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Preface

The three-dimensional steady motion of a viscous, incompressible (Navier-Stokes) liquid around
a rigid body and tending to a constant non-zero velocity, U = Ue;, is among the fundamental
and most studied questions in fluid dynamics; see e.g., [4]. Mathematically, it consists in
solving the following boundary-value problem in dimensionless form

—Av—)\a—v+)\v~Vv:—Vp+f
6.%‘1

divo =0 (D

v(z)=e1, x € 09, lim v(z)=0,

|| —o0

where f is the body force acting on the fluid, A is the (positive) Reynolds number, and 2 is
the exterior of a compact, sufficiently smooth set.

Problem (1) has been the object of profound researches, initiated in the papers of J. Leray
[32], [33] and further deepened by the contributions of O.A. Ladyzhenskaya [31], R. Finn [10]
and K.I. Babenko [2]; see also [18, Chapter IX] and the references therein. The work of the
above authors is mainly devoted to existence, uniqueness and regularity issues, along with a
detailed study of the asymptotic behavior at large spatial distances (existence of the “wake”
behind the body). However, other significant questions, like the structure of the set of solutions
and local and global steady bifurcation, remain virtually untouched.

Objective of these notes is to fill this gap. More specifically, for a fixed f, denote by
S = S(f) the class of pairs (v, A) where v is a “weak” solutions to (1.1) corresponding to
A € (0,00) and to the body force f. Then, following the recent works [24, 19, 20] we shall
give a comprehensive and self-contained analysis of the following questions.

(A) Geometric structure of the manifold S = S(f); see Chapter II.
(B) Sufficient conditions for steady bifurcation in the class S = S(f); see Chapter III.

(C) Behavior in time of dynamical perturbations to an element of S(f), for arbitrary
values of ) ; see Chapter IV.

It should be remarked that analogous problems for a bounded domain (two- or three-
dimensional) were successfully treated in the renowned papers of Foias, Temam and their
coworkers [12, 13, 14, 15]. One of the main contributions of these papers is the proof that,
for “generic” f, S(f) is a one-dimensional, C'>® Banach manifold, which shed a completely
new light on the phenomenon of successive bifurcation. It must also be emphasized that the
proofs for the bounded domain need some specific tools —such as compact embedding theorems,
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Poincaré’s inequality, Leray-Schauder theory, etc.— which are no longer available in the case
of an exterior domain.

Nevertheless, by using a different approach, we shall show that the above characteristics
continue to hold also in the case of flow past an obstacle. One of the main tools that we shall
employ is the notion, and the associated properties, of the mod 2 degree for proper Fredholm
maps of index 0. This latter requires a certain amount of basic facts from nonlinear functional
analysis, that will be reviewed in Chapter 1. In order to make the reader acquainted with this type
of degree and of its related properties, we shall first apply it to the case of flow in a bounded
domain. These applications are collected in the form of “Examples” throughout the Notes. In
particular, we will re-obtain, in a very simple way, most of the results of [12, 13, 14, 15].



Basic Notation.

We begin to recall some standard notation; see, e.g. [17, Chapter I].

By the symbols N, R, R, and C we indicate the set of positive integers, real numbers,
positive real numbers and complex numbers, respectively.

Let A be a domain (open, connected set) of R3. We denote by 6(.A) the diameter of A and
by A its closure. An exterior domain is the complement (in R3) of the closure of a bounded
domain B. In such a case, the origin of coordinates will be taken in the interior of 5. If Q
is an exterior domain, for R > r > §(R3 — Q), we set Qg = QN Bgr, Q¥ = Q\Ag, and
Q. r = Q"N Ok, where Br = {x cR3: |z < R}.

As customary, by C§°(A) we mean the set of all infinitely differentiable functions with
compact support in A. (O Furthermore, by L7(A), 1 < g < co, WL2(A), W2 (A), etc., we
denote the usual Lebesgue and Sobolev spaces on the domain 4, with corresponding norms
Il - llg,.a and || - ||1,2,.4, respectively. The duality pairing in L7 will be denoted by (-, -). Also,
L (A) is the class of functions which are in L?(w) for every bounded domain w with@ C A.
Moreover, for s € (1,00) and m = 1,2, we set

D™ (A) = {u € Ligo(A) + |ulm,s,a <00}

loc

with
1/s
umsa= | > / DAt
18]=m A
the associated homogeneous seminorm and where
4 1 ¥
D = —g——Fa——7-, [B] =01+ P2+ Fs.
o o> 8%*333

The completion of C§°(.A) in the norm |u|; o 4 is indicated by Dy”(€). The dual space of
Dy*(A) is denoted by Dy "*(A).

Let

D(A) ={p € C(A) : divep = 0}. @)

We indicate by Dy*(A) the completion of D(.A) in the norm | - |1 2 4. Observe that Dy>(A)
is a Hilbert space with scalar product [v1,vs] 4 = fA Vv, : Vs, Furthermore, Dal’Q(A)
indicates the dual space of D}*(A) and (-, ) 4 the associated duality pairing.

Finally, if {G, H} and {g, h} are pairs of second-order tensor and vector fields on A,
respectively,

(G7H)A:/ Gi;Hyj, (gvh)A:/gihm 3)
A A

whenever the integrals make sense.
In all the above notation, if confusion will not arise, we shall omit the subscript .A.

@ Let S be any space of real functions. As a rule, we shall use the same symbol S to denote the corresponding
space of vector and tensor-valued functions.



Chapter I

Review of Certain Fundamental Concepts in
Nonlinear Functional Analysis.

In the first part of these Notes we will investigate the geometric structure of the manifold
constituted by the steady-state solutions to the Navier-Stokes problem past an obstacle, for
arbitrary Reynolds number. In order to achieve this goal, we shall write the Navier-Stokes
problem as a suitable nonlinear equation

NM\u)=F, 0.4)

where A is a positive, real parameter (Reynolds number or kinematical viscosity), u is the
velocity field of the fluid and IV is a nonlinear operator defined in Ry x X with value in Y,
where X and Y are appropriate Banach spaces.

The desired description of the solution set {\, u} to (0.4) for a given F', will then follow
easily from classical results of nonlinear Functional Analysis, once we show that the operator
N obeys a number of fundamental properties.

Thus, the main objective of the current chapter is to present a short review of the tools of
nonlinear Functional Analysis that will be needed later on, in the next chapter, to analyze the
properties of the operator INV.

As a way of illustrating the meaning and the applicability of the above tools, we deem it
interesting to show first how they work in the much simpler case of the steady-state Navier-
Stokes problem in a hounded domain, where X and Y are Hilbert spaces and /N is a compact
perturbation of the identity operator. This will be done in a series of examples presented
throughout the chapter.



2 I. Review of Certain Fundamental Concepts in Nonlinear Functional Analysis.

I.1 Operators in Banach Spaces.

We begin to review some relevant definitions and properties of operators in Banach spaces.
Throughout this section, X, Y and Z denote complex Banach spaces with norms || - ||x, || - ||v
and || - || z, respectively. Their dual spaces will be indicated by X*, Y* and Z*.

I.1.1 Basic Definitions.

A map
M:z2cUCX—MI)eY,

with U subset of X, is called operator. We also call U the domain of M and denote it by
D(A). Furthermore, the sets:

NM)={xecU: M(x)=0}, RIM)={yeY: y=M(zx), forsomez c U},
are called kernel (or null space) and range of M, respectively.

Definition I.1.1 The set of all operators with domain in X and range in Y is denoted by
M(X,Y). If X =Y, we shall simply write M(X).
A

Example L.1.1 (Steady-State Navier-Stokes Operator in Bounded Domains) Let €) be a bounded
domain of R, n = 2, 3, and consider the following steady-state Navier-Stokes problem in {2

—vAu+u-Vu=-Vp+ f
divu =0 (1.5)
u=0 ato.

In (1.5 v = u(x), p = p(x), x € Q, and v (> 0) are velocity field, pressure field and
kinematical viscosity associated with the fluid, while f is a prescribed (external) body force
acting on it. We would like to rewrite problem (1.5) as an operator equation in the space
Dé’Q(Q). Notice that, since () is bounded, in view of the Poincar¢ inequality:

£l <Alfl2, ¥=2Q) >0, feDy*(9Q), (1.6)

the norm | - |1 2 is equivalent to the following one:

1/2
a2 = (/U~udm+/Vu:Vudm> |
Q Q

Multiplying both sides of (1.5) by ¢ € Dé’Q(Q) and integrating by parts over €2, we formally
obtain

where we assume that f belongs to the dual space, D, L2(Q), of Dé’Q(Q), and where, we
recall, (-, -) denotes duality pairing between D; **(€2) and Dj*(Q).
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Set
R(u, ) :z/u-Vg%udx (1.8)
Q

Let us show that, for each u € Dy*(Q), R(u, -) defines a linear functional in Dy*(€2). @ Of
course, R(w, -) is distributive. To show that it is also bounded, we recall that functions from
W,y 2(2) are in L*(Q) and satisfy the following inequality

[ flla < Clfl1,25 (1.9)
where C' = C'(2) > 0. Therefore, by (1.9) and by the Schwarz inequality, we find
/u V- vde| < [lullafollaeh,z < Clulizlvlizlelie, forany w,v,¢ € Dy*(Q).
Q

(1.10)
From (1.10) with w = v, we obtain, in particular, that R (wu,-) defines a linear functional in
Dy2(), for any u € Dy*(Q). Therefore, in view of the Riesz representation theorem, there
exist N () in D?(€2) such that

WV (u), o] = R(u,¢). (1.11)

Finally, since f € D;"*(Q), we find (f,) = [F,¢] for some F € DL*(Q) and all
@ € Dy?(Q), and (1.7) becomes

vu— N(u) — F,] =0, forall pcDy*Q).
Since ¢ is arbitrary in Dé’Z(Q), this equation is equivalent to the following functional equation
N(v,u)=F inDy>(Q), (1.12)

where
N : (v,u) € (0,00) x Dy (Q) > vu — N(u) € Dy (1.13)

We shall refer to the operator IN as the Navier-Stokes operator (in a bounded domain). Clearly,
by definition, D(N) = Dy*(Q) and R(N) C Dy*(2). From the standard theory of the
Navier-Stokes equations, it follows that if F is suitably regular, a corresponding solution u is
regular as well, and one can show the existence of a smooth scalar field p such that the pair
(u, p) satisfies the Navier-Stokes equations (1.5)1 o in the ordinary sense; see e.g. [18, Chapter
VI for details.

O

In what follows, M stands for a generic element of M(X,Y).

Definition 1.1.2 M is surjective iff R(M) =Y, while M is injective iff 1 # xo, 2; € D(M),
i = 1,2, implies M (z1) # M(x2) or, equivalently, M(xz1) = M(z2) implies 21 = .
Furthermore, M is called bijective (or a bijection) if it is both surjective and injective.

A
@ Throughout these Notes, “linear” functional on a Banach space X, means a map F : X — C, with D(F) = X,
that is bounded and distributive. See Definition 1.1.16 in Subsection I.1.5.
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Definition 1.1.3 The map
M™':Ne2¥ — MY(N)e2¥

with
MY N)={xcD(M): M(z)<c N}

is called the preimage map, and the set M ~1(N) is called the preimage of N.
A

If M is bijective, then the preimage of every y € Y reduces to one and only one x,, € D(A)
such that M (z,) = y. In such a case, the restriction of the preimage map to the elements of
Y:

M1 ycYm—a,cX,

is a well defined operator called the inverse of M.

I[.1.2 Continuous, Bounded and Closed Operators.

Definition 1.1.4 M is continuous (with respect to the convergence in norm) iff for any sequence
{zm} C D(M) converging in X to some x € D(M), it follows that || M (z,,) — M(z)||y — 0
as m — o0o. The subset of M(X,Y) constituted by all continuous operators will be denoted
by C(X,Y). If X =Y, we shall simply write C(X).

A

Definition 1.1.5 M € C(X,Y) is called a homeomorphism if M is a bijection with M1 €
C(X,Y).
A

Definition 1.1.6 M is bounded, if it maps bounded sets of D(M) into bounded sets of Y,
while M is closed if it maps closed sets of D(M) into closed sets of Y.
A

Definition 1.1.7 M is graph-closed if the conditions {xx} C D(M) with 2 — x and
M (zy) — y imply (i) « € D(M) and (i) M (z) = y.
A

Remark L.1.1 Typically, in /inear Functional Analysis a “graph-closed operator” is simply
called “closed operator”. We wish to emphasize that, according to the above definitions, the
closedness property is stronger than the graph-closedness one. For example, a continuous
operator with a closed domain is graph-closed while, in general, it is not closed. A sufficient
condition for a continuous operator to be closed is that it is proper; see Subsection 1.4.

A
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I[.1.3 Compact Operators and Completely Continuous Operators.

We recall that a subset K of a Banach space Z is compact, iff from every sequence {u, } C
K we can select a subsequence {u,,} and find v € K such that lim ||up —ulz =0.
m’ —oo

Obviously, every compact set is closed and bounded. The subset K is relatively compact, if
its closure, K, is compact.

Definition L.1.8 A is compact if (i) M € C(X,Y) and (ii) M maps every bounded set of
D(M) into a relatively compact set of V.
A

A simple characterization of compact operators is furnished by the following lemma.

Lemma L1.1 A4n operator M € C(X,Y) is compact if and only if it maps bounded sequences
into relatively compact sequences.

Proof. Assume M compact. Since {x} is bounded, then {M ()} is compact. Consequently,
there exists a subsequence {M (z,/)} converging in Y. Conversely, let B be a bounded set in
D(M) and take any sequence {y;} C M(B). This means that y, = M (), for some z), € B,
k € N. By assumption, we can select a subsequence {M (xx/)} converging in Y. Since the
sequence {yy } is arbitrary it follows that M (B) is compact and the lemma follows.

[ |
Example I.1.2 The operator A defined through (1.11) is compact.

Proof. We begin to show that V' € C(Dy* (). Let {uy} € Dy*(Q) such that uy, — w, for
some u € D(l)’z(Q). From (2.12) and (1.8), we find, for any ¢ € Dé’2(Q),

Naw) =N ()l = [ (=) Vi we - Voo — )

From the Holder inequality, from (1.9), and from the assumptions on {uy} it follows that

[V (ur) = N(), @] < ([ulla + [[ulla)llwn — wlalelr2 < Mue = ullalel2,

2 =

where M does not depend on k. Thus, choosing ¢ = N (uy) — M (u) we deduce
N )~ Nz < M, . (1.14)

The continuity of A/ then follows from this latter inequality and from (1.9). The proof of com-
pactness will be completed with the help of Lemma L.1.1. Thus, let {uz} C Dy *(Q) a bounded
sequence. Since Dy>(Q) is reflexive, there exist a subsequence {uy } and u € Dy (Q)
such that vy — u weakly in Dé’Q(Q). However, from the compacteness of the embedding
Dy?(Q) € L*(Q), this convergence is strong in L*(2) and so, from (1.14), N (ux) — N (u)
strongly in Déz(Q)

|

Definition I.1.9 An operator M € C(X,Y) is completely continuous iff it maps weakly con-
vergence sequences into strongly converging sequences.
A
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We have the following result.
Lemma 1.1.2 If X is reflexive and M is completely continuous, then M is compact.

Proof. Suppose M completely continuous. Since X is reflexive, every bounded sequence
{zy} contains a subsequence, {x } that is weakly converging. Thus {M(x/)} is strongly
convergent and the compactness of M follows from Lemma L.1.1.

|

Remark I.1.2 The converse property of that stated in Lemma 1.1.2, namely, that compactness
implies complete continuity, is, in general not true, unless M satisfies some further restrictions;
see Lemma 1.1.9. Actually, it is easy to give examples of compact operators that are not
completely continuous, even when both X and Y coincide with a Hilbert space. In fact,
consider the following operator

1
Mu):=U(t) = / K(s,t)u(s)?ds,
0
where K (s,t) = (s—t). It is immediately checked that M is defined in the whole X = L?(0, 1)
with values in X. Since

| M (u1) — M(u2)| < Cllur — ual|2|lu1 + uall2
a2

= L?-norm), it follows that M is continuous. Moreover, extending M (u) to zero
outside [0, 1],

for any h € R we find
U(t+h) = U()| < Clhllul3

which shows that the set {u € X : ||ul2 < M} is transformed in a relatively compact set of
X. Thus, M is compact. However, it is not completely continuous. In fact, take the sequence

ug(s) =sin(kws), keN.
It is well known (and immediately verified) that
ur, — 0 weakly in X .

If we now evaluate M (uy), we find

1
I ) = 75

which means that M (uy) does not converge to the weak limit of {uy}.

I.1.4 Proper Operators.

Definition 1.1.10 M is proper iff for every compact K C Y, the preimage M~ 1(K) is
compact.
A
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Remark I.1.3 If M is a homeomorphism then M is proper. This follows from the fact that
M~ is continuous and that compact sets are left invariant by continuous operators.

A
Definition L.1.11 For a given y € Y, the set
ouly) =M '(y)={zreX: M) =y}
is called solution set (of the operator M at y).
A

Of course, o (y) # 0 iff y € R(M), or, in other words, iff the equation M (x) = y has at
least one solution . Thus, in particular, o7 (y) # (0 for all y € Y implies that M is surjective.

If M € C(X,Y) and if, in addition, M is closed, for M to be proper it is enough to ascertain
the compactness of the solution set of A at any y € Y. In fact, we have the following result.

Lemma L1.3 Suppose that M € C(X,Y). Then M is proper if and only if it is closed and
o (y) is compact for any y €Y.

Proof. We will give a proof of the necessity, referring to [5, Theorem 2.7.1] for a proof of the
sufficiency. Since {y} is compact and M is proper, it is obvious that o (y) is compact for all
y € Y. Next, let C' be an arbitrary closed set in D(M) and let K = M(C). We have to show
that if {yr} C K with y, — v, then y € K. By assumption y, = M (z},), for some x5, € C.
The set S := {yx} U {y} is compact and, since M is proper, M ~1(S) := S; is compact as
well. Now {x} C S1, and so there exist z € S; and a subsequence {xy/} such that x — .
Since {z} C C and C is closed, we must have x € C. Moreover, by the continuity of M
and by the property of {y;}, we also have
M(z) = k}gnoo M(zy) = kli_)rgQ Y =Y
which shows that y € K and the proof of the lemma is completed.
|

We recall that if S; C Z, ¢ = 1,2, the distance of S1 to Sa, ||S1 — S2| z, is defined as

||51752||Z: inf H21*ZQHZ. (115)

21€851,22€852

Clearly, |z — S|z =0 iff z € S.

The next result shows that, if M is continuous and proper, all solutions to the equations
M(z) = y and M(x) = y' must be “close” if y and 3’ are “close enough”. Specifically, we
have the following.

Lemma I.1.4 Let M € C(X,Y) be proper. Then, jor any y € R(M) and any € > 0 there
exists 0 = (y, €) > 0 such that

lv —ylly <6, v eRM) = ||/ —om(y)||x <e, forallx’ € on(y').  (1.16)
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Proof. Assume (1.16) is not true. Then, there exist a number ¢ > 0, a y € R(M) and a
sequence {xx} C D(M) such that

—_

lye —ylly < =, |lzx —om(y)|lx > €0, forall k€N, (1.17)

o

where yy, := M (xg). Now, K := {y,} U{y} is a compact subset of R(}/) and so, due to the
properness of M, Ky := M~Y(K) is a compact set of D(M). Thus, since {z} C K1, we
can select a subsequence {xy,, } and find x € D(A) such that x5, — = in X. However, since
yr = M(xr) — y, by the assumed continuity of M, we have = € o(y), which implies that
the quantity ||zx,, — oas(y)||x can be made as small as we wish, provided k,, is sufficiently
large. This contradicts the second relation in (1.17).

Definition 1.1.12 M is called coercive @ iff | M (z)||y — oo if ||x||x — oo, or, equivalently,

iff the preimage of every bounded set is bounded.
A

Roughly speaking, the coerciveness of an operator M is established whenever one can show
“good” a priori estimates for the equation M (z) = y.

Example I.1.3 For each v > 0 the Navier-Stokes operator N (v, -) defined in (1.13) is coercive.

Proof. In fact, we have

[N (v, u),u] :1/|u|?)27[./\f(u),u]. (1.18)
However, it is readily checked that

N (w),u] =0, forall ue Dy>(Q). (1.19)

This follows from the fact that (1.19) is obviously true for u € D(§2) (as it is shown by a
simple integration by parts) so that, in the general case, (1.19) follows by the density of D(2)
in Dé’Q(Q) and by (2.11). As a consequence, from (1.18) and (1.19), with the help of the
Schwarz inequality, we find

|N(1/,u)|172 Z 1/|u|172, (120)

which shows the claimed coerciveness property.
|

In the finite dimensional case, the properties of coerciveness and properness are strictly
related, as shown in the following lemma.

Lemma L.1.5 Let X and Y be finite dimensional. Then, the following statement holds.
W) If M € C(X,Y) is coercive, then M is proper.

(i) If M is proper, then M is coercive.

®)Sometimes in the literature, our definition of coerciveness is also referred to as weak coerciveness.
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Proof. (i) Let K be any compact set in Y. Since K is bounded, the coerciveness of M implies
that K7 := M~'(K) is bounded. Moreover, since K is also closed, the continuity of A
implies that K is closed as well, and hence compact. (ii) If C' is bounded, then C is compact
and so M ~1(C) is compact and M ~1(C) (C M~1(C)) is bounded.

[ |

In the infinite-dimensional case, the result of the above lemma does not hold anymore.
However, we can still establish the properness of a special class of coercive operators. In fact,
the following result holds.

Lemma L.1.6 Let M = H + C, where H is a homeomorphism and C' is a compact operator.
Then, if M is coercive, M is proper.

