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TRAVELLING WAVE SOLUTIONS OF THE HEAT EQUATION
IN THREE DIMENSIONAL CYLINDERS WITH NON-LINEAR

DISSIPATION ON THE BOUNDARY

MADS KYED

Abstract. The existence of travelling wave solutions of the heat equation

∂tu−∆u = 0 in the unbounded cylinder R× Ω subject to the nonlinear bound-
ary condition ∂u

∂n
= f(u) is investigated. We show existence of non-trivial

solutions for a large class of non-linearities f . Additionally, the asymptotic
behavior at ∞ is studied and regularity properties are established. We use a

variational approach in exponentially weighted Sobolev spaces.

1. Introduction

Let Ω ⊂ R2 be a bounded domain. Consider the heat equation in the unbounded
cylinder R× Ω with a non-linear dissipation condition on the boundary,

(1.1)


∂tu−∆u = 0 in R+ × R× Ω

∂u

∂n
= f(u) on R+ × R× ∂Ω .

In the following work the existence of non-trivial travelling wave solutions of the
above problem is investigated. A travelling wave solution is a function u defined
on R× Ω such that

(1.2) (t, x, y) → u(x + ct, y) , (t, x, y) ∈ R+ × R× Ω

solves (1.1). More specifically, (1.2) represents a travelling wave in the x-direction
with propagation speed given by the constant c. Finding such a solution amounts
to solving the elliptic equation

(1.3)


∆u− c ∂xu = 0 in R× Ω

∂u

∂n
= f(u) on R× ∂Ω .

The propagation speed c is typically not prescribed. Hence the problem is correctly
formulated as finding a solution pair (c, u) of (1.3).

A class of non-linearities f characterized by f(0) = 0 and f(s) s ≥ 0 , s ∈ R
are considered. Due to the physical background of the problem, non-linearities
vanishing only at 0 are of special interest and will be in focus throughout the work.

The heat equation with a non-linear dissipation condition on the boundary ap-
pears in the study of transient boiling processes. In this context the nonlinearity
f is often referred to as a boiling curve and vanishes only at 0. Travelling wave
solutions are also called heat waves and are of special interest for some application.
See [Blu98] for further references.
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While semi-linear reaction diffusion equations in cylinders have been studied over
the years, few results have been obtained for problems with non-linear boundary
conditions of type ∂u

∂n = f(u). For results on travelling waves in the case of Neumann
boundary conditions we refer the reader to [BL89], [BLL90], and [BN92]. In the case
of Dirichlet boundary conditions we mention [Gar86], [Veg93] and [Hei88]. Most of
the existing methods rely on the existence of at least two trivial solutions. Such
methods typically recover a non-trivial solution as a connection, in some sense,
between the trivial ones. In (1.3) the trivial solutions are simply the constants
corresponding to the vanishing points of f . Thus in the case of a non-linearity f
vanishing only at 0 only a single trivial solution is involved. This complicates the
use of the existing methods. Furthermore, the underlying domain R× Ω of the
problem is unbounded causing a lack of compactness which complicates the use of
variational and topological methods.

Our main result is the existence of a non-trivial solution of (1.3) for a class
of nonlinearities f vanishing only at 0 and satisfying certain growth condition.
Additionally, we establish regularity properties and show that the solution has
the asymptotic characteristics of a travelling front. We use a variational approach
inspired by the work of Steffen Heinze (see [Hei88]). In order to obtain an important
apriori estimate, we shall use potential theory involving the fundamental solution
of the three-dimensional scalar Oseen equation. Consequently, our result is limited
to the three-dimensional case.

2. Notation

We let Ω denote a bounded domain. Unless otherwise specified, Ω is a subset of
R2 with a C3-smooth boundary Γ. Depending on the context, (x, y) shall denote
an element of R× Ω or R× Γ with x ∈ R and y ∈ Ω or y ∈ Γ.

We introduce the exponentially weighted spaces

L2(R× Ω, e−x) := {u ∈ L2
loc(R× Ω) |

∫
R×Ω

u2 e−x d(x, y) < ∞} ,

L2(R× Γ, e−x) := {u ∈ L2
loc(R× Γ) |

∫
R×Γ

u2 e−x dS(y)dx < ∞} ,

H1
2(R× Ω, e−x) := {u ∈ L2(R× Ω, e−x) | ∂u

∂x
,

∂u

∂y1
,

∂u

∂y2
∈ L2(R× Ω, e−x) } ,

L2
loc(R× Ω) := {u ∈ L2

loc(R× Ω) | χu ∈ L2(R× Ω) ∀χ ∈ C∞
c (Rn)} , and

Hk
2,loc(R× Ω) := {u ∈ L2

loc(R× Ω) | χu ∈ Hk
2(R× Ω) ∀χ ∈ C∞

c (Rn)} .

We equip H1
2(R× Ω, e−x) with the norm

‖u‖H1
2(R×Ω,e−x) :=

( ∫
R×Ω

(|Du|2 + u2) e−x d(x, y)
) 1

2

.

The range of the trace operator T : H1
2(R× Ω, e−x) → L2(R× Γ, e−x) is denoted

by

H1/2
2 (R× Γ, e−x) = {u ∈ L2(R× Γ, e−x) | u e−

1
2 x ∈ H1/2

2 (R× Γ)} .

The symbols → and ⇀ are used to denote strong and weak convergence, respec-
tively.
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3. Existence

We define on H1
2(R× Ω, e−x) the functionals

(3.1) E(u) :=
1
2

∫
R×Ω

|Du|2 e−x d(x, y)

and

(3.2) J(u) :=
∫

R×Γ

F (u) e−x dS(y)dx ,

whereby

F (u) :=
∫ u

0

f(s) ds .

We will assume f(0) = 0 and sufficient growth conditions on f such that J be well
defined on H1

2(R× Ω, e−x). Furthermore we define

(3.3) C := {u ∈ H1
2(R× Ω, e−x) | J(u) = 1}.

Consider now the variational problem of minimizing E over the class C,

(3.4) E 7−→ Min in C .

A minimizer u, of this problem, satisfies the associated Euler-Lagrange equation

(3.5)
∫

R×Ω

Du ·Dv e−x d(x, y) = λ

∫
R×Γ

f(u) v e−x dS(y)dx

for all v ∈ H1
2(R× Ω, e−x). Here λ is the corresponding Lagrange multiplier. If u

is sufficiently regular, partial integration in the above equation yields∫
R×Γ

∂u

∂n
v e−x dS(y)dx −

∫
R×Ω

(∆u−∂xu) v e−x d(x, y)

= λ

∫
R×Γ

f(u) v e−x dS(y)dx

for all v ∈ H1
2(R× Ω, e−x). Consequently u then satisfies

(3.6)


∆u− ∂xu = 0 in R× Ω

∂u

∂n
= λf(u) on R× Γ .

We first show existence of a solution u of (3.4). Due to the side-constraint
J(u) = 1 such a solution is automatically non-trivial. We then show that u
is sufficiently regular in order to integrate partially in (3.5) and hence obtain
a solution of (3.6). By a scaling argument we shall finally obtain a solution of (1.3).

3.1. Approximating Problem. We wish to use direct methods in order to es-
tablish the existence of a minimizer in (3.4). However, due to underlying domain
R× Ω being unbounded, the problem suffers from a lack of compactness in the
sense that we do not have compact embeddings of H1

2(R× Ω, e−x) into suitable
Lp-spaces. Hence we start by considering an approximating problem.

On the nonlinearity f we impose the conditions

(3.7) f ∈ C1(R) , f(0) = 0 , |f ′| ≤ k , 0 ≤ f(s)s ∀s ∈ R ,
3



with k being a positive constant. Let ϑ : R → R be a real measurable function
satisfying

(3.8) 0 ≤ ϑ(x) ≤ 1 and lim
|x|→∞

ϑ(x) = 0 .

We define
Jϑ(u) :=

∫
R×Γ

ϑ(x) F (u) e−x dS(y)dx

and put
Cϑ := {u ∈ H1

2(R× Ω, e−x) | Jϑ(u) = 1}.
We now consider the problem of minimizing E over Cϑ,

(3.9) E 7−→ Min in Cϑ .

One can view this problem an approximation of (3.4). It posses enough compactness
properties in order to be solvable with direct methods.

