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TRAVELLING WAVE SOLUTIONS OF THE HEAT EQUATION
IN THREE DIMENSIONAL CYLINDERS WITH NON-LINEAR
DISSIPATION ON THE BOUNDARY

MADS KYED

ABSTRACT. The existence of travelling wave solutions of the heat equation
Otu—Awu = 0 in the unbounded cylinder R x 2 subject to the nonlinear bound-
ary condition % = f(u) is investigated. We show existence of non-trivial
solutions for a large class of non-linearities f. Additionally, the asymptotic
behavior at oo is studied and regularity properties are established. We use a
variational approach in exponentially weighted Sobolev spaces.

1. INTRODUCTION

Let Q C R? be a bounded domain. Consider the heat equation in the unbounded
cylinder R x Q with a non-linear dissipation condition on the boundary,

Ou—Au=0 mMRT xR xQ

(1.1) b

B—Z: (u) on Rt xR x 99 .
In the following work the existence of non-trivial travelling wave solutions of the
above problem is investigated. A travelling wave solution is a function u defined

on R x Q such that
(1.2) (t,z,y) — u(z +ct,y), (t,z,y) ERT xR x Q

solves (1.1). More specifically, (1.2) represents a travelling wave in the z-direction
with propagation speed given by the constant c. Finding such a solution amounts
to solving the elliptic equation

Au—cOyu=0 inRxQ

(13) % = f(u) onR x9N .
The propagation speed c is typically not prescribed. Hence the problem is correctly
formulated as finding a solution pair (¢, u) of (1.3).

A class of non-linearities f characterized by f(0) = 0 and f(s)s >0, s € R
are considered. Due to the physical background of the problem, non-linearities
vanishing only at 0 are of special interest and will be in focus throughout the work.

The heat equation with a non-linear dissipation condition on the boundary ap-
pears in the study of transient boiling processes. In this context the nonlinearity
f is often referred to as a boiling curve and vanishes only at 0. Travelling wave
solutions are also called heat waves and are of special interest for some application.
See [Blu98] for further references.
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While semi-linear reaction diffusion equations in cylinders have been studied over
the years, few results have been obtained for problems with non-linear boundary
conditions of type g—z = f(u). For results on travelling waves in the case of Neumann
boundary conditions we refer the reader to [BL89], [BLL90], and [BN92]. In the case
of Dirichlet boundary conditions we mention [Gar86], [Veg93] and [Hei88]. Most of
the existing methods rely on the existence of at least two trivial solutions. Such
methods typically recover a non-trivial solution as a connection, in some sense,
between the trivial ones. In (1.3) the trivial solutions are simply the constants
corresponding to the vanishing points of f. Thus in the case of a non-linearity f
vanishing only at 0 only a single trivial solution is involved. This complicates the
use of the existing methods. Furthermore, the underlying domain R x € of the
problem is unbounded causing a lack of compactness which complicates the use of
variational and topological methods.

Our main result is the existence of a non-trivial solution of (1.3) for a class
of nonlinearities f vanishing only at 0 and satisfying certain growth condition.
Additionally, we establish regularity properties and show that the solution has
the asymptotic characteristics of a travelling front. We use a variational approach
inspired by the work of Steffen Heinze (see [Hei88]). In order to obtain an important
apriori estimate, we shall use potential theory involving the fundamental solution
of the three-dimensional scalar Oseen equation. Consequently, our result is limited
to the three-dimensional case.

2. NOTATION

We let 2 denote a bounded domain. Unless otherwise specified, {2 is a subset of
R? with a C3-smooth boundary I'. Depending on the context, (x,%) shall denote
an element of Rx Qor Rx'withz € Rand y € Qory el

We introduce the exponentially weighted spaces

L2R x Qe )= {uell (RxQ) | u? e d(z,y) < oo},
RxQ
LR xT,e ) := {uecl] RxT) | u? e™* dS(y)dr < oo},
RxI
Ou Ou Ou

Hy(R x Qe ) := {uecL*RxQ,e ") — eL* R x Qe ")},

9z yr” Oy
L7 RxQ):={uecli . RxQ)|xuecl?RxQ) VyecCR"}, and

loc

HE 1o (X 0) = {u € L2, (R x Q) | xu € HE(R x 9) ¥y € C2(R")} .

We equip H3(R x €2,e™%) with the norm
2 2y — :
folbgesoe s i=( [ (DuP + e dan)
Rx$
The range of the trace operator T : HY(R x Q,e7%) — L2(R x I',e™?) is denoted
by
HY?RxT,e ) ={uc L2 R xT,e ) |ue 2 e HY?(RxT)} .

The symbols — and — are used to denote strong and weak convergence, respec-
tively.



3. EXISTENCE

We define on H3(R x ©,e~%) the functionals

(3.1) £(u) = 1/ IDuf? e=* d(z, y)
2 RxQ

and

(3.2) J(u) := F(u) e”* dS(y)dx ,
RxI’

whereby

F(u) := /uf(s)ds .

We will assume f(0) = 0 and sufficient g‘r(z)wth conditions on f such that J be well
defined on Hi(R x Q,e~?%). Furthermore we define
(3.3) C:={ucH)R xQ,e )| J(u) =1}.
Consider now the variational problem of minimizing £ over the class C,
(3.4) E+——Minin C .
A minimizer u, of this problem, satisfies the associated Euler-Lagrange equation
(3.5) / Du-Dve ® d(z,y) = A (w)v e ™ dS(y)dx

RxQ RxT

for all v € HY(R x Q,e~%). Here \ is the corresponding Lagrange multiplier. If u
is sufficiently regular, partial integration in the above equation yields

/ %fu e * dS(y)dz — / (Au—0zu)v e * d(z,y)
R RxQ

xT O

= A fu)v e ™™ dS(y)da
RxT’

for all v € HI(R x Q,e~%). Consequently u then satisfies

Au—0,u=0 in R x Q
3.6
(3:6) g—Z:)\f(u) on RxT.
We first show existence of a solution u of (3.4). Due to the side-constraint
J(u) = 1 such a solution is automatically non-trivial. We then show that u

is sufficiently regular in order to integrate partially in (3.5) and hence obtain
a solution of (3.6). By a scaling argument we shall finally obtain a solution of (1.3).

