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Abstract

While the structure of the set of stationary solutions of the Cahn-Hilliard equa-
tion on one-dimensional domains is completely understood, only partial results are
available for two-dimensional base domains. In this paper, we demonstrate how
rigorous computational techniques can be employed to establish computer-assisted
existence proofs for equilibria of the Cahn-Hilliard equation on the unit square. Our
method is based on results by Mischaikow and Zgliczyński [21], and combines rigor-
ous computations with Conley index techniques. We are able to establish branches
of equilibria and, under more restrictive conditions, even the local uniqueness of spe-
cific equilibrium solutions. Sample computations for several branches are presented,
which illustrate the resulting patterns.
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1 Introduction

The Cahn-Hilliard equation

ut = −∆(∆u+ λf(u)), in Ω ⊂ R
n,

∂νu = ∂ν∆u = 0, on ∂Ω,
(1)

was introduced in [2] and [3] as a model for the process of phase separation of a binary
alloy at a fixed temperature. The function u(t, x) represents the concentration of one of
the two components of the binary alloy. The physical “interaction length” is given by
λ−1/2, and thus, this parameter effectively measures the size of the material. Equation (1)
is mass preserving, that is

d

dt

(
1

|Ω|

∫

Ω

u(t, x)dx

)
= 0,

so a second natural parameter is the total mass

µ :=
1

|Ω|

∫

Ω

u(t, x)dx. (2)

Of fundamental interest is the development and evolution of the concentration patterns
of the alloy components as a function of time. Since f is generally chosen as a cubic-like
nonlinearity, in this paper we use the standard choice

f(u) := u− u3 , (3)

understanding the global dynamics is extremely difficult. However, (1) can be interpreted
as the gradient dynamics for the energy functional

Eλ(u) :=

∫

Ω

(
1

2λ
· |∇u|2 − 1

2
u2 +

1

4
u4

)
dx. (4)

Thus, the first step towards describing the dynamics of (1) is to identify all its equilibrium
solutions. Observe that the stationary states are given by the solutions of the nonlinear
elliptic boundary value problem

∆u+ λf(u) = λc in Ω,
∂νu = 0 on ∂Ω,

(5)

which introduces the additional parameter

c :=
1

|Ω|

∫

Ω

f(u). (6)

In the case of the one-dimensional domain Ω = (0, 1), the set of solutions of (5) is com-
pletely understood. In particular, the work of Novick-Cohen and Peletier [19] and of
Grinfeld and Novick-Cohen [10] should be mentioned. However, for higher-dimensional
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Figure 1: Two sample bifurcation diagrams. The left diagram is for fixed mass µ and
shows solution branches and their associated energies Eλ as a function of λ. The right
diagram contains regions where solution branches for fixed λ are contained, this time as
functions of the total mass µ and the integration constant c.

domains very little is known, and in fact, given current techniques there appears to be
scant hope that the problem can be resolved by purely analytic techniques. Therefore, we
have chosen to pursue this problem using newly developed methods that lead to rigorous
numerical proofs of the existence of equilibria for partial differential equations [4, 6, 7, 21].
As might be imagined, a proper description of our results is fairly technical and thus is
presented in Section 2. However, the diagrams in Figure 1 serve as representative samples.
The (slightly thickened) lines in the left diagram actually represent intervals within which
we establish the existence of unique branches of equilibrium solutions as functions of the
parameter λ, for fixed mass µ. The vertical axis indicates the corresponding energies Eλ.
Similarly, the right diagram of Figure 1 provides an amplified view of two solution branches
in the vicinity of a bifurcation point as functions of the parameters µ and c, this time for
fixed λ. Notice that due to inherent limitations of the techniques presented in this paper,
these lines do not extend to the bifurcation point. However, this gap can most likely be
addressed using ideas developed by P. Zgliczyński and one of the authors of this paper.
The results of Section 2 are obtained via a two step procedure. First, the expected
equilibria are computed numerically using a path-following algorithm developed for the
numerical analysis of the equilibria of the Cahn-Hilliard equation in [13], which is ap-
plied to a Galerkin approximation of (5). The algorithm is based on a predictor-corrector
procedure with step-length adaption as discussed for example in Allgower and Georg [1,
Chapter 3]. Details can be found in the appendix of [13] and will therefore not be re-
peated in the present paper. It suffices to note that the path-following computations
merely provide the input information for the subsequent rigorous computations. If this
input information turns out to be poor, then the rigorous computations fail to verify the
existence of an equilibrium.
The rigorous computations are the subject of the second step. Here, topological techniques
in combination with rigorous estimates are used to prove the existence and uniqueness
of the equilibria. The majority of this paper is devoted to presenting the details of
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this approach. However, a brief outline is appropriate at this point. Observe that in
case Ω = [0, 1]2 the definitions

φ0,0 = 1 and φi,j(x, y) = cos(iπx) cos(jπy), for all (i, j) ∈ N
2\{(0, 0)} (7)

furnish a complete orthogonal basis for the Hilbert space L2(Ω). Using the associated
Fourier expansion, an element u(t, ·, ·) ∈ L2(Ω) can be written as

u(t, x, y) =

∞∑

i,j=0

ui,j(t) · φi,j(x, y). (8)

Substituting this expression into (5) with the cubic nonlinearity f defined in (3), we obtain
the infinite system of ordinary differential equations

u̇i,j = −
(
i2 + j2

)2
π4ui,j + λ

(
i2 + j2

)
π2

(
ui,j −

ci,j
4

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)
(9)

for i, j ∈ N0, with suitable fixed constants ci,j (cf. Lemma A.1 and (65)) and

ũi,j :=





4u|i|,|j| for (i, j) = (0, 0)
2u|i|,|j| for i = 0, j 6= 0 or i 6= 0, j = 0
u|i|,|j| otherwise

for (i, j) ∈ Z
2 .

Using the standard idea of a Galerkin projection we restrict our attention to the finite
subset of equations of (9) associated with i, j < M and up,q = 0 for all p, q ≥ M . This
yields the finite-dimensional system of ordinary differential equations given by

u̇i,j = −
(
i2 + j2

)2
π4ui,j + λ

(
i2 + j2

)
π2

(
ui,j −

ci,j
4

∑

p,q,r,s

ũp,qũr,sũi−p−r,j−q−s

)
, (10)