First we need the following Poincaré-type inequality which ensures coercivity of
the energy functional E with respect to the H1

2(R× Ω, e−x) norm.

Lemma 3.1. (Poincaré-type inequality)

(3.10)
∫

R×Ω

u2 e−x d(x, y) ≤ 4
∫

R×Ω

|∂xu|2 e−x d(x, y)

for all u ∈ H1
2(R× Ω, e−x).

Proof. Let u ∈ H1
2(R× Ω, e−x). Choose a sequence of continuously differentiable

functions {un}∞n=1 from H1
2(R× Ω, e−x) with bounded support such that un → u

in H1
2(R× Ω, e−x). For any fixed y ∈ Ω one has

0 ≤
∫ ∞

−∞

(
∂x

[
un e−

1
2 x

])2

dx

=
∫ ∞

−∞
|∂xun|2 e−x dx +

1
4

∫ ∞

−∞
u2

n e−x dx −
∫ ∞

−∞
un ∂xun e−x dx .

(3.11)

By partial integration, the last integral in (3.11) evaluates to∫ ∞

−∞
un ∂xun e−x dx =

1
2

∫ ∞

−∞
u2

n e−x dx .

Hence by (3.11)

0 ≤
∫

R
|∂xun|2 e−x dx − 1

4

∫
R

u2
n e−x dx.

Integrating over Ω and letting n →∞ proves the lemma. �

We can now prove existence of a minimizer for the approximating problem.

Theorem 3.2. Let f be a real function satisfying (3.7) and ϑ a real measurable
function satisfying (3.8). Then there exists a minimizer u for E over the class Cϑ.

Proof. Let {un}∞n=1 be a minimizing sequence for E over the class Cϑ. Using Lemma
3.1 one has ∫

R×Ω

(
u2

n + |Dun|2
)

e−x d(x, y) ≤ 10 E(un) .

Since {un}∞n=1 is a minimizing sequence, {E(un)}∞n=1 is bounded. Hence by the
above inequality {un}∞n=1 is bounded in H1

2(R× Ω, e−x). Due to the reflexivity of
4



the (Hilbert-)space H1
2(R× Ω, e−x) there exists a subsequence of {un}∞n=1, which

for the sake of simplicity will still be denoted by {un}∞n=1, converging weakly to an
element u ∈ H1

2(R× Ω, e−x). We now show that Jϑ(un) → Jϑ(u) for n →∞.
Let ε > 0 be given. By Taylor-expansion on F and (3.7) it follows that

|F (un) − F (u)| ≤ k |u| |u− un| +
1
2

k (u− un)2 .

Thus
|Jϑ(un)− Jϑ(u)|

≤ k

∫
R×Γ

ϑ(x) |u| |u− un| e−x dS(y)dx +

+
1
2

k

∫
R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx

≤ k

( ∫
R×Γ

u2 e−x dS(y)dx

) 1
2
( ∫

R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx

) 1
2

+
1
2

k

∫
R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx .

(3.12)

Now choose b ∈ R, b > 0 such that ϑ(x) < ε for |x| ≥ b. Consider the trace
operator

Sb : H1
2(R× Ω, e−x) → L2((−b, b)× Γ) .

Since the domain (−b, b) × Ω is bounded, Sb is compact. Applying Sb to {un}∞n=1

hence yields un → u strongly in L2((−b, b) × Γ) for n → ∞. Thus for sufficiently
large n we have∫

R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx

=
∫ b

−b

∫
Γ

ϑ(x) (u− un)2 e−x dS(y)dx

+
∫

R\[−b,b]

∫
Γ

ϑ(x) (u− un)2 e−x dS(y)dx

≤ ε + ε

∫
R×Γ

(u− un)2 e−x dS(y)dx .

By boundedness of the trace operator T : H1
2(R× Ω, e−x) → L2(R × Γ, e−x), it

follows from the above that

(3.13)
∫

R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx

≤ ε + ε C

∫
R×Ω

(
(u− un)2 + |Du−Dun|2

)
e−x d(x, y)

for n sufficiently large. Using Lemma 3.1 and the boundedness of {E(un)}∞n=1 in
(3.13) now yields

(3.14)
∫

R×Γ

ϑ(x) (u− un)2 e−x dS(y)dx ≤ C ε

for sufficiently large n. It follows from (3.12) and (3.14) that Jϑ(un) → Jϑ(u) for
n →∞.
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Since {un}∞n=1 is a sequence in Cϑ, we have Jϑ(un) = 1 for all n ∈ N. It follows
that Jϑ(u) = 1. Hence the weak limit u is admissible. By convexity in the gradient,
the functional E is weakly lower semi-continuous. Consequently

E(u) ≤ lim inf
n→∞

E(un) = inf
v∈Cϑ

E(v) .

Thus u is a minimizer for E over Cϑ. �

A minimizer u for E over Cϑ satisfies the associated Euler-Lagrange equation

(3.15)
∫

R×Ω

Du ·Dv e−x d(x, y) = λϑ

∫
R×Γ

ϑ(x) f(u) v e−x dS(y)dx ,

for all v ∈ H1
2(R× Ω, e−x). For later we need the following estimate of the Lagrange

multiplier λϑ.

Lemma 3.3. Let u be a minimizer of E over Cϑ. Assume f satisfies (3.7) and

(3.16) ΘF (s) ≤ f(s) s ∀s ∈ R

for some positive constant Θ > 0. Then u satisfies (3.15) and

(3.17) 0 < λϑ ≤ 2
Θ
E(u) =

2
Θ

inf
v∈Cϑ

E(v) .

Proof. Putting v = u in (3.15) yields

(3.18) 0 ≤
∫

R×Ω

|Du|2 e−x d(x, y) = λϑ

∫
R×Γ

ϑ(x) f(u)u e−x dS(y)dx .

Since Jϑ(u) = 1 it follows that u 6= 0. Hence strict positivity holds in (3.18) and
thus λϑ 6= 0. By (3.7) f satisfies 0 ≤ f(s) s. The fact that ϑ ≥ 0 therefore implies
λϑ > 0.

Since λϑ and ϑ are non-negative, applying assumption (3.16) in (3.18) yields

λϑ Θ
∫

R×Γ

ϑ(x)F (u) e−x dS(y)dx ≤
∫

R×Ω

|Du|2 e−x d(x, y) .

Thus
λϑ Θ Jϑ(u) ≤ 2 E(u) .

Since Jϑ(u) = 1 inequality (3.17) follows. �

Remark 3.4. Since Θ can be chosen arbitrarily small, condition (3.16) merely im-
plies that f cannot converge to 0 at some point.

3.2. Representation Formula and Decay Estimates. We now establish a rep-
resentation formula for solutions of the approximating problem (3.9) and the orig-
inal problem (3.4). Using this respresentation we obtain decay estimates essential
to the proof of the main theorem.

A solution of (3.9) or (3.4) satisfies, at least in the weak sense, an Euler-Lagrange
equation of type

(3.19)


∆u− ∂xu = 0 in R× Ω,

∂u

∂n
= g on R× Γ ,

with g ∈ H1/2
2 (R× Γ, e−x). One can show (see Theorem 5.1) that any solution

u ∈ H1
2(R× Ω, e−x) of the weak formulation of (3.19) with g ∈ L2(R× Γ, e−x) ∩
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H1/2
2,loc(R× Γ) satisfies u ∈ H2

2,loc(R× Ω). The representation formula we now estab-
lish will hold for any solution in H1

2(R× Ω, e−x) of (3.19) satisfying this regularity
condition. Due to standard regularity theory for elliptic equations, such functions
all belong to C∞(R× Ω). Further note that functions in H2

2,loc(R× Ω) have nor-
mal derivatives on R× Γ at least in the trace sense, which is the way the boundary
condition in (3.9) is to be understood.

In the following, y = (y1, y2, y3) and ξ = (ξ1, ξ2, ξ3) shall, depending on the
context, denote points in R× Ω or R× Γ. Consider the function

(3.20) Φ(y) =
1
|y|

e−
1
2 |y|−

1
2 y1 , y ∈ R3 \ {0} .

Φ satisfies

(3.21) ∆Φ + ∂1Φ = 0 , for y ∈ R3 \ {0}
and is the fundamental solution for the elliptic operator ∆− ∂1in (3.19). Interest-
ingly, Φ satisfies exactly the right growth conditions in order for the convolution
between Φ and functions from L2(R× Ω, e−x) to be well-defined in the classical
sense. This property of Φ makes it possible to establish the following representa-
tion formula.