3.1. Approximating Problem. We wish to use direct methods in order to es-
tablish the existence of a minimizer in (3.4). However, due to underlying domain
R x © being unbounded, the problem suffers from a lack of compactness in the
sense that we do not have compact embeddings of Hi(R x €,e™?) into suitable
LP-spaces. Hence we start by considering an approximating problem.

On the nonlinearity f we impose the conditions

(3.7) feC'®), fO)=0, |f<k, 0<f(s)s VseR,
3



with k being a positive constant. Let ¥ : R — R be a real measurable function
satisfying

(3.8) 0<d9(z)<1 and lim J(z)=0.

|z]— o0

We define
Jo(u) :== / Ix) F(u) e dS(y)dx
RxI"
and put
Cy:={uec Hy(R x Qe ) | Jy(u) =1}

We now consider the problem of minimizing £ over Cy,
(3.9) E— Min in Cy .
One can view this problem an approximation of (3.4). It posses enough compactness
properties in order to be solvable with direct methods.

First we need the following Poincaré-type inequality which ensures coercivity of
the energy functional £ with respect to the H(R x €, e~%) norm.

Lemma 3.1. (Poincaré-type inequality)

(3.10) / u? e ® d(z,y) < 4/ |0ul? e d(z,y)
Rx$

Rx$2
for all u € HY(R x Q,e™%).

Proof. Let u € H3(R x Q,e7%). Choose a sequence of continuously differentiable
functions {u, }°°; from H3(R x ,e~%) with bounded support such that u, — u
in HI(R x Q,e~%). For any fixed y € Q one has

/_Z (az [une—%w])zdx

oo 1 o0 o0
:/ |0ptun|? e do + Z/ u? e ® do — / Uy, Oplly, €7 dz .

— 00 — 00 — 00

0

IN

(3.11)

By partial integration, the last integral in (3.11) evaluates to

o0 1 o0
/ Uy Oplly, €% dz = 5/ qu e *dx .

— —o0

1
0§/|8zun\2 e ¥dr — f/ui e " dx.
R 4 Jr

Integrating over €2 and letting n — oo proves the lemma. (I

Hence by (3.11)

We can now prove existence of a minimizer for the approximating problem.

Theorem 3.2. Let f be a real function satisfying (3.7) and 9 a real measurable
function satisfying (3.8). Then there exists a minimizer u for € over the class Cy.

Proof. Let {u,}>2 ; be a minimizing sequence for £ over the class Cy. Using Lemma
3.1 one has
(ui + |Dun|2) e " d(z,y) < 10 E(uy) -
Q

Since {u,}52, is a minimizing sequence, {€(uy,)}52; is bounded. Hence by the
above inequality {u,}>2; is bounded in Hi(R x Q,e~%). Due to the reflexivity of
4



the (Hilbert-)space H3(R x Q,e~%) there exists a subsequence of {u,}2° ;, which
for the sake of simplicity will still be denoted by {u, }5° , converging weakly to an
element u € HY(R x Q,e™®). We now show that Jy(u,) — Jy(u) for n — oo.

Let € > 0 be given. By Taylor-expansion on F and (3.7) it follows that

|F(uy) — F(uw)] < klu||lu—u,| + %k(u—un)2.

Thus
[Jo(un) — Jo(u)]
< k W) lu| |u — up| e dS(y)dz +
RxT
1
+ -k 9x) (u—uy)? e dS(y)dx
(3.12) 2 Jrxr @ ) )
< k (/ u? e ® dS(y)dx) ( 9(x) (u—u,)? e™* dS(y)d:c)
RxT RxT
+ 1k Iz) (u—u,)? e~ dS(y)dx .
2 RxT

Now choose b € R, b > 0 such that J(x) < ¢ for || > b. Consider the trace
operator

Sy : HI(R x Q,e7%) — L2((=b,b) x T) .
Since the domain (—b,b) x € is bounded, S is compact. Applying S to {un}52,
hence yields u,, — u strongly in L2((=b,b) x I') for n — co. Thus for sufficiently
large n we have

I(x) (u—uy)? e dS(y)dx
RxT

_ / ”b / B(x) (u — un)® ¢ dS(y)de

+ / /0@:) (u —up)? e dS(y)dx
R\[—b,b] JT
<e + 6/ (u—up)? e dS(y)dzx .
RxI"

By boundedness of the trace operator T : Hi(R x Q,e7%) — L%(R x I',e™?), it
follows from the above that

(3.13) /R . 9(x) (u—u,)? e dS(y)dx

<e 4+ eC ((u—up)? + |Du— Du,|*) e d(z,y)
Rx$

for n sufficiently large. Using Lemma 3.1 and the boundedness of {€(u,)}52 in
(3.13) now yields

(3.14) I(z) (u—u,)? e dS(y)dz < Ce
RxT
for sufficiently large n. It follows from (3.12) and (3.14) that Jy(u,) — Jg(u) for
n — 00.
5



Since {u,}52, is a sequence in Cy, we have Jy(u,) =1 for all n € N. It follows
that Jy(u) = 1. Hence the weak limit « is admissible. By convexity in the gradient,
the functional £ is weakly lower semi-continuous. Consequently

E(u) < liminfé&(u,) = inf E(v) .
n— o0 vECy
Thus u is a minimizer for £ over Cy. Il

A minimizer u for £ over Cy satisfies the associated Euler-Lagrange equation

(3.15) / Du-Dve ™ d(z,y) = Ny Iz) f(u)v e™ dS(y)dx ,

RxQ RxT
forallv € H% (R x Q,e™*). For later we need the following estimate of the Lagrange
multiplier Ay.

Lemma 3.3. Let u be a minimizer of £ over Cy. Assume [ satisfies (3.7) and

(3.16) OF(s) < f(s)s Vs eR
for some positive constant © > 0. Then u satisfies (3.15) and
2 2
. < — = — i .
(3.17) 0 < Ay < 5 E(u) 5 'Ulencfg E(w)

Proof. Putting v = w in (3.15) yields

(3.18) 0 < / Dul2 e=® d(z,y) = Ao | 9(@) Fu)u e=® dS(y)dz .
RxQ RxT
Since Jy(u) = 1 it follows that w # 0. Hence strict positivity holds in (3.18) and
thus Ay # 0. By (3.7) f satisfies 0 < f(s)s. The fact that ¢ > 0 therefore implies
Ay > 0.
Since Ay and ¥ are non-negative, applying assumption (3.16) in (3.18) yields

M O [ 9) Fu) e dS(y)dz < / IDuf? e=* d(z, y) .
RxT RxQ
Thus
Ao © Jy(u) < 2&(u) .