Proof. Let K be a compact set in Y and asssume that {zx} C M~1(K) := K. It suffices
to show that we can find a subsequence {x,~}, and find z € X such that ,» — z in
X. In fact, since M is continuous, K is closed and, therefore, x € K, thus proving that
M~Y(K) is compact. Now, the sequence {M ()} is contained in K, and so we can find
a subsequence {yr := M(zr)} and y € K such that ypr — y in Y. Moreover, by the
coerciveness assumption made on M we can also assume that the sequence {xy/} is bounded.
Consequently, the sequence {z := C'(zy)} is relatively compact, and we can select another
subsequence, {z, := C(x)}, converging (in the norm of Y) to some z € ¥. We thus have

H(l‘k//> = yk// — Zk//,

Since H is a homeomorphism and y,» — ¥y, z,» — 2, setting x = H~'(y — z), we thus find
that

lim |z —alx = lim [[H (yr — 20) = H H(y = 2)|ly =0,
k" —o0 k" —oo

which proves the desired convergence.
[ |

Example I.1.4 For each v > 0, the Navier-Stokes operator IN (v, -) defined in (1.13) is proper.

Proof. In fact, by Example 1.1.2 it is a compact perturbation of a homeomorphism. Moreover,
by Example 1.1.3, it is coercive, and so, by Lemma 1.1.6 it follows that N(v,-) is proper.
Thus, in particular, in view of Lemma 1.1.3, N (v, -) is closed and the totality of solutions u
to the Navier-Stokes problem N (v, u) = F, for given F € Dé’Q(Q) and fixed v > 0, forms a
compact set of Dy*(0).

|

Definition I.1.13 Let A be an open set in C. The operator M : (A\,z) € A x X — Y is said
to be weakly proper at y € Y iff the following property holds. If {\,,} C A with A, — A,
for some A € A, and if M (A, ) = y, for all m € N, then there is a subsequence {x,}
such that z,,, — « strongly in X for some x € D(M).

JAN

Example I.1.5 The Navier-Stokes operator N defined in (1.13) is weakly proper at every
F € Dy*().
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Proof. In fact, let
Vpm — v, for some v >0 (1.21)

and let {u,,} C Dy*(Q2) be such that
U + N (uy) = F, (1.22)
for some F' € Dy?(€2). From (1.20) it follows that
Vm|tm|1,2 < |Fl12,

which, in turn, in view of (1.21), implies that |w,,|1,2 is uniformly bounded. Now, from (1.22)
it follows that

N, up)=Fp :=F 4+ (V— Vpn)up,.

By what we have just shown, the set {F',,} U {F'} is compact and consequently, since by
Example 1.1.4 N(v,-) is proper, we conclude that there exists a subsequence {u,, } and an
element w € DY?(Q) such that w,,,, — wu, strongly in D}?(€2), which shows that N is weakly
proper.

|

I[.1.5 Linear Operators.

Definition L.1.14 M is distributive iff (i) D(M) is a vector subspace of X, and (ii) M (axq +
Bxa) = aM(x1) + BM(z2), for all o, § € C.
A

Definition 1.1.15 M is linear iff (i) M is bounded, (ii) M is distributive, and (iii) D(M) = X.
The subset of M(X,Y") constituted by all linear operators will be denoted by £(X,Y). If
X =Y we shall simply write £(X).

A

Definition 1.1.16 M is called a linear functional iff M € L(X,C).

The following result is well known and we shall omit its simple proof.
Lemma 1.1.7 Let M € L(X,Y). Then the following properties hold
(i) There is a positive constant K > 0 such that

1M )|y < Kl|z|x, forallxeX;

(ii) M is continuous at each v € X .
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The set £(X,Y) can be given the structure of a vector space by defining aM; + SMo,
M, € L(X,Y), i = 1,2, o,3 € R, as the operator M € L(X,Y) such that M(z) =
aM(z) + BMs(x), for all z € X.

Moreover, setting

M| = sup [M(z)|, MeL(X,Y),

l=ll<1
it can be shown that (L(X,Y), || - ||) is a Banach space.
The following property is easily established.
Lemma L1.8 Let M € L(X,Y). Then M is injective iff op;(0) = {0}.

As shown in Remark 1.1.3 by means of a counterexample, compactness, in general, does not
imply complete continuity. However, in the class £(X,Y"), we have the following result.

Lemma L1.9 Let M € L(X,Y) be compact. Then, M is completely continuous.
Proof. Let z;, — =, as kK — oo, weakly in X. We have to show that
M(zg) — M(z) strongly in Y. (1.23)

Clearly, {z} is bounded and therefore, since M is compact, { M (x)} is compact. This means
that we can find a subsequence {z;/} and y € Y such that M(xy) — y strongly in Y. Let
us show that y = M(x) so that the limit is independent of the particular subsequence and,
consequently, (1.23) is proved. Let g be an arbitrary element of Y*. The functional

freeX— flx):=9g(M(x)) €R

is then linear, because M is linear, and bounded, because M, being linear and continuous, is
bounded. Thus, f € X*. Since

g(M(x)) — g(y) = [f(x) — flaw)] + [g(M (zr)) — 9(y)]

it follows that, in the limit &’ — oo, the first term on the r.h.s. of this equation tends to
zero because xy is weakly converging to x and the second term tends to zero as well because
M (z+) strongly converges to y. This shows that g(M(z) —y) = 0 for all g € Y* and the
lemma is proved.

|

[.1.6 Adjoint Operators. Closed Range Theorem.

In what follows, the value of a functional F' € X* at a point € X will be denoted by (F, x)
(duality pairing).

Definition L.1.17 Let M € L(X,Y). @ The adjoint operator, M*, of M is an element of
M(Y™*, X*) defined through the following relation

(M*(y*),z) =(y",M(x)), z€X, y eY™.
A

@ As is well-known, the definition of adjoint operator can be extended to the case when M is unbounded, with
D(M) = X. However, in these Notes we do not need to deal with this more general situation.
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The following results are easily established.

Lemma 1.1.10 The adjoint operator M* is uniquely determined by the operator M. Moreover
M* e L(Y™*, X*).

Let L, G be linear subspaces of X and X*, respectively. We set
Lt :={z* e X*: (z*,2) =0 forall x € L}
LG ={recX: (z*,2)=0 forall z* € G}.

The next result, called Banach closed range theorem plays a fundamental role in the theory of
linear equations.

Lemma L1.11 Let M € L(X,Y). Then, R(M) is closed if and only if R(M) = +N(M*)
and N(M)*+ = R(M™).
I.1.7 Fredholm Operators.

Definition 1.1.18 A distributive operator M is called Fredholm iff the following conditions
are satisfied:

(a) M is graph-closed;
(b) dim [N (M)] < co;
(¢) codim [R(M)] :=dim [Y/R(M)] < oo.

The relative integer
ind (M) := dim [N (M)] — codim [R (M)]

is called the index of M. The subset of M(X,Y) of distributive Fredholm operator of index
k is denoted by F5(X,Y"). In the case X =Y, we shall simply write F5(X).
A

Remark L.1.4 Linear homeomorphisms are simplest examples of Fredholm operators of index
zero. Moreover, it is also clear that any surjective (resp. injective) M € Fo(X,Y") is necessarily
a bijection.

A

Lemma 1.1.12 Let M € Fi,(X,Y). Then R(M) is closed.
Proof. See [25, p. 372].
Combining Lemma 1.1.12 along with Lemma 1.1.11 we obtain the following.
Lemma L1.13 Let M € L(X,Y) N Fi(X,Y). Then, the following properties hold.
(8) codim[R(M™)] = dim[N(M)];
(b) codim[R(M)] = dim[N(M™*)];,
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(©) M* e F_p,(Y*, X*).
We wish now to collect some results related to the the index of a Fredholm operator. For
their proof see [25, Theorem XVIL3.1 and Section XVIL4].

Lemma L1.14 Let M € F(X,Y). Then, the following properties hold.

(8) Forany K € L(X,Y) compact, we have (M + K) € Fi,(X,Y) . Inparticular, a linear
compact prturbation of a linear homeomorphism is Fredholm of index 0.

(b) There exists a number o = eo(M) > 0 such that, for any B € L(X,Y) with | B|| < €,
we have (M + B) € Fr(X,Y).

(©) If My € T, (Y, Z) with D(My) = Z, and if D(M) = X, then MyM € Fiii, (X, Z).

1.1.8 Some Spectral Properties of Graph-Closed Operators.

Definition I.1.19 Let A € M(X) be a distributive, graph-closed operator. Then:
(@) The resolvent set of M, P(M), is the set of all u € C such that (ul — M)~! € L(X).
(b) The spectrum of M, o(M), is the complement (in C) of P(M).

(¢) The essential spectrum of M, oess(M), is the set of p € C such that uI — M is not a
Fredholm operator.

(d) p € o(M) is called an eigenvalue iff ng := dim[N(u I — M)] > 0. The integer ng is
the geometric multiplicity of . The integer ns := dim[N(uI — M)*], k € N, is the
algebraic multiplicity of p.

A
The proof of the following lemma is given in [25, Theorem XVIL.2.1].

Lemma 1.1.15 Let M € M(X), X a complex space, be distributive and graph-closed, and
let w be an open, connected subset of C/0ess(M). If the following two conditions are satisfied

() P(M) #0,
(i) wNP(M) #£0,

then o(M)Nw is constituted by a finite or, at most, countable number of eigenvalues of finite
algebraic and geometric multiplicity.

From this lemma and from Lemma 1.1.14 one can then show the following classical result;
see, e.g., [27, Theorem 111.6.26].

Lemma L.1.16 Let M € L(X) be compact. Then o(M) is constituted by a finite or, at most,
countable number of eigenvalues of finite algebraic and geometric multiplicity that can only
accumulate at zero.
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I.1.9 Fréchet Derivative. Operators of Class C*,

Definition I.1.20 An operator M, with D(M) open set, is said to be Frechét differentiable
(F-differentiable) at the point x € D(M), iff there exists L(z) € L£(X,Y) such that, for all
e >0, there is § > 0:

Ihlx <d = ||M(z+h) — M(x) — L(x)h|y <ellh|x.

The operator L(x) is called the Frechét derivative (F-derivative) of M at x. Instead of L(zx),
we shall use the symbol M’(z) (or, occasionally, D, M (x)).
A

Remark L.1.5 (i) Higher order derivatives are defined recursively. So, the second F-derivative
of M at &, M (), is the derivative of M’ (z), etc.

(i1) Partial F-derivatives are defined in the obvious way. For example, if M : X X Z —
M(z,z) € Y, we define the partial derivative of M with respect to x, D, M(x, z), as in
Definition 1.1.20, while keeping z fixed, etc.

A

In what follows, we shall simply say “differentiable” and “derivative” instead of “F'-
differentiable” and ““F'-derivative”.

The following results are easily established.
Lemma 1.1.17 Assume that M is differentiable at x. Then
(i) M'(x) is uniquely determined ;

(iiy M is continuous at x.

The following result will be also useful.

Lemma 1.1.18 Assume that M is compact and that it is differentiable at x. Then M’'(x) is
compact.

Proof. See, e.g., [5, Theorem 2.4.6].
]

Definition 1.1.21 M is said to be of class C*, k € NU {0}, iff M has continuous derivatives
up to the order k included, at every point z € D(M). The subset of M(X,Y) of operators
of class C* is denoted by C*(X,Y), with C°(X,Y) = C(X,Y). If X =Y, we shall simply
write C¥(X). If M € C¥(X,Y) for all k£ € N, we say that M is of class C*° and write
M e C>*(X,Y).

A

Remark I.1.6 Every M € L(X,Y) is of class C*°, and M'(x) = M, for all z € X.

Example L.1.6 The Navier-Stokes operator N defined in (1.13) belongs to C°°(Dg*(Q)).
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Proof. We shall compute the first and second derivatives and show that all derivatives of order
k > 2 are identically zero. We begin to evaluate the quantity N'(u + h) — N (u), h € D(M),
where A is defined in (2.12) is. We have for all ¢ € Dy*(Q)

Nl =N (). )= [ {(uh)Veo-(ut h)—u-Ve - u}
:/(u-ch-h—l—h-Vgo-u) (1.24)
Q

+/h-ch-h.
0

Using the same arguments leading to (2.12), we show that there exists an element Lq(h) €
1,2 :
Dy " (£2), depending on w such that

[Lu(h), @] = / (w-Ve-h+h-Ve-u), forall ¢ cDy?(Q). (1.25)
Q

Clearly, Lq,(h) is linear in h. Moreover, from (1.24) by the use of the Schwarz inequality, we
have
W (u+ h)=N(u) = Lu(h),¢] < ||h|ileli2 < ClhlT 5lel .

Choosing ¢ = N(u + h)—N(u) — Ly (h) in this latter relation furnishes
(N(u+h)=N(u) = Lu(h)l12 < |},

which shows that A/ is F-differentiable at every u € D(M), and that Ly, := N’ (u) is its
F'-derivative. Therefore, also using Remark 1.1.6, we conclude

Dy N (v, w))(0, ) = ou -+ vh — [N (w)|(h). (1.26)

Furthermore, from (1.25) we find, for all ¢ € Dy*(),
Nt B)() - N ()] = [ (kT hi bV k).
Q

which implies, again by the Riesz theorem and by the usual procedure employed previously,
that A (w) is a bilinear operator independent of w. Since,

olu+k)+ (v+nh—ou—vh=ock+nh,

we find that [D?y,u)N (v, u)] is independent of (v, u), and, therefore, all derivatives of order

higher than 2 are zero, and this concludes the proof of our statement.
[ ]

L1.10 C k-Diffeomorphisms. Inverse Mapping and Implicit Function The-
orems.

Definition 1.1.22 M is called a (global) C*-diffeomorphism, k > 0, iff (i) M is a bijection, and
(ii) both M and M~ are of class C*. Obviously, a C°-diffeomorphism is a homeomorphism.
A
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Definition 1.1.23 M is called a local C*-diffeomorphism at xo € D(M), k > 0, iff (i) M
is one-to-one from a neighborhood, U, of xy onto a neighborhood, V', of M (), and (ii) the
restriction of M to U and its local inverse M~ : V +— U are of class C*.

A

The following results, known as (local) inverse mapping theorem and implicit function theorems

are two basic tools in nonlinear analysis. For their proof we refer, e.g., to [48, Theorem 4.F
and Theorem 4.B].

Lemma L1.19 Let M € C*(X,Y), some k € [0, 00| and assume that M'(x0) is a bijection.
Then, M is a local C*-diffeomorphism at x.

Lemma L1.20 Let M € M(X x Z,Y), with D(M) open, and let (xo, z0) € D(M). Suppose
the following conditions hold

(i) M(xo,20) =0,
(ii) D, M(z, z) exists at each (x,z) € D(M);
(iiiy M and D, M are continuous at (xo, z9) ;
(iv) D, M (o, 29) is a bijection of Z onto 'Y .
Then, the following properties are true
(a) There exist positive numbers €y and € such that for all x € D(M) with ||x — zo||x < €0,
there is one and only one z = z(x) € D(M) satisfying ||z—zo||z < € and M (z, z(x)) =

0;

(b) If M € C*(X x Z,Y), k €[0,00], then 2() is of class C* in a neighborhood of x .

1.2 The Sard-Smale Theorem and Some of its Relevant Con-
sequences

The objective of this section is to recall the Sard-Smale theorem and to present some of its
consequences, such as the mod 2 degree for nonlinear proper Fredholm maps of index 0, global
solvability of nonlinear equations, “generic” finiteness of the solution set, etc.

[.2.1 Fredholm Maps. The Sard-Smale Theorem.

Definition 1.2.1 Let M € C'(X,Y) with D(M) open and connected, namely, D(M) is a
domain of X. M is said to be a Fredholm map iff M'(x) is a Fredholm operator for all
x € D(M). Moreover, we set ind(M) := ind(M'(x)).

A
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Remark L.2.1 The definition of ind(M) is consistent, because ind(M’(z)) does not depend on
the particular x € D(M). In fact, the map = — M’ (x) € L(X,Y) is continuous in the operator
norm (because M € C}(X,Y)), and so, by Lemma L.1.14, ind(M’(z)) is locally constant.
Therefore, since D(M) is connected, there exists k& € NU {0} such that ind(M'(z)) = k, for
all x € D(M).

A

Example 1.2.1 For each v > 0, the Navier-Stokes operator N (v,-) defined in (1.13) is a
Fredholm map of index O.

Proof. In fact, D(N) = Dy?(Q), and, as shown in Example 11.6, N is of class C.
Moreover, from Example 1.1.2, we know that A/ is compact and so, by Lemma 1.1.18, A/ (u)
is compact at each u € Dy?(€2). Therefore, from (1.26), at each w € DJ*(€), N'(u) is the
sum of a homeomorphism (v I) and of a compact operator (N’ (w)), which, in turn, by Lemma
I.1.14, implies that N'(w) is a Fredholm operator of index 0.

|

Definition 1.2.2 For a given M € C1(X,Y), a point x € D(M) is called a regular point iff
M’(x) is surjective, otherwise x is called a critical point. A point y € Y is called a regular
value for M iff either o7 (y) = (0 or opr(y) is constituted only by regular points. If y is not
regular, we call it a critical value .

A

The following well-known result, due to S. Smale, is one of the cornerstones of nonlinear
functional analysis. We refer to, e.g., [51, Proposition 5.15.13] for a proof.

Theorem 1.2.1 Let M € CK(X,Y) be a Fredholm map with k > max{ind(M),0}. Then,
the set of regular values of M, R, is dense in' Y. More specifically, Y — R is of Baire first
category. 1If, in addition, M is proper, then R is also open.

Remark 1.2.2 An immediate, interesting consequence of Theorem 1.2.1 from the point of view
of the applications, is the following one. Suppose M satisfies the assumption of that theorem
(M 1is not necessarily proper) and that the equation M (x) = y has a solution, z, for some y.
Then, if ind (M) < 0, the problem M (x) = y is not well-posed, in the sense that if a solution,
x, exists it can not depend continuously on the data, . This means that, for any € > 0, we
can find ¥ € Y such that ||y — y|lv < € and the equation M (z) = ¢ has no solution, that
is, ops(y') = 0. (In other words, R(M) does not contain any interior point.) In fact, for the
given &, by Theorem 1.2.1 we may choose 3/ to be a regular value for M. Now, if we suppose,
by contradiction, oas(y) # 0, we would have that M'(z) is surjective, for all z € o (y/'),
which would imply ind (M) = dim N[M’(z)] > 0, in contrast with the assumption.
A

Example 1.2.2 A remarkable example of a problem that is not well-posed comes from the
study of the steady-state Navier-Stokes equations in an exterior domain, in certain homogeneous
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Sobolev spaces. Specifically, consider the following problem
—vAu+u-Vu=-Vp+f
divu =0 Q2.1

u=0 atod), lim u(z)=0.

|| —o0

where () is the complement of the closure of a bounded domain, Q, of R? of class C? (i.e.
€ is an exterior domain of class C?). It is well known that, for each f ¢ Dy 1’2(§2), (2.1) has
at least one weak solution (in the sense of distributions) u € Dé’Q(Q); see [32]. Moreover,
if f is sufficienty smooth and decays “fast enough” at large distances, then the weak solution
u belongs also to Dé’q(Q), for all ¢ > 2 [42, 18]. The interesting question that remains to
be analyzed is that of the solvability of (2.1) in the class of those w € Dy9(Q2) N Dy2 (),
when q < 2. This problem has been investigated by several authors; see e.g. [29, 22, 30, 28].
The conclusions from these papers are many-fold. In the first place, because of the particular
structure of the nonlinear term, w - Vu, one has to restrict to the case ¢ = 3/2. Furthermore, if

Q = R3 (namely, Qg = 0), then under the assumption f € Dy L3/ 2((2) N Dy 1?(Q), solutions

do exist in the class where u € Dé’g/ 2(Q) ND§2(Q), and, in fact, they are also unique if the

magnitude of f is suitably restricted. However, if 2 is an exterior domain (namely, Qg # @) it is
proved that, under the above assumptions on f, a weak solution « € Dé’g/ 2((2) NDy?(Q) can
exist only if © and f satisfy suitable nonlocal conditions (vanishing of the total force exerted by
the liquid on 9€2). With the help of Remark 1.2.2 we shall now show that, in fact, (2.1) is not
well-posed in the space of those u € Dy *(Q)NDL2(Q) and f € Dy “¥2(Q)ND; 2(Q). ©
To this end, we begin to rewrite (2.1) as a nonlinear equation in a suitable Banach space. We
define Y := Dy*(Q) + Dy * () equipped with the norm

lely == inf{\sol 132t lpaliz: @=01 @, @ €Dy (Q), 0, € Dé’z(ﬂ)}

Since both Dy*(2) and DéZ(Q) are reflexive, it follows that for any ¢ € Y there exist
©, € DY3(Q) and @, € Dy*(Q) such that

lelly = le1lis+ lealie- (2.2)

Also, since D() is dense in Dy ?(Q) NDy*(Q), we have YV* = Dal’S/Q(Q) NDy 2(Q); see
[1]. Let us now multiply, formally, (2.1); by ¢ € Y and integrate by parts over €2. We thus
find:

V(V’Uz, VSD) - (u : VS@ u) = <f7 90> 5 (23)
where (-, -) represents the duality pairing between Y* and Y. Set

X =Dy Q) NDy%(Q), | llx =] |t e

Because of the continuous embeddings Dy*/*(Q) C L3(Q) and DL*(Q) C LS(Q), it is
immediately checked (by the Holder inequality) that, for any w € X, the left hand side of this

()However, problem (2.1) is well-posed for w and f in suitable Lorentz spaces; see [28].
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equation defines two linear functional, A(u) and M (u), on Y as follows
(A(u), @) =v(Vu,Ve), (M(u),¢) :=—(u-Ve,u). 2.4
Therefore, (2.3) can be rewritten in the following operator equation form
N@u)=f inY* (2.5)
where the operator IN is defined as
N:vueDIN)=X— Alu)+ M(u) e Y™.

