalent norm for the space H1,2(D).

Proof. We have to find two positive constants c1 and c2, such that the inequalities

‖v‖J ≤ c1 ‖v‖H1,2 ≤ c2 ‖v‖J

hold for every v ∈ H1,2(D). The first inequality is a simple calculation. Take v ∈
H1,2(D) and look at

‖v‖2J =
∫
D

|ε(v)|2 dx+
∫
D

|v|2 dx

=
∫
D

1
4

(∂ivj + ∂jvi)
2
dx+

∫
D

vivi dx

=
∫
D

1
4
[
(∂ivj)2 + (∂jvi)2 + 2(∂ivj)(∂jvi)

]
dx+

∫
D

vivi dx

≤
∫
D

1
2
[
(∂ivj)2 + (∂jvi)2

]
dx+

∫
D

vivi dx

=
∫
D

∂ivj∂ivj + vjvj dx

= ‖v‖2H1,2 .

Therefore the first inequality is valid for c1 = 1. The second inequality is called Korn’s
inequality and the constant c2 depends only on the reference domain D. For a proof
we refer to [2], Theorem (3.1).
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Since norms are weakly lower semicontinous the mapping ‖v‖2J is lower semicontinous
for the weak topology on H1,2(D). The lower semicontinuity of the functional J is
finally stated in the following lemma.

3.2 Lemma. The functional

J(v) =
∫
D

|ε(v)|2 dx

is lower semicontinous for the weak topology on H1,2(D).

Proof. We write

J(v) = ‖v‖2J − ‖v‖
2
L2(D) .

Now let vn be a sequence in H1,2(D), such that vn ⇀ v. Then the convergence is
strong in Lq(D) for all 1 ≤ q < 2N

N−2 . Therefore

lim inf
n→∞

‖vn‖2L2 = ‖v‖2L2 .

Finally we obtain

lim inf
n→∞

J(vn) = lim inf
n→∞

(
‖vn‖2J − ‖vn‖

2
L2

)
≥ lim inf

n→∞
‖vn‖2J − lim inf

n→∞
‖vn‖2L2

≥ ‖v‖2J − ‖v‖
2
L2

= J(v).

3.3 Remark. As we mentioned in the beginning we neglected external forces in our
equations. If we consider an external force f the Stokessystem (1) becomes

(13)


−ν∆u+∇p = f in Ω

divu = 0 in Ω
u = u∞ on ∂D
u = 0 on ∂K

Now the dissipated energy

J(u) = ν

∫
Ω

|ε(u)|2 dx

and the drag

F (u) = −
∫
∂K

Tn.u∞ ds

14



no longer coincide. Instead we find

F (u) = 2 · J(u) +
∫

Ω

f .(u∞ − u) dx.(14)

Since the external force f does not depend on n, the convergence of the solutions still
holds. In fact we had a right side in our equation anyway. Thus it is clear that∫

Ωn

f .(u∞ − un) dx→
∫

Ω

f .(u∞ − u) dx,

for n → ∞. And we immediately get the existence of an optimal shape for the func-
tional F as well as for the functional J .
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4 Extension to Navier-Stokes Flow

We can extend the result to the situation, where the velocity field u is obtained as the
solution of the Navier-Stokes equations instead of the Stokes equations. We restrict
ourselves to dimension N = 3 and proceed as in the case of the Stokes equation:
First we construct a weak solution for each admissible body using the existence and
uniqueness theorems of Temam [4]. After that we get an a-priori estimate for a minimal
sequence and finally we show that the obtained limit function in fact solves the Navier-
Stokes equations on the limit domain.

4.1 Weak solutions of the Non-homogeneous Navier-Stokes
Equations

The non-homogeneous Navier-Stokes Equations we want to solve, is

(15)


−ν∆u+ u.Du+∇p = f in Ω,

divu = 0 in Ω,
u = u∞ on ∂D,
u = 0 on ∂K,

where u.Du =
3∑
i=1

uiDiu. Multiplying this nonlinear term with a testfunction w, we

can introduce the following Trilinearform as Temam does. Notice, that in dimension
N = 3, we have H1,2

0,σ(Ω) = H1,2
0,σ(Ω) ∩ L3(Ω) because of the sobolev imbedding

theorem.

4.1 Definition (Trilinearform). For u,v and w ∈ H1,2
0,σ(Ω) the trilinearform b is

defined by

b(u,v,w) =
3∑

i,j=1

∫
Ω

ui(∂ivj)wj dx.(16)

We will need the following Lemma in the last section.