where 0 ≤ i, j < M .
Clearly, passing from (9) to (10) introduces errors. However, the fact that solutions to
the elliptic problem (5) are smooth implies at least a polynomial decay of the Fourier
coefficients in (8). As is presented in Section A.1 in the appendix, this allows us to obtain
explicit estimates for the truncation errors.
To deduce the existence of equilibrium solutions for the Cahn-Hilliard equation from a
study of the finite-dimensional system (10) additionally requires existence results that are
robust with respect to fixed size perturbations — in particular perturbations of the size
of the truncation errors. This suggests the use of topology and for the purposes of this
paper we employ two concepts, namely self-consistent a priori bounds and the Conley
index . These concepts are recalled in Section 3, which for the most part does not provide
new information, but is rather used to introduce the ideas and notation employed in the
final two sections. The exception is Theorem 3.6 which provides sufficient conditions for
the verification of self-consistent a priori bounds for the Cahn-Hilliard equation on the
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unit square (0, 1)2. The verification of sets and sequences which satisfy strict topologically
self-consistent a priori bounds and specific conditions on the associated Conley index
then guarantee the existence of equilibria satisfying specific bounds for the Cahn-Hilliard
equation.
With the existence question satisfied, Section 4 contains results that establish the unique-
ness of equilibrium solutions. Finally, Section 5 concludes the paper with a brief discussion
of the interactive use of the path-following algorithms in combination with the rigorous
computations. This is necessary to establish existence results over regions of parameter
space as opposed to particular points in parameter space.
As already mentioned, for higher dimensions analytical approaches to equilibria of (1)
are quite rare. Maybe the most striking result is due to Kielhöfer [12]. He views (5)
and (2) on Ω = [0, 1]2 as a bifurcation problem for λ = λ0 fixed and sufficiently large.
It is easy to see that there are two possible bifurcation points from the trivial solution
line c = f(µ) for each mode. The modes are the eigenfunctions of (5) linearized around
u ≡ µ. In case of the unit square the modes are given by wij = φi,j given in (7). Kielhöfer
shows in [12] that the continua for modes of the form wkk and wk0 + w0k connect those
two bifurcation points and are separated from each other (see Theorem 2.3). In the same
spirit is a result of Maier-Paape and Miller [14]. They show that for modes of the form
wkl the two bifurcation points are connected by a continuum of nontrivial solutions, either
separated from other branches as in Kielhöfer’s result, or they have an extra connection
to the trivial solution (see Theorem 2.4). Furthermore they prove that the continua for
modes of the form wkl and wk0 + w0k and fixed µ0 = 0 continue as smooth curves in the
parameter λ and are separated from each other.
Here, besides that we check the analytical results with our rigorous numerical method,
we also find solutions that obviously do not lie on one of the known branches. We refer to
them as secondary bifurcations. Additionally, we gathered results for the mode w12 +w21,
for which at present there is no analytical result. We give results for the modes w01,
w10 + w01, w11, w12 and w12 + w21. Due to limitations in computer space and time, we
only calculated equilibria for λ ≤ 60. Confer also the results of Maier-Paape and Miller
in [13] which cover a much larger λ range, but there the used standard numerical method
is not rigorous.
Before presenting our main results in the next section, we would like to point out that
they can be used to determine the global dynamics of the Cahn-Hilliard equation on the
unit square. In fact, in [15] the results of this paper, namely the existence of equilibria
and knowledge of their Conley indices, is combined with the topological machinery of
the Conley index theory, most notably connection and transition matrices, to provide
possible characterizations of the global attractor and the existence of global bifurcations
as a function of the parameters λ and µ.

Acknowledgements: Konstantin Mischaikow was partially supported by NSF grants
DMS-0511115 and DMS-0107396, DOE grant 97891, and DARPA. The work of Thomas
Wanner was partially supported by NSF grant DMS-0406231 and the U.S. Department
of Energy under Contract DE-FG02-05ER25712.
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2 Equilibrium Solutions on the Square

In this section we present our main results for the Cahn-Hilliard equation on the unit
square in detail. This will be accomplished in Sections 2.3 through 2.6, where we describe
the bifurcation scenario for λ ≤ 60. As a preparation, Sections 2.1 and 2.2 review known
analytical results on the structure of the equilibrium set and survey useful symmetry
arguments.

2.1 Bifurcation Analysis and Analytical Results

We begin by reviewing some results from bifurcation theory. It can easily be seen that the
stationary problem (5) subject to the mass constraint (2) has the trivial solution u ≡ µ
and c = f(µ) = µ − µ3 for arbitrary λ > 0. (Recall that we assume the specific cubic
nonlinearity defined in (3).) In order to study bifurcations from this trivial solution, we
consider the kernel of the linearization of (5) at the homogeneous state u ≡ µ, which is
given by all solutions of the problem

∆v + λ(1− 3µ2)v = 0, in Ω, (11)

∂νv = 0, on ∂Ω.

It can easily be seen that the solutions of this equation have to be eigenfunctions of −∆
on Ω subject to homogeneous Neumann boundary conditions. More precisely, if w denotes
a non-constant eigenfunction of the negative Laplacian with eigenvalue κ > 0, then v = w
solves (11) for

λ =
κ

1− 3µ2
for |µ| < 1√

3
. (12)

Thus, bifurcations from the homogeneous state µ are only possible if µ is contained in the
spinodal region, and in this case

µ = ±
√

1

3
− κ

3λ
for λ > κ .

The relevant eigenfunctions or modes w for −∆ on the square Ω = (0, 1)2 are given by

wkl(x1, x2) = cos(πkx1) · cos(πlx2) , for (x1, x2) ∈ [0, 1]2 ,

as well as k, l ∈ N0, with corresponding eigenvalues κkl := (k2 + l2) · π2. In other words,
the set of possible bifurcation points from the homogeneous state is given by

λij = λij(µ) =
κij

1− 3µ2
, for |µ| < 1√

3
, (13)

or

µ±ij = µ±ij(λ) = ±
√

1

3
− κij

3λ
, for λ > κij . (14)
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In order to state some Rabinowitz-type results for bifurcations occurring at the modes wi0+
w0i and wij, for i, j ∈ N, we first have to introduce some notation. Consider the closed
subspaces

Xk+α
ij =

{
v

∣∣∣∣
∫

Ω

vdx = 0

}
∩ Ck,α(R2) ∩ Sij

of the usual Hölder spaces for k ∈ N0 and α ∈ [0, 1], where

Sij =

{
w

∣∣∣∣ w(x, y) = w(−x, y) = w(x,−y) = w

(
2

i
− x, y

)

= w

(
x,

2

j
− y

)
= w

(
1

i
− x,

1

j
− y

)}
, (15)

as well as

Xk+α
i =

{
v

∣∣∣∣
∫

Ω

vdx = 0

}
∩ Ck,α(R2) ∩ Si ,

where

Si =

{
w

∣∣∣∣ w(x, y) = w(−x, y) = w(x,−y) = w

(
2

i
− x, y

)

= w

(
x,

2

i
− y

)
= w(y, x)

}
. (16)

Then the mapping G defined by

G : R× R×X2+α
ij → Xα

ij or G : R× R×X2+α
i → Xα

i , with

G(µ, λ, v) = ∆v + λf(v + µ)− λ

∫

Ω

f(v + µ)dx

is smooth. Moreover, zeros of G correspond to solutions u = v + µ of (5).
Now fix λ0 > κij or λ0 > κi0. It can easily be shown that 0 is a simple eigenvalue
of DvG(µ±ij, λ0, 0) or DvG(µ±i0, λ0, 0) with eigenfunction wij or wi0 + w0i, respectively.
Thus, the following Rabinowitz-type results are evident; see [14] for more details.

Remark 2.1 Fix λ0 > κij and µ±ij = µ±ij(λ0). Then for all i, j ∈ N the points (µ+
ij, 0) and

(µ−ij, 0) are bifurcation points of global nontrivial continua

C+
ij (λ0) = cl{(µ, v) ∈ R×X2+α

ij | G(µ, λ0, v) = 0, v 6≡ 0} 3 (µ+
ij, 0) and

C−ij (λ0) = cl{(µ, v) ∈ R×X2+α
ij | G(µ, λ0, v) = 0, v 6≡ 0} 3 (µ−ij, 0)

subject to the Rabinowitz alternative, i.e., the branches are either unbounded in R×X 2+α
ij

or meet the trivial solution line at a different bifurcation point of the form (µ̃, 0).
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Remark 2.2 Analogously, fix λ0 > κi0 and µ±i0 = µ±i0(λ0). Then for all i ∈ N the points
(µ+

i0, 0) and (µ−i0, 0) are bifurcation points of global nontrivial continua

C+
i (λ0) = cl{(µ, v) ∈ R×X2+α

i | G(µ, λ0, v) = 0, v 6≡ 0} 3 (µ+
i0, 0) and

C−i (λ0) = cl{(µ, v) ∈ R×X2+α
i | G(µ, λ0, v) = 0, v 6≡ 0} 3 (µ−i0, 0)

subject to a Rabinowitz alternative.