Theorem 3.5. A solution u ∈ H1
2(R× Ω, e−x) ∩ H2

2,loc(R× Ω) of (3.19) with
g ∈ L2(R× Γ, e−x) satisfies

(3.22) u(y) =
1

3ω3

∫
R×Γ

g(ξ) Φ(ξ − y) − u(ξ)
∂Φ
∂n

(ξ − y) dS(ξ)

for all y ∈ R× Ω, with ω3 being the measure of the three-dimensional unit-ball.

Proof. Fix y ∈ R× Ω. Let ε > 0 be sufficiently small so that Bε(y) ⊂ R× Ω.
Consider the derivatives of Φ. One has

∂1Φ(y) = P1(y) e−
1
2 |y|−

1
2 y1 , P1 continuous and bounded away from 0,

∆Φ(y) = P∆(y) e−
1
2 |y|−

1
2 y1 , P∆ continuous and bounded away from 0.

It follows that
ξ → u(ξ)∆Φ(ξ − y)

= u(ξ) P∆(ξ − y) e−
1
2 |ξ−y|− 1

2 (ξ1−y1)

= u(ξ) e−
1
2 ξ1 P∆(ξ − y) e−

1
2 |ξ−y|+ 1

2 y1 ∈ L1(R× Ω \ Bε(y)) .

(3.23)

Similarly

(3.24) ξ → u(ξ) ∂1Φ(ξ − y) ∈ L1(R× Ω \ Bε(y))

and

(3.25) ξ → ∂1u(ξ) Φ(ξ − y) ∈ L1(R× Ω \ Bε(y)) .

Since u is a solution of (3.19) and belongs to H1
2(R× Ω, e−x), one has ∆u = ∂1u

and thus ∆u ∈ L2(R× Ω, e−x). Hence also

(3.26) ξ → ∆u(ξ) Φ(ξ − y) ∈ L1(R× Ω \ Bε(y)) .

The fact that u solves (3.19) together with (3.21) now implies∫
R×Ω\Bε(y)

u(ξ)
(
∆Φ(ξ − y) + ∂1Φ(ξ − y)

)
− Φ(ξ − y)

(
∆u(ξ)− ∂1u(ξ)

)
dξ = 0 .
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From the integrability established in (3.23),(3.24),(3.25), and (3.26), it follows that

(3.27)
∫

R×Ω\Bε(y)

u(ξ)∆Φ(ξ − y) − Φ(ξ − y)∆u dξ

+
∫

R×Ω\Bε(y)

u(ξ)∂1Φ(ξ − y) + ∂1u(ξ)Φ(ξ − y) dξ = 0 .

Now Green’s Formula will be applied to the first integral above. However, since u
is not necessarily in H2

2(R× Ω\Bε(y), e−ξ1), the integrability conditions for applying
Green’s Formula are not necessarily satisfied and we cannot apply it directly. Hence
an approximation is made. For each N ∈ N choose a function χN ∈ C∞

c (R)
satisfying

χN = 1 on (−N,N) , χN = 0 on R \ (−(N + 1), N + 1) ,

|χ′N | ≤ 2 , and |χ′′N | ≤ 2 .

The function (ξ1, ξ2, ξ3) → χN (ξ1)u(ξ1, ξ2, ξ3) then satisfies

∆[χNu] = χN∆u + 2χ′N∂1u + χ′′Nu ,

∂1[χNu] = χ′Nu + χN∂1u , and
∂

∂n
[χNu] = χN

∂u

∂n
on R× Γ .

(3.28)

We now replace u with χNu in each integrand in (3.27). First∫
R×Ω\Bε(y)

Φ(ξ − y) ∆[χNu] dξ =
∫

R×Ω\Bε(y)

Φ(ξ − y) χN∆u dξ

+
∫

R×Ω\Bε(y)

Φ(ξ − y) 2χ′N∂1u dξ

+
∫

R×Ω\Bε(y)

Φ(ξ − y)χ′′Nu dξ

= IN
1 + IN

2 + IN
3 .

(3.29)

From the integrability of ξ → Φ(ξ − y) ∂1u(ξ) it follows that

|IN
2 | → 0 and |IN

3 | → 0 for N →∞ .

Similarly

|IN
1 −

∫
R×Ω\Bε(y)

Φ(ξ − y) ∆u dξ|

≤
∫

R×Ω\Bε(y)

χR\(−N,N)(ξ1) |Φ(ξ − y) ∆u|dξ → 0 for N →∞ .

Hence by (3.29)

(3.30)
∫

R×Ω\Bε(y)

Φ(ξ − y) ∆u dξ = lim
N→∞

∫
R×Ω\Bε(y)

Φ(ξ − y) ∆[χNu] dξ .

Analogously one has

(3.31)
∫

R×Ω\Bε(y)

u ∆Φ(ξ − y) dξ = lim
N→∞

∫
R×Ω\Bε(y)

[χNu]∆Φ(ξ − y) dξ .

8



From (3.28) and the fact that χN (ξ) = 1 in a neighborhood of ∂ Bε(y) for large N ,
it follows that

∫
∂(R×Ω\Bε(y))

Φ(ξ − y)
∂

∂n
[χNu](ξ) dξ

=
∫

∂ Bε(y)

Φ(ξ − y)
∂u

∂n
(ξ) dS(ξ) +

∫
R×Γ

Φ(ξ − y)χN (ξ1)
∂u

∂n
(ξ) dS(ξ)

→
∫

∂(R×Ω\Bε(y))

Φ(ξ − y)
∂u

∂n
(ξ) dS(ξ) for N →∞.

(3.32)

Similarly

∫
∂(R×Ω\Bε(y))

[χNu]
∂Φ
∂n

(ξ − y) dS(ξ)

→
∫

∂(R×Ω\Bε(y))

u
∂Φ
∂n

(ξ − y) dS(ξ) for N →∞.

(3.33)

By assumption [χNu] ∈ H2
2(R× Ω). Consider the space H2

2 with the underlying
domain being a finite part of the cylinder R× Ω \ Bε(y) containing the support of
χN . Obviously Φ(· − y) lies in this space. Hence Green’s Formula can be applied
to [χNu] and Φ(· − y) yielding

∫
R×Ω\Bε(y)

[χNu](ξ) ∆Φ(ξ − y) − Φ(ξ − y)∆[χNu](ξ) dξ =∫
∂(R×Ω\Bε(y))

[χNu](ξ)
∂Φ
∂n

(ξ − y) − Φ(ξ − y)
∂[χNu]

∂n
dS(ξ) .

Now letting N →∞ in the equation above, (3.30), (3.31), (3.32), and (3.33) imply

∫
R×Ω\Bε(y)

u(ξ)∆Φ(ξ − y) − Φ(ξ − y)∆u(ξ) dξ =∫
∂(R×Ω\Bε(y))

u(ξ)
∂Φ
∂n

(ξ − y) − Φ(ξ − y)
∂u

∂n
dS(ξ) .

(3.34)

Equation (3.34) concerns the first integral in (3.27). Now consider the second
integral in (3.27). A similar approximation as above yields

∫
R×Ω\Bε(y)

u(ξ) ∂1Φ(ξ − y) + ∂1u(ξ) Φ(ξ − y) dξ

= lim
N→∞

∫
R×Ω\Bε(y)

[χNu](ξ) ∂1Φ(ξ − y) + ∂1[χNu](ξ)Φ(ξ − y) dξ .
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Let n = (n1, n2, n3) denote the outward normal on ∂(R× Ω \ Bε(y)). By partial
integration of the right-hand side above we obtain∫

R×Ω\Bε(y)

u(ξ) ∂1Φ(ξ − y) + ∂1u(ξ)Φ(ξ − y) dξ

= lim
N→∞

∫
∂(R×Ω\Bε(y))

[χNu](ξ) Φ(ξ − y) n1(ξ) dS(ξ)

=
∫

∂(R×Ω\Bε(y))

u(ξ) Φ(ξ − y) n1(ξ) dS(ξ)

=
∫

∂ Bε(y)

u(ξ) Φ(ξ − y)n1(ξ) dS(ξ) .

(3.35)

Since the first component of the normal on R× Γ is zero, the last integral above
reduces to an integral over ∂ Bε(y).