4.2 Lemma. For u,v,w ∈H1,2(Ω) we have∣∣∣∣∫
Ω

ui(∂ivj)wj dx
∣∣∣∣ ≤ |ui|L4(Ω) |∂ivj |L2(Ω) |wj |L4(Ω)

and therefore

|b(u,v,w)| ≤ ‖u‖L4 ‖v‖H1,2 ‖w‖L4 .

Proof. Use the Hölder-inequality∫
Ω

fgh dx ≤
(∫

Ω

fp dx

) 1
p

·
(∫

Ω

gq dx

) 1
q

·
(∫

Ω

hr dx

) 1
r

.

for 1
p + 1

q + 1
r = 1, with p = 4, q = 2, r = 4.
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4.3 Lemma. Since N = 3, we have for all u ∈H1,2
0,σ(Ω) and v ∈H1,2

0 (Ω),

b(u,v,v) = 0

and therefore if w ∈H1,2
0 (Ω) we have

b(u,v,w) = −b(u,w,v).

We use this form b to give the weak formulation of the corresponding homogeneous
system

(17)

 −ν∆u+ u.Du+∇p = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω.

Then the weak problem of (17) is to find v ∈H1,2
0,σ(Ω), so that

ν

∫
Ω

D(v) :D(w) dx+ b(v,v,w) =< f ,w >(18)

is satisfied for every w ∈H1,2
0,σ(Ω). Again we denote by Dδ the set

Dδ = {x ∈ D; dist(x, ∂D) ≥ δ} ,

for every δ > 0. The boundary of Dδ is as smooth as the boundary of D for δ
sufficiently small. We choose them to be at least C2. To consider non-homogeneous
boundary conditions, we introduce a function φ, similar to the one in (7). We want φ
to satisfy the following conditions:

i) φ|K = 0 for all K ∈ Cδ,γ(D)

ii) φ|∂D = u∞

iii) φ = rot ξ for some function ξ

iv) |b(v,φ,v)| ≤ δ ‖v‖2 for all v ∈H1,2
0,σ(D)

The first property is achieved by choosing φ ≡ 0 in Dδ. To satisfy ii) and iii) we may
take ϕ ∈ C∞(D), satisfying

(19)


∇ϕ = 0 on ∂D and ∂Dδ,
ϕ = 0 on Dδ,
ϕ = 1 on ∂D.

and the function a ∈ C∞(D), defined by

a =

−u∞3 y + u∞2 z
−u∞1 z

0

 ,

17



and set

ξ := a · ϕ ∈ C∞(D).

Then we set

φ := rot ξ = rot(a · ϕ)
= ϕ · rota+∇ϕ× a,

and see that the conditions i) - iii) are satisfied, since

rota ≡

u∞1u∞2
u∞3

 ≡ u∞.
The third condition implies

divφ = div(rot ξ) = 0

in D. The condition iv) is needed to get the uniqueness of a solution. It was shown in
[4], (Chapter II, §1, Lemma 1.8) that φ can be chosen in that way. The proof uses a
cut of function and to apply this Lemma is the only reason to choose ∂D and ∂Dδ to
be of class C2. We want to stress out, that φ only depends on the reference domain
D and on δ but not on Ω. This will be important because we can choose the same φ
for all domains Ωn of the minimizing sequence. Now in order to get a solution of the
non-homogenous equation we set

v := u− φ.

Then the following Lemma holds.

4.4 Lemma. Let φ be defined as above. Then finding u ∈H1,2(Ω) satisfying

ν

∫
Ω

D(u) :D(w) dx+ b(u,u,w) =< f ,w >

divu = 0 in Ω
u = φ on ∂Ω

for every w ∈H1,2
0,σ(Ω) is equivalent to finding v ∈H1,2

0,σ(Ω), satisfying

ν

∫
Ω

D(v) :D(w) dx+ b(v,v,w) + b(v,φ,w) + b(φ,v,w) =< f̂ ,w >(20)

for every w ∈H1,2
0,σ(Ω), where f̂ = f + ν∆φ− φ.Dφ.

18



Proof. The proof is a simple calculation. Before we start we remark, that if f ∈
H−1(D) then f̂ ∈H−1(D) aswell. Now we assume that we have a v, satisfying (20),
and set u := v+φ then it is clear, that u is in H1,2(D). Now we have v = u−φ and
we calculate

ν

∫
Ω

D(u− φ) :D(w) dx+ b(u− φ,u− φ,w) + b(u− φ,φ,w) + b(φ,u− φ,w)

= ν

∫
Ω

D(u) :D(w) dx− ν
∫

Ω

D(φ) :D(w) dx+ b(u,u,w)− b(φ,φ,w).