Since Jy(u) = 1 inequality (3.17) follows. O

Remark 3.4. Since © can be chosen arbitrarily small, condition (3.16) merely im-
plies that f cannot converge to 0 at some point.

3.2. Representation Formula and Decay Estimates. We now establish a rep-
resentation formula for solutions of the approximating problem (3.9) and the orig-
inal problem (3.4). Using this respresentation we obtain decay estimates essential
to the proof of the main theorem.

A solution of (3.9) or (3.4) satisfies, at least in the weak sense, an Euler-Lagrange
equation of type

Au—0u=0 inR xQ,

(3.19) ou

%:g on RxT,

with g € Hé/Z(R x T',e ™). One can show (see Theorem 5.1) that any solution
u € HY(R x Q,e7?) of the weak formulation of (3.19) with g € L2(R x T',e™%) N
6



H;/lic(R x I') satisfies u € H%,loc(R x ). The representation formula we now estab-
lish will hold for any solution in H3(R x Q,e™%) of (3.19) satisfying this regularity
condition. Due to standard regularity theory for elliptic equations, such functions
all belong to C®(R x Q). Further note that functions in H%lOC(R x ) have nor-
mal derivatives on R x I' at least in the trace sense, which is the way the boundary
condition in (3.9) is to be understood.

In the following, y = (y1,y2,y3) and £ = (&1,&2,&3) shall, depending on the
context, denote points in R x Q or R x I'. Consider the function

1 )
(320) (ﬁ(y) = me*%‘.ﬂ*%yl Ly € R3 \ {0} ]
® satisfies
(3.21) AD + 0,9 =0, fory € R*\ {0}

and is the fundamental solution for the elliptic operator A — d1in (3.19). Interest-
ingly, @ satisfies exactly the right growth conditions in order for the convolution
between ® and functions from L#(R x Q,e™%) to be well-defined in the classical
sense. This property of ® makes it possible to establish the following representa-
tion formula.
Theorem 3.5. A solution u € H5(R x Q,e”*) N H3 (R xQ) of (3.19) with
g € L2(R x I',e™?) satisfies
(322)  ul) = 2 [ g©BE—y) — u(©) oo (e~ y)ds(e)

: Nl ol A y o &Y
for all y € R x Q, with ws being the measure of the three-dimensional unit-ball.

Proof. Fix y € Rx . Let ¢ > 0 be sufficiently small so that B.(y) C R x Q.
Consider the derivatives of ®. One has

01®(y) = Py(y)e~2!¥=2%1 Py continuous and bounded away from 0,
A®(y) = Pa(y) e zlvl—3m , P continuous and bounded away from 0.
It follows that
§— u(§) A®(€ —y)
(3.23) = u(&) Pa(6 —y) e 2lévl=3(E-w)
= u(€) e F Pa(E—y) e IR € LUR x O\ Bo(y)) -

Similarly

(3.24) £— u(€) P —y) €L(RxQ\B(y)
and

(3.25) £ — () @€ —y) € LY(Rx Q\B(y))

Since u is a solution of (3.19) and belongs to Hi(R x Q,e~%), one has Au = dyu
and thus Au € L2(R x Q,e~%). Hence also

(3.26) €= Au(§) 2§ ~y) €L'(RxQ\B.(y)) .

The fact that u solves (3.19) together with (3.21) now implies

/ u(€)(AP(E —y) +012(§ —y)) — (6 —y)(Au(§) — dru(g)) d§ = 0.
RxQ\Be (y)

7



From the integrability established in (3.23),(3.24),(3.25), and (3.26), it follows that
G2 [ wOABE-y) - B¢ - p)Audt
RxQ\Be (y)

+ / w(E)B(E —y) + Du(E)B(E —y)dE = 0.
RxOQ\Be (y)

Now Green’s Formula will be applied to the first integral above. However, since u
is not necessarily in H3(R x Q\B.(y),e~%), the integrability conditions for applying
Green’s Formula are not necessarily satisfied and we cannot apply it directly. Hence
an approximation is made. For each N € N choose a function xy € CP(R)
satisfying

xy=1on (—=N,N), xn=0onR\(=(N+1),N+1),
IXnl<2, and [xx[<2.
The function (£1,&s,&3) — xn(E1)u(€q, &2, &3) then satisfies
Alxnu] = xnAu + 2xyOru + x{u
(3.28) O [XNU] = X?Vu + XNal'UJ , and
0 ou
— = XN RxT.
5, vyl =xnz - on

We now replace u with xyu in each integrand in (3.27). First

/ (€ — y) Al dé = B(E — y) o Aude
RxQ\Be: (y) RxQ\Be(y)

+/ D(§ —y) 2xyOr1udd
(3.29) RxQ\B. (y)

+/ (& —y) Xyudg
RxQ\Be (y)
=N+ 1Y+ 1y .
From the integrability of £ — ® (& — y) d1u(€) it follows that
|[IY] -0 and |I)| —0 for N — oo .

Similarly
- [ B(€ — ) Aude
RXQ\B. (y)

< / X\ (v (1) [B(€ — y) Aulde — 0 for N — oo .
RxQ\Be (y)
Hence by (3.29)

RN D€ —y) Audé = Jim D(€ — ) A de .
RxQ\B. () N=00 JRxQ\B. (y)

Analogously one has
eay [ WA~ y)dE = lim v AD(E - y) de .
Rx\Be (y)

N=0o0 JRxQ\B.(y)
8



From (3.28) and the fact that xn(£) = 1 in a neighborhood of J B.(y) for large N,
it follows that

0
D(€ — — d
/8 oy, ) b ©) e

s = [ ec-ngods v [ e nwe) 5odaso

ou
— —y)=—(&)dS for N — oo.
Loy, BEW G(O4SE@) for N oo

Similarly

0
/ vl (€ = ) dS(€)
O(RXN\Be(y))

(3.33)
H/ u—(f y)dS(€) for N — oo.
O(RXQ\B¢ (

By assumption [yyu] € H3(R x Q). Consider the space H3 with the underlying
domain being a finite part of the cylinder R x Q\ B.(y) containing the support of
Xn. Obviously ®(- — y) lies in this space. Hence Green’s Formula can be applied
to [xnu] and ®(- — y) yielding

/ v ul(€) AB(E — ) — B(€ — y) Al (€) dé =
Rx\B.(y)

0P Olxnul
U — (& —y) — P& - ds(¢) .
Lo, PV (€ ) — (e ) T s
Now letting N — oo in the equation above, (3.30), (3.31), (3.32), and (3.33) imply

/ W(E)AB(E —y) — B(E — y)Au€) dE =
RXQ\B. (y)

(3.34) o

8<I>

Equation (3.34) concerns the first integral in (3.27). Now consider the second
integral in (3.27). A similar approximation as above yields

/ () 1 B(E — y) + Orul€) B(E — y)de
Rx\B. (y)

— lim [xnul(€) 01 ®(€ —y) + I xwul(§) @6 —y)dE .