Inserting (3.34) and (3.35) into (3.27), it finally follows that

(3.36)
∫

∂(R×Ω\Bε(y))

u(ξ)
∂Φ
∂n

(ξ − y) − Φ(ξ − y)
∂u

∂n
(ξ) dS(ξ) +∫

∂ Bε(y)

u(ξ) Φ(ξ − y) n1(ξ) dS(ξ) = 0 .

Having established the above identity, the representation formula can now be
proved in the usual manner. One has∫

∂ Bε(y)

u(ξ)
∂Φ
∂n

(ξ − y) dS(ξ)

=
∫

∂ Bε(y)

u(ξ) DΦ(ξ − y) · y − ξ

|y − ξ|
dS(ξ)

=
1
ε

∫
∂ Bε(y)

u(ξ)
( 1
|ξ − y|

+
1
2

+
1
2

ξ1 − y1

|ξ − y|
)
e−

1
2 |ξ−y|− 1

2 (ξ1−y1) dS(ξ)

=
∫

∂ Bε(y)

u(ξ)
( 1
ε2

+
1
2ε

+
ξ1 − y1

2ε2

)
e−

1
2 ε− 1

2 (ξ1−y1) dS(ξ) .

(3.37)

As noted in the beginning of this section, standard regularity theory for elliptic
equations imply that u is continuous. Hence∫

∂ Bε(y)

u(ξ)
1
ε2

e−
1
2 ε− 1

2 (ξ1−y1) dS(ξ) = 3ω3

∫
−

∂ Bε(y)

u(ξ) e−
1
2 ε− 1

2 (ξ1−y1) dS(ξ)

→ 3 ω3 u(y) for ε → 0 .

Similarly∫
∂ Bε(y)

u(ξ)
1
2ε

e−
1
2 ε− 1

2 (ξ1−y1) dS(ξ) = 3 ω3
ε

2

∫
−

∂ Bε(y)

u(ξ) e−
1
2 ε− 1

2 (ξ1−y1) dS(ξ)

→ 0 for ε → 0 ,
10



and∫
∂ Bε(y)

u(ξ)
ξ1 − y1

2ε2
e−

1
2 ε− 1

2 (ξ1−y1) dS(ξ)

= 3ω3

∫
−

∂ Bε(y)

u(ξ)
1
2
(ξ1 − y1) e−

1
2 ε− 1

2 (ξ1−y1) dS(ξ) → 0 for ε → 0 .

It thus follows from (3.37) that

(3.38)
∫

∂ Bε(y)

u(ξ)
∂Φ
∂n

(ξ − y) dS(ξ) → 3 ω3 u(y) for ε → 0 .

Since standard regularity theory for elliptic equations also implies continuity of Du,
one has for the second integrand in (3.36) that∫

∂ Bε(y)

Φ(ξ − y)
∂u

∂n
(ξ) dS(ξ)

=
∫

∂ Bε(y)

1
|y − ξ|

e−
1
2 |ξ−y|− 1

2 (ξ1−y1) Du(ξ) · y − ξ

|y − ξ|
dS(ξ)

= 3ω3

∫
−

∂ Bε(y)

Du(ξ) · (y − ξ) e−
1
2 |ξ−y|− 1

2 (ξ1−y1) dS(ξ)

→ 0 for ε → 0 .

(3.39)

Finally also ∫
∂ Bε(y)

u(ξ) Φ(ξ − y) n1(ξ) dS(ξ)

=
∫

∂ Bε(y)

u(ξ)
1

|y − ξ|
e−

1
2 |ξ−y|− 1

2 (ξ1−y1)
y1 − ξ1

|y − ξ|
dS(ξ)

= 3ω3

∫
−

∂ Bε(y)

u(ξ) e−
1
2 |ξ−y|− 1

2 (ξ1−y1) (y1 − ξ1) dS(ξ)

→ 0 for ε → 0 .

(3.40)

Now letting ε → 0 in (3.36), it follows from (3.38), (3.39), and (3.40) that

3 ω3 u(y) =
∫

R×Γ

∂u

∂n
(ξ) Φ(ξ − y) − u(ξ)

∂Φ
∂n

(ξ − y) dS(ξ) .

Substituting g for ∂u
∂n in the equation above completes the proof. �

Having established a representation formula, a pointwise decay estimate for so-
lutions of (3.19) can now be obtained.

Lemma 3.6. Let u ∈ H1
2(R× Ω, e−x) ∩ H2

2,loc(R× Ω) be a solution of equation
(3.19) with g ∈ L2(R× Γ, e−x). If

(3.41)
∫

R×Γ

|Φ(ξ − y) e
1
2 (ξ1−y1) | 43 dS(ξ) ≤ C1 ∀ y ∈ R× Γ

and

(3.42)
∫

R×Γ

|∂Φ
∂n

(ξ − y) e
1
2 (ξ1−y1) | 43 dS(ξ) ≤ C2 ∀ y ∈ R× Γ
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then

(3.43) |u(y)e
−y1

2 | ≤ C
(
‖g(ξ) e

−ξ1
2 ‖L4(R×Γ) + ‖u(ξ) e

−ξ1
2 ‖L4(R×Γ)

)
for all y ∈ R× Γ with C depending only on Γ.

Proof. For any y ∈ R× Ω we have by Theorem 3.5 the representation

(3.44) u(y) =
1

3ω3

∫
R×Γ

g(ξ)Φ(ξ − y) − u(ξ)
∂Φ
∂n

(ξ − y) dS(ξ)

of u. Let y0 ∈ R× Γ. We now examine the limit behavior of the above equation
as y tends to y0. By assumption, u ∈ H2

2((−N,N) × Ω) for any N ∈ N. Thus the
Sobolev Embedding Theorem implies u ∈ C0,α(R × Ω) for any 0 ≤ α < 1. Hence
u(y) → u(y0) for y → y0 follows by continuity. Now consider the right-hand side of
(3.44). One can identify the integral as a sum of a single and double layer potential
with respect to the fundamental solution Φ. Since the singularity of Φ is of the
same order as the singularity of the Newtonian potential, the limit behavior of these
potentials as y tends to y0 is similar to that known from classical potential theory
(see Theorem 14.I and Theorem 15.II in [Mir70]). More specifically, we have

1
3ω3

∫
R×Γ

g(ξ) Φ(ξ − y) − u(ξ)
∂Φ
∂n

(ξ − y) dS(ξ) →

1
3ω3

∫
R×Γ

g(ξ) Φ(ξ − y0) − u(ξ)
∂Φ
∂n

(ξ − y0) dS(ξ) +
1
2

u(y0)

for y → y0. It follows that

u(y0) =
1

3ω3

∫
R×Γ

g(ξ) Φ(ξ − y0) − u(ξ)
∂Φ
∂n

(ξ − y0) dS(ξ) +
1
2

u(y0) .

We can now estimate

|1
2
u(y0) e

−y0
1

2 | ≤ 1
3 ω3

∫
R×Γ

|g(ξ) e
−ξ1
2 Φ(ξ − y0) e

1
2 (ξ1−y0

1) |dS(ξ)

+
1

3 ω3

∫
R×Γ

|u(ξ) e
−ξ1
2

∂Φ
∂n

(ξ − y0) e
1
2 (ξ1−y0

1) |dS(ξ) .

Applying Hölder’s inequality thus yields

|1
2
u(y0) e

−y0
1

2 |

≤ 1
3 ω3

‖g(ξ) e
−ξ1
2 ‖L4(R×Γ)

( ∫
R×Γ

|Φ(ξ − y0) e
1
2 (ξ1−y0

1) | 43 dS(ξ)
) 3

4

+
1

3 ω3
‖u(ξ) e

−ξ1
2 ‖L4(R×Γ)

( ∫
R×Γ

|∂Φ
∂n

(ξ − y0) e
1
2 (ξ1−y0

1) | 43 dS(ξ)
) 3

4

.