We know that this is equal to

< f̂ ,w > =< f ,w > +ν < ∆φ,w > −b(φ,φ,w)

=< f ,w > −ν
∫

Ω

D(φ) :D(w) dx− b(φ,φ,w).

Therefore we have

ν

∫
Ω

D(u) :D(w) dx−ν
∫

Ω

D(φ) :D(w) dx+ b(u,u,w)− b(φ,φ,w)

=< f ,w > −ν
∫

Ω

D(φ) :D(w) dx− b(φ,φ,w),

which is equivalent to

ν

∫
Ω

D(u) :D(w) dx+ b(u,u,w) =< f ,w > .

Now we state the existence and uniqueness theorem.

4.5 Theorem. Let Ω be of class Cδ,γ and let φ satisfy the conditions i) - iv). In
addition to that we choose ν sufficiently large, so that

ν2 > 4 · c(N)
∥∥∥f̂∥∥∥

H−1
,

where c(N) is the constant of

|b(u,v,w)| ≤ c(N) ‖u‖H1,2
0
‖v‖H1,2

0
‖w‖H1,2

0
.

Then there exists a unique solution v ∈H1,2
0,σ(Ω) and p ∈ L2(Ω), satisfying (20). And

hence we have a weak solution of

(21)

 −ν∆u+ u.Du+∇p = f in Ω,
divu = 0 in Ω,

u = φ on ∂Ω.

It is clear that p is only unique up to a constant. For a proof we refer to Theorem
(1.6) in [4](Ch.II, §1), where the statement was proved for all dimensions N ≤ 4. We
want to remark, that the right side f and respectively f̂ do not depend on Ω since φ
does not. This will be used in the next section.
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4.2 A-priori Estimate

In order to proof the existence of a minimizing set Ω of class Cδ,γ(D), we proceed
as in the case of the Stokes equation. That means we choose a minimizing sequence
(Ωn)n≥1 ⊂ Cδ,γ(D). Since all domains Ωn are contained in the bounded reference
set D, we can extract a subsequence, again denoted by Ωn, which converges to a set
Ω ∈ Cδ,γ(D) in the Hausdorff sense, in the sense of characteristic functions and in the
sense of compact sets, cf. section 1.4. From Theorem (4.5) we know that there exists
a weak solution un of (15) on each Ωn. In this section we want to get an a-priori
estimate for these solutions in H1,2(D), to extract a weakly converging subsequence.
We still have

vn := un − φ

for every n ∈ N. Therefore it is sufficient to find an a-priori estimate for vn. We know
that vn ∈ H1,2

0,σ(Ωn) ⊂ H1,2
0,σ(D) and that each vn solves (20) on Ωn for every n. We

choose the testfunction wn = vn and calculate as follows:

ν

∫
Ωn

D(vn) :D(vn) dx+ b(vn,vn,vn) + b(vn,φ,vn) + b(φ,vn,vn) =< f̂ ,vn >

Because of Lemma 4.3 the second term on the left side vanishes and therefore we
obtain

ν ‖vn‖2H1,2
0 (D) = ν

∫
D

D(vn) :D(vn) dx

= ν

∫
Ωn

D(vn) :D(vn) dx

=< f̂ ,vn > −b(vn,φ,vn)− b(φ,vn,vn).

Now we use the property iv) of the function φ and the fact that this property implies
that ‖φ‖L4 is small, to get for sufficiently small δ

< f̂ ,vn > −b(vn,φ,vn)− b(φ,vn,vn) ≤
∥∥∥f̂∥∥∥

H−1(Ωn)
· ‖vn‖+

ν

2
‖vn‖2 .

Thus we finally have

‖vn‖H1,2
0 (D) ≤

2
ν

∥∥∥f̂∥∥∥
H−1(Ωn)

≤ 2
ν

∥∥∥f̂∥∥∥
H−1(D)

.

And since the function f̂ does not depend on n, we obtained the desired a-priori
estimate.
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4.3 Existence of the optimal body

From the previous sections we have the existence of a sequence vn ∈ H1,2
0,σ(Ωn) ⊂

H1,2
0,σ(D), which converges weakly to a v ∈H1,2

0 (D). And therefore we have

un ⇀ u.