N=o0 JRXQ\B. ()
9



Let n = (n1,n2,ns) denote the outward normal on (R x ©Q \ B.(y)). By partial
integration of the right-hand side above we obtain

/ W(€) 1€ — ) + Dyu(€) B(E — y) de
RxQ\Be(y)

= lim Dxvul(§) 2(§ — y) na(§) dS(E)

N=0o0 JoRxQ\Be (1))

(3.35)
_ / u(€) D€ — y) na(€) AS(€)
(R x2\Be(y))

_ / u(€) D€ — y)ma (€) AS(E) .
8B (y)

Since the first component of the normal on R x I' is zero, the last integral above
reduces to an integral over 9 B.(y).
Inserting (3.34) and (3.35) into (3.27), it finally follows that

0P Ju
B3 WO )~ DO +

[ u@we-ym©dse =o.
9B:(y)

Having established the above identity, the representation formula can now be
proved in the usual manner. One has

oD

— (& —y)dS
ARG IR0
y—=£
ly — €|
_ 1 1 1&—m
‘5/835@)“(%5y|+2+2|sy|

1 L & =Yy 1o Llie,—y)
= —_— e 25 2 1 1 dS .
/aBE@,) w@(Z+g5+ 5z e (€)

- / (&) DO —y)- L5 as(e)
(3.37) 1" Be ()

) o~ 3lE—ul=3 (& —v) ds(€)

As noted in the beginning of this section, standard regularity theory for elliptic
equations imply that u is continuous. Hence

1 1 1 1 1
[ ue et emas — su f u© et i@ as(
dBe(y) €
9 B:(y)
— 3wz u(y) fore—0.

Similarly

1 1 1 € e 1(e_
/ ’U,(g) 2— e 2 2(51 Y1) dS(g) = 3LU3 5 ][ u(é’) e 2 2(51 Y1) dS(g)
9Be(y) € o5 )

—0 fore—0,
10



and

/ u(e) TP ot ase)
OBE(y)

2e2

1 1 1
= 3ws ][ u(€) 5 (& =) e 2= 20 v) g4g(¢) -0 fore—0.

0 B¢ (y)
It thus follows from (3.37) that
0P
(3.38) / u() a—({ —y)dS(€) — 3wsu(y) fore—0.
BBE(y) n

Since standard regularity theory for elliptic equations also implies continuity of Du,
one has for the second integrand in (3.36) that

[ se-n oo
9B:(y) n

= # —%\ﬁ—yl—%(él—yl) D . y_g dS
(3.39) /aBEw) y—el" 8 =g 45
= 3ws ][ Du(¢) - (y — &) e 2lé-vl=3&-v) qg5(¢)
9B:(y)

—0 fore—0.

Finally also

/ w(€) B(E — y)na(€) dS(E)
9B:(y)

_ L e b VL8 g
/aw“(f) v—8° g °®

= 3wy ][ u(€) e~ V=R E=v) (1) ) dS(¢)
(')BE(y)
—0 fore—0.

Now letting € — 0 in (3.36), it follows from (3.38), (3.39), and (3.40) that

snuy) = [ SHOBE 1) - u(©) G (€~ 0)AS(E)

< on

(3.40)

Substituting ¢ for g—z in the equation above completes the proof. (I

Having established a representation formula, a pointwise decay estimate for so-
lutions of (3.19) can now be obtained.

Lemma 3.6. Let u € HY(R x Q,e7%) N H%JOC(R x Q) be a solution of equation
(3.19) with g € L2 (R x T',e™ ). If

(3.41) [ 1ec-peemjiase) < ¢ vyerxT
RxT
and
q) 1 4
(3.42) / 6—(§—y) e 1548(¢) < Oy VyeRxT
rxT ON

11



then

—v1 =1 =%
(3.43) luy)e= | < C (l9(€)e™ flua@xr) + [u() e ||Lixr))
for ally € R x I with C' depending only on T'.

Proof. For any y € R x  we have by Theorem 3.5 the representation

B41) ) = 5 [ gOBE—y) — u(e) o (€~ y)dS(E)
w3 Jrxr on

of u. Let 4% € R x I'. We now examine the limit behavior of the above equation
as y tends to y°. By assumption, u € H3((—=N, N) x Q) for any N € N. Thus the
Sobolev Embedding Theorem implies u € C%*(R x ) for any 0 < a < 1. Hence
u(y) — u(y®) for y — y° follows by continuity. Now consider the right-hand side of
(3.44). One can identify the integral as a sum of a single and double layer potential
with respect to the fundamental solution ®. Since the singularity of ® is of the
same order as the singularity of the Newtonian potential, the limit behavior of these
potentials as y tends to 3 is similar to that known from classical potential theory
(see Theorem 14.I and Theorem 15.1T in [Mir70]). More specifically, we have

[ a©aE-y) - ue) 5o ase) —
W3 JRxT n
= [ @) - u(©) 61" daS©) + 5 uls”)

3wz Jrxr

for y — 4°. It follows that
1
u(y’) = 30m Mg(f)@(f—yo) - U(f)a*(f y')ds(€) + %U(yo)-
We can now estimate
1 s L B(e — o) o)
50 1< g [l e ae—y) i@ as)

—S1 a(b 1 0
! u(©) e T2 (6~ y?) eH O as(e)

3wz Jrxr

Applying Holder’s inequality thus yields

1 —&1 1 _ 4 1
< 7 llg(€) e flLaxr) </ |B(& —¢°) 2@ y?>|sds(5))
w3 RxT

1 -4 1 !
+ — lu(€)e 21”L4(er) (/ (g y0) ez(&- y1)|3d5( ))
w3 RxT
Finally, by assumption (3.41) and (3.42) it follows that

& —£&1
(Hg(ﬁ)e 2 |lpamxr)y + |lu(§) ez ||L4(1R><F))

u(y®) e

with C' depending only on T O
12



Remark 3.7. We will later see that [|u(&) e st lL4rxr) < oo holds for all elements
u in H3(R x Q,e~%). Hence we only need ||g(¢&) e%&\\L4(RXp) to be finite in order
to use the lemma above. As a result, when studying solutions in H}(R x 2,e™%) of
Au—cOyu =0 in R x €,
g—z = f(u) on R x N
we only need suitable growth conditions on f. If, for example, f has at most linear

growth then || f(u) o3t |Laxr) < oo follows and we obtain an exponential decay
estimate. In other words, we do not need f to have any particular shape or number
of vanishing points.