Finally, by assumption (3.41) and (3.42) it follows that

|u(y0) e
−y0

1
2 | ≤ C

(
‖g(ξ) e

−ξ1
2 ‖L4(R×Γ) + ‖u(ξ) e

−ξ1
2 ‖L4(R×Γ)

)
with C depending only on Γ. �
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Remark 3.7. We will later see that ‖u(ξ) e
−ξ1
2 ‖L4(R×Γ) < ∞ holds for all elements

u in H1
2(R× Ω, e−x). Hence we only need ‖g(ξ) e

−ξ1
2 ‖L4(R×Γ) to be finite in order

to use the lemma above. As a result, when studying solutions in H1
2(R× Ω, e−x) of

∆u− c ∂xu = 0 in R× Ω,

∂u

∂n
= f(u) on R× ∂Ω

we only need suitable growth conditions on f . If, for example, f has at most linear
growth then ‖f(u) e

−ξ1
2 ‖L4(R×Γ) < ∞ follows and we obtain an exponential decay

estimate. In other words, we do not need f to have any particular shape or number
of vanishing points.

Example 3.8. The unit-ball B1(0), or more specifically its boundary Γ = ∂ B1(0),
satisfies the conditions (3.41) and (3.42) in Lemma 3.6.

Fix y ∈ R× Γ. For ξ ∈ R× Γ one has

(3.45) |ξ − y|2 = (ξ1 − y1)2 + 2(1−
(ξ2
ξ3

)
·
(y2
y3

)
) .

It follows that∫
R×Γ

|Φ(ξ − y) e
1
2 (ξ1−y1) | 43 dS(ξ)

=
∫

R×Γ

1
(ξ2

1 + 2(1−
(ξ2
ξ3

)
·
(y2
y3

)
))

2
3

e
− 4

6

r
ξ2
1+2(1−

(
ξ2
ξ3

)
·
(
y2
y3

)
)

dS(ξ)

≤ C1

∫ 1

−1

∫
Γ

1
(ξ2

1 + 2(1−
(ξ2
ξ3

)
·
(y2
y3

)
))

2
3

dS(ξ2, ξ3) dξ1 + C2

(3.46)

with C1 and C2 not depending on y. By the rotational symmetry of Γ = ∂ B1(0),
it can be assumed without loss of generality that

(y2
y3

)
=

(
1
0

)
. Let ∂ B1(0)++ denote

the part of ∂ B1(0) lying in the upper positive half of R2. Obviously∫ 1

−1

∫
Γ

1
(ξ2

1 + 2(1−
(ξ2
ξ3

)
·
(
1
0

)
))

2
3

dS(ξ2, ξ3) dξ1

≤ C

∫ 1

0

∫
∂ B1(0)++

1
(ξ2

1 + 2(1−
(ξ2
ξ3

)
·
(
1
0

)
))

2
3

dS(ξ2, ξ3) dξ1 .

Using the parametrisation

γ(t) = (t,
√

1− t2) , t ∈ (0, 1)

of ∂ B1(0)++, it follows that∫ 1

−1

∫
Γ

1
(ξ2

1 + 2(1−
(ξ2
ξ3

)
·
(
1
0

)
))

2
3

dS(ξ2, ξ3) dξ1

≤ C

∫ 1

0

∫ 1

0

1
(ξ2

1 + 2(1− t))
2
3

1√
1− t2

dt dξ1

≤ C

∫ 1

0

∫ √
2

0

1
(ξ2

1 + s2)
2
3

dsdξ1 < ∞ .

(3.47)
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The last integral being finite can easily be seen by switching to polar coordinates
and integrating over a ball containing [0, 1]× [0,

√
2]. By (3.46) and (3.47) one now

sees that condition (3.41) is satisfied.
In order to show (3.42), the normal derivative of ξ → Φ(· − y) is calculated for

ξ ∈ R× Γ = R× ∂ B1(0). One has

(3.48)
∂Φ
∂n

(ξ − y) = (
(ξ2
ξ3

)
·
(y2
y3

)
− 1)

(
1 + 1

2 |ξ − y|
|ξ − y|3

)
e−

1
2 |ξ−y|− 1

2 (ξ1−y1) .

Using (3.45) now yields∫
R×Γ

|∂Φ
∂n

(ξ − y) e
1
2 (ξ1−y1) | 43 dS(ξ)

=
∫

R×Γ

(
1−

(ξ2
ξ3

)
·
(y2
y3

)) 4
3

(ξ2
1 + 2(1−

(ξ2
ξ3

)
·
(y2
y3

)
))2

(
1 +

1
2

√
ξ2
1 + 2(1−

(ξ2
ξ3

)
·
(y2
y3

)
)
) 4

3

e
− 4

6

r
ξ2
1+2(1−

(
ξ2
ξ3

)
·
(
y2
y3

)
)

dS(ξ)

≤ C1

∫ 1

−1

∫
Γ

(
1−

(ξ2
ξ3

)
·
(y2
y3

)) 4
3

(ξ2
1 + 2(1−

(ξ2
ξ3

)
·
(y2
y3

)
))2

dS(ξ2, ξ3) dξ1 + C2

(3.49)

with C1 and C2 not depending on y. Once more due to the rotational symmetry
of Γ = ∂ B1(0), it can be assumed without loss of generality that

(y2
y3

)
=

(
1
0

)
. It

follows that ∫ 1

−1

∫
Γ

(
1−

(ξ2
ξ3

)
·
(y2
y3

)) 4
3

(ξ2
1 + 2(1−

(ξ2
ξ3

)
·
(y2
y3

)
))2

dS(ξ2, ξ3) dξ1

=
∫ 1

−1

∫
Γ

(
1− ξ2

) 4
3

(ξ2
1 + 2(1− ξ2))2

dS(ξ2, ξ3) dξ1

≤ C

∫ 1

0

∫
∂ B1(0)++

(
1− ξ2

) 4
3

(ξ2
1 + 2(1− ξ2))2

dS(ξ2, ξ3) dξ1 .

(3.50)

Again using the parametrisation γ of ∂ B1(0)++ now yields∫ 1

0

∫
B1(0)++

(
1− ξ2

) 4
3

(ξ2
1 + 2(1− ξ2))2

dS(ξ2, ξ3) dξ1

=
∫ 1

0

∫ 1

0

(1− t)
4
3

(ξ2
1 + 2(1− t))2

1√
1− t2

dt dξ1

≤ C

∫ 1

0

∫ 1

0

(1− t)
5
6

(ξ2
1 + 2(1− t))2

dt dξ1

= C

∫ 1

0

∫ √
2

0

s
4
3

(ξ2
1 + s2)2

dsdξ1 < ∞ .

Switching to polar coordinates and integrating over a ball containing [0, 1]× [0,
√

2]
shows that the last integral above is finite. Hence by (3.50) and (3.49) it follows
that condition (3.42) is satisfied.
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Remark 3.9. Since the conditions (3.41) and (3.42) in Lemma 3.6 holds for a ball,
they are likely to hold for any domain which can be mapped sufficiently smooth to
a ball.

3.3. Main theorem. We now prove existence of a minimizer in (3.4). We start by
considering a sequence of approximating variational problems of type (3.9). More
precisely, we define for n ∈ N the functions

(3.51) ϑn(x) := e−
|x|
n , x ∈ R.

Note that ϑn satisfies condition (3.8). Furthermore we define

(3.52) Jn(u) :=
∫

R×Γ

ϑn(x)F (u) e−x dS(y)dx

and

(3.53) Cn := {u ∈ H1
2(R× Ω, e−x) | Jn(u) = 1} .

For each n ∈ N we condsider the problem

(3.54) E → Min in Cn .

Assuming f satisfies (3.7), Theorem 3.2 ensures the existence of a minimizer un in
(3.54). The hereby induced sequence {un}∞n=1 will serve as a basis for a minimizing
sequence of problem (3.4) which we will show converges to a proper minimizer.

Theorem 3.10. Assume f satisfies (3.7). If {un}∞n=1 is a sequence with each
element a minimizer of problem (3.54), that is

(3.55) E(un) = inf
u∈Cn

E(u) and un ∈ Cn ,

then

(3.56) E(un) → inf
u∈C

E(u) for n →∞ .

Furthermore there exists a sequence of real numbers {sn}∞n=1 such that
(1) {snun}∞n=1 is a minimizing sequence for E over C,
(2) 0 < sn ≤ 1 for all n ∈ N, and
(3) sn → 1 for n →∞.

Proof. Put I = infu∈C E(u). Since f satisfies (3.7), it follows that

|F (u)| ≤
∫ u

0

|f(t)|dt ≤
∫ u

0

k t dt =
1
2

k u2 .