In [12], Kielhöfer showed that for fixed λ0 > κi0 the two bifurcation points µ+
i0 = µ+

i0(λ0)
and µ−i0 = µ−i0(λ0) are connected through the continua C+

i (λ0) and C−i (λ0), i.e., C+
i (λ0)

and C−i (λ0) coincide. For different modes, however, these global continua are separated,
i.e., C±i (λ0) ∩ C±j (λ0) = ∅ for i 6= j. He also obtained a similar result for the bifurcation
points µ+

ii = µ+
ii(λ0) and µ−ii = µ−ii(λ0), with λ0 > κii. For this, Kielhöfer considers the

spaces Xk+α
ii together with an additional symmetry, namely Ŝ := {u | u(x, y) = u(y, x)}.

This gives rise to nontrivial continua Ĉ±ii (λ0) which connect the two bifurcation points and

are therefore equal. Again, they are separated for different modes, i.e., Ĉ±ii (λ0)∩Ĉ±jj(λ0) = ∅
for i 6= j. Using our notation, Kielhöfer obtained the following result in [12].

Theorem 2.3 For fixed i ∈ N and λ0 > κi0, we have (µ−i0, 0) ∈ C+
i (λ0) and (µ+

i0, 0) ∈
C−i (λ0), and therefore C+

i (λ0) = C−i (λ0). For λ0 > κii, one obtains both (µ−ii , 0) ∈ Ĉ+
ii (λ0)

and (µ+
ii , 0) ∈ Ĉ−ii (λ0), i.e., Ĉ+

ii (λ0) = Ĉ−ii (λ0). Furthermore, these global continua are
separated from each other.

Another result along these lines can be found in [14].

Theorem 2.4 Choose i, j ∈ N and λ0 > κij fixed. Then the continuum C+
ij (λ0) of non-

trivial solutions of (5) corresponding to wij, which bifurcates from the trivial solution at
the point (µ+

ij(λ0), 0) is equal to the continuum C−ij (λ0), which bifurcates from the point

(µ−ij(λ0), 0). It either is separated from the continua C±
ĩj̃

(λ0) for all (̃i, j̃) ∈ N
2 \ {(i, j)}

with i|̃i and j|j̃, or, there is some other trivial solution (m̃, 0) ∈ C+
ij (λ0) = C−ij (λ0) with

m̃ 6= m±
ij(λ0). In the latter case, the continuum C+

ij (λ0) contains a loop, i.e., the two parts
of C+

ij (λ0) bifurcating at (µ+
ij(λ0), 0) in different directions are connected through a path in

C+
ij (λ0) that does not meet the trivial solution line.

In addition, [14] contains a result for fixed µ0 = 0. For this, one views equation (5)
as a bifurcation problem in λ for fixed mass µ = µ0, where |µ0| < 1/

√
3. Then 0 is a

simple eigenvalue of DvG(µ0, λij, 0) or DvG(µ0, λi0, 0), and a similar argument furnishes
the following result.

Remark 2.5 Fix µ0 ∈ (−1/
√

3, 1/
√

3), λij = λij(µ0), and λi0 = λi0(µ0). Then for all
i, j ∈ N the points (λij, 0) or (λi0, 0) are bifurcation points of global nontrivial continua

Cij(µ0) = cl{(λ, v) ∈ R×X2+α
ij | G(µ0, λ, v) = 0, v 6≡ 0} 3 (λij, 0) and

Ci(µ0) = cl{(λ, v) ∈ R×X2+α
i | G(µ0, λ, v) = 0, v 6≡ 0} 3 (λi0, 0)

subject to a Rabinowitz alternative.
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In particular for µ0 = 0, we add an additional symmetry to our spaces Xi and Xij, namely

si :=

{
w

∣∣∣∣ w(x, y) = −w
(

1

i
− y,

1

i
− x

)}

and

sij :=

{
w

∣∣∣∣ w(x, y) = −w
(

1

i
− x, y

)}
,

respectively, to define the spaces

X̃k+α
i := Xk+α

i ∩ si and X̃k+α
ij := Xk+α

ij ∩ sij .

Then the smooth mapping G̃ defined by

G̃ : R× X̃2+α
ij → X̃α

ij or G̃ : R× X̃2+α
i → X̃α

i ,

G̃(λ, v) = ∆v + λf(v) (17)

is well defined. For µ0 = 0, one obtains the possible bifurcation points λij(0) = κij and
λi0(0) = κi0, and arguing as above one can establish the following result.

Remark 2.6 For all i, j ∈ N the points (κij, 0) and (κi0, 0) are bifurcation points of global
nontrivial continua

C̃ij = cl{(λ, v) ∈ R× X̃2+α
ij | G̃(λ, v) = 0, v 6≡ 0} 3 (κij, 0) and

C̃i = cl{(λ, v) ∈ R× X̃2+α
i | G̃(λ, v) = 0, v 6≡ 0} 3 (κi0, 0)

subject to a Rabinowitz alternative.

Finally, [14] contains the following result.

Theorem 2.7 Choose i, j ∈ N and µ0 = 0. The continuum C̃ij (respectively C̃i) of non-
trivial solutions of (5) corresponding to wij (respectively wi0 +w0i), which bifurcates from
the trivial solution at the point λij(0) (respectively λi0(0)), consists of two differentiable
curves which are parametrized with respect to λ. Furthermore the continuum does not
return to the trivial solution line.

2.2 Transformations and Symmetry of Equilibria

Due to the symmetries of our base domain, many of the equilibrium solutions of (5) can
be transformed into each other by suitable symmetry operations. In this brief section we
introduce the terminology which will be used in this context.
Let u0 be a solution of (5) subject to (2) on the unit square Ω = (0, 1)2, and with parameter
values (µ0, λ0, c0). Then we can extend u0 by even reflections to the whole of R

2, and the
resulting function is smooth. If we now define the function

vk(x, y) := u0(kx, ky) , for x, y ∈ (0, 1)2 ,

8
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Figure 2: Bifurcation diagram for solutions of (5) subject to (2) for µ0 = 0

and k ∈ N, then vk is also a solution of (5) and (2), yet this time with parameter
values (µ0, k

2λ0, c0). In addition, if we let m : u 7→ −u denote the multiplication of a
function by −1, then mu0 is also a solution of (5) and (2), but this time for the parameter
values µ = −µ0, λ = λ0, and c = −c0. Finally, letR denote the counter-clockwise rotation
about 90 degrees around the center (1/2, 1/2) of Ω, and let T be the reflection at the line
x = 1/2. More precisely, for u : [0, 1]2 → R, we have

(Ru)(x, y) = u(y, 1− x) and (T u)(x, y) = u(1− x, y) .

The symmetry group of the unit square, the dihedral group D4, consists of four rotations
around (1/2, 1/2) by multiples of 90 degrees, as well as four reflections, namely the reflec-
tions at the line x = 1/2, the line y = 1/2, as well as the diagonal and the anti-diagonal
of the square. Note that the actions R and T generate all symmetries of the square. For
example, the reflection at the diagonal of the square is given by T R, since

(T Ru)(x, y) = (Ru)(1− x, y) = u(y, x) .

Similarly, the reflection at the antidiagonal is given by RT , which shows that R and T
do not commute. Now choose γ ∈ D4 arbitrary. If u0 is a solution of (5) subject to the
mass constraint (2) on Ω = (0, 1)2, and with parameters (µ0, λ0, c0), then γu0 is also a
solution with the same parameter values.