Example 3.8. The unit-ball B1(0), or more specifically its boundary I" = 9 B1(0),
satisfies the conditions (3.41) and (3.42) in Lemma 3.6.
Fix ye RxTI. For £ € R x I one has

(3.45) € —yl* = (& —y)*+201— (B)-(32)) -
It follows that
/ B(E — ) o2 &) |2 as(¢)
RxT
1 —4yferr2a- ()0

@)@t

' 1
<o [, | @ gay e - o

with C; and Cy not depending on y. By the rotational symmetry of T' = 9 B4(0),
it can be assumed without loss of generality that (j2) = (§). Let B1(0)™ denote
the part of B1(0) lying in the upper positive half of R?. Obviously

) asee)

I T

5 dS (&2, &3) A&y

1 1
/1/r(£% +2(1- (&) (3))3

1
1
¢ dS(&s,&E3) dE; .
= /0 /E)B1(0)++ (§f+2(1_(§§).((1))))§ (€2, &3) d&u

Using the parametrisation
’Y(t) = (ta 1- t2) ) te (Oa 1)
of B1(0)* T, it follows that

dS(&2,&3) A&

! 1
/1/r(§% +2(1 - (22)-(8)3
1 1 1 1
(3.47) gc/o/o (£%+2(1_t))%mdtd£1

1 \/5 1
gC// ———dsd§y < oo
o Jo (& +s?)3
13




The last integral being finite can easily be seen by switching to polar coordinates
and integrating over a ball containing [0, 1] x [0,v/2]. By (3.46) and (3.47) one now
sees that condition (3.41) is satisfied.

In order to show (3.42), the normal derivative of & — ®(- — y) is calculated for
£ eRxT =R x9B1(0). One has

0P 1+ Lie_ 1 1
318 G- = () - (M e e

Using (3.45) now yields

[ 15—y ek fasi)

xT an

_ (1- ) ()° g
- /er (E2+2(1- : —(2)-(12)))? (1 t3 \/51 +2(1 - (&) ))>

Y3

V-0 4g 4

/ / ) isicae +c
(&F +2( 1— @)y

fs

(3.49)

with C7 and Cs not depending on y. Once more due to the rotational symmetry
of I' = B1(0), it can be assumed without loss of generality that (j2) = (§). It
follows that

(£)-()°
53
/ / 51 +2(1 - 53) (y2)))2 dS (&2, &3) d&y

(1- %
(3.50) / / o 52 — 45 (60, 63) dés
(1-¢&)°
= C/ /BBI(O)++ (€2 +2(1 — &))2 dS(&2,&3) déy -

Again using the parametrisation v of & B;(0)™+ now yields

1—52)
ds d
/ /]31(0 4 (E242(1 - £))2 (&2,&3) d&
l—t 1
// €1+2 P viE
Ca-ni
<C// §1+2 CETTEDERR

—C// 51 dsd£1 < 0.

Switching to polar coordinates and integrating over a ball containing [0, 1] x [0, v/2]
shows that the last integral above is finite. Hence by (3.50) and (3.49) it follows
that condition (3.42) is satisfied.

14



Remark 3.9. Since the conditions (3.41) and (3.42) in Lemma 3.6 holds for a ball,
they are likely to hold for any domain which can be mapped sufficiently smooth to
a ball.

3.3. Main theorem. We now prove existence of a minimizer in (3.4). We start by
considering a sequence of approximating variational problems of type (3.9). More
precisely, we define for n € N the functions

Lol
(3.51) Ip(x) :=e" =, z€R.

Note that ¥,, satisfies condition (3.8). Furthermore we define

(3.52) Jn(u) := In(z)F(u)e™® dS(y)dx
RxI'

and

(3.53) Cpi={ucHyR x Qe ) | Jo(u) =1} .

For each n € N we condsider the problem

(3.54) € — Min in C,

Assuming f satisfies (3.7), Theorem 3.2 ensures the existence of a minimizer w,, in
(3.54). The hereby induced sequence {u,}>2 ; will serve as a basis for a minimizing
sequence of problem (3.4) which we will show converges to a proper minimizer.

Theorem 3.10. Assume f satisfies (3.7). If {un}S2y is a sequence with each
element a minimizer of problem (3.54), that is

(3.55) E(uy) = 1élcf E(u) and Up € Cp
then
(3.56) E(uy) — 1r€1£5(u) forn — oo .

Furthermore there exists a sequence of real numbers {s,}52, such that

(1) {snun}>2, is a minimizing sequence for € over C,
(2) 0<s, <1 forallneN, and
(3) sp — 1 forn — oo.

Proof. Put I = inf,cc E(u). Since f satisfies (3.7), it follows that

u 1
|</\f |dt</ktdt:fku2.
O 2

Hence for u € C one has
1
1 = Jw) = F(u) e dS(y)de < -k u? e™* dS(y)dx
RxI RxI’

Using the boundedness of the trace-operator T : HY(R x ,e™%) — L2(R x I',e %)
and Lemma 3.1, it follows that

1< C’/ (u? + |Dul?) e dS(y)dz < 10 C E(u) .
RxQ

Consequently I > 0.
Let € > 0 be given. Now choose v € C with £(v) < I 4+ €. Consider for h € R
the translation 7, v of v by h in the z-variable,

Tho(x,y) :=v(x+ h,y) .
15



For h > 0 and n > 2 it holds that

e e_% forx <0
=< e men forO<z<h
e e for h <z
e e*% for x <0
> e ne forO<z<h
e He for h <z
=e ¥, (2)
>e 30, (z) .