We shall now show that N is a Fredholm map and that ind(IN) = —3. In order to reach this
goal, we begin to observe that IV is of class C'*° , and that, in particular

[N'(w)|(w) = A(w) + [M'(u)](w),

where
<[M/(’UJ)K’UJ), SO> = _(u : VCP,’LU) - (w Ve, u) . pEY. (2.6)

(The proof of these properties is completely similar to that given in Example 1.1.6 for the
Navier-Stokes operator (1.13).) We prove, next, that M'(u) is compact at each w € X. Let
{w,,} be a sequence in X such that

[wm||x < My, 2.7

where M is independent of m € N. Since Dé’g/Q(Q) and Dé’2(Q) are reflexive, we can select

a subsequence (again denoted by {w,,}) and find w € X such that
w,, —w weakly in Dy*?(Q) and in DL(Q). (2.8)
From (2.6) we find that
(M (w)|(vm), ) = —(w-Vp,vm) = (vm - V,u), @€V, 2.9)

where v,,, := w — w,,. Recalling that ¢ = ¢, + ¢,, where ¢,, ¢« = 1, 2, satisfy (2.2), with
the help of the Holder inequality we find

(- Ve, 0)| < [ullallvmlls.cnleali + [ulls.onllonlsarle]s

< ([[ellsllvmllz.an + M |u

s.ar) [elly
(2.10)

(- Vo, vm)| < |uflellvmlzanlealie +[[ulearlvmllsonlealio

< (lullsllvmlis.on + M2 ullsor) @y

where M> denotes an upper bound for ||v., || x. Set M3 = max{||ul|s, ||[ulls, Mz}. Collecting
(2.9) and (2.10), we thus obtain

1M ()] (0]

v <Mz ([|vmlls.an + u

3,0QR + HU G,QR) . (211)
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We now let m — oo in (2.11) and observe that, by (2.7), by (2.8) and by the Rellich the-
orem, the first term on the right hand-side of (2.11) tends to zero. Succesively, we let
R — o0, which causes the second and the third term to go to zero as well. We thus de-
duce ||[[M'(w)](vy)|ly+ — 0 as m — oo, for each fixed u € X, which completes the proof
of the compactness of the operator M'(w). Our next and final objective is to show that the
linear operator A : uw € X — A(u) € Y* defined in (2.4) is Fredholm and that ind(A) = —3,
after that, the claimed property ind(IN) = —3 follows from the definition of a Fredholm map
and from Lemma I.1.14(a). Clearly, the operator A is graph-closed. Moreover, from [17, p.
282 and Theorem V.5.1] it follows that

N(A)={0}, RA)={fcY": (f,hY)y=0,i=1,2,3}, 2.12)

where h; € Dé’S(Q) (CY), i =1,2,3, are three independent functions. It is now easy to
show that there exist three elements of Y*, I, k = 1, 2, 3, such that, denoting by S their linear
span, we have that

Y*=RA)& S (2.13)

Since dim(S) = 3, from (2.12) we then find ind(A) = dim[N(A)] — codim[R(A)] = —3.
In order to prove (2.13), let Ly, k = 1,2, 3, be the vector spaces generated by {h(2), h(g)},
(R h®} and {RY, R}, respectively. Set dj, := | — Ly|y (> 0); see (1.15). From
a corollary to the Hahn-Banach theorem (see, e.g., [51, Proposition 1.2.3]) we know that there
exists I € Y* such that

Tklly~ = di b, (L, B9)Y = 6. (2.14)

We claim the validity of (2.13) where S is the vector space generated by {l1,12,13}. In fact,
obviously, SN R(A) = (. Furthermore, for any f € Y* we have, with the help of (2.14), that

3
£ (") € R(A)

k=1

and (2.13) follows.
O

Some other significant consequences of Theorem 1.2.1 concern the geometric structure of
the solution set o57(y), when y is a regular value for M. This property is analyzed in the
following lemmas.

Lemma 1.2.1 Let M € CY(X,Y) be a proper Fredholm map of index 0, and denote by O the
set of regular values of M. Then, the following properties hold.

() For any y € O, oy (y) is constituted, at most, by a finite number of points;

(ii) Suppose M surjective. Denote by C a connected component of O and by #or(y),
y € O, the (finite) number of points in op(y). Then, there exists k € N such that

#Honu(y) =k, forall y € C.
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Proof. (i) Since M is proper, oas(y) is compact for all y € Y. If op(y) # @, by Theorem
1.2.1 M'(x) is a bijection at each © € op(y). Therefore, by Lemma 1.1.19, M is a local
C1-diffeomorphism at each = € o3/ (y). Now, suppose, by contradiction, that o5;(y) contains
an infinite sequence {z,,}. Since oy;(y) is compact, this sequence must converge to some
xo € op(y) and, consequently, for any € > 0 we can find z such that ||zm — z||x < € and
M (xm) = M(xg), which contradicts the fact that M is a local C!-diffeomorphism at each
x € op(y). (ii) It is enough to show that for any given y € O there exists a neighborhood,
S, (y), of y such that for all y € ONS,(y) itis #on(y') = #om(y). We use the following
notation

So(x)={ZcX: [|T—a||x <a}, S(y) ={vcY :|7—-yly <b}, (2.15)

where a, b > 0. Let y € C. By assumption, we know that o;(y) = {x1,---zn} and
om(y') = {2}, - -2}, for some N, N € N. Now, assume N’ > N (the case N’ < N being
treated in the same way by interchanging v and 3). Then, from Lemma 1.1.4 and from the
surjectivity hypothesis, it follows that given € > 0 sufficiently small, there exist 6 > 0, at least
two points x], x,, € op(y") and = € opr(y) such that

y/ € 85(:'4) and xf,x;n € Ss(x) (2.16)

However, since y is a regular value for M and M is Fredholm of index 0, M'(z) is a bijection
and so, by the inverse mapping theorem Lemma 1.1.19, we find that S.(x) is diffeomorphic
to M (S.(x)), in contradiction with the possibility described in (2.16). Thus, N = N’ and the
lemma is proved.

|

A generalization of the previous result to the case of positive index is furnished in the
following general lemma, for whose proof we refer to [48, pp. 181 and ff].

Lemma 1.2.2 Let M € C*(X, Y), 1 <k < oo, be a Fredholm map with m :=ind (M) > 0.
Then, for any regular value y of M, oas(y) is either empty or it is a (non-necessarily connected)
m-dimensional Banach manifold of class C*. ©

1.2.2 Mod 2 Degree for C? Proper Fredholm Maps of Index 0.

Let M € C'(X,Y) be a proper Fredholm map of index 0 with D(M) = X (V)  and lety € Y be
a regular value of M. As we know from Lemma 1.2.1(i), the solution set os(y) is constituted,
at most, by the finite number of points, #0s(y). Set

0 if #op(y) is 0 mod 2

deg (M, y, X) := { 2.17)
1 if #opm(y) is 1 mod 2.

(©'We recall that a subset B of X is said to be a Banach manifold of class C* iff for any = € B there is an open
neighborhood U (z) in X such that U (z) N B is C*-diffeomorphic to an open set in a Banach space X.

(DThe definition of degree can be suitably extended to the case when D(M) ¢ X. However, such a circumstance
will not happen in the applications we have in mind. For this more general case, we refer the reader to, e.g., [5, p.
263 and f£].
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We would like to extend the definition of the function deg also to points y € Y which are
not necessarily regular values for M. To this end, we recall the following fundamental result
of Smale, for whose proof we refer to [43, Theorem 3.5].

Lemma 1.2.3 Let M € C*(X,Y) be a proper Fredholm map of index 0, with D(M) = X,
and let y1, yo be two arbitrary regular values for M. Then, deg (M, y1, X) = deg (M, y2, X).

With this result in hand, we can thus give the following definition.

Definition 1.2.3 Let M ¢ C%(X,Y) be a proper Fredholm map of index 0, with D(M) = X,
and let y € Y. The degree of M at y, deg (M, y, X), is defined as in (2.17), if y is a regular
value for M, while, if y is a critical value, then

deg (M, y, X) := deg (M, 7, X), for some regular value 3.
A

Remark 1.2.3 The above definition of degree at a critical value is meaningful, in that it is
independent of the choice of the regular value 3. This is an obvious consequence of Lemma
12.2.

A

Our next objective is to investigate the most relevant properties of the degree. The following
result is an obvious consequence of Lemma 1.2.2.

Lemma 124 Let M € C?(X,Y) be a proper Fredholm map of index 0, with D(M) = X,
and assume that deg (M, y,, X) = 1 at some y, € Y. Then M is surjective.

Proof. We will show that op;(y) # 0, for all y € Y. Denote by O the set of regular values
of M. By our definition of degree and by Lemma [.2.2, the assumption in the lemma implies
that deg (M, y, X) = 1 for all y € O, that is, by (2.17), op(y) # 0, for all y € O. Next,
let y € Y — O, that is, y is a critical value, and let {y,,} C O with y,, — ¥, strongly in
Y (this is possible by Theorem 1.2.1). By what we just proved, the equation M (z) = yn,
has at least one solution, x,,, for all m € N. Since {ym} U {y} := K is compact and M
is proper, M ~1(K) is compact as well, and, therefore, there exist a subsequence {x,,/} and
x € X such that z,,,y — z, strongly in X, and M(2,/) = yms, for all m’ € N. Passing to
the limit m’ — oo in this latter equation and using the continuity of M, we find M (z) = y,
which furnishes o (y) # 0, also when y & O. The proof of the lemma is then completed.
|
As an immediate corollary to Lemma 1.2.4, Theorem [.2.1 and Lemma 1.2.1 we have the
following result, which will be very useful for subsequent applications.

Theorem 1.2.2 Let M € C*(X,Y) be a proper Fredholm map of index 0, with D(M) = X,
satisfying the following properties.

(i) There exists § € Y such that the equation M (x) =Y has one and only one solution T ;

(i) N[M'(z)] = {0}.
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Then the following properties hold.
(a) M is surjective;

(b) There exists an open, dense set Yo C Y such that for any y € Yy the corresponding
solution set o 1 (y) is finite and constituted by an odd number, & = k(y), of solutions;

(¢) The integer k is constant on every connected component of Yy .

Proof. Since M is Fredholm of index 0, the hypotheses (i) and (ii) imply that ¥ is a regular
value for M and that deg (M,7, X) = 1. Therefore, the property (a) follows from Lemma
1.2.4. As for property (b), it follows from the definition of degree at a regular value, eq. (2.17),
along with Theorem 1.2.1, which ensures that the set of regular values is open and dense in Y.
Finally, the property (c) follows directly from Lemma 1.2.1(ii).

|

Remark 1.2.4 Under the given hypotheses, the conclusions in Theorem 1.2.2 are sharp, in the
sense shown by the following simple example. Let X = Y = R and let M (z) be a smooth
function such that | M (x)| — oo as |x| — oo with M (z) = 0 for all x € [a, b], like the one
sketched in Fig.1.

>

Fig.1: Sketch of a function showing the “sharpness” of the result of Theorem 1.2.2.

Clearly, M is a Fredholm operator of index 0. In addition, M is proper (see Lemma [.1.5).
Finally, the assumptions (i) and (ii) are satisfied, for instance, with ¥ and T shown in Fig.1.
Then, obviously, M is surjective. Moreover, the set of critical points (where M’ vanishes,
that is) is {xo} U [a, b]. Furthermore, the set of regular values, Yy, can be split into the three
connected components Y7 := (yo,+0), Y2 := (0,y0) and Y3 := (—00,0), and, for each
y € Y;, i = 1,2, 3, the number, &, of solutions to M (z) = y is finite and odd and it is the
same for each component. However, K = 1 for y € Y7, Y3, while kK = 3 for y € Y5. In any
case, x = 1 mod 2. Finally, if y is not a regular value, it can happen that the number of
solutions may be infinite, as, in fact, it occurs at y = 0.
A

Example 1.2.3 Let N be the Navier-Stokes operator defined in (1.13). Then, the following
properties hold.



24 I. Review of Certain Fundamental Concepts in Nonlinear Functional Analysis.

(a) For any fixed v > 0, N(v,-) is surjective, namely, for any F' € Dé’Q(Q), there exists
u € Dy*(Q) such that N(v,u) = F;

(b) For any fixed v > 0, there exists an open, dense set O(v) C Dy*(€2) such that for any
F € O(v), the corresponding solution set o n(F') is finite and constituted by an odd
number, x = k(F), of solutions;

(c¢) The integer & is constant on every connected component of O(v) .
Proof. For simplicity, we set N, := N (v, -). In view of (1.20), the equation N, («) = 0 has

only the solution v = 0. Moreover, from Example 1.1.6, we have that NV ; (0) = vI, which
furnishes N[N, (0)] = {0}. The claimed properties are then a consequence of Theorem 1.2.2.

|
[.2.3 Parametrized Sard-Smale Theorem.
In several applications, one is led to the study of equations of the type
M\ z)=y, (2.18)

for given y € Y and given real parameter A € A. The steady-state Navier-Stokes problem is a
significant example of this type, where )\ coincides with the coefficient of kinematic viscosity
v and A = R;. An interesting question, then, is that of investigating how the solution set

om(Ay) == {x € X : x solves (2.18), for given A € A, y € Y}

varies with A\, while keeping y fixed.
A key tool in answering the above question is provided by the following result, for whose
proof we refer to [49, Theorem 78.c].

Lemma L.2.5 Let A and U be open sets in R x X, and let
M:AxU—Y
satisfy the following conditions.
(i) M €CF(R x X),Y), for some k > 1;
(ii) For each A € A, M(}, ") is Fredholm of index 0;
(iit) M is weakly proper at y (see Definition 1.1.13).
Then, if y € R(M) is a regular value for M, the following properties hold.

(a) There exists an open dense subset Ao = Ag(y) of A such that, for each X € Ay, opr(A, y)
is constituted by a finite number of points, x1, -+, TN(x);

(b) Every x1,---,xn(x), A € Ao, is a regular point for the map M (-, \).
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Combining Lemma 1.2.2 and Lemma 1.2.5 we obtain the following result that furnishes a
detailed geometric structure of the solution set ops(y) for (2.18).

Theorem 1.2.3 Let M and y satisfy the assumptions of Lemma 1.2.5 and let Ay be as in that
lemma. Then the following properties hold.

(a) The solutionset o,;(y), constituted by the pairs (A, x) satisfying (2.18), is a 1-dimensional
manifold of class C* ;

(b) For each A € Ao, equation (2.18) has a finite number, 7 = 7(A,y), of solutions, ©;
(¢) The integer T is constant on every open interval contained in Ag.
Proof. We begin to show that
ind(M)=1. (2.19)
In fact, for each (A, z) € A x U, we have
IM'(\,2)](n, 2) = DAM(\,z)n+ D, M(\z)z. (2.20)
Thus, if the 1-dimensional space S1 := {D\M (X, z)n;n € R} is in R[D,M (X, x)], we find
dim N [M'(\,z)] = dim N [D, M (X, z)] + dim S; = dim N [D,M(\,z)] + 1,

while

dim {Y/R[M'(\,z)]} = dimR [D, M (), x)] ,
and so (2.19) follows from the assumption (ii). Conversely, if Sy is not in R[D,M (X, x)],
then,

dim{Y/R[M'(\,z)|} = dim {Y/R[D,M(\,z)]} — dim S; = dim {Y/R[M'(\,z)]} — 1,
while, by (2.20), it follows that
dim N [M'(\,z)] = dim N [D, M (), x)],

and (2.19) again follows by virtue of assumption (ii). Therefore, by assumption (i) and by
Lemma 1.2.2 we obtain the property (a). Property (b) is an immediate consequence of Lemma
1.2.5. It remains to show the property (¢). Let I be an open interval in Ag. It is enough
to prove that, for each A € I, there exists an open interval Is(\) := (A — §, A+ 4), § > 0,
such that 7(\',y) =const, for all A € Is. For A\,\" € I, we denote by z1,- -, Zn(x), and
T, x?v(/\,), N(X), N(X) € N, the corresponding solutions to equation (2.18). Let us begin
to show that, for any ¢ > 0 there exists d = (), y) > 0 such that

N =X <éd, NVel, = |z;—ou\y)ly <e, foralli=1,---,N(X). (2.21)

Actually, if (2.21) were not true, we could find a number g5 > 0 and sequences {\} C I and
{zr} C opr(Ag,y) such that

1
|Ae — Al < z and ||zk —onm (A )|y >eo, forallk e N, (2.22)
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By assumption, M is weakly proper at y, which implies that we can find a subsequence {xy/}
and z € D(M) such that x5 — z, strongly in X. By continuity, we thus find

y= lim Mg, zr) =M\ x)
k’—o00

which contradicts (2.22). From (2.21) we then obtain that each z}, i = 1,---, N(\’), must

belong to S.(z), ® for some & € {x1,---,2n(r)}. Now, assume per absurdum that N (\') >
N(X) (the reverse situation being treated in the same way, by switching A and X\’). Then, there
exist © € {z1,---, v} and 27, 2], € {27, - -,x;\,(/\,)} such that

Mz}, N) = M(x}, X), al,a), € S.(x). (223)

However, by Lemma 1.2.5(b), each « is a regular value of the map M (-, \'), and this, in turn,
by the fact that M (-, \) is Fredholm of index 0, implies that D, M (x4, \') is a bijection of X
onto Y, for all i = 1,---, N(X\') (for the chosen A’). Thus, by the inverse mapping theorem
Lemma L.1.5, M (-, \') must be a C'-diffeomorphism of an open neighborhood of x onto an
open neighborhood of y, for all ¢ = 1,---, N/, which contradicts (2.23). The proof of the
theorem is then completed.

The above theorem furnishes the following result for the Navier-Stokes problem.

Example 1.2.4 Let N be the Navier-Stokes operator (1.13). There exists a dense subset O of
D(l)’z(Q) such that, for every F' € O the pairs (v, u) satisfying the equation

N(v,u)=F, (2.24)

form a C™° 1-dimensional manifold. Moreover, there exists a dense subset of (0,00), P =
P(F), such that for each v € P, the problem (2.24) has a finite number n = n(v, F') of
solutions. Finally, the integer n is constant on every open interval contained in P.

Proof. In view of Example 1.1.4, Example 1.1.6 and Example 1.2.1, the operator /N satisfies the
hypotheses (i)—(iii) of Theorem 1.2.3 with k = co. Moreover, by Theorem 1.2.1, we know that
the set of regular values of IV is dense in Dé’Q(Q). The result is then a corollary to Theorem
1.2.3.

®)See (2.15) for notation.



1.2.3 Parametrized Sard-Smale Theorem. 27

A sketch of the solution set of (2.24) for F' € O si given in Fig.2

F e \.\. g

!

-
P

Fig.2: Sketch of the solutions set, o7 (F') to (2.24) for “generic” F. Notice that the
curves can not intersect, since o7 (F') is 1-dimensional.
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Chapter 11

Geometric Structure of the Set of Solutions to the
Navier-Stokes Problem Past an Obstacle.

In this chapter we shall investigate the geometric structure of the steady-state solutions to the
Navier-Stokes equations past an obstacle. In this case, it is more convenient to rewrite the
equations in a non-dimensional form and to introduce the Reynolds number A := Ud/v, where
U is the magnitude of the translational velocity of the obstacle that, without loss of generality,
we may assume directed along the unit vector e; of the canonical base {ei, ez, e3} of R3,
while d is the diameter of the obstacle.

Our goal will be achieved by defining a suitable “nonlinear Oseen operator”, IN(\, u),
acting, for each A € R, between two suitable Banach spaces X and Y, and by studying its
relevant function-analytic properties. In fact, we shall show that, even though the structure
of the operator IN is completely different than that of its counterpart in bounded domains
described in the examples of the previous chapter (IN is no longer a compact perturbation of
a homeomorphism), the manifold of solutions {\, «} turns out to possess the same qualitative
properties that are summarized in Example 1.2.4 and sketched in Fig.2 of Section 1.2.3.

II.1 The Navier-Stokes Problem in Banach Spaces.

In this section we shall show that the Navier-Stokes problem under consideration can be rewrit-
ten, for any A > 0, as an abstract nonlinear equation between certain Banach spaces X and Y.
However, unlike the case of flow in a bounded domain, the choice of X and Y is not so obvi-
ous. In particular, the space X is completely new and its main properties will be appropriately
investigated.

29
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II.1.1 Preliminary Considerations.

We begin to recall that the boundary-value problem we are interested in is formulated, in its
non-dimensional form, as follows

—Av—)\a—v—l—)\v-Vv:—Vp—l—f
9z in Q
divv =0 (1.D
v(z)=er, v €09, lim v(z)=0.

|| —o0

Here v = v(z) and p = p(x) are the dimensionless velocity and pressure fields of the fluid,
respectively, f = f(x) is the non-dimensional body force acting on the fluid, \ is a positive ()
dimensionless number (Reynolds number), €2 is a three-dimensional exterior domain (the region
of flow exterior to the obstacle), Of2 its boundary and e; is a unit vector (the velocity of the
obstacle). Thanks to the fundamental results of Leray [32], continued and completed by
Ladyzhenskaya [31] and Finn [10], we know that problem (1.1) always admits one “weak”
solution v for any A > 0 and for any f in an appropriate (and quite large) function class.
More precisely, the above results tell us that, for any A > 0 and for any f in Dy 1’2(9) (the
dual space of Dy?(€2)), there exists a field v := u+ V, with u € DJ*(Q) and V = V' (), z)
suitable, smooth solenoidal extension of e;, such that

d
—(Vu, Vi) + A (TZ"‘O) +A(u-Ve,u)

ov 1.2
+A[(u -V, V) +(V -V, u)] + (AV‘F)\% — AV -VV,p) (1.2
1

={(f,p), forall o€ D).

Here (-,-,) is the scalar product in L?(€2), while (-,-) denotes the duality pairing between
Dy *(Q) and Dy*(Q). Fix, once and for all, the extension V. Then, for given A\ > 0 and
fe Dal’Q(Q), a function u = u(\, f) € Dé’Q(Q) satisfying (1.2) is called Leray solution.

It is well-known, see [18, §§ I1X.1 and 1X.5], that a Leray solution corresponding to given
A and f is unique, provided |f|_1 2 is below a certain constant depending only on €2 and A.
Furthermore, if f is suitably regular, any corresponding Leray solution, u, is smooth as well
and there exists a smooth pressure field p such that the pair {v := u + V', p} satisfies (1.1) in
the classical sense.