2.3 Bifurcation Diagram for µ0 = 0

After these preliminary discussions, we begin with presenting the main results of this
paper, and the current section focuses on an overview in terms of the bifurcation diagram
for vanishing total mass.
Due to (13) there are four possible bifurcation points for µ0 = 0 and λ ≤ 60, namely
λ01 = λ10 = κ10 = π2, λ11 = κ11 = 2π2, λ02 = λ20 = κ20 = 4π2 and λ12 = λ21 = κ12 = 5π2.
Figure 2 contains the bifurcation diagram for µ0 = 0. In this figure, the straight line at
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the top represents the trivial solution line u ≡ 0. The solution branches are shown as
functions of the parameter λ, the vertical axis indicates the energy Eλ of the equilibria
defined in (4). Each curve corresponds to a particular eigenfunction of the linearization
of the Cahn-Hilliard equation at the respective bifurcation point. For example, for the
first bifurcation point λ10 two branches are shown, one for the mode w01, and one for
the superposition w10 + w01. Yet, these branches are only the representatives within a
symmetry class. Thus, while Figure 2 shows only two bifurcating branches at λ10, there
are in fact four such branches, two each for the two depicted ones. The remaining branches
correspond to the modes w10 and w10−w01, and the collection of all four branches together
gives rise to eight equilibria for each λ > λ10. Also the remaining branches in Figure 2
show only the relevant modes in each symmetry class. Related branches are suppressed,
i.e., we omit modes w20, w02, w20 ± w02, w21, and w12 − w21.
A closer look at the branches in Figure 2 reveals that the shown curves exhibit a certain
nonuniform thickness. This is due to the fact that for each value of λ the branch contains
an energy interval, and we can actually prove the existence of equilibria within these
intervals. More details can be found in the following sections.
In Figure 2 it is hard to distinguish between the branches that correspond to the modes w12

and w12 + w21. A more detailed representation is contained in Figure 3, which shows for
example that the mode w12 solutions have lower energy. By using a sufficient condition for
uniqueness which will be presented in Theorem 4.7 below, we can establish the existence of
a unique solution in each of the computed regions for every fixed λ. See also Theorem 2.15.
Hence, the two branches shown in Figure 3 are in fact separated, and only due to the
projection onto the (λ,Eλ)-plane do they seem to overlap.
One deficiency of our method is that it does not work close to the bifurcation points.
Figure 4 shows a close-up of a neighborhood of the bifurcation point λ11 = 2π2 in Figure 2.
The black line corresponds to the trivial solution, the point (λ11, 0) is marked with a
circle. Notice that the area which contains the branch of nontrivial solutions starts only at
λ = 2π2+0.0005. Similarly, for the remaining branches in Figure 2, the actually computed
nontrivial branches start at λ = π2 + 0.0025 and λ = 5π2 + 0.0025, respectively. We will
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Figure 6: Snapshots for mode w11 solutions of (5) for µ0 = 0

see below that our uniqueness result applies to the complete w11-branch in Figure 2, and
therefore the overlap of the trivial solution and the area for the nontrivial solution branch
in Figure 4 is again a consequence of the projection on the (λ,Eλ)-plane.
Finally, the w10 +w01-branch in Figure 2 undergoes a secondary bifurcation of pitchfork-
type at λ ≈ 51.8485. Unfortunately, the energy values of the two branches are extremely
close, which makes it impossible to resolve them in Figure 2. We will address this issue
in more detail later. See Section 2.5, in particular Figures 16 and 17.

2.4 The Mode w11

In this and the following two sections we focus on each of the three bifurcation points
in Figure 2 and discuss the bifurcating branches. Unlike in the previous section, we will
also consider the effects of mass variation. We begin in this section with the bifurcation
point λ11. For total mass µ0 = 0, the w11-branch emanating at the bifurcation is shown
in Figure 5. In fact, the methods of this paper allow us to derive the following result.

Theorem 2.8 (Mode w11 for µ0 = 0) There exists a branch of solutions of (5) subject
to the constraint (2) for µ0 = 0 and λ ∈ [2π2 + 0.0005, 60] as shown in Figure 5. For
fixed λ, these solutions are unique in a small neighborhood. The errors in the maximum
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norm along the path, denoted by δC0 , are less than 0.00314. The errors in the energy,
denoted by δEλ

, are less than 0.00016. More precisely, this error is the length of the boxes
in the energy direction of the branch shown in Figure 5.

Theorem 2.8 was obtained using the rigorous computational techniques which were out-
lined in the introduction, and which will be described in more detail in the sections to
come. In order to show the geometry of the solutions along the branch guaranteed by
the theorem, Figure 6 contains contour plots of sample numerically determined solutions
along the branch. The position of each of these solutions is marked by a red dot in
Figure 5. Above each contour plot, the corresponding λ-value is shown, together with
the maximal distance within which there actually exists a true equilibrium solution. The
colours in the contour plot vary from dark red, which corresponds to the value +1, to
dark blue, which represents the value −1. This convention will be used for all the contour
plots in this paper.
As we mentioned in the previous section, our method cannot resolve the structure at the
bifurcation point. Hence, we are not able to prove that the branch of Theorem 2.8 is a
part of the branch C̃11 introduced in Section 2.1. However, the fact that this branch starts
near the bifurcation point and that its solutions exhibit the correct geometry supports
this conjecture. Of course, there are two curves bifurcating from the trivial solution u ≡ 0
at λ = 2π2. In addition to the one shown in Figures 5 and 6, there is also the solution
curve which can be obtained by an application of the action m, i.e., by multiplication
with −1.
We now turn our attention to the effects of mass variation. Figure 7 shows the solution
curve of the w11 mode for fixed λ0 = 30 in the (µ, c)-plane, see (2) and (6). The black
line corresponds to the trivial solution u ≡ 0, c = µ − µ3. The blue and the red curves
are in fact areas which contain a solution branch. The intersection point of the blue area
and the trivial solution line in the center of the figure is artificial and only due to the
projection of the branch onto the (µ, c)-plane. This is also true for the intersections of
the red and blue curves. By using our method, we can establish the following result.
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mode µ1 c1 µ2 c2 δC0 δµ δc uniqueness
w11 0 0 0.1071 0.0757 0.0061 0.0003 0.0004 partly
w11 0.1073 0.0758 0.3433 0.2807 0.0006 0.0012 0.0005 partly
w11 0.3434 0.2808 0.3377 0.2991 0.0013 0.0001 0.0001 partly
s11 0.1075 0.0759 0.3433 0.2806 0.0043 0.0005 0.0005 partly

Table 1: Table of branches from (µ1, c1) to (µ2, c2) at λ0 = 30, for µ ≥ 0

Theorem 2.9 (Mode w11 at λ0 = 30)

(i) There exists a solution branch for λ0 = 30 from (µ, c) = (−0.107176,−0.075736) to
(µ, c) = (0.107176, 0.075736). These solutions are unique in a small neighborhood (for
µ or c fixed) between (µ, c) = (−0.104175,−0.073673) and (µ, c) = (0.104175, 0.073673).
The errors δC0 in the maximum norm along the branch are less than 0.00608. The error
in µ, denoted by δµ, is less than 0.00025, the error in c, denoted by δc, is less than
0.00038. These errors are the length of the boxes in the µ and c direction. Furthermore,
from (µ, c) = (0.107228, 0.075772) to (µ, c) = (0.343395, 0.280698), and similarly from
(µ, c) = (−0.107228,−0.075772) to (µ, c) = (−0.343395,−0.280698), there is a branch
for λ0 = 30 with δC0 < 0.00052, δµ < 0.00113, and δc < 0.00046. The solutions are
unique from (µ, c) = (0.114287, 0.080610) to (µ, c) = (0.342174, 0.272221), as well as from
(µ, c) = (−0.114287,−0.080610) to (µ, c) = (−0.342174,−0.272221). Finally, there exists
a branch of solutions from (µ, c) = (0.343396, 0.280699) to (µ, c) = (0.337654, 0.299154),
and similarly from (µ, c) = (−0.343396,−0.280699) to (µ, c) = (−0.337654,−0.299154),
with δC0 < 0.00129, δµ < 0.00005, and δc < 0.00002. This branch consists of unique
solutions between (µ, c) = (0.343397, 0.280721) and (µ, c) = (0.338226, 0.298463), and
similarly between (µ, c) = (−0.343397,−0.280721) and (µ, c) = (−0.338226,−0.298463).
These five branches are denoted by w11 and colored in blue in Figure 7.