By condition (3.7), f satisfies 0 < f(¢)t . Consequently F' > 0. Hence
Do) = [ a0 Flola + hy) e dS()de
RxI'

= O (x — h) F(o(z,y)) e @M dS(y)dz
(3.57) RxT

h

>e 2 / O (x) F(v(z,y)) " e ® dS(y)dz
RxT

= e% J,(v) .

Since 0 < ¥, < 1 and F' is non-negative, it follows that 0 < J,,(v) < 1. Thus by
(3.57) one can choose a sufficiently large h such that J, (7, v) = 1. For each n € N
choose such a h and denote it h,,. One then has

hn

(3.58) 1—=J,(v)] = Jn(mh,v) — Jn(v) > (e2 =1)J,(v) .

Since ¥, (z) — 1 pointwise for n — oo and F is non-negative, by the Dominated
Convergence Theorem

Jn(v) = /}R Fﬂn(x) F(v) e™® dS(y)dz
— F(v)e ™ dS(y)de = J(v) = 1 forn—oo.
RxT

Hence from (3.58) it follows that (e% —1) — 0 for n — oo. Consequently h, — 0
and thus
(e" —1) <

~Il ™

for n sufficiently large.
Since J,, (74, v) = 1 one has 75, v € C,. By assumption (3.55), u,, is a minimizer
for £ over C,,. Hence
E(uy) < E(th, v) = EW) + (" —1)E(w)
< I+e+e =1+ 2¢
16
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for n sufficiently large.

The minimizing property (3.56) now follows from (3.59) once it can be shown
that I < &(uy,). Since F > 0 and 0 < ¥, < 1, one has 1 = J,(u,) < J(uy).
Consider now the scaling su, of u, by s € RT. By the Dominated Convergence
Theorem it follows that

J(sup) = /R FF(sun) e * dS(y)de — 0 fors—0.
X

Thus there exists s € R with 0 < s < 1 such that J(su,) = 1. Choosing s, € R
with this property implies s,u,, € C and consequently

(3.60) I < E(spun) = s2E8(un) < E(uy) .

Thus we have established (3.56).
By (3.60) and (3.56) and the fact that s,u, € C, it is clear that {s,u,}52, is a
minimizing sequence for £ over C and s, — 1. This completes the proof. ([

Having established the existence of a minimizing sequence {s,u,}22, for (3.4),
consisting of scaled minimizers u, of (3.54), focus will now be on the weak limit
hereof. By the same argument as in the proof of Theorem 3.2, the sequence
{8nun }5°; is bounded in H3(R x Q,e~%). Hence at least a subsequence converges
weakly. It is now shown that this weak limit is a minimizer for (3.4). In order to
do so, the following uniform pointwise bound on {u,} is needed.

Lemma 3.11. Assume I' satisfies (3.41) and (3.42). Further assume that f sat-
isfies (3.7) and (3.16). Let {u,}52, be a sequence in HY(R x Q,e™®) satisfying
(3.55). Then there exists an upper bound M such that

(3.61) lun(z,y)e"2| < M Y(z,y) eRxT
for all m € N.

Proof. By assumption, u, is a minimizer for £ over C,. Thus u, satisfies the
corresponding Euler-Lagrange equation

(3.62) /R 0 Du,, -Dv e ® d(z,y) = )\n/ In(x) fup)v e dS(y)dx

RxT
for all v € HI(R x Q,e7%). From Lemma 3.3 one has the bound

2
(3.63) 0 < A\ < o E(un)
on the Lagrange multiplier A,,. By Theorem 3.10, {u, }22 is a minimizing sequence
for € over C. Hence {&€(un)}22, is bounded and it follows from (3.63) that also
{An}52, is bounded by some constant L.

Consider again the Euler-Lagrange equation (3.62). By Theorem 5.2 we have
u, € H3 (R x Q). Hence the normal derivative of u, exists on R x " at least in
the trace sense. Partial integration and the Fundamental Lemma of the Calculus
of Variations thus yields

Au, — Opuy, =0 in R x €,
ou,

% = )\n ’l9n f(un) on RxT.

17



It now follows from Lemma 3.6 that
un(z,y)e 2| < C(”)‘nﬂnf(un)67%||L4(R><F) + fune” 2 |Laexry)
< C(L|f(un)e * lLaexr) + llune™ 2 [[Lagxr) )
for all (z,y) € R x I'. The growth conditions imposed on f imply
1 (un) e 2 [lLagxry < Cllune™? ||Lagxr) -
Thus
(3.64) lun(z,y)e 2| < C |lupe” 2|lpamxry Y(z,y) ERxT .

Now consider the embedding of H3 (R x ) into LP(R x TI'). The critical exponent
of this embedding is 4. Note that the Sobolev Embedding Theorem does not hold
for arbitrary unbounded domains. However, for a cylinder of the type R x Q one
can show using the Calderén Extension Theorem (See Theorem 4.32 in [Ada75))
the existence of a continuous extension operator from the space H3(R x ) into
Hi(R?). This means that R x  is a so-called extension domain. Furthermore,
R x Q satisfies the uniform C'-regularity condition. For such domains the embed-
ding holds as in the case of bounded domains (see for example Theorem 5.22 in
[Ada75]). Thus by (3.64)

|un e 2 | C ||un e_%”H;(RxQ)

<
< Hun”Hé(RxQ,e—m) < C &(up)

for all (z,y) € R x I'. The last inequality is obtained using Lemma 3.1. The fact
that {&(un)}52, is bounded finally implies

lupe 2| < M V(z,y) €ERxT
for all n € N. O

Remark 3.12. The exponential decay estimate in the previous lemma is similar to
the decay estimates established in [BN92], [BLL90], [Veg93], and [Hei88]. The meth-
ods we have used to obtain it is different though. The decay estimates in [BN92],
[BLL90], [Veg93], and [Hei88] are all obtained using maximum principles and com-
parison arguments. In contrast, Lemma 3.11 is based on the potential theoretical
arguments from Section 3.2. Since the boundary condition g—z = f(u) complicates
the use of maximum principles, the potential theoretical approach seems to be bet-
ter in this case. Furthermore, since it only calls for growth conditions on f to be
imposed, it allows us to handle non-linearities vanishing only at 0. In other words,
we avoid having to impose the condition f(0) = f(1) = 0 which is essential in

[BN92], [BLL90], and [Hei88].
The existence of a minimizer for problem (3.4) can now be proved.