The “weak” formulation (1.2) suggests that we may try to rewrite it as an operator equation
in the space D, "*(Q) of the form

NM\u)=f, (1.3)

where NN is a nonlinear operator defined for (\, u) € (0, 00) x X () with values in Dy "*(Q)
and X (Q) is a suitable Banach space. Now, although it could be tempting to take X () as

(MMathematically speaking, it is sufficient that A # 0. However, the case A > 0 is the one physically meaningful.
@Formally, (1.2) is obtained by first writing, in (1.2), » = w + V/, then by taking the scalar product of both sides
of the resulting equation by ¢, and, finally, by integrating by parts over 2.
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the space of Leray solutions, namely, X () = D¢*(Q), it is also immediately seen that, unlike
the case of a bounded domain (see Example 1.1.1), this is not possible. Actually, the second
and third term on the left-hand side of (1.2) do not define an element of Dy "'*(Q) if w only
belongs to Dy*(2). In other words, if we only know that w € D*(Q2) we can not guarantee
the existence of two positive constants C; = C;(u), i = 1,2, such that ®

9
(e =le

8.%‘17

12, |[(uw-Ve,u)| <Cslpli2, forall e D). (1.4)

Therefore, the space X () is a strict subspace of Dé’Q(Q). It turns out that an appropriate
choice is to take X (€2) as the subspace of Dj?(€2) constituted by functions that, further, satisfy
the first condition in (1.4) with a finite C'y. This choice is supported by the result that we
prove in Proposition IL.1.1, namely, that X () is embedded in the Lebesgue space L*((2).
Consequently, by a simple application of the Holder inequality, it follows that functions from
X () also satisfy the second condition in (1.4) with a finite Cs.

In the next subsection, we shall give a precise definition of the space X({2) and present
some of its fundamental properties.

II.1.2 The Space X(2) and its Relevant Properties

We shall now introduce a new function space. To this end, for 2 an exterior domain, let us
consider the subspace of Dé’Q(Q) constituted by those functions w satisfying the additional

property

(a—“,so) <Clpha. forall p D), @)
83)1

where C' = C(€,u) > 0. Since D() is dense in D}*(Q), by the Hahn-Banach theorem there
exists a uniquely determined element §;u € Dal’Q(Q) such that

(B1u, @) = (887“ ) , forall ¢ € D()
1
|01u|—12 = sup L
» €D() pl1,2
p#0

In such a case we shall write du/dz, € Dy *(Q). We then introduce the following function

class

X(Q) = {u e Dy?(Q) : S—Z € Dol’Q(Q)} : (2.6)

It is a simple exercise to show that X (£2) endowed with the “natural” norm
[uli2+ 01wy,

becomes a separable, reflexive Banach space.

®1n fact, one can easily construct examples proving the invalidity of (1.4), if w only belongs to Dé’2 Q).
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Remark IL1.1 Since X(Q) C Dy*(Q), it follows that any function  from X (Q) satisfies
dive = 0 in ©, vanishes at J€2 in the trace sense and vanishes at large distances as well, in
the following well-defined sense (see [17, Lemma I1.5.2])

A

The main objective of this section is to prove the following two further properties of the space
X(Q).

Proposition IL.1.1 Let Q be an exterior domain. Then X () is embedded in L*(Q)) and there
is a constant C = C(Q) > 0 such that

1 3
e < O (vl o fulf o + ulie) - @7

Proposition IL.1.2 Let Q) be as in Proposition II.1.1. Then, for any u € X (), the following
property holds
(O1u,u) =0. (2.8)

Remark II.1.2 We observe that, in both propositions, we do not require any regularity on the
boundary of 2.
A

Remark I1.1.3 If w merely belongs to Dé’2(Q), by the Sobolev inequality, we obtain that
w e L5(€) @, If, however, we also have du/dx, € Dy (), for all k = 1,2,3, we could
then show, by the methods used in this section, that w € L?(€2). Thus, Proposition IL.1.1 can
be considered as an interpolation inequality for certain negative anisotropic Sobolev spaces. )

A

Remark IL.1.4 If uw € D(), then the proof of (2.8) is trivial. Since it is not obvious that
D(Q) is dense in X (), the main issue here is to show that (2.8) continues to hold for functions
just belonging to X ().

A

The proof of the above propositions will be achieved through several intermediate steps.

Lemma IL1.1 Let D be domain with a bounded Lipschitz boundary or D = R3, and let
w € Wy *(D), with divu = 0 in D. Then, there exists {uy} C D(D) such that

lim Hu — Uk||12 = 0.
k—o0

®See (2.10) below with ¢ = 2.
®Interpolation inequalities for positive anisotropic Sobolev spaces are well-known; see, e.g., [6].
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Proof. See [17, §111.4.2].
|

Lemma IL.1.2 Let u € DV(R?), 1 < q < 3. Then, if there is an unbounded sequence { Ry}

such that
1

lim — u|l =0
Ry —o0 Rk /BBRk | | ’

the following properties hold.

(i) For any R > 0,

q
lu/|zlllg,pr < 5= ltl1,q,87. 2.9)

—q
(ii) There exists a sequence {uy} C CS°(R?) such that

lim \u—ukh,q = 0,
k—o0

so that, in particular, u € Dé’q(RS)A
(iii) The Sobolev inequality holds:

||U||;__<1q <Y|uli,q, (2.10)
with v = v(q) > 0.

Proof. See [17, Theorem IL.5.1 and Theorem 11.6.2].
|

Lemma I1.1.3 Let D be a bounded domain with a Lipschitz boundary ® and let f € C§°(D)
with (f,1)p = 0. Then, there exists w € C§°(D) such that

divw=f inD, |w|iz2<C|f|2 2.11)
with C = C(Q2) > 0.

Proof. See [17, Theorem 111.3.2].
|

Lemma IL1.4 Let Q be an exterior domain and let w € X (S2). Then, for all x € D(R?), the
following inequality holds

ou
(8—331’)() <C (\51u|7172 + |u|172> Ix|i2,

with C = C() > 0.

©1In fact, it is sufficient that D satisfies the cone condition.
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Proof. Let 1) be a smooth, non-decreasing “cut-off” function which is 0 in B; and 1 in B2,
and let w verify (2.11) with D := () 3 and f := —V1 - x. In view of the properties of
and x we at once deduce that the condition (f,1)q, , = 0 is satisfied and that, furthermore,
f € C§°(,3). Thus, by Lemma II.1.3, such w exists and belongs to C§°(€21 3). By Lemma
I.1.3 and (2.10) with ¢ = 2 we also obtain

lwlli,2 < C1lxl1,2,8, < Calxli,2, (2.12)

with C; = C;(2) > 0, i = 1,2. We extend w to zero outside €2; o and continue to denote by
w this extension. Set

xX=x+{1-¢)x —w, (2.13)

where X := ¢x + w. Clearly, divx = 0 in R? and X € C§°(Q!). Thus, x € D(Q}) € D(Q)
and we deduce

ou . -
(a—m,x)’ < |61ul_q 5 |X[1,2- (2.14)

However, by the properties of 1, by (2.10) with ¢ = 2 and by (2.12) we find

IXl12 < Ca(Ixll1,2,8, + [lw]1,2) < Calxli2,

with C; = C;(2) > 0, i = 3,4. Furthermore, again by the properties of ¢ and by (2.10) with
q=2,
ou
—, (11— <
(axl,( 1/J)X>’ < Jul1e

with C5 = C5(2) > 0. Finally, from (2.12), we have

X|2,8, < Cs |ul1,2|x]1,2 5 (2.15)

ou
(—8 7w)’ < |u|i2l|lwll2 < Cslul12x|1,2 (2.16)
XT1

with Cg = Cg(€2) > 0. The lemma then follows from (2.14)—(2.16).
[ ]

Lemma IL1.5 Let Q and w be as in the previous lemma. Then, for all &€ € DY2(R3) with
bounded support, the following inequality holds

0
(8—;1’6)’ <C (|51U|71,2 + |u|1,2> €l12

with C = C(£2) > 0.

Proof. We write
E=w+ VP, (2.17)

where ® = £ xdiv& and £ is the Laplace fundamental solution. Since £ is of bounded support,
from (2.10) we obtain, in particular, that £ € VVO1 ’2(R3). Thus, by the Calderon-Zygmund
theorem on singular integrals we deduce V& € W12(R3). Moreover,

|Dl2,2 < C1 €12,
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with C7 > 0 an absolute constant. As a consequence, we obtain that w := & — V& belongs to
W12(R?) and satisfies divaw = 0 in R? along with the inequality

(wli12 < (1+C1) €]z (2.18)

From Lemma IL.1.1 and Lemma I1.1.2(ii), it then follows the existence of a sequence {wy} C
D(R?) such that
lim ||’UJ]€ - 'w||172 =0. (219)
k—o0

Therefore, employing Lemma II.1.4, we deduce

6.%‘17 B 6.%‘17 § 8%1’ k

E§C2O5HH_L2+\Uh2>hUHL2+|Uh2

w— w2,

with Co = C5(2) > 0. Passing to the limit & — oo in this inequality and using (2.18) and
(2.19) furnishes

9 A
(6—;17w> < Co (10rul_yz+ i) 1€,z (2.20)

Furthermore, since ® € D%2(R3) and ® — 0 as || — oo uniformly, by Lemma I1.1.2(ii) there
is a sequence {®} C C°(R?)} converging to & in DL2(R3). Also, since u € Dy*(Q),
there is a sequence {u,,} C D(f) converging to w in DY2(Q). Thus, for any m and k we

m k . k
—__ VP - _ m’§7 -~ =1(d Uy, —— 7~()7
( 6]}1 ’ k) (u <8$1 >> ( v 8331 >

and so, passing to the limit & — oo for fixed m, and then letting m — oo, we conclude

(a—“,wb> —0. 2.21)
83)1

The result is then a consequence of (2.17), (2.20) and (2.21).
|

Lemma I1.1.6 For any positive o and R, there exists a “cut-off” function 1o r € C$°(R3?)
such that 0 < o p(x) <1, for all x € R?® and satisfying the following properties

lim 9o r(x) =1 uniformly pointwise, for all o > 0,

R—o0

N 1 Ci | OWar c o (2.22)
L < — —r < — =

or, B S g | o @ =R 28,

where C1, Cy are positive constants independent of x and R. Moreover, the support of
OVo,r/0x4, §=1,2,3, is contained in the cylindrical shell Sp := 51(%1) N 51(%2) where

1 R
8](%) Z{JIERBZE<T‘<\/§R,}
2 R
SI(%) ::{QIGRSIE

(2.23)
<x1<\/§RO‘}U{x€R3: —R—\/i<x1<—}
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and where v = /x5 + 3. Finally, the following properties hold for all o > 0

51%71%
63:1

[|lu V@%ﬂ”s <C

€LYR®), forallg>2+1
(2.24)

\u|1 o5 forallu e DV (R3),1 < s< 3.

Proof. Let 1) = 1(t) be a C°° non-increasing real function, such that 1)(¢t) = 1, t € [0, 1] and
P(t) =0,¢> 2. We set

2
L1

2
1%71%(95):7/1( ﬁ+%>yw€py

so that we find

2 2
L if st 5y <1
Ya,r(T) = 2 2 . (2.25)
o 27
0 if T2a + i >4
The first property in (2.22) follows at once. Since
3%,3 m) _ L1 7/’/ x% + ﬁ
Ox1 Re\/x? + R20—22 R2a 2 |
81/)&}% €

(z) = i W' Lt B RP
81'7; o R /R272a.’1}%+7"2 RQa RQ ’ —

the uniform bounds for the first derivatives in (2.22) hold with C' := max;>¢ |¢'(t)|. Denoting
by 3 the support of Vi g, from (2.25) we deduce that

2 2
Ec{xeR3: 1<1§21a+%<4}521.

Consider the following sets

2 2
3. @7 1 T 1
8173{1‘6]1%. <§andﬁ<§},

2 2
SQ,R{QSERg: 521a>2and%>2}.

Clearly, 1 D &1,r U S g, where the superscript “c” means complement. Moreover, clearly,
St r N85 r = Sr. Therefore, by de Morgan’s law, we get ¥ C S7 5z NS5 and we
conclude that ¥; C Sr. We next observe that the first property in (2.24) follows at once
from the estimate for Oy, r/Ox1 given in (2.22) and the fact that the measure of the support
of 0o r/0x1 is bounded by a constant times R>12_ Furthermore, we observe that, for all
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x € Sp, itis |z] < C\/(R?** 4+ R?), with C a positive constant independent of R. Thus, from
(2.22)5 we find

[ Vb, rlls s = lluViba,glls,sn < C2[Ju/|z]

s < Callu/lall s
with C a positive constant independent of R and u. The second property in (2.24) then follows
from this latter inequality and from (2.9).

|

We are in a position to give a proof of Proposition IL1.1. For a given f € C$°(Q2), consider
the following problem

7
Ap—AzL = f+Vp
1 in R3, (2.26)
dive =0

where A € (0,1]. Problem (2.26) has at least one solution such that

@ € L*1(R3) N DL52(R3) N D252 (R3)
2.27)
p € L5+ (R3) N D152 (R?)

for all s1 > 2, s9 > 4/3, s3 > 1, s4 > 3/2, which, in particular, satisfies the following
estimate

M liz < Ol fllays (2.28)
with C' > 0 an absolute constant; see [17, Theorem VIL.4.1]. From (2.26) we find (with
(’a ) = (’a )Q)

O
(u, f) = (u,¥rAp — )\wRa—gcl — YR VD)

0 0
= A ) + M, 20) — (6 Vs Vep)

—(u, Vg - V) + (u- Viog,p),

(2.29)

where ¢r := 14 g is the function introduced in Lemma I1.1.6, with R large enough for Br
to contain the support of f. By the Holder inequality, by (2.22)1, (2.24); and by (2.10) with
q = 2 it follows that

(VR VU, V)| < |uli2]pli,2
[(u, ViR - Vo)

IN

lulls| ViR - Vel s (2.30)

IN

C'1|u|172|80|2 %Q% )

)

where C; = C1(Q) > 0. Since, obviously, 1re € DV2(R?) with bounded support, from
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38
Lemma II.1.5 and (2.22)1, (2.24)> we also have that
ou
(a—lebB%P) < O (|51U|_172 + |U|172> [Vrel1,2
2.31)
<
< Cs (|51U|_172+ |U|1,2> (|80|1,2+ |¢|1’2’Q%) :
with C; = C;(Q?) > 0, i = 2, 3. Furthermore, by (2.10) with ¢ = 2, we obtain
6¢R awR 81/13
i) < -t < - 2.32
() | <l [ elose < otula| G| Ieles @)
with Sg defined in (2.23). Finally, using (2.24), we get
2 |pll2,58 5 (2.33)

. <
(- Vrp) < Calul | s

with Cy = C4(Q) > 0. We now let R — oo into (2.29). From the property (2.24); of ¢z, from
the properties of ¢ and p given in (2.27), from (2.30)—~(2.33) and from the fact that A € (0, 1]

we then deduce
()] < Cs (N 01y o+ lulrz) [l

If we replace (2.28) into this latter inequality, we find

()] < Cs (AT Joval_y o+ Al ) 1 £]14

with C5 = C5(Q) > 0. Since f is arbitrary in C§°(Q), we infer that w € L*(€2) and,
(2.34)

furthermore, that
3 _1
lulla < Cs (A orul_y o + A" fulis)

for all A € (0, 1]. Consider, now, the following two possibilities: either
01ul_y o > |uli2 (2.35)
or
010 5 < |ul1z. (2.36)

In case (2.35), we may assume |61u|—1,2 # 0, because otherwise u = 0 and (2.7) is trivially

satisfied. So we may choose
A=lulig/ |01u]_ 5,

which, once replaced in (2.34), gives
1 3
lulla < Csld1u|) 5 luli,

and so, in particular, (2.7). In case (2.36), from (2.34) with A =1 we get
[ulls < 2C5]ul12
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and so, again in particular, we recover (2.7). The proof of the Proposition II.1.1 is completed.
|

We shall next provide a proof of Proposition II.1.2. Consider the following sequence of
functional on Dy*(12)

0
<Fk7’LL7 q)> = (wka—;i?@) ’ P c D(1)’2(Q)7

where ¥ (x) := ¥4 g, («) and { Ry} is a diverging sequence with R sufficiently large. Clearly,
if we extend @ to zero outside (2 and continue to denote this extension by ®, we find Y, ® €
D'2(R?) with bounded support. As a consequence, from Lemma II.1.5 it follows that

{Fw, @) < Ch|9p®

1,2 <Cr(|®|i2+ | Ve - @l2) ,

with C7 = C1(Q, u) > 0. So, using the property (2.24)s of 1, we obtain
|Fiul-12 < Ca,

with Cy = C3(€2, u) > 0. Therefore, there exists F, € Dy “*(Q) such that

lim (Fj o, ®) = (Fo, ®), forall ® € Dy?(Q). (2.37)

k—o0
However, for any ¢ € D(2) we have

) ou . ou
A {(F s ) — (8—901’ 90) = lim ’ (8—901’ (1- Q/Jk)‘P)’

< [uliz lim [[(1—4x)ell2 = 0.
We thus find
F,=4u. (2.38)
Consider, next, the following identity
. - ou
(1w, u) = (01w — Fi o, u) + ¢k%,u . (2.39)
1

After integrating by parts, by means of the Holder inequality we obtain

ou 1| OV Oy

it — 1 275 < || Z£E

(wkal‘l’u) 2 (8331 v - 8;131

Employing (2.24); and (2.10) with ¢ = 2 on the right-hand side of this latter inequality we
immediately deduce that

Il

=2
2

6,5k -

) ou
khjgo (wka—xl,u> =0. (2.40)
Therefore, Proposition I1.1.2 follows by letting £ — oo into (2.39) and by using (2.37), (2.38)
and (2.40).

|
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II.1.3 The Oseen Operator in X (2)

In this section we shall show that the following Oseen problem

Aus 2\ —vpy g
9z in Q
divu =0 340D

ulpn =0, lim w(x)=0,
|| —o0

with A > 0, generates a linear homeomorphism between the spaces X (€2) and D "*(Q2). By
formally multiplying both sides of (3.41); by ¢ € D(£2) we find

—(Vu,Ve)+ A (g—;,go) ={f,p), forall ¢ € D(Q). (3.42)

Using the a priori estimate
[uli2 < [f]-1,2, (3.43)

obtained by formally multiplying through both sides of (3.41); by u and then integrating by
parts over () and using (3.41)2 3, along with the classical Galerkin method, one can show (see
[17, Theorem VIL2.1]) that for any f € D 1’2(9), problem (3.42) has at least one solution
u € Dy*(Q). As a consequence, we have that w € X (), because from (3.42) we at once
obtain that du/0z1 € Dy L2(Q). Furthermore, from (3.43) it also follows that

Adiul—12 <2|f|-12. (3.44)
We next recall the following functional (Stokes operator) on Dé’Q(Q)
(Au, @) == —(Vu,Ve), @ eDH(Q), (3.45)
and define the Oseen operator £ on Ry x X (§2) as follows

L: Mu)eR, x X(Q) — L\, u) = Au+ N\ u. (3.46)

Clearly, the range of L is contained in Dal’Q(Q) and, moreover, by what we just said, L(), -)
is surjective for all A > 0. In fact, £(}\,-) is a homeomorphism for all A > 0. Actually,
from (3.43) and (3.44) it follows at once that £ ()\,-) exists and is continuous at every

f €Dy ?(Q). Finally, since
LOA+pu+w)— L u) = Aw+ Adw + pdru+ pdw, (3.47)

we also show with no pain that £ is continuous and, in fact, infinitely differentiable (in the
sense of Fréchet) at each (\, u) € Ry x X(Q).

Notice that, for all the above results to hold, no regularity on the boundary 0f? is required
. We summarize these considerations in the following proposition.
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Proposition 11.1.3 Let Q2 be an exterior domain. Then, the operator L defined by (3.46) is
of class C*°. Moreover, for any X\ > 0, the operator L(),") is a linear homeomorphism of
X(Q) onto Dy (). Finally, the following inequality holds for all u € X ()

[uf1,2 + Ald1ul-1,2 < 3[f[-1,2, (3.48)
with f = L(A\, u).

The result just shown in conjunction with Proposition II.1.3 furnishes the following inter-
esting corollary which, so far, was only known for domains having a certain degree of regularity
[17, Theorem VIL.7.2].

Corollary IL1.1 Let Q) be an exterior domain. Then, for any A > 0 and any f € Dy 1’2(9)
there exists one and only one u € X(Q) such that L(\,w) = f. Moreover, u ¢ L*(Q) and
it satisfies the estimate (3.48) along with the following one

A flufly < C(1+AT)|fl-12,

with C' = C(Q2) > 0.

I1.1.4 Suitable Extensions of the Boundary Data

In order to define a suitable (nonlinear) operator in the space X (1) associated to the Navier-
Stokes problem (1.1), we need to introduce an appropriate extension of the boundary data e;.
Specifically, we have the following result.

Proposition I1.1.4 Let ) be an exterior domain with a Lipschitz boundary. Then, for any
A > 0 there exists V = V(A x) € C(R4 x Q) satisfying the following conditions.

(i) V(\z)= ey, forall x € 0Q;
(ii)) divV(\,-)=0inQ;

(iii) There is a bounded set ¢ C ) independent of )\, such that the support of V(") is
contained in o ;

(iv) For all u Dé’Q(Q) we have
(w-Vu,V) < ~ulf,. (4.1)

Finally, the following additional property holds

(v) Given \y > Ao > 0, ¢ > 1 and m € N, there exists a constant C = C(, Ao, A1, q, m) >
0 such that
IV (A, )
O™

<C,

2,9

Jor all A € [Ao, M.
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Proof. We shall follow the procedure used in [18, Lemma VIIL.4.2]. Let ¢ = ¢(£) be a smooth
real non-decreasing function such that ¢(§) = 0if &€ < 1 and ¢(§) = 1 if £ > 2. For any
e >0and x € Q we set n(e, z) := ¢(—¢elnp(x)) where p(x) is the regularized distance from
x to 0f in the sense of Stein; see [44, Chapter VI, Theorem 2]. We recall that p(z) and the
actual distance d(x) from x to 0f) satisfy the following relations

o(x) < p(),
1l 4.2)
D% p(x)| < Kjoy [0(x)] T,
for any multi-index o with |a| > 0, and where k|| depends only on a. We then have that
n € C®(R: x Q) and that
1 if p(x) <e™?/¢
(e, z) =
0 ifp(x) >e Ve
Consequently, in view of (4.2), the support of 7 is contained in the set

S = {(5,:Jc) ERy xQ:é(x) < 6_1/5} ,

while the support of any of its derivatives is contained in the set

6—2/5

So ::{(a,m)€R+xQ: <6($)<€_1/5}.