(ii) There are solution branches for fixed λ0 = 30 from (µ, c) = (0.107459, 0.075868)
to (µ, c) = (0.343392, 0.280694), and similarly from (µ, c) = (−0.107459,−0.075868) to
(µ, c) = (−0.343392,−0.280694). They are colored in red and denoted by s11 in Figure 7.
Solutions are unique from (µ, c) = (0.110591, 0.077269) to (µ, c) = (0.341452, 0.278271),
and we have δC0 < 0.0043, δµ < 0.00042 and δc < 0.00042.

We summarize the essential information pertaining to the branches of Theorem 2.9 for
positive µ in a table. Note that in Table 1 the data is given with only four decimal
places. The errors δC0 , δµ, and δc are rounded up, the starting and end points of the
curves are rounded towards the directions of the paths, i.e., if a path starts at the point
(µ, c) = (0.107228, 0.075772) and increases in both µ and c directions, then both values
are rounded up to (µ, c) = (0.1073, 0.0758). We will follow this convention in all future
tables as well.
As expected, our method does not apply near the bifurcation points

µ±11 = ±
√

1

3
− 2π2

3λ0

, with λ0 = 30 .
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mode µ̃1 c̃1 µ̃2 c̃2
w11 0 0 0.1041 0.0736
w11 0.1143 0.0807 0.3421 0.2722
w11 0.3434 0.2808 0.3383 0.2964
s11 0.1106 0.0773 0.3414 0.2782

Table 2: Uniqueness of the solutions on the branches in Table 1 can be established between
the parameter values (µ̃1, c̃1) and (µ̃2, c̃2)
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Figure 9: Bifurcation diagram for mode
w11 solutions of (5) for fixed λ0 = 60
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However, the formulation of Theorem 2.9 shows that the method also fails near the four
points (µ, c) = ±(0.3433955, 0.2806985) and (µ, c) = ±(0.1072, 0.07575). Figure 8 con-
tains a close-up of one of these locations. It can clearly be seen that there is a gap in the
blue path — and that the end of the red branch is very close to this gap. As we will see
in Section 4, the starting point for our method has to be a hyperbolic equilibrium of the
finite-dimensional system (10). Thus, the linearization of (10) at this equilibrium cannot
have a vanishing eigenvalue, and even eigenvalues close to 0 will lead to the failure of our
approach. This situation certainly arises if the linearization of the full infinite-dimensional
system (65) at an equilibrium has a nontrivial kernel — which is the case at any secondary
bifurcation point. We believe that this is exactly what happens in Figure 8, see also Fig-
ure 7. It seems plausible that the red branch in these figures bifurcates from the blue
one. Scenarios such as this will be encountered frequently in the following, and we will
henceforth simply refer to this situation as secondary bifurcation. In fact there are two
branches bifurcating from the blue curve. They are linked by symmetry and therefore
have the same (µ, c)-values, see also Figure 13 below.
Now consider the fixed parameter value λ0 = 60. Figures 9 and 10 contain the red and
blue areas which enclose actual solutions on the primary bifurcating branch and on the
secondary one, respectively. As before, the black curve represents the trivial solution,
and the intersection between the blue and black curves in Figure 9 is only due to the
projection onto the (µ, c)-plane. Figure 10 contains a more detailed view of the upper
half of the branches in Figure 9, i.e., of the branches with nonnegative µ and c. Finally, in
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Figure 11: Snapshots for mode w11 solutions of (5) for λ0 = 60

Figure 11 we present snapshots of functions which are contained in the regions describing
the branches, and are therefore prototypical of the observed geometries. The locations of
these functions are indicated by red dots in Figure 10. Notice that all of these snapshots
are located on the upper branch. The corresponding functions on the lower branch can
be obtained by applying the action mR.
Recall that for the mode w11 we can apply Kielhöfer’s result for continua with fixed pa-
rameter λ = λ0. Therefore, the continuum Ĉ+

11(λ0) = Ĉ−11(λ0) connects the two bifurcation
points µ+

11 and µ−11, see also Theorem 2.3. A local analysis near the bifurcation point µ+
11

shows that the continuum consist of two paths which can be parametrized as

v(s) = sw11 + o(s) and µ(s) = µ+
11 + o(s) for s ∈ (−δ, δ) , (18)

and δ > 0 sufficiently small. Now let Kw11
= Kw11

(λ0) denote the branch which con-
tains v(s) for s ∈ (0, δ), and let K−w11

= K−w11
(λ0) be the one with v(s) for s ∈ (−δ, 0).

Based on the geometries shown in Figure 11, we suggest that the branch described in
Table 3 below is part of Kw11

⊂ Ĉ+
11(λ0) for λ0 = 60. Remember that Ĉ+

11(λ0) ⊂ X2+α
11 ∩ Ŝ,

where u ∈ X2+α
11 implies u = R2u, and from u ∈ Ŝ we obtain u = T Ru. Together, we

have u = R2u = R2T Ru = RT u, where we used the identity RT R = T . In other
words, u is invariant under the reflection at the diagonals. By applying the action R,
one obtains another branch of solutions with identical values of µ and c. This is the
other branch K−w11

of Ĉ+
11(λ0) which bifurcates at µ+

11. We summarize the results of our
computations relating to Figures 9 and 10 in the following theorem.

Theorem 2.10 (Mode w11 for λ0 = 60) There exist branches of solutions of (5) subject
to the constraint (2) for λ0 = 60 as shown in Figure 10. Detailed information on the
endpoints of these branches in the (µ, c)-plane, as well as uniqueness assertions, can be
found in Tables 3 and 4.
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mode µ1 c1 µ2 c2 δC0 δµ δc uniqueness
w11 0 0 0.0052 0.0048 0.0003 0.0001 0.0001 no
w11 0.0054 0.0049 0.4835 0.3661 0.0045 0.0007 0.0008 partly
w11 0.4834 0.3662 0.4736 0.3671 0.0095 0.0012 0.0001 no
s11 0.0054 0.0049 0.4834 0.3661 0.0091 0.0008 0.0006 partly

Table 3: Table of branches from (µ1, c1) to (µ2, c2) at λ0 = 60 for µ > 0

mode µ̃1 c̃1 µ̃2 c̃2
w11 0.0292 0.0261 0.491 0.3647
s11 0.4652 0.3355 0.4795 0.3622

Table 4: Uniqueness of the branches in Table 3 holds from (µ̃1, c̃1) to (µ̃2, c̃2)

The branch s11 described in Table 3 is a secondary bifurcation of the part Kw11
of the

continuum Ĉ+
11(λ0) in the sense mentioned earlier. Figure 12 contains snapshots of sam-

ple solutions along the path. Their locations are indicated by black dots in Figure 10.
Elements on the red branch in the lower left part of Figure 9 can be obtained by the ac-
tion mR. Notice that according to the geometry of the functions in Figure 12, s11 returns
to the branch from which it bifurcates, thereby breaking the symmetry RT . Hence, by
applying RT we obtain another branch with identical µ and c values which bifurcates
from and returns to Kw11

⊂ Ĉ+
11(λ0) at the same points. In Figure 13 we give a sketch

of this secondary bifurcation. It indicates that the branch Kw11
for fixed λ0 = 60 is con-

nected with itself through the branches s11 and RT (s11). Applying the action R furnishes
a connection of K−w11

with itself through the branches R(s11) and R2T (s11).
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Figure 12: Snapshots for solutions on the branch s11
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Figure 14: Energy for mode w01 solutions with µ0 = 0

2.5 The Modes w01 and w10 + w01

In this section we consider the solution branches associated with modes w01 and w10+w01.
We begin with the mode w01 for µ0 = 0.