Theorem 3.13. Assume I satisfies (3.41) and (3.42). Furthermore assume f
satisfies (3.7), (3.16), and

(3.65) J0<a<l, A>0: |f(t)] < Alt]* forall teR,

(3.66) 36>0,8>1, B>0: |f(t)] < Blt|® forall |t|<6.

Then there exists a minimizer for € over C.
18



Proof. By Theorem 3.2 there exists a minimizer u,, for £ over C,,. Furthermore, by
Theorem 3.10 one can find a sequence of real numbers {s,}52; with 0 < s, <1
and s, — 1 such that {s,u,}32 is a minimizing sequence for £ over C. By Lemma
3.1, it follows that {s,u, }°°; is bounded in H3(R x £,e~%). Thus also {u,}> is
bounded. Hence a subsequence of {u,, }22 ;, which for the sake of simplicity will still
be denoted {u,}3 ;, will converge weakly towards a function u € H3(R x Q,e™%).
The weak lower semicontinuity of £ implies £(u) < inf,ec E(v). It will now be
shown that J(u) > 1 from which it easily follows that u is a proper minimizer.
Let € > 0 be given. From Lemma 3.11 one has the pointwise bound

(3.67) lun(z,y)e” 2| < M V(z,y) €eRxT
uniformly in n € N. Now choose L > 0 sufficiently large such that

1 a+1
3.68 AL Mot! —U=5L g
(0% T e :
1 )
(3.69) B || M5+ e F U <
B+D(5 -1
and
(3.70) Me? < 6.

By assumption (3.65), it follows that

/ /F(snun) e ¥ dS(y)dz < /L /FH-AOz |sptn [P T e dS(y)dx

Thus the bound from (3.67) implies

// Sutin) €% dS(y)ds

1+a 1+ —x
/ /1+a Sy e?) e " dS(y)dx

1 1+a
o M & =L o
1+a| | (1- =) ° :

(3.71)

uniformly in n € N.
From (3.67) it further follows that

L

|$ntin| < s, Me? < Me 2 forxz<—L.

Hence by (3.70) and assumption (3.66) one has

[ s < [ 2,

Again using the bound from (3.67) yields

/—: /FF(S”““) ™" dS(y)dx

(3.72) < / /1+6 148 (0 3 )5+ 6% dS(y)da

1
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uniformly in n € N.
As in the proof of Theorem 3.2 one has

/ /|F F(spupn)| e dS(y)dz
< C / / lu — spun|* e dS(y)dx
—Jr

Now consider the trace operator Sz, : H3(R x Q,e7%) — L2((—L, L) xT'). As noted
in the proof of Theorem 3.2, Sy is compact. Since u, — u in HI(R x Q,e™%),
applying Sy to {u,}22; thus implies u, — u strongly in L2((—L,L) x I'). It
follows that also s,u, — u strongly in L2((—L, L) x T'). Hence by (3.73) one has

(3.74) / / (Spun) e~ * dS(y)dx —>/ / e ¥ dS(y)dx

for n — oo.
By (3.71), (3.72), and the fact that s,u, € C, it follows that

1 = J(spun) = / F(spuy) e ® dS(y)dz
RxI’

< 2+ /L /F(snun) e dS(y)dx

Letting n — oo implies by (3.74)

1—25§/ / e ¥ dS(y)dx

< (u) e dS(y)de = J(u) .

]R><F

(3.73)

The last inequality above holds since F' > 0. Finally, letting ¢ — 0 in the above
yields 1 < J(u).

As in the proof of Theorem 3.2, one can now find an s € RT with 0 < s < 1 such
that J(su) = 1. Tt follows that su € C and

E(su) = s E(u) < E(u) < ingé'(v) < E(su).
US
Consequently, s = 1 and u is a minimizer for £ over C. (]

By a simple scaling argument, we finally obtain a solution of the original problem
(1.3), not in the original cylinder, but in a scaled one. More specifically, we have
the following theorem.

Theorem 3.14. Assume I' satisfies (3.41) and (3.42). Furthermore assume f
satisfies (3.7), (3.16), (3.65), and (3.66). Then there exists a non-trivial solution

(A u)e RT x (Hy(R x Q,e”*)NH;3 (R xQ))

of
1 .
u—X&cu:O i R x QF
(3.75) ou
%:f(u) on R xT* .

with Q* := AQ and I'* := 0Q*.
20



Proof. Let u be the minimizer of £ over C from Theorem 3.13. Then w is non-trivial
and u € H%loc(R x ) by Theorem 5.2. Furthermore u satisfies the Euler-Lagrange

equation (3.5). Putting @(z,y) := u(;z, +y) for (z,y) € RxQ* we obtain a solution
of (3.75). O

4. ASYMPTOTICS

We now investigate the asymptotic behavior at +oo of the solution found in the
previous section.

From the representation formula in Theorem 3.5 we obtain, using the Hoélder
inequality as in the poof of Lemma 3.6, the estimate

(4.1) lu(z,y)] < M(y) e*®  V(z,y) eRxQ

for any minimizer v € H3(R x ,e™%) of problem (3.4). Hence u(z,y) — 0 as
x — —oo follows as an immediate consequence. Assuming I' and f satisfy the
conditions in Lemma 3.11, we can even prove as in Lemma 3.11 that

(4.2) lu(z,y)] < Me**  V(z,y) eRxT.

Hence also the boundary values of u vanish at —oo. In fact, since both decay es-
timates (4.1) and (4.2) hold for any solution in Hi(R x €2,e7) of the associated
Euler-Lagrange equation of (3.4), any such solution vanishes at —oo. The asymp-
totic behavior at 400 is a more complicated matter.

The asymptotic behavior at 400 determines the type of travelling wave repre-
sented by u. If u tends to 0, we are dealing with a solitary wave. If, on the other
hand, u tends to some positive limit v or infinity then w is a travelling front solution.
‘We now show that the solution found in the previous section has the characteristics
of a travelling front in the sense that we rule out the vanishing of u at 4oc.

Theorem 4.1. Assume f satisfies (3.7) and f € C?*(R) with f” bounded. If
u € HI(R x Q,e7%) is a non-trivial solution of

(4.3) / Du-Dve ® d(z,y) = A (w)v e™® dS(y)dz
RxQ RxT
for allv € HY(R x Q,e™") with A > 0 then © — |lu(x,-)||L2(r) does not vanish as x

tends to +o00.

Proof. Define
1 1
(4.4) olx) = 5/9\Dyu\2dy - )\/FF(u) dS(y) — E/Q(azu)Qdy.