K1
Notice that, for any € > 0, the level sets S;(¢) := {x € S;}, i = 1,2, are bounded and their
Lebesgue measures, |S;(¢)|, satisfy the following relation

1S1(8)[F +[S2(e) ¥ < Cre™/= < Che, (4.3)

for any k£ > 0 and with C; = C1(Q,k) > 0. Using again (4.2), we obtain the following
estimate

|Vn(e, z)| < Ca xa(e, ) (4.4)

&
o(x)’
where 2 (g, ) is the characteristic function of the set S; and C2 = C2(£2) > 0. Furthermore,
by a direct calculation, we show that, for 0 < ¢ < e,

m

< Csx(e, x)Z| Inp(z)|'6~1l(z), for all m, |a| >0,

Ao
=0

where x = x1 if m = |a| = 0, x = x2 otherwise, and C5 = C3(2, 1) > 0. However, by
(4.2), for all (e,x) € Sa, we have |Inp(z)| < Inky + 2/e, so that the previous inequality
furnishes the following one valid for 0 < ¢g < e < eq:

D “nie, x)| < Cax(e,z)671% (), forall m, |a] >0, 4.5)
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with Cy = 04(9, €0, 81) > 0. Set

w(e, x) = teurl (n(e, x)(e1 x x)). (4.6)
Clearly, w € C*(Ry x ), w(e,x) = eq forall (¢,2) € Ry x 04, and divw(e,-) =0 in Q.
Furthermore, for any v € D(€)) we have

[ vuew <julwllafulsz. @)

Q
Employing the properties of the function 71, with the help of the Holder inequality we get
lfalfllla < O (<lfw/alls + el 1) .

where C5 > 0 is independent of v and . Using the inequality |u/d|l2 < Cglul12 [17],
Lemma I11.6.3, with Cs > 0 depending only on the Lipschitz constant defining the regularity
of 91, and (2.10) with ¢ = 2, from the preceding inequality, and from (4.3), (4.7) we conclude

—/u~Vw~u§ eCrluli,,
Q

with C7 = C7(Q) > 0. By a simple continuity argument that uses the properties of w and
the denseness of D(€) in Dy 2(Q), it is immediate to extend the previous inequality to all
w € Dy?(€). Thus, putting V (A, z) := w(1/(2C7)), z), from what we have shown so far
we deduce that V' satisfies all properties (i)—(iv) stated in the proposition. In order to prove
also property (v), we observe that from (4.5) and (4.6), for any ¢ > 1 and 0 < Ag < A < Aq,
we find that

IV (A, - -
ZF0 < a5 hascaraeny + 5:0/2C) | @)
q
with Cs = Cs(), Ao, A1, m, ¢) > 0. Taking into account that

5(z) > e 49N iy forall x € Sy(1/(2C7)), 4.9)

from (4.3) and (4.7)-(4.9), for all 0 < Ay < A < A1 we obtain
VA o (4.10)

o™ |,

where Cy = Co(£2, Ao, A1, m, ¢) > 0. Moreover, from (4.5), (4.6), we find, for 0 < Ag < A <
A,
! 3
< Cio Z IDXn(X; )| < Ci1 X2 (N 2) Z slel(

o] =2
where C1g = Clo(Q, m) >0,C11 = Cll(Q, Ao, )\1,m) > 0 and Xf)( ) (1/(207)\); LE)
From this relation and from (4.3) and (4.9) it follows at once that

—D2
G V(A x)

l\'}

S0127

|

O™

with C12 = C12(€, Ao, A1, m, ¢) > 0. Property (V) is then a consequence of this latter relation,
of (4.10) and of elementary interpolation.
|
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IL.1.5 The Nonlinear Oseen Operator in X (£2)

Our goal in this section is to formulate the Navier-Stokes problem of a flow past a body as
an abstract nonlinear equation in the space Dy 172((2) and to introduce the associate nonlinear
operator; see also Remark II.1.5

For our purposes, it is convenient to rewrite problem (1.1) in a different and equivalent
form. To this end, let €) be an exterior domain with a Lipschitz boundary and let V- = V (A, x)
be the extension of the boundary value e; introduced in the previous section and set v = u+V.
Therefore problem (1.1) becomes

Au+)\a—u—)\u-Vu—)\(u-VV+V-Vu)

6.%‘1
+H -Vp=f in
5.1
divae =0 1)
u(z) =0, z € 0Q, lllim u(r) =0,
where
ov
H=H(\x) ::AV—I—)\E)T—)\V-VV. (5.2)
1

If we dot-multiply through both sides of (5.1); by ¢ € D(Q2) and then formally integrate by
parts over €2, we get, for f € DO_I’Q(Q),

—(Vu,Ve)+ A (a%u’ <p> +A(u-Ve,u)
! (5.3)
+A[(w- Vo, V) + (V- Vo, u)|+ (H,p) = (f,¢).

It is easy to see that, if w € X (1), equation (5.3) can be written as an equation in Dal’Q(Q).
In fact, for u,v € X(Q), let us define three elements of D, (), V = V(\,u), N =
N (X u,v) and H = H(N), as follows:

(NN u,v),9) = MNu -V, v), e eDy (). (5.4)
(H(N), ) == (H,¢),
Since, by the Holder inequality and by (2.10) with ¢ = 2, we find

[{(u- Ve, V)+ (V- -Ve,u)| <2|V|4|u

4,0'|So|1,27
[(u- Ve, v)| < [lufs]v]slel,z2, (5.5)
((H, o) < [H|elells <[ Hlelele,

with ¢ defined in Proposition II.1.4(iii), from Proposition II.1.3 and Proposition 11.1.4 we
deduce that the functionals V, N and ‘H are well defined. We then introduce the following
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nonlinear Oseen operator
N:(\uw)eR xX(Q) — N\ u) =L\ uw) + VO u)+ N u,u) + H() (5.6

where £ is the Oseen operator given in (3.46). Obviously, the operator IN is well defined
and its range is contained in Dy 1’2(9). As a consequence, we obtain that (5.3) leads to the
following abstract equation

N\ u)=f inD;"?(Q). (5.7)

As customary, here the side conditions (5.1)2 3 are to be understood in the generalized sense
specified in Remark 1.1. However, if f € Dy "?(Q) and it is regular enough, and if u € X (Q)
satisfies (5.7) for some A > 0, then it is well known that w is regular as well, and that there
exists a scalar field p € L?(Q) such that the pair {u, p} satisfies (5.1) in the ordinary sense,
including the condition on OS2, provided € is regular enough; see [18, Theorem IX.1.1].

It is readily verified that IN is infinitely differentiable (in the sense of Fréchet) at every
(A, u) € Re x X(Q). In fact, by Proposition II.1.3, £ is of class C°°. Moreover, from the
linear dependence of the operator ¥V on w and from Proposition II.1.4 and (5.5); it follows that
V is of class C'*°. By the same token, we show that H is of class C'™® as well. Finally, again
from (5.5)2, by using exactly the same procedure employed in Example 1.1.6 for the flow in a
bounded domain, we easily show that A/ is of class C'°°.

The subsequent sections will be dedicated to the study of other relevant functional properties
of the operator V.

Remark I1.1.5 Taking into account that the Stokes operator Aisa (linear) homeomorphism
of Dé’Q(Q) onto D, 1’2(9) [17, Theorem IV.1.1], equation (5.7) can be equivalently rewritten
as

N(\u)=F inDy*(Q), (5.8)

with N := A~!N and F = &’1f. It could be of some interest to compare (5.8) with
the operator equation (1.12) that we established for the analogous Navier-Stokes problem in a
bounded domain in Chapter I. In the first place, the operator NV in (1.13) of Chapter I is defined

in the whole of D}%(Q), whereas the domain of definition of the operator N is X (£2), which
is only a dense subset of D(l)’z(Q). Furthermore, and more importantly, unlike the operator

(1.13) of Chapter 1, the operator IN is not a compact perturbation of a homeomorphism, and
this will make our analysis much more complicated.
A

I1.2 Relevant Properties of the Operator N

In this section we shall prove a certain number of fundamental properties of the nonlinear
Oseen operator (5.6)

I1.2.1 Fredholm Property

We begin with a simple but useful preparatory result.



46 II. Geometric Structure of the Set of Solutions to the Navier-Stokes Problem Past an Obstacle.

Lemma I1.2.1 Let {uy} be a sequence of elements of X(Q) such that
|tgl1,2 + |01tk 12 < M

where M is a positive constant independent of k € N. Then, there exist a subsequence {uy}
and an element w € X (Q)) satisfying the following properties for all ¢ € Dé’2(Q) .

khm (vuk"a V(P) = (vu> ch) ’
/' —o00
6.1)
lim <51uk"7 ‘P> = <51'U,, ‘P> y
k! —o0
Moreover, for all sufficiently large R
klirn |l —ullg.0 =0, forall ge[l,6). (6.2)
' —o00

Proof. Since X (€2) is a subset of the Hilbert space Dp* (), we can find a subsequence {uy-}
and an element u € Dy*(Q) such that, for all € Dy*(Q) and all & € C3°(Q),

lim (vuk’WVQO) = (vu> VCP) 5

k*—o0
(6.3)
fim [P g [0 g 103,

Furthermore, again by assumptions and by the separability of Dé’Q(Q), we deduce the existence
of an element U € D, "*(Q) such that

Wlim (Grug-, @) = (U, ), for all ¢ € Dy*(Q).

However, from (6.3)2, we find for all ¢ € D()

. - . 8uk* o 8u
i (O ) = lim (a—“”> - (a— *”) '

It then follows that U = &,u and since we already proved u € Dy (Q), we find u € X ().
We next observe that, since by Proposition I1.1.3 and by assumption, it is

Juglla < C1, (6.4)

with C1 = C1(Q2) > 0, we also find

klim (ugs, ) = (u,vp), forall p € CF(Q). 6.5)

o0

Now, by hypothesis and by (6.4), it follows that

(|-

12,05 < Co,
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for all sufficiently large R, where Cy = C5(2, R) > 0. For each fixed R, by Rellich’s
compactness theorem, we can then select from {u~} another subsequence, {uy: }, and find
ur € WH2(QpR) such that

lim |ug: —ugllg0, =0, forallge][l,6). (6.6)

However, in view of (6.5), we have ur = w for all R. Thus, by covering 2 with an increasing
sequence of bounded domains of the type Qr,, R, € N, and by using (6.6) (with ur = u)
along with Cantor diagonalization method, we may select another subsequence {u- } such that

klirn |lwr — ullg0r =0, forall g€ [1,6) and all sufficiently large R.
/00

The proof of the lemma is completed.
|

Remark I1.2.1 For subsequent purposes we wish to emphasize that from the previous lemma
it follows that a sequence satisfying (6.1) necessarily satisfies (6.2). This because, by well
known facts about weak convergence of elements and functionals in a Hilbert space, such a
sequence necessarily satisfies the hypothesis of the lemma.

A

We also have the following.

Lemma I1.2.2 For any fived A € R and u € X (), the linear operator B := N'(\,u,-) +
N, - u) 0 X(Q) — Dy 2(Q) is compact.

Proof. Let {v;} C X () be such that
|vgl1,2 + |[0108] 12 < M,
with M independent of k£ € N. By Proposition II.1.1, we then infer
lvg|ls < My, 6.7)

with My = M;1(Q2) > 0. By Lemma I1.2.1, we know that there exist an element v € X ()
and a subsequence {vy/} C X(Q) satisfying (6.1) and (6.2) with w = v. From (5.4)2 and
(5.5)2, we find

HN(}\,’U,, vk’) *N()\,U,’U),QOH - |<N()‘7uvvk' *0)790”

<A (lulagnllv —villaas + lulsorlv —vellion) e,
for all sufficiently large R. Using (6.2) and (6.7) into this relation gives

k}lm ‘N()\,’LL, ’Uk/) 7./\/()\, u, ’U)|,172 S OlH'uHéLQR,

where C7 > 0 is independent of k’. However, R is arbitrarily large and so, by the absolute
continuity of the Lebesgue integral, we conclude

kllm ‘N(Av u, ’Uk’) - N()‘> u, ’U)|_172 =0. (68)
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In a completely analogous way, we show that
kllm ‘N()U vk’>u) —N()\,’U,’U,”_l’g =0. (6.9)
—00

From (6.8) and (6.9) it then follows that the operator B is compact.

We now use Lemma I1.2.1 to prove the following one.

Proposition IL.2.1 The operator N is weakly continuous in the following sense. Given se-
quences { i} C Ry, {ug} C X(Q), and (A, u) € Ry x X(Q) such that

lim )\k = )\,

k—oo

khm (Vuk, VSO) = (vu> VSO) ’
Jim (Grus, @) = (51, @),

for all € DE?(Q), then
lim <N(>‘k7 uk)> ‘P> = <N()‘> 'U,), 90> (6.10)

k=00

for all € DE(Q).

Proof. We begin to observe that there exists a positive constant M independent of & such that
[N (Mg, ug)|-12 < M. (6.11)

In fact, from the assumptions on the sequences {\;} and {us} together with Proposition II.1.1
we deduce that
M|+ [01ug] 12 + |u |12 + [Jukl[s < My (6.12)

where M is a positive constant independent of k. Consequently, (6.11) follows from (3.46),
(5.4), (5.5) and (6.12). In view of (6.11), it will be then enough to prove (6.10) for all
p € D(Q)). From (3.47), (5.4)3, (5.5)3 and Proposition II.1.4(v) we at once obtain

Tim (L0 w), @) = (£0,u), )

(6.13)
Jim (H(A), ) = (H(A), @) -
Furthermore, from (5.4); we find (with V= AV)
(V) = V(O u), )| < | (u Ve, V() — V(A)) |
H (VO = V) - Ve,u) |
(6.14)

+ (= w) - Ve, VO) ) |

+ (VW) - Ve, (w—w) ) |.
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Employing (5.5); and Proposition 11.1.4(v), it is easy to show that the first two terms on the
right-hand side of this relation go to zero as £ — co. Moreover, again by (5.5); and Proposition
11.1.4(iii), (v), we obtain (with wy := u — ug)

Will1,0 < Cilel2llwela,e,

(e Vo, VOW) | IV OW)lall2

where (1 is a positive constant independent of k£. Thus, in view of Remark 11.2.1, we let
k — oo (possibly along a subsequence {k’}) and use (6.2) to deduce that also the third term
on the right-hand side of (6.14) tends to zero. In a completely analogous way we prove that
the fourth term on the right-hand side of (6.14) goes to zero as well. We thus conclude

lim (VA u) — V(A upw ), ) =0. (6.15)

k'—o00
Finally, from (5.4); it follows that

NV w,w) = N (e, i, we), )| < A= Aill[ull + 204w

.5 ||ukl[alel1,25

where K is the support of . Thus, by Remark 5.1, we obtain, possibly along another subse-

quence {k"}, that
khrn <N()\, u, u) - N()\k//, U, ’uk//), Lp> =0. (616)

" o0

Therefore, from (6.13), (6.15) and (6.16), it follows that (6.10) is established along a subse-
quence. Now, from (6.11) it also follows that the sequence of functionals {Fy, := N (g, uz)}
is uniformly bounded and so there exists a subsequence and an element F' € D 1’Q(Q) such
that F';, — F along this subsequence. However, by what we have shown, the limit F' is inde-
pendent of the subsequence and coincides with N (A, u), and so, by a classical argument, one
shows that (6.10) holds along the whole sequence and the proof of the proposition is completed.
|

We are now in a position to prove the Fredholm property for the operator IN. In fact, we
have the following.

Proposition I1.2.2 (Fredholm Property) The operator N (X, ") is Fredholm of index 0 for all
A € Ry. Consequently, the operator N is Fredholm of index 1.

Proof. The second claim in the proposition follows from the general result proved at the
beginning of the proof of Theorem 1.2.3, once we show that N (), -) is Fredholm of index 0.
Now, set M =: N (A, ). From (5.6), we find that the derivative of M evaluated at u € X ({2)
is given by

[DuM(u)](v) = LA, v) + VA, v) + N\ u,v) + N\, v,u), ve X(Q). (6.17)
We shall show that the operator
A=V )+NN\u, )+ N, -, u) (6.18)

is compact and so, since by Proposition I1.1.3 L(},-) is a homeomorphism, [Dy M (w)](:) is
Fredholm of index 0, by Lemma 1.1.14. This property thus gives (by definition) that N (1}, -) is
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Fredholm of index 0. In view of Lemma I1.2.2 we only have to show that V(}, ) is compact.
Let {vi} C X(£2) be a sequence as in Lemma I1.2.2 and let v € X () be the corresponding
weak limit. From (5.4)1, (5.5); and from Proposition II.1.4(iii), for all ¢ € Dé’2(Q), it follows
that

(VX o), 0) = (VA 0), 0)| <2V [a]|v — vrllaclelr2
Therefore, from (6.2) we obtain
lim V(A o) — V(A v)|-12=0. (6.19)

k' —o0

From Lemma I1.2.2 and (6.19) it then follows that the operator A defined in (6.18) is compact
and the result is proved. O

I1.2.2 A Priori Estimates and Properness

Our next objective is to furnish two suitable, global bounds for all possible solutions u € X ()
to equation (5.7). To this end, we need a preparatory result. Let

NMX\w; V)= N u) —H(N). (6.20)
The following result holds

Lemma I1.2.3 Let v € X () and let g := N(A\wu; V). Then, there exists a constant
C = C(Q) > 0 such that

lul12 < 2|g|-12

. 6
o114 1.2 < 6] Vlalluflao + lgl-12+C (lg)” 12+ 191%12)

where o (independent of \) is the support of V'; see Proposition I1.1.4(iii).

Proof. From the relation
(NN w; V), u) = (g,u),

and from (3.45), (3.46), (5.4) and Proposition II.1.2, we find
ulf s = Al(u: Vu, V) + (V- Vu,u) + (u- Vu,u)] — (g, u). (6.21)
Using (4.1), from (6.21) we deduce
[uff s <2V Vo, u) + (w- Vu,u)] + [ Flofulie} (6.22)

Since
(V-Vu,u)=0 (6.23)

for all u € D(Q), and since V is of bounded support, by a standard continuity argument based
on the density of D(€) in Dy*(Q2) and on (5.4); we show that (6.23) continues to hold for
all u € ’D(l)’Q(Q). Moreover, it is easily checked that, again for all uw € D((Q), the following
relation holds

(u-Vu,u)=0. (6.24)
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Now, by Proposition 11.1.1, X (€2) embeds into L*(€2) and so, by [17, Theorem 111.6.2], we can
find a sequence {u;,} C D(Q) converging to u in Dy*(Q) N L4(Q). Since the trilinear form
(u - Vaw,v) is continuous in L*(Q) x DY2(Q) x L*(Q) (see (5.5)2), we conclude that (6.24)
continues to hold for all u € Dé’2(Q). Therefore, from (6.22)—(6.24) we deduce

|w

12 <2[g[-12. (6.25)
We next rewrite the equation N (A, u; V') = g as follows
L\ u)=F, (6.26)

where
F = —V()\,’UJ) _N‘()Uu»u)—i_g'

From Proposition II.1.3 and, in particular, from (3.48) applied to (6.26), we then find
Moju|—12 <3|F|_12. (6.27)
However, from (5.4) and (5.5) it follows at once that
Fl-12 <2V |allullas + Al + lgl-12- (6.28)

We use now the embedding inequality (2.7) along with the Cauchy’s inequality to obtain

Srul—12+C ([ulf o+ [ulls) (6.29)

1

2
< —
[ully < 6

where C' = C'(2) > 0. The result then follows from (6.25), (6.28) and (6.29).
|

We are now in a position to furnish two suitable a priori bounds for all possible solutions
u € X(Q) to (5.7). In this regard we wish to emphasize that, while the first one is well
known and proved by Leray in [32], the second one is new and plays a fundamental role in
our subsequent considerations.

Proposition I1.2.3 (A Priori Estimates) Let u € X(Q) and let f := N(\, u). Then, there
exists a constant C = C(Q) > 0 such that
12< D

>

|u

IA

- . 6
‘()1’11,‘7172 6||V||i+ XD+C(D2+D3) R

with
D =D f) =2 (2 H|g+[F]-12) ,
where v is given in (2.10) for g = 2.
Proof. The equation N (A, u) = f is equivalent to N(\,u; V) = g, with g := f — H(}\).
Thus, observing that by (5.4)s, (5.5)3 it is [H|_1,2 < 7|[H]¢, and that

1
IVilallullae < 5 (IVIE+[ll3) ,
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the proof of the proposition follows from Lemma I1.2.1 and from (6.29).

A significant consequence of the previous result is the following.