Theorem 2.11 (Mode w01 for µ0 = 0) For total mass µ0 = 0 there exists a branch of
unique solutions of (5) subject to (2) for λ ∈ [π2 +0.0025, 60] as shown in Figure 14, with
δC0 < 0.00032 and δEλ

< 0.00029.

The geometry of sample solutions on this branch is shown in Figure 15, the locations of
these solutions are indicated by red dots in Figure 14. Notice that due to the shape of the
solutions, this branch is presumably the ODE-branch. Through the action m one obtains
the other branch of w01 solutions of (5) subject to (2) for µ0 = 0. The w10 solutions can
be generated by applying T R. Next, we turn our attention to mode w10 + w01 solutions
for vanishing total mass µ0 = 0.

Theorem 2.12 (Mode w10 + w01 for µ0 = 0) We consider problem (5) subject to the
mass constraint (2) and with nonlinearity (3).
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Figure 15: Snapshots for mode w01 solutions with µ0 = 0
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(i) There exists a branch of solutions for λ ∈ [π2+0.0025, 51.84797] as shown in Figure 16,
with δC0 < 0.00285 and δEλ

< 0.0011. It is unique for λ ∈ [π2 + 0.0025, 51.26511].
Furthermore there exists a branch of solutions for λ ∈ [51.84914, 60] as shown in Figure 16,
with δC0 < 0.00055, δEλ

< 0.00017 and uniqueness for λ ∈ [52.84354, 60].

(ii) There exists a branch of solutions for λ ∈ [51.84828, 60] as shown in Figure 16, with
error bounds δC0 < 0.00497 and δEλ

< 0.00022. It is unique for λ ∈ [54.19267, 60].
The branches in (i) and (ii) to the right of the bifurcation point at λ ≈ 51.85 are distinct.

It was already mentioned in Section 2.3 that the primary branch undergoes a pitchfork
bifurcation at λ ≈ 51.8485. The energy values of the solutions on the secondary branches
are very close to the ones on the primary branch, and therefore the branches could not be
easily distinguished in Figure 2. In Figure 16 we colored the bifurcating path described in
Theorem 2.12(ii) in red, a more detailed view of the branches for λ ∈ [50, 60] can be found
in Figure 17. We would like to point out that at least for λ = 60, the energy of the red
branch is lower than the energy of the blue primary branch. As before, we cannot prove the
existence of the bifurcation rigorously. We observe that our method fails for λ ≈ 51.8485,
since the linearization has an eigenvalue near zero. For λ ∈ [π2 + 0.0025, 51.84797] we
find one branch, for λ ∈ [51.8492, 60] there are two branches — which is indicative of the
bifurcation.
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Figure 18: Snapshots for mode w10 + w01 solutions with µ0 = 0 on the blue branch

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

λ = 52.01, δC0 = 0.0006 λ = 55.92, δC0 = 0.00028 λ = 59.93, δC0 = 0.00026

Figure 19: Snapshots for mode w10 + w01 solutions with µ0 = 0 on the red branch

Figure 18 shows level sets of sample functions which are close to actual equilibria on
the branch in Theorem 2.12(i), i.e., this branch appears to be part of C̃1 which was

introduced in Section 2.1; see Remark 2.6. According to Theorem 2.7, C̃1 consists of two
curves bifurcating from the trivial solution line u ≡ 0 at λ = π2, and one can generate the
second branch by applying m to the computed one. There is no secondary bifurcation
from C̃1 in the corresponding fixed-point space; see Remark 2.6. Hence, the new branch
must break one of the symmetries, in fact, it breaks the symmetry w = mRT w. This
can clearly be seen in Figure 19, where snapshots of functions in the red regions of
Figures 16 and 17 are depicted. The locations of these functions are indicated by black
dots. By applying mRT to this branch, we get a branch of solutions with the same values
of λ and Eλ, but with negated c values. Moreover, if the red branch actually bifurcates
from C̃1, then the transformed branch has to bifurcate from C̃1 at the same bifurcation
point, since C̃1 is invariant under the action mRT .
We now turn our attention to fixing the parameter λ = λ0 and studying variations in the
total mass µ. Figure 20 shows the situation for λ0 = 30. In addition to continuations of
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Figure 20: Bifurcation diagram for mode w01 and w10 + w01 solutions for λ0 = 30

the w01 and w10+w01 branches, we found a secondary bifurcation that creates a connecting
branch between them. More precisely, we have the following result.

Theorem 2.13 (Modes w01 and w10 + w01 for λ0 = 30) There exist branches of so-
lutions of (5) subject to the constraint (2) for λ0 = 30 as shown in Figure 20. Detailed
information on the endpoints of these branches in the (µ, c)-plane, as well as uniqueness
assertions, can be found in Tables 5 and 6.

The locations of the branches guaranteed by this theorem are indicated in Figure 20.
The branches corresponding to the w01 and the w10 + w01 modes are shown in blue, the
secondary connection between them is shown in red. The situation is similar for λ0 = 60.
One can establish the existence of a connecting branch s1

01 between the w01 and w10 +w01

solution branches. Yet in addition, we also obtain another small branch which bifurcates
from the w01-path and returns to it. This new branch is denoted by s2

01. Figure 21 shows
the bifurcation diagram for λ0 = 60, and a close-up can be found in Figure 22. The
branches in this latter figure are guaranteed by the following result.

Theorem 2.14 (Modes w01 and w10 + w01 for λ0 = 60) There exist branches of so-
lutions of (5) subject to the constraint (2) for λ0 = 60 as shown in Figure 21. Detailed
information on the endpoints of these branches in the (µ, c)-plane, as well as uniqueness
assertions, can be found in Tables 7 and 8.

mode µ1 c1 µ2 c2 δC0 δµ δc uniqueness
w01 0 0 0.3568 0.0628 0.0003 0.0003 0.0006 partly
w01 0.3569 0.0629 0.473 0.3671 0.0072 0.0012 0.0006 partly

w10 + w01 0 0 0.1914 0.106 0.0003 0.0003 0.0006 partly
w10 + w01 0.1915 0.1061 0.4732 0.3671 0.0234 0.0008 0.0006 partly

s1
01 0.1915 0.106 0.3568 0.0629 0.0003 0.0007 0.0007 partly

Table 5: Table of branches from (µ1, c1) to (µ2, c2) at λ0 = 30 for µ > 0
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Figure 21: Bifurcation diagram for w01

and w10 + w01 solutions at λ0 = 60
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Figure 22: Close-up of Figure 21

The geometry of solutions on the w01 branch guaranteed by the above theorem is shown in
Figure 23, the corresponding locations are indicated by red dots in Figure 22. Thus, this
branch appears to be the ODE-branch. Moreover, this branch is part of the continuum
that connects the bifurcation points

µ+
01 =

√
1

3
− κ01

180
and µ−01 = −

√
1

3
− κ01

180
.