Hence for u ∈ C one has

1 = J(u) =
∫

R×Γ

F (u) e−x dS(y)dx ≤ 1
2

k

∫
R×Γ

u2 e−x dS(y)dx .

Using the boundedness of the trace-operator T : H1
2(R× Ω, e−x) → L2(R× Γ, e−x)

and Lemma 3.1, it follows that

1 ≤ C

∫
R×Ω

(u2 + |Du|2) e−x dS(y)dx ≤ 10 C E(u) .

Consequently I > 0.
Let ε > 0 be given. Now choose v ∈ C with E(v) < I + ε. Consider for h ∈ R

the translation τh v of v by h in the x-variable,

τh v(x, y) := v(x + h, y) .
15



For h > 0 and n ≥ 2 it holds that

ϑn(x− h) = e−
|x−h|

n =

 e
x−h

n for x ≤ h

e
h−x

n for h < x

=


e−

h
n e−

|x|
n for x ≤ 0

e−
h
n e

x
n for 0 < x ≤ h

e
h
n e−

x
n for h < x

≥


e−

h
n e−

|x|
n for x ≤ 0

e−
h
n e−

x
n for 0 < x ≤ h

e−
h
n e−

x
n for h < x

= e−
h
n ϑn(x)

≥ e−
h
2 ϑn(x) .

By condition (3.7), f satisfies 0 ≤ f(t)t . Consequently F ≥ 0. Hence

Jn(τh v) =
∫

R×Γ

ϑn(x) F (v(x + h, y)) e−x dS(y)dx

=
∫

R×Γ

ϑn(x− h) F (v(x, y)) e−(x−h) dS(y)dx

≥ e−
h
2

∫
R×Γ

ϑn(x) F (v(x, y)) eh e−x dS(y)dx

= e
h
2 Jn(v) .

(3.57)

Since 0 < ϑn ≤ 1 and F is non-negative, it follows that 0 < Jn(v) ≤ 1. Thus by
(3.57) one can choose a sufficiently large h such that Jn(τh v) = 1. For each n ∈ N
choose such a h and denote it hn. One then has

(3.58) |1− Jn(v)| = Jn(τhn v) − Jn(v) ≥ (e
hn
2 −1) Jn(v) .

Since ϑn(x) → 1 pointwise for n → ∞ and F is non-negative, by the Dominated
Convergence Theorem

Jn(v) =
∫

R×Γ

ϑn(x) F (v) e−x dS(y)dx

→
∫

R×Γ

F (v) e−x dS(y)dx = J(v) = 1 for n →∞ .

Hence from (3.58) it follows that (e
hn
2 −1) → 0 for n →∞. Consequently hn → 0

and thus
(ehn − 1) ≤ ε

I
for n sufficiently large.

Since Jn(τhn
v) = 1 one has τhn

v ∈ Cn. By assumption (3.55), un is a minimizer
for E over Cn. Hence

E(un) ≤ E(τhn v) = E(v) + (ehn −1) E(v)
≤ I + ε + ε = I + 2ε

(3.59)
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for n sufficiently large.
The minimizing property (3.56) now follows from (3.59) once it can be shown

that I ≤ E(un). Since F ≥ 0 and 0 < ϑn ≤ 1, one has 1 = Jn(un) ≤ J(un).
Consider now the scaling sun of un by s ∈ R+. By the Dominated Convergence
Theorem it follows that

J(sun) =
∫

R×Γ

F (sun) e−x dS(y)dx → 0 for s → 0 .

Thus there exists s ∈ R with 0 < s ≤ 1 such that J(sun) = 1. Choosing sn ∈ R+

with this property implies snun ∈ C and consequently

(3.60) I ≤ E(snun) = s2
n E(un) ≤ E(un) .

Thus we have established (3.56).
By (3.60) and (3.56) and the fact that snun ∈ C, it is clear that {snun}∞n=1 is a

minimizing sequence for E over C and sn → 1. This completes the proof. �

Having established the existence of a minimizing sequence {snun}∞n=1 for (3.4),
consisting of scaled minimizers un of (3.54), focus will now be on the weak limit
hereof. By the same argument as in the proof of Theorem 3.2, the sequence
{snun}∞n=1 is bounded in H1

2(R× Ω, e−x). Hence at least a subsequence converges
weakly. It is now shown that this weak limit is a minimizer for (3.4). In order to
do so, the following uniform pointwise bound on {un} is needed.

Lemma 3.11. Assume Γ satisfies (3.41) and (3.42). Further assume that f sat-
isfies (3.7) and (3.16). Let {un}∞n=1 be a sequence in H1

2(R× Ω, e−x) satisfying
(3.55). Then there exists an upper bound M such that

(3.61) |un(x, y) e−
x
2 | ≤ M ∀(x, y) ∈ R× Γ

for all n ∈ N.

Proof. By assumption, un is a minimizer for E over Cn. Thus un satisfies the
corresponding Euler-Lagrange equation

(3.62)
∫

R×Ω

Dun ·Dv e−x d(x, y) = λn

∫
R×Γ

ϑn(x) f(un) v e−x dS(y)dx

for all v ∈ H1
2(R× Ω, e−x). From Lemma 3.3 one has the bound

(3.63) 0 < λn ≤ 2
Θ
E(un)

on the Lagrange multiplier λn. By Theorem 3.10, {un}∞n=1 is a minimizing sequence
for E over C. Hence {E(un)}∞n=1 is bounded and it follows from (3.63) that also
{λn}∞n=1 is bounded by some constant L.

Consider again the Euler-Lagrange equation (3.62). By Theorem 5.2 we have
un ∈ H2

2,loc(R× Ω). Hence the normal derivative of un exists on R× Γ at least in
the trace sense. Partial integration and the Fundamental Lemma of the Calculus
of Variations thus yields

∆un − ∂xun = 0 in R× Ω,

∂un

∂n
= λn ϑn f(un) on R× Γ.
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It now follows from Lemma 3.6 that

|un(x, y) e−
x
2 | ≤ C

(
‖λnϑnf(un) e−

x
2 ‖L4(R×Γ) + ‖un e−

x
2 ‖L4(R×Γ)

)
≤ C

(
L ‖f(un) e−

x
2 ‖L4(R×Γ) + ‖un e−

x
2 ‖L4(R×Γ)

)
for all (x, y) ∈ R× Γ. The growth conditions imposed on f imply

‖f(un) e−
x
2 ‖L4(R×Γ) ≤ C ‖un e−

x
2 ‖L4(R×Γ) .

Thus

(3.64) |un(x, y) e−
x
2 | ≤ C ‖un e−

x
2 ‖L4(R×Γ) ∀(x, y) ∈ R× Γ .

Now consider the embedding of H1
2(R× Ω) into Lp(R× Γ). The critical exponent

of this embedding is 4. Note that the Sobolev Embedding Theorem does not hold
for arbitrary unbounded domains. However, for a cylinder of the type R× Ω one
can show using the Calderón Extension Theorem (See Theorem 4.32 in [Ada75])
the existence of a continuous extension operator from the space H1

2(R× Ω) into
H1

2(R3). This means that R× Ω is a so-called extension domain. Furthermore,
R× Ω satisfies the uniform C1-regularity condition. For such domains the embed-
ding holds as in the case of bounded domains (see for example Theorem 5.22 in
[Ada75]). Thus by (3.64)

|un e−
x
2 | ≤ C ‖un e−

x
2 ‖H1

2(R×Ω)

≤ C ‖un‖H1
2(R×Ω,e−x) ≤ C E(un)

for all (x, y) ∈ R × Γ. The last inequality is obtained using Lemma 3.1. The fact
that {E(un)}∞n=1 is bounded finally implies

|un e−
x
2 | ≤ M ∀(x, y) ∈ R× Γ

for all n ∈ N. �

Remark 3.12. The exponential decay estimate in the previous lemma is similar to
the decay estimates established in [BN92], [BLL90], [Veg93], and [Hei88]. The meth-
ods we have used to obtain it is different though. The decay estimates in [BN92],
[BLL90], [Veg93], and [Hei88] are all obtained using maximum principles and com-
parison arguments. In contrast, Lemma 3.11 is based on the potential theoretical
arguments from Section 3.2. Since the boundary condition ∂u

∂n = f(u) complicates
the use of maximum principles, the potential theoretical approach seems to be bet-
ter in this case. Furthermore, since it only calls for growth conditions on f to be
imposed, it allows us to handle non-linearities vanishing only at 0. In other words,
we avoid having to impose the condition f(0) = f(1) = 0 which is essential in
[BN92], [BLL90], and [Hei88].