Proposition I1.2.4 (Weak Properness Property) The operator N is weakly proper (see Defi-
nition 1.1.13). Namely, if { A} is a sequence in Ry with

lim A, = A, AeR,,
k—oo

and if; for some fixed f € Do_l’2 (Q),
NAg,up)=f, forallk e N, (6.30)
then, there is a subsequence {uy } C X(Q) and u € X () such that

lim ("UJ — ’uk/|1’2 + |51'U, - 51uk/|_1,2) =0.
k! —o0

Proof. Since, of course, {\;} is contained in some interval [A., A\*], say, with 0 < A, < A*,
from Proposition I1.2.3 and Proposition II.1.4(v) we deduce that the sequence {uy} is bounded
in X (). Therefore, by Lemma I1.2.1 there exist a subsequence, denoted again by {uy}, and
u € X(Q) such that, in particular,

lim |u, —u
k—oo

4,5k =0, 6.31)
for any compact set K C Q. Furthermore, the hypotheses of Proposition 11.2.1 are satisfied
and so, by the same proposition and by (6.30), we obtain

N(Ag,up) = N(A\u), forall k€ N. (6.32)

Set
Vk = V()\k, ) 5 V.= ‘/()\7 ) 5

and
wgi=up —u, W=V, )= V() Gri=HOM) —HN), =N —\.
We then find
N, ur) — N u) = N wi; V) + Ge + N\, wi, u) + N\, u, wy)
TN (e, Wis i) + V(s wie; Vi) + LN, wie, W), (6.33)

where'N(A, wy; V) is defined in (6.20) while V(ug, ur; Vi) + L(A, wy, W) are elements
of Dy%(Q) defined as follows

V(e wr; Vi), ) i= i ((ur - Voo, Vi) + (Vi - Vep, u))

(L wi, W), @)= (wi - Voo, Vi) +(W . - Vep, ui)) , ¢ € Dy*(9).
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From (5.4) and (5.5), Proposition I1.1.4(v) and with the help of Holder inequality, we easily
find that, for all R sufficiently large,

N wi, w) + N w12 <2X ([ulla,op[willaos + lullyonlwelson)
N (s wi, wi )| —1,2 < g1
Ve, i Vi) —1,2 < 2{pnl[| w4 Vel
(LA wie, W) —1,2 < A([|weela,ol|Viklla + [[ue 4 Well4)
|Gk -1,2 < Cilpsl,
(6.34)
where Cy = C1(£, Ay, A*) > 0. Thus, setting
g, = —Gr — N\ wi,u) — N\, u, wy,)
~N (e, wiy i) — V(e wi; Vi) — LA, wie, W)
from (6.32), (6.33) we have, on the one hand,
N\ wg; V) =g,, (6.35)

and, on the other hand, from (6.34), (6.31), Proposition II.1.4(v) and the arbitrarity of R, we
also have

lim |g;|-12=0, (6.36)
k—o0

where the limit is taken, possibly, along a subsequence of {k}. However, applying Lemma
11.2.3 to (6.35), (6.36) and taking into account Proposition I1.1.4(v), we get

(w12 < 2|gg|-1,2

[Grwe| 12 < Co (|wllae + 19k -1.2 4+ 1961212+ 19x212) »

with Ca = C2(Q, A\, A\*) > 0. The proposition is then a consequence of this latter relations,
of (6.36) and of (6.31).
|

In the remaining part of this section we shall prove certain properties of the operator
NN which hold for any fixed A > 0. In the sequel, in order to simplify notation, we set
N>\ = N()\, )

Proposition I1.2.5 (Properness of N ) For any \ > 0, the operator IN » is proper.

Proof. It is enough to show that if £, — f in Dy, "*(Q), and Nx(ux) = f, ux € X(Q),
k € N, then there exists a subsequence {uy/} and u € X(2) such that ux: — wu and
N (u) = f. Since {f,} is bounded in Dy "*(Q), by Proposition 11.2.3 it follows that {a}
is bounded in X (€2) and so, by Lemma I1.2.1 and Proposition I1.2.1, we can find a subsequence,
{ug }, and w € X(Q) satisfying (6.31) and such that

Jim N(uw) = Na(u) = f in Dy *(Q).
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It remains to show the convergence ux: — w in X (). To this end, we observe that
fk —f= Nk(uk/) - Nk(u) = N()‘>wk'; V) +N()‘>u>wk') +N()‘7wk'7u)

where wys := up —uw and N (A, wgs; V) is defined in (6.20). We thus find N(\, wy; V) =
g, where, as a consequence of (6.31), (6.34)1, and of the assumption on {f.}, g,» — 0 in
Dy 1’2(9). Thus we are in a situation formally similar to (6.35) and the proof of convergence
is obtained exactly as in Proposition 11.2.4.

|

I1.2.3 Control by a Finite Number of Parameters.

Our next goal is to provide further significant information about the preimage of N, (=
N(}A,-)). To this end, we need a preliminary result. Let D be a bounded Lipschitz domain
(of R?) and let

PY2(D) = {uc W'2(D): divu=0in D, uls=0},

where S C 0D with non-zero two-dimensional Lebesgue measure. Since (see, e.g. [17,
Exercise 11.4.10])

|ulli2 < Cluliz, forall uweDH2(D), (6.37)
with C = C(D,S) >0, | - |1,2 is @ norm in ]31’2(D) equivalent to || - [|1,2. A sequence of of
linear, continuous functionals, {/;}, on 51’2(D) is called complete if and only if

li(u) =0, forall : € N, implies u = 0 in ZO)LQ(D) .
We have the following result.

Lemma I1.2.4 Let D be as above and let {l;}, be a complete sequence of functionals on

1031’2(D). Moreover, let 1 < q < 6. Then, given ¢ > O there exist n € N and a positive
constant C > 0 depending on S, €, q (and on the family {l;}) such that

lully < elufio +C Y Jls(w)].
=1

Proof. Assume, by contradiction, that there is € > 0 such that, for all C > 0 and all n € N
we can find at least one u = u(C, n) €pH?(D) such that

lully > Elul1z+C Y lls(w)].
=1

We then fix n = ny and find a sequence {u, }, possibly depending on 74, such that

ni

lemlly > Elwm|12+m Y lls(um)].
=1
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Setting Wy, = U /|Um|1,2, from the preceding inequality we find

ni
[winllg > Z+m > [li(wm)|, |[wnl12=1, meN. (6.38)
i=1
From (6.37) and the Sobolev embedding theorem we then deduce that
[wmllq < C1 (6.39)

with Cy = C1(D, S, q) > 0. So, by the Rellich compactness theorem, there exist a subsequence,
again denoted by {w,, }, and w® 6703172(D) such that

w,, — w1 strongly in LI(D)

w,, — w) weakly in 131’2(D) .

Using these latter properties along with (6.39), from (6.38) we infer

ni

> lw®)| =0,
i=1
and
lwM]g > 2.
Moreover, from (6.38)5 and (6.39), we obtain
[wMlg + (w12 < Cs

with Cy = Ca(D, S, ¢) > 0. We next fix n = na > n; and, by the same procedure, we can

G o : . . . . .
find another w(? €P“2(D) satisfying the same properties as w(). By iteration, we can thus
construct two sequences, {13} and {w®)}, with {ny} increasing and unbounded, such that

> ll(w®)| =0,
=1

6.40
[0 ® 1, + [0 ®), 5 < C, ©49

for all £ € N. By (6.40)2 and again by Rellich theorem, it follows that there are a subsequence
of {w(®)}, which we continue to denote by {w*)}, and a function w®) €p"2(D) such that

w® — w©® strongly in L(D)
) (6.41)
w®) — w© weakly in D12(D) .

In view of (6.40)3 and of (6.41);, we must have

[w®, > 7. (6.42)
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We now claim that w(®) = 0, contradicting (6.42). In fact, if w(®) # 0, by the completeness
of the family of functionals {/;}, we obtain that, for at least one member of the family, ;, we
have

L(w®) £0. (6.43)

By (6.41)4, it is
lim f(w®) = ;(w®), (6.44)
k—o0
while from (6.40); evaluated at all ny > 7, we find
L(w™®) =0, for all sufficiently large k .

However, in view of (6.44), this condition contradicts (6.43). Thus, w(®) = 0 and the lemma
is proved. O

We are now in a position to prove the following result.

Proposition I1.2.6 Let A > 0 and f € Do_l’Q(Q) be given. Furthermore, let uj,us €
NY(f) and set w:= uy — ua. Then, there exists R = R(Q,\, f) > 0 such that

fuli 2 + G112 < C 37| ()]
i=1
where {ZZ(R)} is any given complete sequence of functionals on 131’2(9 r) andn and C are an
integer and a positive constant, respectively, depending on Q, A\, f and on the family {ZER)}.

Proof. From (5.7) it follows that u satisfies the following equation

L\ u)=F inDy"*(Q),

(6.45)
F:=— N\ u,u) + N\ ug,u) + V(A u)
From Proposition 11.1.3 and Corollary 2.1, we thus obtain
luf12 + [01u] 12 + [lulls < CLIF| 12, (6.46)

where Cy = C1(Q2, A) > 0. Recalling (5.4)2 and (5.5);, we find

[Fl 12 <AV aflu

a0+ [[luaf|ull|2 + [[Juz][ul]2) ,
and so, taking into account Proposition I1.2.1(v), for all sufficiently large R > 0, we deduce
som)lulls) , (6.47)

with Cy = C2(Q2, A) > 0. However, from Proposition 11.2.3 and from the embedding inequality
(2.7) we have

[F| 12 < Cs (JJuflao + ([ llat|luza)l|ew

1,95 ([ ][s,0r+u2

lulls < Cs
with C5 = C3(Q, A, f) > 0, so that (6.47) delivers

\F|_12 < Cy(||uflae+ |u

s0n + (lwllson+lluzlyon)llulls) | (6.48)
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with Cy = C4(Q, ), f) > 0 We next notice that, in view of Proposition 11.2.5, Ny '(f) is a
compact subset of X (€2) and hence, by Proposition I1.1.1, of L*(€2). Therefore, given n > 0,
we can find R = R(n, A, f) > 0 such that

w1 |ls0r+|luzllsqr <n, forall R>R.
Choosing R as large as {0z D o, we then obtain from (6.48) that
[Fl-1,2 < Cs (|ullaar +nllulla) (6.49)

with C5 = C5(Q, A, f) > 0. Now, by Lemma I1.2.4, we have that, for any given ¢ > 0 and

any complete sequence {lgR)} on 703172(9 Rr), there are an integer n and a positive constant C
depending on 2, R,  and on the family {lgR)}, such that

lullsny, <C 1P (w)] +elul 2.
=1

Thus, replacing this inequality back into (6.49) , we deduce

Fl2<Cs (CZ 157 ()| + el + e|u|1,2> . (6.50)
i1
Combining (6.46) and (6.50) we find
[ul12 + 01w 12+ [Julls < Cs (C’Z |Z§R)(u)| +nllulls + 6|u|172> , (6.51)
i=1

where Cg = Cs(2, A, f) > 0. We now choose € = n = 1/(4C%) and, by (6.51), we conclude
the proof of the proposition.
|

II.3 Structure of the Steady Solutions Set and Related Prop-
erties.

The objective of this section is to investigate the geometric structure of the solution set (A, u) €
Ry x X(£2) to the Navier-Stokes equation (5.7) and to establish some related properties.

For each of the following results it is tacitly understood that the exterior domain € has a
Lipschitz boundary.

Theorem IL.3.1 For any f € Dal’Q(Q) and for any A € R there exists at least one so-
lution w € X(Q) to the Navier-Stokes equation (5.7). This solution satisfies the estimate
of Proposition 11.2.3.  Moreover, for any fixed \ € Ry there is an open, dense subset
O = O\ C Dy Q) such that for any f € O the equation (5.7) has a finite and odd
number £ = k(A f) of solutions. Finally, the integer k is comstant on every connected
component of O.
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Proof. We would like to use Theorem 1.2.2. By Proposition 11.2.2 and Proposition 11.2.5 we
find that, in order to apply this theorem, we only have to check assumptions (i) and (ii). (Recall
that the map IV is of class C*°.) If we choose T = H(\), with H(A) defined in (5.4), we
obtain from (5.6) that the equation M (x) = 7 is equivalent to the following one

~(Vu, V) + AGru, ) + A (- Vip, )

+A[(u- Vo, V)+ (V- -Ve,u) =0, forall p e Dy*(Q). .1

We now choose in this equation ¢ = u and use (2.8), (6.23) and (6.24) we obtain
ulf = AMu-Vu, V),

and so, by the property (4.1) of the function V', we conclude that « = 0 is the only solution
to (7.1), which implies that assumption (i) of Theorem 1.2.2 is satisfied. Finally, we observe
that the derivative of IN (), -) evaluated at w = 0 and acting on generic v € X () is given by
(see (6.17))

[DLM(0)](v) = L\, v) + V(A v).

Thus, recalling (3.46), (5.4)1and (6.23), from [D,, M (0)](v) = 0 we find
0= ([DuM(0)](v),v) = —|v|, + A(v - Vo, V).

Using in this equation the inequality (4.1), we deduce v = O which shows that also the
assumption (ii) of Theorem 1.2.2 is satisfied. The claimed result is then a direct consequence
of Theorem 1.2.2.

|

Theorem I1.3.2 The following properties hold.

(a) There exists a dense set M C Dy 1’2(9) such that, for any f € M the set of pairs
(A, u) € Ry x X(Q) satisfying equation (5.7) is a 1-dimensional manifold of class C>°;

(b) For any f € M there exists an open, dense set A = A(f) C Ry such that, for each
X € A, equation (5.7) has a finite number of solutions, n = n(\, f);

(c) The integer n = n(\, f) is independent of \ on every interval contained in A .

Proof. IV is of class C'™°. Moreover, in view of Proposition [1.2.2, the operator IN (), ) is a
Fredholm map of index O, for all A € R. Furthermore, by Proposition 11.2.4, IN satisfies the
weak properness property at every f € Dé’Q(Q). Therefore, the theorem follows directly from
Theorem 1.2.3.

|

The next result establishes, in particular, some sort of “controllability” of a solution u to
(5.7) corresponding to given (arbitrary) A € Ry and f € Dal’Q(Q) by means of a finite number
of parameters that need to be specified only “near” the boundary. How “near” it has to be
depends only on A and f. To this end, let

o) ={ueX(@: N u=F, ARy, FeD7@}, (2
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and consider the map
M: ’LLEO'N()\,f) = {ll(u)> >ln(u)} G]Rna

where {/;} is any given complete sequence of functionals on D L2(QR) in the sense specified
in Section 5. The following result holds.

Theorem I1.3.3 There exist finite n = n(A, f) € N and R = R(\, f) € Ry such that the
map M is a homeomorphism of o (X, f) onto a compact subset of R™ .

Proof. The map M is obviously continuous and, since o (A, f) is compact in X (as a conse-
quence of the properness of IN (), -), see Proposition I1.2.5), it follows that M (o n (A, f)) =R
is compact in R”. Moreover, from Proposition I.2.6 we know that there exist n = n(A, f) € N
and R = R(\, f) € Ry such that the following inequality holds

n

12+ [d1ur — dus|—12 < C Z [l (w1 — u2)]|,
i1

|l — ue

for arbitrary w1, us € opy(\, f). This inequality shows that M is a bijection onto R and that
M1 is continuous, which proves the homeomorphism property of the map M.
|

We also have
Theorem I1.3.4 Let uy,us € X(Q) be two solutions in o (A, f) . Then, there exist numbers
n=mn(\ f) € Nand R= R(\ f) € Ry such that if
li(U’l):li(’u’Q)? i=1,--,n,
Jfor some complete sequence of functionals, {l;}, on the space Zo) L2(QR) (in the sense specified
in Section 2.3), then u1 = ug in X(€2).
Proof. The proof follows at once from Proposition 11.2.6.

Remark I1.3.1 Theorem 11.3.4 generalizes to a “finite number of suitable functionals” well-
known properties, such as “finite determining modes” or “finite determining volumes” proved
for bounded [13], [16] and exterior domains [19]. In fact, in the first case, we may take as
complete sequence of functionals {l;} the one constituted by the components of u along a basis
of D L2(QR). In the second case, let P; := {Vi,, -+, Vi, }, i € N, be a sequence of finite,
measurable partitions of {2 such that

V| <C@)2, VeP;, ieN,

with C independent of ¢ € N, and where | - | denotes Lebesgue measure. As sequence of
functionals {l;}, we may then take
[ w
Vi

m,

4

Li(w) =

m=1

, ieN.

We wish to emphasize that in both examples we require that the complete sequence of func-
tionals is defined only “near” the boundary.
A
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Chapter III

Some Results on Steady Bifurcation of Solutions to
the Navier-Stokes Problem Past an Obstacle.

There is both experimental [45, 37, 47] and numerical [38, 46] evidence that the first transition
of a laminar flow past a sphere occurs through a (stable) steady motion. In particular, exper-
iments report that a closed recirculation zone first appears at Reynolds number, Re, around
20-25, and the flow stays steady and axisymmetric up to at least Re~130. Above this value,
however, the wake behind the sphere becomes unsteady. This behavior should be contrasted
with what is observed in an exterior two-dimensional flow (flow past a cylinder), where the first
transition is a Hopf bifurcation from a two-dimensional steady to a two-dimensional unsteady
(periodic) flow, resulting in a time-periodic von Karman vortex street.

Despite its fundamental interest, the rigorous mathematical investigation of steady bifurca-
tion of a flow past an obstacle is basically untouched. This is probably due to the erroneous
view that the presence of 0 in the essential spectrum of the linearization (around a non-trivial
solution) of the nonlinear Oseen operator (5.6) of Chapter II, could introduce substantial com-
plication into the theory of steady bifurcation; see [3].

The main objective of this chapter is to furnish an appropriate functional framework for the
study of steady bifurcation of solutions to the Navier-Stokes equations in a three-dimensional
exterior domain. We then show that, in this framework, classical sufficient conditions for
global and local bifurcation of a selected solution branch ug = ug(\) apply, provided this
latter satisfies appropriate prerequisites. As a way of application of these conditions, we study
in detail the case when, locally around some \g > 0, the solution branch wug is independent
of A. Interestingly enough, we shall prove that, in this situation, the sufficient conditions for
local bifurcation formally coincide with those well-known for steady bifurcation of solutions
in a bounded domain.

Another significant objective is the study of steady bifurcation of a motionless liquid satu-
rating a porous medium exterior to a spherical, homogeneous distribution of matter that is kept
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at constant temperature; see [39, 8, 35]. Also in this case, we shall formulate the bifurcation
problem in an appropriate functional framework that will allow us to provide necessary and
sufficient conditions for the onset of steady convection.

In order to make our analysis self-contained, in the first part of the chapter we shall review
the basic definitions and concepts of bifurcation theory in Banach spaces.

III.1  Review of Elementary Bifurcation Theory in Banach
Spaces.

Bifurcation theory is concerned with the structure of the solutions, x, to a given nonlinear
equation, M (z, 1) = 0, as a function of the parameter p. For the application we have in mind,
it is sufficient to assume that yu is a real parameter. (Generalization to the case u € CF is
somewhat straightforward; see, e.g. [51, §5.2].) The aim of this section is to review the basic
facts concerning bifurcation theory in Banach spaces and to present sufficient conditions for
the occurrence of bifurcation.

I11.1.1 Bifurcation Points of Equations in Banach Spaces.
Let U be an open interval of R and let
M:(z,p) e X xU—Y.
We assume that 0 € R(M).
Definition IIL.1.1 The point (xg, 10) is called a bifurcation point of the equation
M(z,p) =0 (1.1)

iff (&) M (xo, po) = 0, and (b) there are (at least) two sequences of solutions, {(&m, tim)} and
{(z%,, bm)}, to (1.1), with z,, # xf,, for all m € N, such that (2, tim) — (20, po) and
(x:n,’/’ém) - (J"O’/’LO) as m — oo.

A

It is immediately seen that, if M is suitably smooth around (zg, 1), @ necessary condition
in order that (g, o) be a bifurcation point is that D, M (xo, o) is not a bijection. In fact,
we have the following.

Lemma IIL.1.1 Suppose that D, M exists in a neighborhood of (xq, o), and that both M and
D, M are continuous at (xg, o). Then, if (xo, o) is a bifurcation point of (1.1), Dy M (g, o)
is not a bijection. If; in particulay, Dy M (zg, po) is a Fredholm operator of index 0, then

dim N[Dy M (x0, pi0)] > 0, (1.2)

that is, the equation D, M (xo, o)z = 0 has at least one nonzero solution.
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Proof. Assume, on the contrary, that D M (zo, o) is a bijection. Then, the uniqueness
part of the implicit function theorem Lemma 1.1.20 excludes the occurrence of condition (b) in
Definition III.1.1. Moreover, if, in particular, D, M (xo, to) is Fredholm of index 0, necessarily
(1.2) holds because, otherwise, D, M (xg, o) would be bijective, which we have already
excluded.

|

Example III.1.1 Consider the Navier-Stokes equation in a bounded domain,
N(v,u)=f, (1.3)

where the operator N is defined in (1.13) of Chapter I. If we denote by ug = up(v, f) a
corresponding solution, we find that the difference w := u’ — wug, with v any other generic
solution corresponding to the same v and f, satisfies the following equation

vu — B(ug)u —N(u) =0, (1.4)

where B(ug) := N’ (ug); see Example 1.1.6. Thus, in view of Lemma IIL1.1, a necessary
condition for (v, uo(rg, f)) to be a bifurcation point for (1.3) is that the equation

vov — B(uo(vo, f))v =0 (1.5)

has at least one nonzero solution v € Dé’Q(Q). In the applications it happens, sometimes, that,
after a suitable non-dimensionalization of (1.3), the family of solutions uq(v, f) is independent
of the parameter v which, this time, has to be interpreted as the inverse of an appropriate
Reynolds number. Now, from Example 1.1.2 and Lemma 1.1.18 it follows that B () is compact
at each u € Dy*(§2), and, from Example 1.2.1, that v T — B(w) is Fredholm of index 0, at each
u e D(l)’2(Q). Therefore, in all cases when ug does not depend on v, in a neighborhood of v,
from Lemma III.1.1 and from the spectral theory of (linear) compact operators, we obtain that
a sufficient condition for (vo, wo) to be a bifurcation point for (1.3) is that vy is an eigenvalue
of the linear operator B(uy).
O

IT1.1.2 A Sufficient Condition for the Existence of a Bifurcation Point.