See also (14) and [19]. The branches for positive and negative total mass µ are re-
lated by the action mR2T , and these solutions have the symmetry T . There are two
branches which correspond to w01 and bifurcate from µ+

01. These branches are called Kw01

and K−w01
, and their existence follows readily from a local analysis at the bifurcation

point µ+
01, see also the similar situation (18). The branch K−w01

can be obtained from Kw01

by applying the action R2T . In addition, an application of the actions T R and RT
to Kw01

generates new branches Kw10
and K−w10

, respectively. In other words, we have

Kw01
= T (Kw01

) , K−w01
= R2T (Kw01

) , Kw10
= T R(Kw01

) , K−w10
= RT (Kw01

) .

Thus, every solution on Kw01
gives rise to four different solutions with unchanged values

of µ and c, through the application of suitable symmetry actions.
The snapshots in Figure 24 contain contour plots of sample solutions on the w10 + w01

branch described in Table 7, the locations of these solutions are indicated by red dots

mode µ̃1 c̃1 µ̃2 c̃2
w01 0 0 0.355 0.0618
w01 0.3587 0.0639 0.473 0.3667

w10 + w01 0 0 0.1841 0.1038
w10 + w01 0.1988 0.1083 0.4808 0.3665

s1
01 0.1958 0.1049 0.3562 0.063

Table 6: Uniqueness of the branches in Table 5 holds from (µ̃1, c̃1) to (µ̃2, c̃2)
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mode µ1 c1 µ2 c2 δC0 δµ δc uniqueness
w01 0 0 0.4762 0.0287 0.005 0.0003 0.0008 partly
w01 0.4763 0.0288 0.5843 0.1845 0.0013 0.0012 0.006 partly
w01 0.5844 0.1845 0.5687 0.2997 0.0007 0.0001 0.0001 partly
w01 0.5686 0.2998 0.5278 0.3807 0.0082 0.001 0.0002 partly

w10 + w01 0 0 0.1031 0.0743 0.0156 0.0007 0.0002 no
w10 + w01 0.1045 0.0746 0.5299 0.3807 0.0095 0.0017 0.0019 partly

s1
01 0.1043 0.0744 0.4757 0.0289 0.0106 0.0009 0.0008 partly
s2
01 0.5843 0.1846 0.5687 0.2996 0.0081 0.0004 0.0002 partly

Table 7: Table of branches from (µ1, c1) to (µ2, c2) at λ0 = 60 for µ > 0

mode µ̃1 c̃1 µ̃2 c̃2
w01 0 0 0.4712 0.027
w01 0.4807 0.0031 0.5842 0.1823
w01 0.5845 0.1868 0.5691 0.2982
w01 0.5684 0.3005 0.528 0.3805

w10 + w01 0.6874 0.1958 0.5543 0.378
s1
01 0.1641 0.0682 0.4286 0.0364
s2
01 0.5818 0.2042 0.577 0.2782

Table 8: Uniqueness of the branches in Table 7 holds from (µ̃1, c̃1) to (µ̃2, c̃2)
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Figure 23: Snapshots for solutions on the branch w01 for λ0 = 60
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Figure 24: Snapshots for solutions on the branch w10 + w01 for λ0 = 60

in Figure 22. The parameter values for the first functions in Figure 23 and 24 are the
same, in both cases we have (µ, c) = (0, 0), hence only one dot is visible in Figure 22.
It is possible to apply Kielhöfer’s connection result, Theorem 2.3, to mode w10 + w01

solutions. It states that for λ0 > κ01 = π2 the continuum C+
1 (λ0) = C−1 (λ0) connects

the two bifurcation points µ+
10 and µ−10. This continuum splits into two parts, denoted

by Kw10+w01
and K−w10−w01

, see also (18). Assuming that the path described in Table 7 is
a part of C+

1 (λ0) for λ0 = 60, and therefore of Kw10+w01
, the solutions on this path have

the symmetry T R. The elements of the branch with negative µ are obtained by applying
the action mRT to the path with positive mass. Through the application of RT one
obtains K−w10−w01

. Finally, the paths Kw10−w01
and K−w10+w01

are generated from Kw10+w01

through the actions R3 and T . Altogether, we have

Kw10+w01
= T R(Kw10+w01

) , K−w10−w01
= RT (Kw10+w01

) ,

Kw10−w01
= R3(Kw10+w01

) , K−w10+w01
= T (Kw10+w01

) .

Besides the above primary branches, Theorem 2.14 also guaranteed secondary branches
as shown in Figures 21 and 22. One of these connects the continuum C+

1 (λ0) of solutions
corresponding to w10 + w01 with the continuum of the ODE solutions. Figure 25 shows
snapshots of functions on this connecting branch, the locations of which are indicated by
black dots in Figure 22. Notice that the branch s1

01 breaks the symmetry T R of C+
1 (λ0),

as well as the symmetry T of the ODE-branch. Its elements are no longer constant in
any of the coordinate directions, and therefore do not correspond to solutions of the one-
dimensional Cahn-Hilliard equation. Applying the action T to the branch s1

01 furnishes
a path between Kw01

and Kw10−w01
, since the solutions in Kw01

are invariant under T . A
similar argument shows that T R(s1

01) connects Kw10+w01
and Kw10

. The full secondary
bifurcation scheme is sketched in Figure 27.
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Figure 25: Snapshots for solutions on the branch s1
01 for λ0 = 60
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Figure 26: Snapshots for solutions on the branch s2
01 for λ0 = 60

Finally, Figure 26 indicates the geometries of functions on the s2
01-branch described in

Table 7, see also Figures 21 and 22. Notice that this secondary branch returns to the
branch it bifurcated from. Moreover, since it does not break the symmetry T , it is
impossible to generate the other bifurcating branch by applying this action. To address
this issue, let T2 denote the reflection at the line x = 1/4. As before we assume implicitly
that all solutions on the unit cube have been extended to all of R

2 by even reflections. If
we now apply T2, one obtains a solution branch which bifurcates from the ODE-branch
and returns to Kw01

at the same points as s2
01, since the elements of the ODE-branch are

constant in the x-direction, and hence invariant under T2. These secondary bifurcations
are sketched in Figure 28. By applying appropriate actions to s2

01, similar statements can
be made about K−w01

, Kw10
, and K−w10

.

2.6 The Modes w12 and w12 + w21

To conclude this section, we finally address the bifurcation structure associated with
the mode w12. For vanishing total mass µ0 = 0 our rigorous computations furnish the
following result.

Theorem 2.15 (Modes w12 and w12 + w21 at µ0 = 0)

(i) There exists a branch of unique solutions of (5) subject to the constraint (2) for µ0 = 0
and λ ∈ [5π2 + 0.0025, 60] as shown in Figure 29, with δC0 < 0.00013 and δEλ

< 0.00004.