The existence of a minimizer for problem (3.4) can now be proved.

Theorem 3.13. Assume Γ satisfies (3.41) and (3.42). Furthermore assume f
satisfies (3.7), (3.16), and

(3.65) ∃ 0 < α < 1, A > 0 : |f(t)| ≤ A |t|α for all t ∈ R ,

(3.66) ∃ δ > 0, β > 1, B > 0 : |f(t)| ≤ B |t|β for all |t| ≤ δ .

Then there exists a minimizer for E over C.
18



Proof. By Theorem 3.2 there exists a minimizer un for E over Cn. Furthermore, by
Theorem 3.10 one can find a sequence of real numbers {sn}∞n=1 with 0 < sn ≤ 1
and sn → 1 such that {snun}∞n=1 is a minimizing sequence for E over C. By Lemma
3.1, it follows that {snun}∞n=1 is bounded in H1

2(R× Ω, e−x). Thus also {un}∞n=1 is
bounded. Hence a subsequence of {un}∞n=1, which for the sake of simplicity will still
be denoted {un}∞n=1, will converge weakly towards a function u ∈ H1

2(R× Ω, e−x).
The weak lower semicontinuity of E implies E(u) ≤ infv∈C E(v). It will now be
shown that J(u) ≥ 1 from which it easily follows that u is a proper minimizer.

Let ε > 0 be given. From Lemma 3.11 one has the pointwise bound

(3.67) |un(x, y) e−
x
2 | ≤ M ∀(x, y) ∈ R× Γ

uniformly in n ∈ N. Now choose L > 0 sufficiently large such that

(3.68) A |Γ| Mα+1 1
(α + 1)(1− α+1

2 )
e−(1−α+1

2 )L < ε ,

(3.69) B |Γ| Mβ+1 1
(β + 1)(β+1

2 − 1)
e−( β+1

2 −1)L < ε ,

and

(3.70) M e−
L
2 < δ .

By assumption (3.65), it follows that∫ ∞

L

∫
Γ

F (snun) e−x dS(y)dx ≤
∫ ∞

L

∫
Γ

A

1 + α
|snun|1+α e−x dS(y)dx .

Thus the bound from (3.67) implies∫ ∞

L

∫
Γ

F (snun) e−x dS(y)dx

≤
∫ ∞

L

∫
Γ

A

1 + α
s1+α

n (M e
x
2 )1+α e−x dS(y)dx

≤ A

1 + α
|Γ| M1+α 1

(1− 1+α
2 )

e−(1− 1+α
2 )L < ε

(3.71)

uniformly in n ∈ N.
From (3.67) it further follows that

|snun| ≤ sn M e
x
2 ≤ M e−

L
2 for x < −L .

Hence by (3.70) and assumption (3.66) one has∫ −L

−∞

∫
Γ

F (snun) e−x dS(y)dx ≤
∫ −L

−∞

∫
Γ

B

1 + β
|snun|β+1 e−x dS(y)dx .

Again using the bound from (3.67) yields∫ −L

−∞

∫
Γ

F (snun) e−x dS(y)dx

≤
∫ −L

−∞

∫
Γ

B

1 + β
s1+β

n (M e
x
2 )β+1 e−x dS(y)dx

≤ B

1 + β
|Γ| Mβ+1 1

(β+1
2 − 1)

e−( β+1
2 −1)L < ε

(3.72)
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uniformly in n ∈ N.
As in the proof of Theorem 3.2 one has∫ L

−L

∫
Γ

|F (u)− F (snun)| e−x dS(y)dx

≤ C

∫ L

−L

∫
Γ

|u− snun|2 e−x dS(y)dx .

(3.73)

Now consider the trace operator SL : H1
2(R× Ω, e−x) → L2((−L,L)×Γ). As noted

in the proof of Theorem 3.2, SL is compact. Since un ⇀ u in H1
2(R× Ω, e−x),

applying SL to {un}∞n=1 thus implies un → u strongly in L2((−L,L) × Γ). It
follows that also snun → u strongly in L2((−L,L)× Γ). Hence by (3.73) one has

(3.74)
∫ L

−L

∫
Γ

F (snun) e−x dS(y)dx →
∫ L

−L

∫
Γ

F (u) e−x dS(y)dx

for n →∞.
By (3.71), (3.72), and the fact that snun ∈ C, it follows that

1 = J(snun) =
∫

R×Γ

F (snun) e−x dS(y)dx

< 2ε +
∫ L

−L

∫
Γ

F (snun) e−x dS(y)dx .

Letting n →∞ implies by (3.74)

1− 2ε ≤
∫ L

−L

∫
Γ

F (u) e−x dS(y)dx

≤
∫

R×Γ

F (u) e−x dS(y)dx = J(u) .

The last inequality above holds since F ≥ 0. Finally, letting ε → 0 in the above
yields 1 ≤ J(u).

As in the proof of Theorem 3.2, one can now find an s ∈ R+ with 0 < s ≤ 1 such
that J(su) = 1. It follows that su ∈ C and

E(su) = s2 E(u) ≤ E(u) ≤ inf
v∈C

E(v) ≤ E(su).

Consequently, s = 1 and u is a minimizer for E over C. �

By a simple scaling argument, we finally obtain a solution of the original problem
(1.3), not in the original cylinder, but in a scaled one. More specifically, we have
the following theorem.

Theorem 3.14. Assume Γ satisfies (3.41) and (3.42). Furthermore assume f
satisfies (3.7), (3.16), (3.65), and (3.66). Then there exists a non-trivial solution

(λ, u) ∈ R+ ×
(
H1

2(R× Ω, e−x) ∩H2
2,loc(R× Ω)

)
of

(3.75)


∆u− 1

λ
∂xu = 0 in R× Ω∗

∂u

∂n
= f(u) on R× Γ∗ .

with Ω∗ := λΩ and Γ∗ := ∂Ω∗.
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Proof. Let u be the minimizer of E over C from Theorem 3.13. Then u is non-trivial
and u ∈ H2

2,loc(R× Ω) by Theorem 5.2. Furthermore u satisfies the Euler-Lagrange
equation (3.5). Putting ũ(x, y) := u( 1

λx, 1
λy) for (x, y) ∈ R×Ω∗ we obtain a solution

of (3.75). �

4. Asymptotics

We now investigate the asymptotic behavior at ±∞ of the solution found in the
previous section.

From the representation formula in Theorem 3.5 we obtain, using the Hölder
inequality as in the poof of Lemma 3.6, the estimate

(4.1) |u(x, y)| ≤ M(y) e
1
2 x ∀(x, y) ∈ R× Ω

for any minimizer u ∈ H1
2(R× Ω, e−x) of problem (3.4). Hence u(x, y) → 0 as

x → −∞ follows as an immediate consequence. Assuming Γ and f satisfy the
conditions in Lemma 3.11, we can even prove as in Lemma 3.11 that

(4.2) |u(x, y)| ≤ M e
1
2 x ∀(x, y) ∈ R× Γ.

Hence also the boundary values of u vanish at −∞. In fact, since both decay es-
timates (4.1) and (4.2) hold for any solution in H1

2(R× Ω, e−x) of the associated
Euler-Lagrange equation of (3.4), any such solution vanishes at −∞. The asymp-
totic behavior at +∞ is a more complicated matter.

The asymptotic behavior at +∞ determines the type of travelling wave repre-
sented by u. If u tends to 0, we are dealing with a solitary wave. If, on the other
hand, u tends to some positive limit v or infinity then u is a travelling front solution.
We now show that the solution found in the previous section has the characteristics
of a travelling front in the sense that we rule out the vanishing of u at +∞.

Theorem 4.1. Assume f satisfies (3.7) and f ∈ C2(R) with f ′′ bounded. If
u ∈ H1

2(R× Ω, e−x) is a non-trivial solution of

(4.3)
∫

R×Ω

Du ·Dv e−x d(x, y) = λ

∫
R×Γ

f(u) v e−x dS(y)dx

for all v ∈ H1
2(R× Ω, e−x) with λ > 0 then x → ‖u(x, ·)‖L2(Γ) does not vanish as x

tends to +∞.