The objective of this section is to prove a criterion for the existence of a bifurcation point,
under the assumption that the map M is of a special form. This criterion will suffice for the
applications we have in mind. For more general results, we refer to [48, Chapter 8] and to

[117.
We begin to observe that, without loss of generality, we may take, in Definition IIL1.1,
xo = 0. Furthermore, we shall assume that the operator M = M (x, p1) is of the form

ME,uw=x—pT(x), pnelU, (1.6)
where T satisfies the following conditions.
CHTeC(X,)Y), XCVY;
(C2) T(0) = 0;

(C3) Setting L := T7(0), the operator I — 1oL is Fredholm of index 0, for some o € U .
(1.7)
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The following result holds.
Lemma IIL.1.2 Assume that the operator M satisfies conditions (1.6)-(1.7). Then, if
(i) dimN(I — poL) =1,
(i) N(I —puoL)NR(I — poL) =10,
the point (0, po) is a bifurcation point for the equation x — uT(x) = 0.

Proof. In view of the condition (C1) in (1.7), we have that the equation x — u7T'(z) = 0 has
the trivial branch (0, 1), o € U. Therefore, in order to prove that (0, ug) is a bifurcation point,
we have to prove the existence of a sequence of solutions (%, 4m) With z,, # 0 and such
that (zp,, ftm) — (0, po) in X x R, as m — oo. Set

By conditions (C2) and (C3) in (1.7), we deduce that
F)=F'(0)=0. (1.8)
Next, we decompose X as follows
X=N(I—-wl)®Z,

(this is possible because N(I — poL) is finite dimensional) and pick x € N(I — poL) — {0}.
If we write x = e(x + 2), € € (—1,1), z € Z, from (1.6) we thus find that
elx+2)—epLl(x+z)—puFlE(x+2)=0. (1.9)
Set )
N(e, z) = EF(a(x + z))

and consider the following map:

(x+2)—uLl(x+z)—uN(z) if €e#£0
G:(z,u,6) €ZxU X (1,1)»—>{
(x+2)—pLix+z) if e=0.
(1.10)
Taking also into account (1.8), it is checked at once that G is of class C'%, and that G(0, g, 0) =
0. Therefore, if the derivative operator

(w,n) € Z X R = [D.G(0, po, 0)](w) + [DpG(0, o, 0)] () (1.11)

is a bijection, then, by the implicit function theorem Lemma 1.1.20 there exists a C'! curve
{(z(¢), u(e))}, satisfying z(0) = 0, p(0) = po, and

G(z(e),u(e),e) =0, |e| <4, for some 6 > 0.
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Consequently, (1.6) will admit the nonzero solutions x(e) = (x + z(€)) corresponding to
w = p(e) and such that (z(e), u(e)) — 0, as € — 0, thus proving that (0, o) is a bifurcation
point. Now, from (1.10) it follows that the bijectivity of the operator (1.11) is equivalent to
show that the following problem

w— o Lw)+ Ly =h, (w,n)eZxR, (1.12)

Ho

has a unique solution for any given i € Y. Let us first show uniqueness. Setting 7 = 0 in
(1.11) furnishes

w_MOL(w):_%X7 (’LUﬂ?)GZXR»

which, in view of assumption (ii) is only possible if 7 = 0. Then, the previous equation
furnishes w — po L{w) = 0, which, since w € Z, implies w = 0, and uniqueness follows.
Concerning existence, let L™ be the adjoint of L. By Lemma 1.1.13(b), by condition (C3) in
(1.7) and by assumption (i) we have that dim N(I — puoL*) = 1. Pick x* € N(J —puoL*)—{0}.
We claim that {x*, x) # 0. If this were not the case, then, by the closed range theorem Lemma
L1.11, the problem w — u L(w) = x would have a solution, which, as we already showed,
contradicts assumption (ii). We then choose in (1.12)

0= 1o (x*, h)
(x*x)’

and notice that, with this choice of 7, and again by Lemma I.1.11, the problem

w— po L{w) = y = h — —-x
Ho
is solvable for some w € Z, because y € *N(I — poL*). The proof of the lemma is then
completed.
[ |

Example I11.1.2 Following up Example I11.1.1, in the case when the solution ug of the Navier-
Stokes problem (1.3) does not depend on the nondimensional parameter v, a sufficient condition
Jor (0,v9) to be a bifurcation point is that vy is a simple eigenvalue for the (linear) compact
operator B(ug). In fact, we already checked the validity of conditions (C1)—(C3) in (1.7)
(actually, in this case, X =Y = Dé’Q(Q)). Moreover, the assumption (i) of Lemma II1.1.2
is satisfied if v is an eigenvalue for B(ug), while assumption (ii) is valid if vy is a simple
eigenvalue. To this end, we recall that the eigenvalue vy is called simple if algebraic multiplicity
(see Definition 1.1.19(d)) is equal to 1. Now, under this condition, the equation

vow — [B(uo)](w) = vy,
with v eigenvector corresponding to v, can not have a solution, which is exactly the assump-

tion (ii) of Lemma I11.1.2.
O
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III.2 Steady Convection in a Porous Medium Past a Uni-
formly Heated Distribution of Matter.

In this section we shall furnish a simple but significant application of Lemma III.1.1 and Lemma
[IL.1.2 to the study of steady convection occurring in an incompressible liquid flowing through
a porous medium filling the exterior of a spherical distribution of matter that is held at a given
constant temperature; see [39, Section 5.6]. Specifically, suppose we have a motionless liquid
filling a rigid porous medium, {2, exterior to a spherical distribution of matter, 3, of radius
Ry. Therefore, the velocity, v, and pressure, p, fields of the liquid are given by v = 0 and
p = const. Moreover, let (7, x, ©) be a system of spherical coordinates with the origin at the
center of X. The gravitational field associated with this distribution is then given by ¢(r) e,
with e, := z/|z|, and g(r) := —goR3/r?, go = const > 0. Finally, the surface, 9, of %
is kept at the constant (reference) temperature 7. Thus, within the Boussinesq approximation
and adopting Darcy’s law, the steady-state solutions of our problem must satisfy the following
problem [39, Chapter 6]

o+ Vp— (1 —a(T —Tp))g(r)e, =0

divo =0 in Q2
2.1
—kAT+v-VT =0

'U'TL|3Q :T|3Q :To.

In these equations T is the temperature distribution within the porous medium, while the positive
constants u, x and « are permeability coefficient, thermometric conductivity and coefficient of
volume expansion.

It is readily seen that (2.1) admits the basic solution sg := (vg = 0,pg = f(r),T = T*(r))
where

T =To(l — Ro/7r), f(r)= /(1 + aToRo/r)g(r)dr. 2.2

Objective of this section is to give necessary and sufficient conditions for the steady bi-
furcation of the basic solution sg. In view of (2.1) and (2.2), this amounts to investigate the
following nondimensional problem

u+ Vp+ AY2p20e,. =0
divu =0 in Q

(2.3)
AO—\V2u-e, — N/20 - VO =0

u-nlaq =0lon =0,

where \ := agoBR}/(ku) is the Rayleigh number. Here we have used Ty, V and R as a
scale for temperature, velocity and length, respectively, with V' = (kagoR3Top/1)/?. Notice
that, with this choices, the domain 2 becomes the exterior of the closed unit ball.

Remark II1.2.1 The bifurcation analysis developed in this section applies to more general
situations than those described by the model problem (2.1). For example, the distribution
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of matter, X, can be the closure of an arbitrary bounded domain in R? and the prescribed
temperature distribution at OS2 can be any (sufficiently smooth) function. Moreover, the porous
medium can be anisotropic and the thermometric conductivity coefficient can be a (given,
regular enough) function of x € (.

A

The study of bifurcation of the solution branch (sg, A) to the equation (2.1) is thus equivalent
to the same study of the curve solution ((0, 0, 0), A) to (2.3). In order to do this, we shall rewrite
(2.3) as a nonlinear operator equation in a suitable Banach space, where the relevant nonlinear
operator satisfies enough properties as to apply Lemma III.1.1 and Lemma III.1.2. To this
end, let P be the Helmholtz-Weyl projector of L3(2) onto the space, L2 (2) of the solenoidal
vector fields having zero normal component at 2. Thus, from (2.3), we formally obtain that
f satisfies the following problem

AG+ APlor—2e,]-e,r~2 + AP[fr %e,]- V=10, Blsq=0. 2.4
Next, consider the operator M defined as follows
M:0c X — A0+ \P[Or2e,]-e,r"2 + \P[6r %e,] - V6,

where
X = L%(Q) N Dy*(Q) N D>5/5(Q).

Lemma IIL2.1 The operator M maps X into L5/°(%).
Proof. It is enough to show the following properties for § € X
(a) || PlOr2e,]- erT*2H6/5 < 00;
(b) [|PlOr—2e,] - VO|g/5 < oo.
From the Holder inequality and from the property of the projector P, we find
1P0r2e,] - err~2[loss < C1[10r2[ls]lr~2[l2 < C1 [|0]l6 ] 2[l6 < C2 106
with C; = C;(Q) > 0, ¢ = 1, 2, which proves (a). Likewise,

12 < Cslr2[l6/10]610]1,2 < Ca]0]3,,

1Plor~2ex] - Vollo/5 < Csllor—2|]0

where C; = C3(Q2) > 0, i = 3,4, and where we used (2.10) of Chapter Il with ¢ = 2. This
latter inequality proves (b) and completes the proof of the lemma.
|
We next observe that the Laplace operator, A, is a homeomorphism of X onto L%/ 5(Q)
[41], and, therefore, denoting by A~! its inverse operator, we conclude that problem (2.4) can
be rewritten as follows
0—AL(O)—ANO) =0, 0 X, (2.5)

where
L:0eX——-A""(Plor e, er?)eX

N:6eX——A"1(Plor—2e,] -V0) € X.
Clearly, L € £(X). Moreover, we have the following.
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Lemma II1.2.2 The operator L is compact. Consequently (see Lemma 1.1.14), the operator
I — AL (1 identity in X) is Fredholm of index 0, for every A > 0.

Proof. Let {6,} C X be bounded. Then, in particular, there exists # € X such that, by the
Rellich’s compactness theorem and by a simple diagonalization procedure, we have

0, — 6 strongly in L*(Qg), for all R > 1. (2.6)
Set w,, := 6, — 8. Then, recalling that A is a homeomorphism of X onto s/ 5(Q), we get
1L(6n) — L(9)||x = ”A_l (P[wnr_2er] : eTT_2) |x <Ci HP[wnT_2eT] 'err_2H6/5 2.7

where C7 = C1(£2) > 0. Now, by the property of the projector P and by the Holder inequality,
we get
||P[wn7"_2ey,] 'GTT_2H6/5 < 02“wnr_2“3“r_2“2> (2.8)

with Cy = C5(Q) > 0. However, again by the Holder inequality,

19r + [wnlslr™?

||wnr_2||3 = ”wnT_Q”B’QR + ||wnT_2 3,08 < Cs [|wy, 6,QR

S 03 Hwn 4,.Qp + 04 R_l 5

where C'3 = C3(R) > 0, Cy = C4(M,6) > 0, and M is an upper bound for the X—norm of
the sequence {6, }. Therefore, from this latter relation, from (2.8) and (2.7), we find

IZ(6n) = L(O) | x < Cs5[|6n = Ollap +Co R,

where C5 = C5(R, Q) > 0 and Cs = Cs(2, M, §). The compactness of L then follows from
this inequality, from (2.6), and from the arbitrarity of R, and this, in turn, completes the proof
of the lemma.
|
We also have the following.

Lemma IIL.2.3 The spectrum of L consists, at most, of a finite or countable number of real
eigenvalues, each of which is isolated and of finite algebraic and geometric multiplicities, that
can only accumulate at 0.

Proof. In view of Lemma I11.2.2 and Lemma 1.1.16, we have only to show that the eigenvalues
are real. To this end, we recall that, by the definition of the operator L, the equation s 0—L(0) =
0 is equivalent to the following one

sAO+ Plor—2e.]-e.r 2=0, 0cX. (2.9)

Thus, multiplying both sides of (2.9) by @ (the complex conjugate of #) and integrating by
parts over €2 we find

s / Vo> dx = / Plor2e,]- (0 %e,) dx = / Plor—e,] - (Pl0r—2e,] + V®) dx,
Q Q 0
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where @ satisfies the following Neuman problem

A®D = div(fr2e,) inQ, 8—(1) =—0. (2.10)
on |4

Since, by the Holder inequality, 8/72 € L9((), all ¢ € (6/5,6), by well-known properties of
the exterior Neumann problem [41], we have, in particular

Ve e L¥2(Q), Pl9r3e,] e L*(Q).

/\V9|2dx

s = &
/‘P[@r_QeT]Fdx
Q

which shows s € R and concludes the proof of the lemma.

Therefore, from (2.9), we conclude

|
We are now in a position to give the following bifurcation result.

Theorem IIL.2.1 A necessary condition for ((0,0,0), \) to be a bifurcation point for (2.3)
is that Ay Yis an eigenvalue of the operator L, that is, there exists 6y # 0 such that

Ay + Xo Pl %e,] €, 772 =0, 6cX.

Conversely, if Ao is a simple eigenvalue of L, then ((0,0,0), Ao) is a bifurcation point for
2.3).

Proof. As we proved previously in this section, ((0,0,0), \o) is a bifurcation point for (2.3),
if and only if (0, Ag) is a bifurcation point for problem (2.5). With the help of Lemma
111.2.2, it is easy to check that the operator M (A, 0) := I — A (L + N) is Fredholm of index
0 with Dy\M(A,0) = I — AL, and, therefore, the stated necessary condition follows from
Lemma III.1.1. Moreover, the operator M satisfies the properties (1.6)—(1.7) and so (0, Ag) is
a bifurcation point if M meets conditions (i) and (ii) of Lemma III.1.2. It is immediate to see
that both conditions are met if \¢ is an eigenvalue of algebraic multiplicity 1 (\g is simple, that
is). Actually, if A\ satisfies this property, it is obvious that condition (i) is satisfied. Moreover,
if 8y is an egenvector corresponding to Ao, the equation

A+ X PlOr2e,] e, 2 =0y, 0€X,

must have no solution, which is exactly what is stated in condition (ii) of Lemma III.1.2. The
proof is thus completed.
|

III.3 On Steady Bifurcation of Solutions to the Navier-Stokes
Problem Past an Obstacle.

We shall now be concerned with the more involved problem of steady bifurcation in a flow
past an obstacle. As it turns out, the abstract functional setting of the Navier-Stokes problem
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described in Chapter II along with the properties of the associated operator IV, established in
Section 2 of that chapter, provide also a natural framework for formulating a general theory of
steady bifurcation. To this end, fix f € Dy "*?(€2) once and for all, and let uy = ug()), A in
some open interval I C R, be a given curve in X (€2), of class C', constituted by solutions
to (5.7) of Chapter II corresponding to the prescribed f. If we set u = v — ug, from (5.7) we
easily obtain that u satisfies the following equation

LA u)+ AB(ug(A), u) + AM(u,u) =0, uec X(Q), (3.1)

where M(u,u) = (1/A)N (N u,w) and B(ug, u) := M(ug,u) + M(u,ug). In this
setting, the branch wg()\) becomes the solution w = O and the bifurcation problem thus
reduces to find a nonzero branch of solutions u = w(\) to (3.1) in every neighborhood of
some bifurcation point (0, \g).

In order to use the methods and the results outlined in the previous section, it is convenient
to rewrite (3.1) in a different but equivalent form; see Remark II.1.5. To this end, we apply
the operator A~1 on both sides of (3.1) and consider the map

F:(\u)e Ry x X(Q) —

F(\ ) := vy + Aoru + AB(uo(A), w) + AM(u, uw) € DIAQ), 6-2)
where ~ denotes the composition of A1 with the involved operator. Obviously, (3.1) is
equivalent to F'(A, w) = 0. Furthermore, by what we have established in Proposition I.1.3 and
Lemma I1.2.2, the Fréchet derivative of F' with respect to w, Dy F' (A, u), reduces to a (linear)
homeomorphism plus a compact operator, implying that the map (), -) is Fredholm of index
0 at each \ € I. Therefore, as a consequence of Lemma III.1.1, at a possible bifurcation point
(0, X\o) it is necessary to have that N [Dq F'(Ag, 0)] # {0}. Taking into account (3.2) and the
definition of L, we thus obtain that a necessary condition for (0, Ao) to be a bifurcation point
is that the linear problem

v+ )\0(3:1'1)1 + AoB(Uo()\o),’Ul) =0, v € X(Q) R (3.3)

has a non-zero solution v, . Now, once this necessary condition is satisfied, one can formulate
several sufficient conditions for the point (Ao, 0) to be a bifurcation point. For a review of
different criteria for global and local bifurcation for Fredholm maps of index 0, we refer to
[23, Section 6]. Here we wish to use the criterion of Lemma II1.1.2 to show a very simple
(in principle) and familiar sufficient condition in the particular case when the given curve ug
can be made (locally, in a neighborhood of \g) independent of \. (' As we shall see, this
condition coincides, formally, with the one established in the case of a bounded domain in
Example 111.1.2. Thus, in the case when ugy does not depend on A, recalling the definition of
the Oseen operator (3.46), from (3.2) and from Lemma III.1.2(ii), we immediately find that a
sufficient condition in order that (0, o) be a bifurcation point is that the following problem

wov — Lv =vy, ve X(Q), (3.9

D This may depend on the particular non-dimensionalization of the Navier-Stokes equations and on the special form
of the family of solutions ug. In fact, there are several interesting problems formulated in exterior domains where this
circumstance takes place, like, for example, the problem of steady bifurcation considered in the previous section and
the one studied in [22, Section 6].
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with 1o = \y ' and L := ~£*1(51 + B), Bv := B(ug, v), has no solution. It is interesting
to observe that the stated condition is formally the same as the one arising in steady bifurcation
problems for steady solutions to the Navier-Stokes equations in a bounded domain; see Example
III.1.2. However, in this latter case L is a compact operator defined on the whole of Dé’Q(Q),
while, in the present case, L, with domain D := X () € Dy*(Q), is an unbounded operator.
Nevertheless, if we assume that, in addition, ug € L3(), then the operator L still possesses
interesting properties that will allow us to formulate condition (3.4) in a way completely similar
to the case of a bounded domain. We wish to emphasize that the additional assumption on ug
is certainly verified by any solution in X () to (5.7) if only f satisfies suitable summability
conditions at large distances; see [18, Lemma IX.7.3].
We are now in a position to prove the following.

Lemma IIL3.1 Assume uo € L3(Q) N LE (Q). ® Then, the operator
L:veD:=X(Q) cDy*Q) — Lv:= —A"Y6, + B)v € D*(Q) (3.5)

is graph-closed. Moreover, denoted by Dé?(Q) the complexification of Dé’Q(Q), by L. the
natural extension of L to Déf(Q) and by o(L.) the spectrum of L. we have that o(L.) N
(0, 00) consists, at most, of a finite or countable number of eigenvalues, each of which is
isolated and of finite algebraic and geometric multiplicities, that can only accumulate at 0.

Proof. We begin to prove the graph-closedness property of L. Let {wy} C D be such that
v — v with g;, := Loy — u in Dg*(Q), as k — oo, for some v, u € Dy*(2). We wish
first to show that

|01vk| 12 < M, (3.6)

with M independent of k£ € N. By recalling the definition of L, from Lv, = g, we find
01v, + Byy = &gk .

Taking also into account (3.45), this relation is equivalent to the following one

ov
(3—301;’90) + (vi - Vo, u0) + (uo - Vo, vr) = (Vgy,, V),
for all ¢ € D().

(3.7)

By the Holder and Schwarz inequalities, we find
(Vi - Voo, u0) + (o - Vip, i) + [(Vgy, V)|

< (2[Juo|lallvklle + lgkli2) l#li2,

and so, by the assumption on 1o and by the Sobolev inequality (2.10) with ¢ = 2, we deduce
(3.6). From (3.6) and with the help of Lemma I1.2.1 we thus obtain v € D. We next pass to
the limit & — oo in (3.7). In view of the properties of the sequences {vy} and {g,} and of
ug we easily show that

ov
(8—$1, 99) + (v Ve, uo) + (uo - Vop,v) = (Vu, Vo),
for all p € D(Q),

®)Of course, the assumption up € L () is redundant if ug € X (Q).

loc
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that is, yv + Bv = Aw which is equivalent to Lv = wu. Therefore, L is graph-closed. We
shall next prove that, for any x> 0 the operator uI — L (I identity in DL:2(€2)) is Fredholm
of index 0. It is easy to show this property for T, := ul — A~15; with domain D. Actually,
for any f € Dy2(Q), T,v = f is equivalent to L(1/p,v) = pAf in Dy (), where L is
the Oseen operator defined in (3.46). Therefore, from Proposition II.1.3, we conclude that T,
is closed and that dim N [T',] = codim R [T',,] = 0, which proves the stated Fredholm property
for T',,. We shall next show that the operator S := A~1B with domain Dé’2(Q) is compact.
First of all, we observe that, under the stated assumption on ug, B is a bounded linear operator
that maps the whole Dg*(Q) into D "*(€2). Recalling the definition of B, we recognize that
the linearity property is obvious. Furthermore, for any v, ¢ € Dé’2(Q) we have

(Bv,p)| = |(v- Ve, u) + (uo - Vip, v)] (3.8)
< 2[Juolls[|v][s]el1,2 < 2v]|wol3|v|12]el1,2,

where we have used Holder inequality and (2.10) with ¢ = 2. Thus, the other stated properties
of B are also proved. Now, let {vy} C Dy?(Q) be weakly converging to v. We want to
show that Svy converges strongly to Swv, at least along a subsequence. Since all operators
involved are linear, we may take, without loss, v = 0. Reasoning as in (3.8) and splitting €
as Qr UQE, we find

(Bvg, @)| < Clluolaarlvellaarlelie + 2y luollsorlveliz|elie,

where C' = C(Qg) > 0. Passing to the limit & — oo into this relation and using Rellich’s
compactness theorem on the bounded domain (2, we obtain along a subsequence

lim sup [Bvog/| 1,2 < 27M||uo||3,0n

k! —oo

where M is an upper bound for |vy/|1 2. Since R can be taken arbitrarily large, by the absolute
continuity of the Lebesgue integral and by the assumption on ug we deduce

lim |B’Uk/|,172 =0.
k! —o0

This relation, in turn, implies
lim |S’Uk|172 =0,
k—o0

and we conclude that S is compact. Therefore, ul — L := T, + S is Fredholm of index 0,
for all i > 0. Of course, so is its natural complexification uf. — L.. As a consequence, the
essential spectrum, oess(L¢), of L. has an empty intersection with (0, 00). Moreover, it is easy
to check that uI. — L. is a bijection of D onto Dé’Q(Q), for sufficiently large u in (0, 00),
thus implying that the resolvent set, P(L.), of L. is not empty. Of course, it is enough to
show the bijectivity property for the operator uf — L. In turn, since ul — L is Fredholm of
index 0, this property will follow if we show that N [uI — L] = 0, for sufficiently large u. To
this end, we observe that the equation pu — Lu = 0 is equivalent to

pAu+ 6w+ Bu=0 inD;"3(Q),
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which, by recalling the definition of the operator B, leads to the following one
(A, w) + (Sru, u) + (uo - Vu,u) + (u- Vu, ug) = 0. (3.9)
Taking into account (3.45), Proposition II.1.2, and the fact that
(up - Vu,u) =0,
(this is shown in the same way as (6.23) or (6.24)), from (3.9) we deduce
plulfy = (u- Vu,u).