The last thing we have to prove is that this u is a weak solution of the Navier-Stokes
equation on the domain Ω. Exactly as in the proof of theorem (2.3) we have that
v ∈H1,2

0,σ(Ω). Which means that u has the right boundary values and that divu = 0.
We consider a w ∈H1,2

0,σ(Ω) which is contained in H1,2
0,σ(Ωn) for n large enough, again

cf. the proof of theorem (2.3) for details. We have to proof, that

ν

∫
Ω

D(u) :D(w) dx+ b(u,u,w) =< f ,w >(22)

holds. We want to remark that it is not important if we integrate over Ω or over D
since w ∈H1,2

0,σ(Ω) and can be continued by zero on D \Ω. We know that un satisfies

ν

∫
D

D(un) :D(w) dx+ b(un,un,w) =< f ,w >(23)

for n large enough because w ∈H1,2
0,σ(Ωn). We have

un −→ u

strongly in Lα(D) for every α ∈ [2, 6), because

‖un − u‖αLα =
∫
D

|un − u|α dx

=
∫
D

|vn + φ− v − φ|α dx

=
∫
D

|vn − v|α dx→ 0.

Now we calculate as follows

ν

∫
D

D(u) : D(w) dx+ b(u,u,w) = ν

∫
D

D(u− un) : D(w) dx

+ b(u,u,w)− b(un,un,w)

+ ν

∫
D

D(un) : D(w) dx+ b(un,un,w)

= ν

∫
D

D(u− un) : D(w) dx

+ b(u,u,w)− b(un,un,w)
+ < f ,w > .
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Because of the weak convergence of vn to v, the first term

ν

∫
D

D(u− un) : D(w) dx = ν

∫
D

D(v − vn) : D(w) dx

tends to zero. Finally we look at

b(u,u,w)− b(un,un,w) =b(u− un,u,w) + b(un,u,w)− b(un,un,w)
=b(u− un,u,w) + b(un,u− un,w)
=b(u− un,u,w)− b(un,w,u− un)
≤‖u− un‖L4 · ‖u‖H1,2 · ‖w‖L4

+ ‖un‖L4 · ‖w‖H1,2 · ‖u− un‖L4

≤‖u− un‖L4 · ‖u‖H1,2 · ‖w‖L4

+
(
c ·
∥∥∥f̂∥∥∥

H−1
+ ‖φ‖L4

)
‖w‖H1,2 · ‖u− un‖L4

which tends to zero aswell. We used the Lemma (4.3), the estimate of Lemma (4.2)
and the a-priori estimate. Hence u is a weak solution of the Navier-Stokes equations
on Ω. The lower semicontinuity of the functional still holds and therefore we have an
optimal shape which minimizes the dissipated energy.
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[19] Strzelecki P., Szumańska M. and von der Mosel H.: A geometric curvature double integral of Menger type for
space curves, S 20, September 2007

[20] Bandle C. and Wagner A.: Optimization problems for an energy functional with mass constraint revisited,
S 20, März 2008

[21] Reiter P., Felix D., von der Mosel H. and Alt W.: Energetics and dynamics of global integrals modeling
interaction between stiff filaments, S 38, April 2008

[22] Belloni M. and Wagner A.: The ∞ Eigenvalue Problem from a Variational Point of View, S 18, Mai 2008

[23] Galdi P. Giovanni and Kyed M.: Steady Flow of a Navier-Stokes Liquid Past an Elastic Body, S 28, Mai 2008

[24] Hildebrandt S. and von der Mosel H.: Conformal mapping of multiply connected Riemann domains by a
variational approach, S 50, Juli 2008

[25] Blatt S.: On the Blow-Up Limit for the Radially Symmetric Willmore Flow, S 23, Juli 2008



[26] Müller F. and Schikorra A.: Boundary regularity via Uhlenbeck-Rivière decomposition, S 20, Juli 2008

[27] Blatt S.: A Lower Bound for the Gromov Distortion of Knotted Submanifolds, S 26, August 2008

[28] Blatt S.: Chord-Arc Constants for Submanifolds of Arbitrary Codimension, S 35, November 2008
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[54] Kolasiński S., Strzelecki P. and von der Mosel H.: Characterizing W 2,p submanifolds by p-integrability of
global curvatures, S 44, März 2012



[55] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of a Coupled System Solid-Liquid, S 95,
April 2012

[56] Deipenbrock M.: On the existence of a drag minimizing shape in an incompressible fluid, S 23, Mai 2012


	__pre
	dragmin_180512
	Introduction and notation
	Functionspaces
	Formulation of the problem
	Drag functional
	Considered shapes and convergence of domains

	Convergence of the solutions
	Lower Semicontinuity
	Extension to Navier-Stokes Flow
	Weak solutions of the Non-homogeneous Navier-Stokes Equations
	A-priori Estimate
	Existence of the optimal body


	rep