Proof. Define

(4.4) ϕ(x) :=
1
2

∫
Ω

|Dyu|2 dy − λ

∫
Γ

F (u) dS(y) − 1
2

∫
Ω

(
∂xu

)2 dy .

By Theorem 5.2, u ∈ H3
2,loc(R× Ω). From the Sobolev Embedding Theorem it

follows that u ∈ C1(R × Ω). Furthermore, standard regularity theory for elliptic
equations implies u ∈ C∞(R× Ω). Hence we can differentiate ϕ. We have

ϕ′(x) =
∫

Ω

Dyu ·Dy[∂xu] dy − λ

∫
Γ

f(u) ∂xu dS(y) −
∫

Ω

∂xu ∂2
xu dy .

The regularity of u and (4.3) implies ∂u
∂n = λf(u). Thus by partial integration

ϕ′(x) = −
∫

Ω

∆yu ∂xu dy −
∫

Ω

∂xu ∂2
xu dy .
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Additionally, (4.3) and the regularity of u implies ∆(x,y)u = ∂xu in R× Ω. Hence

ϕ′(x) = −
∫

Ω

(∂xu − ∂2
xu) ∂xu dy −

∫
Ω

∂xu ∂2
xu dy

= −
∫

Ω

(
∂xu

)2 dy ≤ 0 .

(4.5)

Since u is non-trivial,
∫
Ω

(
∂xu

)2 dy 6= 0 for some x ∈ R. Consequently

α := lim
x→−∞

ϕ > lim
x→∞

ϕ := β .

By the monotonicity of ϕ these limits exist. Since u ∈ H1
2(R× Ω, e−x) we have

(4.6) −∞ <

∫
R

ϕ(x) e−x dx < ∞ .

This implies α = 0 and hence β < 0. We deduce that ϕ is non-positive.
Now assume x → ‖u(x, ·)‖L2(Γ) vanishes at +∞. Put

(4.7) h(x) := ϕ′(x) − 2ϕ(x) , x ∈ R .

By (4.4) and (4.5) we have

h(x) = −
∫

Ω

|Dyu|2 dy + 2 λ

∫
Γ

F (u) dS(y).

Since by assumption

|
∫

Γ

F (u) dS(y)| ≤ C

∫
Γ

u2 dS(y) → 0 for x → +∞

it follows that lim sup
x→+∞

h ≤ 0. Now solving (4.7) with respect to ϕ, we obtain for

any t > t0 the representation

(4.8) ϕ(t) = e2(t−t0)

(
ϕ(t0) +

∫ t

t0

h(x) e−2x dx

)
.

Since lim sup
x→+∞

h ≤ 0 we have for t0 sufficiently large that∫ t

t0

h(x) e−2x dx ≤ 1
2

e−2t0 ∀ t > t0 .

Hence choosing t0 sufficiently large such that 1
2 e−2t0 ≤ − 1

4β and ϕ(t0) ≤ 1
2β we

obtain

ϕ(t0) +
∫ t

t0

h(x) e−2x dx ≤ 1
4

β ∀ t > t0 .

Then by (4.8)

ϕ(t) ≤ e2(t−t0)
1
4

β ∀ t > t0

follows and consequently ∫ ∞

t0

ϕ(t) e−t dt = −∞ .

This contradicts (4.6). We conclude that x → ‖u(x, ·)‖L2(Γ) does not vanish at
+∞. �

Remark 4.2. By the theorem above and the boundedness of the trace operator
T : H1

2(Ω) → L2(Γ), it follows that x → ‖u(x, ·)‖H1
2(Ω) does not vanish at +∞.
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5. Regularity

By standard arguments from the regularity theory of elliptic equations one can
show (See Theorem 3.7 in [Kye05]) the following regularity properties of the weak
formulation (3.5) of (3.6).

Theorem 5.1. Let Ω ⊂ Rn be a bounded domain with a Ck+2-boundary Γ. Let
k ∈ N and b ∈ Hk− 1

2
2,loc(R× Γ) ∩ L2(R× Γ, e−x). If u ∈ H1

2(R× Ω, e−x) satisfies

(5.1)
∫

R×Ω

Du ·Dv e−x d(x, y) =
∫

R×Γ

b v e−x dS(y)dx ∀v ∈ H1
2(R× Ω, e−x)

then u ∈ H1+k
2,loc(R× Ω).

Consider now a solution u of problem (1.3). Assuming f ∈ C1(R) with
f ′ bounded we have f(u) ∈ H1

2(R× Ω, e−x) and hence in the trace sense

f(u) ∈ H
1
2
2,loc(R× Γ) ∩ L2(R× Γ, e−x). By the theorem above, u ∈ H2

2,loc(R× Ω)
follows. To the extent that this additional regularity of u translates into the same
additional regularity of f(u), boot-strapping the argument implies that u is ”as
regular” as f . More specifically, we have the following result.

Theorem 5.2. Let n ≤ 3 and Ω ⊂ Rn be a bounded domain with a Ck+2-boundary.
Let f ∈ Ck(R) with all derivatives bounded,

(5.2) ‖f (i)‖∞ ≤ M i = 1, . . . , k .

If u ∈ H1
2(R× Ω, e−x) satisfies

(5.3)
∫

R×Ω

Du ·Dv e−x d(x, y) =
∫

R×Γ

f(u) v e−x dS(y)dx

for all v ∈ H1
2(R× Ω, e−x) then u ∈ Hk+1

2,loc(R× Ω).

Proof. As mentioned above, the boundedness of f ′ implies f(u) ∈ H
1
2
2,loc(R× Γ)

and hence u ∈ H2
2,loc(R× Ω) by Theorem 5.1. Thus the theorem holds for k = 1.

Consider now k > 1 and assume the theorem has been proved for k − 1. Then
u ∈ Hk

2,loc(R× Ω) by assumption. Now u ∈ Hk+1
2,loc(R× Ω) must be shown.

Consider a k’th order derivative

(5.4) Dα[f(u)] =
∑

f (i)(u) Dβ1u Dβ2u . . .Dβj u , |α| = k

of f(u). By the chain rule, a term in the sum above has one of the forms

(1) f ′(u) Dβu , |β| = k

(2) f ′′(u) Dβ1u Dβ2u , |β1| = k − 1 and |β2| = 1
(3) f (i)(u) Dβ1u Dβ2u · · · Dβj u , |βh| ≤ k − 2 for h = 1, . . . , j and j ≥ 2 .

Clearly the terms of type 1 belong to L2
loc(R× Ω). Consider a term

f ′′(u) Dβ1u Dβ2u of type 2. One has both Dβ1u ∈ H1
2,loc(R× Ω) and Dβ2u ∈

H1
2,loc(R× Ω). Since n ≤ 3 one has dim(R× Ω) ≤ 4 and thus the embedding

H1
2,loc(R× Ω) ↪→ L4

loc(R× Ω)

holds. It follows that the product Dβ1u Dβ2u ∈ L2
loc(R× Ω) and by the boundedness

of f ′′ thus also f ′′(u) Dβ1u Dβ2u ∈ L2
loc(R× Ω).
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Finally consider a term f (i)(u) Dβ1u Dβ2u . . . Dβj u in the sum (5.4) of type 3.
Since the highest order derivative occuring is less than k − 2, one has Dβhu ∈
H2

2,loc(R× Ω) for h = 1, . . . , j. Since dim(R× Ω) ≤ 4 the embedding

(5.5) H2
2,loc(R× Ω) ↪→ Lq

loc(R× Ω)

holds for all q ≥ 2. Putting q = 2j in (5.5) and applying the Hölder inequality thus
implies Dβ1u Dβ2u . . . Dβj u ∈ L2

loc(R× Ω). By the boundedness of f (i) hence also
f (i)(u)Dβ1u Dβ2u . . . Dβj u ∈ L2

loc(R× Ω).
We have now proved that every element in the sum (5.4) belongs to L2

loc(R× Ω).
Consequently Dα[f(u)] ∈ L2

loc(R× Ω). It follows that f(u) ∈ Hk
2,loc(R× Ω) and

thereby f(u) ∈ Hk− 1
2

2,loc(R× Γ) in the trace sense. By Theorem 5.1 we can finally
deduce u ∈ Hk+1

2,loc(R× Ω). �
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