Applying the Holder inequality and the Sobolev inequality (2.10) with ¢ = 2 to the right-hand
side of this latter equation, we find

plul? o < lluflslulizlluolls < 7lluolsul? .

Consequently, for any 1 > ||uolls we obtain w = 0, which concludes the proof of the
bijectivity property of I — L.. for large values of p in (0,00). Summarizing, we have
proved that oess(Le) N (0, 00) =0, P(L.) # 0 and P(L.) N (0, 00) # @. Then, from Lemma
L1.15, o(L:) N (0,00) is constituted, at most, by isolated eigenvalues of finite algebraic (and
geometric) multiplicities that have no accumulation points in (0, co). However, we have also
shown that all sufficiently large values of 1 belong to P(L.), so that we conclude that the
number of eigenvalues is either finite number or infinite and countable, in which case they can
only cluster at 0. The proof of the lemma is completed.

|

An important consequence of Lemma II1.3.1 is that equation (3.4) has no solution if g is
an eigenvalue of L. of algebraic multiplicity 1 (simple eigenvalue). We thus have proved the
following bifurcation result.

Theorem I1L3.1 Let ug € L3(Q) N X (Q) be a solution branch of (5.7) independent of \ in
the neighborhood of A = Ag. Then (ug, \o) is a (steady) bifurcation point if 1/ )Xo is a simple
eigenvalue of the operator L., with L. natural extension of the operator L, defined in (3.6),
to the complexification OfD(l)’Q(Q).

Another interesting and immediate consequence of Lemma I11.3.1 is the following one.

Corollary HL3.1 Let ug be a solution branch to (5.7) independent of \ € J, where J is a
bounded interval with J C (0,00). Then, there is at most a finite number, m, of (steady)
bifurcation points (49, A\), A\p € J, k=1, ,m.

Remark IIL3.1 The statement of Theorem I11.3.1 coincides with that of the analogous theorem
for steady bifurcation from steady solution to the Navier-Stokes equation in a bounded domain;
see, Example 111.1.2.

A

Remark II1.3.2 In [3, Remark 2], K.I. Babenko states that, the fact that O lies in the (essential)
spectrum of the linearized operator of (1.1) (around a non-zero steady solution) for all values
of the Reynolds number A “introduces a number of substantial complications into the theory
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of bifurcation, and makes it impossible to apply the results of the general theory of bifurcation
to the present situation.” However, the considerations made at the beginning of this section
and, in particular, the results of Theorem III.3.1 make it clear that the difficulty pointed out
by Babenko exists if the bifurcation problem is phrased in a class of solutions that is either
too large (solutions only belonging to Dé’2(Q)) or too restricted (solutions in a subspaces of
the Sobolev space W22(12)), but that it totally disappears if the problem is formulated in the

appropriate functional setting as the one adopted in the present paper.
A



Chapter IV

Some Dynamical Properties of Steady-State Solutions
to the Navier-Stokes Problem Past an Obstacle.

The problem of long-time behavior of unsteady flow past an obstacle, at arbitrary large Reynolds
numbers, is one of the outstanding open questions in mathematical fluid dynamics. The main
reason is because it is not known (and it is not clear) whether or not there exists a norm in
which the solutions to the relevant initial-boundary value problem remain uniformly bounded
for all times. In particular, unlike the flow in a bounded domain, the global kinetic energy of
the flow (the L?—norm of the solution) is expected to become increasingly unbounded as time
goes to infinity.

Objective of the present chapter is to furnish some dynamical stability results related to
steady-state solutions to the Navier-Stokes problem past an obstacle, which, we hope, will
lead to a better understanding of the general problem of long-time behavior. Specifically, let
ug denote a given solution corresponding to a prescribed value of \. We shall show that
every dynamical perturbation to ug, belonging to a suitable and quite large functional class,
will eventually decay to zero, in appropriate norm, if only a finite number of functionals of
perturbations from a complete family of functionals defined in a bounded domain Q)i decays
to zero sufficiently fast. Conversely, and almost obviously, if there is one functional of this
type that does not decay to zero as time goes to infinity, the generic perturbation, in the chosen
norm, will also be bounded from below by a positive constant in the same limit. It is important
to emphasize that the “size” R of the domain Qg depends only on A\ (and €2) but not on the
particular steady solution. Thus, our result states that, similarly to uniqueness (see Theorem
11.3.4), also attractivity of a steady solution can be controlled by means of a finite number of
parameters defined only “near” the boundary. Again, how “near” it has to be depends on/y on
A and not on the particular steady solution.

Finally, in the last section, we outline the difficulty related to the proof of the uniform
boundedness of the generic perturbation, and outline some strategy of possible resolution of the

75
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problem.

IV.1 Attractivity Properties.

For the sake of (formal) simplicity, we shall prove the above results under the assumption that
F = 0. However, the results continue to hold if, instead, f is assumed to decay “sufficiently
fast” at large distances. Our problem is then formulated as follows. Consider the initial-
boundary value problem:

a—w—)\a—w+)\w-Vw:Aw—Vp
ot O in Q x (0,00)
divw =0 (1.1)

w(z, t)|on=e€1, lm w(z,t)=0, ¢>0; w(z,0)=we(x),

where wy is prescribed. We then look for solutions w to (1.1) of the form w(x, t) = u(x,t)+
uo(x) where wy is the given (steady) solution to (1.1) and w(x,t) is the perturbation. This
implies that w satisfies the following problem

0
6—1; +A[(u+uo—e1)  Vu+ ug - Vu))
= Au—Vq in © x (0,00)
divu =0 (1.2)

u(z,t)on =0, lim u(z,t)=0, t>0; wu(z,0)=wy—up:=U.

|&]| —o0

Our goal is to furnish conditions under which u(x,t) — 0 as t — oo, in appropriate norms.

In order to state and to prove our results, we recall the following notation. By L%(£2),
1 < ¢ < o0, we denote the completion of D(€2) in the norm || - ||;. Moreover, if B is a Banach
space with norm || - || g, by L4(0, T'; B) and C(]0, T|; B) we denote the space of all measurable
functions from [0, 7] to B, such that fOT |u(t)||’; dt < oo, and the space of continuous function
from [0, T] to B, respectively.

We shall now define the class of perturbations where the attractivity property holds. Let
S(A) = 8(A,0), with S(\, f) defined in (7.2), and let ug € S(A\). We say that a vector field
u: Qx(0,T) — R3 is an admissible perturbation if and only if u satisfies the following
conditions:

ou

(i) w e L®°(0,T; L2(Q)NL2(0,T; Dy (Q)), > € LA3(0,7; Dy 2(Q)), forall T > 0

(ii) For all ¢ € D(Q) and all ¢ € (0,T), arbitrary T > 0, w satisfies the following equation
ou
<§7 1/)> = *(vu(t% V’d))

“Al((u(t) +uo — e1) - Vu(t), 9) + (u(t) - Vuo, $)],

(1.3)
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with initial condition w(0) = U, for some U € L2(Q);

(iii) w satisfies the “strong energy inequality”:

ﬂM@ﬁS%WWM@+/‘DWU%V%uw—Wﬁmddﬂ (1.4)

for a.a. s > 0 (including s = 0) and all ¢ € [s, T, arbitrary T > 0.
Basically, an admissible perturbation is a weak solution a la Leray-Hopf of (1.2) (see (i) and
(i1)), satisfying also condition (iii).
Remark 8.1 If up € X(€2), and Q is sufficiently smooth (of class C?, for example) one can
prove that the class of admissible perturbations is not empty; see, e.g. [36].

The main result of this section is contained in the following

Theorem IV.1.1 Let Q be of class C? and let ug € S(\), for some given A > 0. Moreover, let

{lgR)} be an arbitrary complete family of functionals on 131’2(9 Rr) (see Section 6) and let u
be an arbitrary admissible perturbation. There exist finite R = R()\) > 0 and n =n(A) € N
such that if

1 (w) € L2(0,00), i=1,2,--+,n (1.5)
then
lim |wu(t)]12=0. (1.6)
t—o0

Conversely, assume there exists a functional ') on lo) L2(QR) and an admissible perturbation
u such that
lim inf [[) (u(t))| =~ >0,

then also
litm inf\u(t)\l,g >k >0. (1.7)

Before proceeding to the proof of Theorem IV.1.1, we would like to make a few remarks.
Remark IV.1.1 The assumption (1.5) on the functionals ZER) can be weakened as follows:
P () € L2(Ty,00), i=1,2,---,n

for sufficiently large 75 > 0.
A

Remark IV.1.2 It is worth emphasizing that the above theorem allows us to obtain the global
result formulated in (1.6) from an information expressed only “near” the boundary of €.
A

Remark IV.1.3 The attractivity of wg is proved in the Dirichlet norm (see (1.6)). However, by
using known methods, e.g. [34], this property can be shown to hold in other different norms,
like, for instance, the (energy) L?—norm and other L¢—norms as well.

A
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Remark IV.1.4 Examples of complete families of functionals {ZER)} are given in Remark 6.1.
A

Proof of Theorem VI.1.1 From (1.4), for all ¢ > 0 and sufficiently large & > 0 we find

t
ion / () a2m () 2.0
0 (1.8)
3,QR Hu(T)

We now recall that, by [19, Theorem 2], the set S(A) is compact in L (), for all r € (2, o¢].
Therefore, for any € > 0 there is R = R(A, <) > 0 such that ||ug|/3 or < €. Thus, applying
(2.10) of Chapter II with ¢ = 2 in the last term of the right-hand side of (1.8) and choosing

1
t
Lo / e
0

£= oy from (1.8) we deduce

Again by [19, Theorem 2], we have that there is a constant M = M (€, A) > 0 such that
|lwo]la < M. Replacing this information back in (1.9) and using Cauchy’s inequality, we find
that

t
%IIU(t)||§+/O u(r)[F 2dr < 3|3+ Allug

+HUQ

G,QR|'U/(T)|1,2] dT.

t
slu®l3 + %/O ()i 2dr < 3U[3 + Xuo

4’QR|U(7)|1’2d7. (1.9)

t i
slu®l3 + i/o ()i 2dr < 3|U3 +Ml/0 lu(r)|[3 2 d7 (1.10)

where M := %)\2 M?. With the help of Lemma I1.2.4 we obtain

R 2
)3 0, < giplulis+ O 1 (),

=1

with C' = C(R, A\, n) > 0, so that (1.10) furnishes
t n i
P R
(b))} + & / ()R pdr < SU3+ MY / 1B )P dr. (LI
=1

By assumption, the right-hand side of (1.11) is finite and so we conclude, in particular,
w e L(0,00; L2(Q)) N L2(0, 00; Dy () . (1.12)

Using (1.12) along with the assumption (1.4), we shall prove that [u(t)|7 , stays bounded for
all sufficiently large ¢ and that, in fact, it tends to 0 as ¢ — oco. To this end, we begin to
prove the existence of a “strong” solution, uq, for all ¢ > ¢y, where gy is sufficiently large
and u1(tg) = u(ty). Let P denote the projector operator of L?(2) onto L2(€2) and formally
replace PAwy for 4 in (1.3) with uw := u;. We thus get

d . .
%%\ul\iz + ||PA’U,1||§ :A[((ul + ug — 61) . Vul,PAul) + (U1 . VuO,PAul)] . (]]3)

The first two terms on the right-hand side of (1.13) can be increased as follows
(w1 - Vg, PAw)| < Cy (Jual] o + |ui]05) + | PAus |3

1.14
(g — 1) Ve, PAwr)| < s — ex a3 + 2 PAw [ 19
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The first relation in (1.14) is derived, for example, in [26], while the second is a simple
consequence of the Holder and Cauchy inequalities. Moreover, ¢ is an arbitrary positive
number, while C; = C1(2,¢) > 0. Concerning the last term on the right-hand side of (1.13),
by (2.10) with ¢ = 2 and again by the Holder and Cauchy inequalities we find

2
(w1 Vo, PAw)| < [} pluol 5 + ] PAwi 3. (1.15)

We observe that all coefficients in (1.14) and (1.15) involving wu are finite, as a consequence
of classical results on the steady-state Navier-Stokes boundary-value problem; see [18, Chapter
IX]. Employing (1.14) and (1.15) in (1.13) and taking ¢ sufficiently small, we find that |u(t) %’2
satisfies the following differential inequality

12+ [PAu)3 < C (juy

d
E‘ul Totlwlls+uilSo), |ur(to)ll o= lu(to)lfs, (1.16)

In (1.16), C' is a positive constant depending only on A, {2 and u. Notice that, in view of
(1.12), the initial condition makes sense for almost all ¢y € (0, c0). From (1.16) it follows, in
particular, the existence of T* € (0, co] such that

w1 (2)

t
172+/ ||PAU1(T>||§dT§Cl forall ¢ € [to,to—l—T*), (1.17)
to

where C7 = C1(\, Q,up, T") > 0. By the procedure used at the beginning of the proof, by
this latter estimate and (1.17), along with classical arguments (Galerkin method, for instance)
we can thus show the existence of a solution u; = w1 (t), ¢t € (tg, 00), to (1.3) such that

wy(to) = u(to), wy € L%(tg,00; L2(2)) N L2 (to, 00; Dy () .
Moreover, there exists T > 0 such that
wy € C([to, to + T*); Dy > () N L (to, to + T*; D>2()) . (1.18)
We are now able to prove that, if ¢o is chosen appropriately, then there exists § < 1 such that
u(t)|3 5 <20 forall t € (tg,00). (1.19)

In fact, let us pick g such that

. . e o
ulto) 2, <8 [ un)fipdr = M) <

s O +29) (20

where C is the constant entering the inequality (1.16). The existence of such % is guaranteed
by (1.12). Now, since u is a weak solution a la Leray-Hopf in (¢, 0c0) and satisfies the
strong energy inequality (1.6), while w; is a weak solution satisfying (1.18), by a well known
uniqueness theorem we conclude that u(t) = w;(¢) for all ¢ € (¢g, 00). Therefore, in particular,
w satisfies (1.18) and also, by (1.16), @

t
()3 5 < lulto)f o+ C / (Ju(r)f o+ [w(r)f o + [w(m)[$,) dr, t>to. (121
to

) The validity of the inequality (1.21) is established by a simple approximation procedure that uses (1.18) and (1.3).
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Now, assuming |u(to)|7 , < 4, for some positive § < 1, we claim the validity of (1.19).
Suppose this is not true and call ¢* the first instant at which |w(t*)|7 , = 26. From (1.21) and
(1.20) we thus get

u(t)[2., < 6 + CM(to) (1+26) < 26,

which gives a contradiction that proves (1.19). Now, let ¢ be an arbitrary positive number.
From (1.20) it follows that there is £ > #y such that

xX
[u@ia<e. [ lumRadr<e, (122)
t
However, from (1.16) we find that (19
—_ t —_
u(t)[s < lu@)f+C /{ (lu(r)[f 2+ [u(r)|iz + lu(r)]] ) dr forallt >1.

which, by (1.19) and (1.22), furnishes |u(t)|1,2 — 0 as ¢ — co. The proof of the first part of
the theorem is then concluded. Now, assume there exists a functional (/¥ on 13 L2(QR) such
that
lim inf 1) (u(t))| = k > 0.
t—oo

By definition, we then have
D ()] < [ [u(t)]r,

which, combined with the previous equation, proves (1.7). The proof of the theorem is com-
pleted. |

IV.2 Some Open Questions.

Probably, the most fundamental and challenging open questions that deserve special attention
concern the large-time behavior of the fluid flow around the moving obstacle, at arbitrary values
of the Reynolds number. This problem translates, mathematically, into the study of the solutions
of the initial-boundary value problem (1.1) as time ¢ — oo, for arbitrary values of A > 0. (D
Now, if X is “sufficiently small”, say, 0 < A < )o, the steady-state problem (1.1) (with f = 0)
has one and only one solution {v, p} in the Leray class. Consequently, by the methods adopted
in [21], it can be proved that, if wy is prescribed in a suitable function class, the corresponding
solution {w, p} tends, as ¢ — oo, to {v,p} in appropriate norms. In particular,

tlim |w(t) —v|3=0. 2.

The fundamental question that stays open is then that of investigating the behavior of solutions
to (1.1) for large ¢, when A > Aq.

FIO)See the previous footnote .
(DFor simplicity, we assume that the body force acting on the fluid vanishes identically.
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This problem is much more challenging than the analogous one arising in the case of a
bounded domain, for reasons that we are going to explain. We recall that, for flow in a bounded
domain, V, the problem analogous to (1.1) can be written, in its simplest formulation, as follows

a—z+Rz~Vz:Az—Vr—|—F
ot in V x (0,00)

divz =0 2.2)

z(z,t)oy =0, t>0; z(z,0)=zq(z),

where FF = F(x) and z are appropriately prescribed and R is a suitable dimensionless
(Reynolds) number. Similarly to problem (1.1), we can prove that, if R is “sufficiently small”,
all solutions (z,r) to (2.2) belonging to a suitable and quite large functional class a la Leray-
Hopf, C, converge to the (unique) steady-state solution to (2.2) corresponding to F'. Moreover,
for all R > 0, solutions in C remain bounded in the L?(2)-norm, uniformly in time and, more
specifically, one can prove the existence of an absorbing set. These properties are an elementary
consequence of the “energy inequality”, of Poincaré’s inequality and of Gronwall’s lemma; see,
e.g., [9]. If, in addition, the above solutions satisfy a suitable extra requirement ') preventing
the formation of singularities, then one can show that they all tend to a maximal invariant set
(global attractor); see, e.g., [9, Chapter 4].

In analogy with the above results, it is natural to ask whether properties like existence of
an absorbing set and (under suitable regularity assumptions) of a global attractor are valid also
for the exterior domain problem (1.1). Actually, to date, we do not know if such properties
hold. As a matter of fact, we do not even know if there exists a norm with respect to which
solutions to (1.1), in a suitable class, remain bounded uniformly in time, for all A > 0. In
this respect, it is readily seen that, unlike the bounded domain situation, solutions to (1.1), in
general, can not be bounded in L?((2), uniformly in time, even when A < \g. This means that
the kinetic energy associated to the motion described by (1.1) has to grow unbounded for large
times. Actually, assume A < A\g and that there exists K > 0, independent of ¢, such that

lw®)|2 < K, (2.3)

where w is a solution to (1.1). Then, we can find an unbounded sequence, {¢,,}, and an
element w € L2 () (possibly depending on the sequence) such that

lim (w(ty), @) = (W,p), forall ¢ € D(Q). (2.4)
By (2.1) and (2.4) we thus must have w = v, which in turn implies v € L2(Q). However,
Leray solutions to (1.1) with f = 0 only satisfy the following condition (see [18, Theorem

8.17)
veLiQ), forallg>2, (2.5)

and, consequently, (2.3) can not be true. It should also be remarked that, for wo € L2(2), the
property (2.3) certainly holds in every finite interval [0, T'], with a constant K depending on 7.

(2)Unproven, so far.
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Thus, the basic, preliminary question that one has to address is whether or not there exists
a function space, Y, where the solution w = w(¢) to (1.1) remains uniformly bounded in
t € (0,00), for all A > 0. 1 The above considerations, and in particular (2.5), suggest then
that a plausible candidate for Y is L(£2), for some ¢ > 2. However, the proof of this property
for ¢ > 3 appears to be overwhelmingly challenging because, in view of known results, it
would be closely related to the existence of global, regular solutions to (1.1). Nevertheless, we
could investigate the validity of the following weaker property

lw(t)|lq < K1, forsomeqe€ (2,3), (2.6)

where K is independent of ¢ € (0, 00). Of course, the requirement is that (2.6) holds for all
A > 0 and for all solutions w to (1.1) in an appropriate function class. It is worth emphasizing
that the proof of (2.6) would be of “no harm” to the outstanding global regularity problem
for the 3-D Navier-Stokes equations since, according to the available regularity criteria of
weak solutions, the corresponding solutions, while global in time, will still be weak, even
though more regular than the Leray-Hopf ones. Nevertheless, despite of its plausibility and
“harmlessly”, the property (2.6) appears to be very hard to establish. Actually, a much less
strong property than that required by (2.6) is an open question that, seemingly, is difficult to
assess. Specifically, consider the following Cauchy problem

a—w+w~Vw:Aw—Vp
ot in R3 x (0, 00)
divw =0 @7
w(m, 0) = wo(m) )
where
wo € LA(R?), 2<q<3. (2.8)

Then, the question is whether we can prove the existence of a (weak, global) solution to (2.7)
satisfying the property w € L°°(0, oo; LZ(R?)), without restricting the “size” of wg. To my
knowledge, the only results known for the problem (2.7)-(2.8) are due to Calderon [7], but they
only show w € L?(0,T; LL(R3)), for all T > 0. Probably, there is something deeper hidden
behind our question, which we leave as a seemingly challenging open problem.

(3 The bound, of course, may depend on .
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