By Theorem 5.2, u € Hgloc(R x ). From the Sobolev Embedding Theorem it

follows that u € C!'(R x Q). Furthermore, standard regularity theory for elliptic
equations implies u € C*°(R x ). Hence we can differentiate ¢. We have

o'(z) = /QDyu-Dy[awu}dy — )\/Ff(u)awudS(y) - /Qawuaiudy.

The regularity of u and (4.3) implies g—z = Af(u). Thus by partial integration
o'(x) = —/ Ayudyudy — / Opudiudy .
Q Q
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Additionally, (4.3) and the regularity of u implies A, ,yu = d,u in R x Q. Hence

o'(x) = 7/(5‘mu — 02u) Opudy — /&Cu@iudy
Q Q

:—/(8mu)2dy <0.
Q

Since u is non-trivial, fQ (amu)2 dy # 0 for some z € R. Consequently

(4.5)

o= lim ¢ > lim p:=0.
r—00

r— —00

By the monotonicity of ¢ these limits exist. Since u € H3(R x ©,e™%) we have

(4.6) —00 < /Rgp(m) e ?dr < 0.

This implies a = 0 and hence 5 < 0. We deduce that ¢ is non-positive.
Now assume = — ||u(z, -)||r2(r) vanishes at +oo. Put

(4.7) h(z) = ¢'(z) — 2¢0(x) , zeR.
By (4.4) and (4.5) we have
h(z) = f/Q|Dyu| dy + QAAF(u)dS(y).

Since by assumption

|AF(U)dS(y)| < C/FquS(y) — 0 forz — 400

it follows that limsuph < 0. Now solving (4.7) with respect to ¢, we obtain for
Tr——+00
any t > tg the representation

(4.8) o(t) = e2<t—t0)<gz)(to) + /tt h(z) e~ 2 dx) .

Since limsup h < 0 we have for ¢y sufficiently large that

Tr——+00

¢
1
/ h(z) e ™ dx < — e 2t Vi>tp .

to

[\)

Hence choosing ty sufficiently large such that %6’2’50 < —iﬁ and p(ty) < %ﬁ we
obtain

t
1
o) + [ @) e ar < 18 Visw.
to
Then by (4.8)
1
p(t) < 1) 10 V>t

follows and consequently

/ o) e tdt = —oo.

to
This contradicts (4.6). We conclude that  — [lu(z,-)||r2(r) does not vanish at
+o00. O
Remark 4.2. By the theorem above and the boundedness of the trace operator
T : H}(Q) — L2(I), it follows that @ — |lu(w, a1 () does not vanish at +oo.
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5. REGULARITY

By standard arguments from the regularity theory of elliptic equations one can
show (See Theorem 3.7 in [Kye05]) the following regularity properties of the weak
formulation (3.5) of (3.6).

Theorem 5.1. Let Q C R” be a bounded domain with a C**t2-boundary T'. Let
1
keNandbe H;lo"’c(R x I)NL2(R x e ®). If u € HY(R x Q,e™%) satisfies

(5.1) / Du-Dv e ™ d(x,y) = / bve ® dS(y)dr Vo€ Hy(R x Qe %)
RxQ RxT'

then u € H%J{fc(R x €2).

Consider now a solution u of problem (1.3). Assuming f € C!(R) with
il bounded we have f(u) € HI(Rx Q,e”®) and hence in the trace sense

flu) € H2 loe(R X T)NL2(R x T',e™"). By the theorem above, u € H3 (R x Q)
follows. To the extent that this additional regularity of u translates into the same
additional regularity of f(u), boot-strapping the argument implies that u is ”as
regular” as f. More specifically, we have the following result.

Theorem 5.2. Letn < 3 and Q2 C R™ be a bounded domain with a Ck+2—b0undary.
Let f € CE(R) with all derivatives bounded,

(5.2) O < M i=1,.. k.
If u € HY(R x Q,e7%) satisfies

(5.3) /R . Du-Dve™® d(z,y) = fw)ve ™ dS(y)dx

RxT

for allv € HY(R x Q,e77) then u € Hy T (R x Q).

Proof. As mentioned above, the boundedness of f’ implies f(u) € HQ%JOC(]R x T

and hence u € H3 lOC(R x Q) by Theorem 5.1. Thus the theorem holds for k = 1.

Consider now k£ > 1 and assume the theorem has been proved for k — 1. Then

URS H’iloc(R x ) by assumption. Now u € H];J{;C(R x ) must be shown.
Consider a k’th order derivative

(5. => fDw)D*uD%u...DPu | |o| =k

4)

of f(u). By the chaln rule, a term in the sum above has one of the forms

(1) f'(w)D%u B[ =k

2) f"(u) DﬁluDﬁZU LB =k—1 and |Bs] =1

(3) fOw)DPruD2y .- D%y | |8y <k—2 for h=1,...,j and j>2.
Clearly the terms of type 1 belong to L2 (Rx Q). Consider a term

f”( )DP*uDP2y of type 2. One has both DP'u e Hj 1, (R x Q) and D%y €

Hj 1,.(R x Q). Since n < 3 one has dim(R x Q) < 4 and thus the embedding

I_I%,loc(}R X Q) — L?OC(R X Q)

holds. Tt follows that the product D?'u D2y € L7, (R x ) and by the boundedness
of f thus also f”(u) D uD%u € 12 (R x Q).
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Finally consider a term £ (u)D?*uD"u ... D%w in the sum (5.4) of type 3.
Since the highest order derivative occuring is less than k& — 2, one has DPry €
H%,ZOC(R x ) for h =1,...,j. Since dim(R x Q) < 4 the embedding

(5.5) H3 ,.(RxQ) — LI (RxQ)

loc
holds for all ¢ > 2. Putting ¢ = 2j in (5.5) and applying the Holder inequality thus
implies D4 D%y ... D%y e L2 (R x Q). By the boundedness of f() hence also

loc

fOu) D uDu ... DPu e L] (R x Q).

loc

We have now proved that every element in the sum (5.4) belongs to LZ, (R x Q).

loc

Consequently D*[f(u)] € L2 (R x Q). It follows that f(u) € H’iloc(R x ) and

loc

1
thereby f(u) € Hg’l(fc(R x ') in the trace sense. By Theorem 5.1 we can finally
deduce u € H’;J{(}C(R x ). O
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