(ii) There exists a branch of unique solutions of (5) subject to the constraint (2) for µ0 = 0
and λ ∈ [5π2 + 0.0025, 60] as shown in Figure 30, with δC0 < 0.00142 and δEλ

< 0.00016.
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Figure 30: Energy for mode w12 + w21

solutions with µ0 = 0

The branch guaranteed by Theorem 2.15(i) is contained in the blue region of Figure 29.
For the sample solutions indicated by red dots, the corresponding geometries are shown
in Figure 31. The shape of these solutions suggests that solutions on this path have the
symmetries mT and R2T , and that the path is contained in C̃12. See also Remark 2.6.
The other part of C̃12 can be generated through the action m.
The branch described in Theorem 2.15(ii) is contained in the blue region shown in Fig-
ure 30, the geometries of sample solutions on this branch are indicated in Figure 32. These
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Figure 31: Snapshots for mode w12 solutions with µ0 = 0
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Figure 32: Snapshots for mode w12 + w21 solutions with µ0 = 0

mode µ1 c1 µ2 c2 δC0 δµ δc uniqueness
w12 0 0 0.1697 0.1478 0.0007 0.0003 0.0004 partly
w12 0.1698 0.1479 0.2432 0.2288 0.0022 0.0001 0.0001 partly

w12 + w21 0 0 0.1813 0.1616 0.0004 0.0003 0.0004 partly
w12 + w21 0.1814 0.1617 0.2432 0.2288 0.0015 0.0001 0.0001 partly

s12 0.1699 0.148 0.1812 0.1614 0.0013 0.0001 0.0001 no

Table 9: Branches from (µ1, c1) to (µ2, c2) for λ0 = 60 and µ ≥ 0

geometries suggest that the branch is part of the solution continuum that corresponds to
the mode w12 + w21. Notice that none of the results in Section 2.1 applies to this mode.
If we assume that the symmetry of w12 +w21 is preserved along the path, i.e., elements of
the path are symmetric with respect to T R and mRT , then the action mT R furnishes
the other path of w12 + w21 solutions bifurcating at κ12.
For the remainder of this section we consider the effects of mass variation, i.e., we fix the
parameter λ = λ0. In particular, for λ0 = 60 our results are summarized in Figures 33
and 34. More precisely, we have the following result.

Theorem 2.16 (Modes w12 and w12 + w21 for λ0 = 60) There exist branches of solu-
tions of (5) subject to the constraint (2) for λ0 = 60 as shown in Figures 33, 34, and 37.
The blue region of Figure 33 contains the w12-branches. The w12 +w21-branch is shown in
Figure 34, while the s12-branch is shown in Figure 37. The latter branch is the consequence
of a secondary bifurcation. Detailed information on the endpoints of these branches in the
(µ, c)-plane, as well as uniqueness assertions, can be found in Tables 9 and 10.

mode µ̃1 c̃1 µ̃2 c̃2
w12 0 0 0.1683 0.1463
w12 0.1718 0.1501 0.2407 0.2262

w12 + w21 0 0 0.1761 0.1561
w12 + w21 0.1831 0.1636 0.2394 0.2246

Table 10: Uniqueness of the branches in Table 9 holds from (µ̃1, c̃1) to (µ̃2, c̃2)
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Figure 33: Bifurcation diagram for w12

solutions with λ0 = 60
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Figure 34: Bifurcation diagram for mode
w12 + w21 solutions with λ0 = 60

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

µ = 0, δC0 = 0.0002 µ = 0.048, δC0 = 0.0002 µ = 0.096, δC0 = 0.0001

µ = 0.144, δC0 = 0.00053 µ = 0.192, δC0 = 0.0003 µ = 0.24, δC0 = 0.00078

Figure 35: Snapshots for mode w12 solutions with λ0 = 60

The red dots in Figure 33 correspond to the solution snapshots depicted in Figure 35.
These solutions are symmetric with respect to the action R2T , and the branch for neg-
ative µ can be obtained from the one for positive µ by applying mT . Now assume that
the branch w12 described in Table 9 is contained in C+

12(λ0) (C−12(λ0)) for λ0 = 60, see
also Section 2.1. Notice that elements of C+

12(λ0) (C−12(λ0)) are point symmetric around
the points (1/2, 1/4) and (1/2, 3/4), which is supported by the structure of the level sets
in Figure 35. According to Theorem 2.4, the branch C+

12(λ0) (C−12(λ0)) connects the two
bifurcation points µ+

12 and µ−12; i.e. C+
12(λ0) = C−12(λ0). Due to Theorem 2.4, there is a

possibility that C+
12(λ0) meets the trivial solution in some point (m̃, 0) with m̃ 6= µ±12, but

since we could not find such connections, there seems to be in fact exactly two nontrivial
paths of solutions between

(
µ+

12, 0
)

and
(
µ−12, 0

)
, i.e. C+

12(λ0) splits into two parts Kw12

and K−w12
. By symmetry, these are related by the action T . Nevertheless, due to the

27



0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

µ = 0, δC0 = 0.0002 µ = 0.048, δC0 = 0.0002 µ = 0.096, δC0 = 0.0002

µ = 0.144, δC0 = 0.00021 µ = 0.192, δC0 = 0.00005 µ = 0.24, δC0 = 0.00024

Figure 36: Snapshots for mode w12 + w21 solutions with λ0 = 60

gaps at the bifurcation point and the gaps along the path, a slight uncertainty remains.
Using the actions R and RT , one can generate the branches Kw21

and K−w21
from Kw12

.
Altogether, we have

Kw12
= R2T (Kw12

) , K−w12
= T (Kw12

) , Kw21
= R(Kw12

) , K−w21
= RT (Kw12

) .

Now consider the w12 + w21 path in Figure 34, as described in Table 9. The solution
geometry on this branch is indicated in Figure 36. Thus, it seems reasonable to assume
that all the solutions on the w12 + w21 path have the symmetry T R, and that the part
with negative mass can be obtained from the one with positive mass by applying the
action mRT . Note that it also seems plausible that the branch connects the bifurcation
points µ±12. Therefore, we assume that there exists a continuum which can be split into
two pieces, denoted by Kw12+w21

and K−w12−w21
, which are related through R2. Further-

more, by applying R3 and R to the elements of Kw12+w21
, one can generate corresponding

paths Kw12−w21
and K−w12+w21

. Altogether, we now obtain

Kw12+w21
= T R(Kw12+w21

) , K−w12−w21
= R2(Kw12+w21

) ,

Kw12−w21
= R3(Kw12+w21

) , K−w12+w21
= R(Kw12+w21

) .

Figure 37 provides a more detailed view of the branches in Figures 33 and 34, yet only
for positive mass µ. In addition, a secondary branch is shown in red. This branch is s12

from Table 9. It connects the Kw12
branch of C+

12(λ0) with the w12 +w21 solution branch,
more precisely, with Kw12+w21

. Figure 38 shows a close-up of Figure 37 in order to resolve
the situation better. The secondary branch breaks the symmetry R2T of Kw12

, and the
symmetry T R of Kw12+w21

. This can be seen in Figure 39, where snapshots of functions
on the secondary branch are depicted, corresponding to the dots in Figure 38. Applying
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Figure 38: Close-up of Figure 37
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Figure 39: Snapshots for solutions on the branch s12

the D4 actions to the branch s12 gives new branches. A schematic description of these
connections is given in Figure 40.
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3 Tools from Conley Index Theory

3.1 The General Framework

In [21], Mischaikow and Zgliczyński developed a method for rigorous numerics for par-
tial differential equations using Conley index theory. Their method allowed them to
give computer-assisted existence proofs of equilibria for the one-dimensional Kuramoto-
Shivashinsky equation for fixed parameter values. Our method is based on their approach,
and we therefore briefly recall their setting — yet using notation which is more appropriate
for our two-dimensional setting. Consider the abstract evolution equation

ut = F (u) (19)

in a Hilbert space H, assume that F : D(F ) → H, and that the domain D(F ) of F
is dense in H. As was mentioned in the introduction, the approach in [21] is based on
a Fourier-type representation of the solution u. Thus, we choose a complete orthogonal
basis {φi,j}(i,j)∈N2

0
\{(0,0)} in H, and assume that φi,j ∈ D(F ) for all (i, j) ∈ N

2
0 \ {(0, 0)}.

Specifically for the case of the Cahn-Hilliard equation (1), we consider Ω = (0, 1)2 and
define the Hilbert space H as

H :=

{
u ∈ L2(Ω)

∣∣∣∣
∫

Ω

u(x) dx = 0

}
⊂ L2(Ω) . (20)

For given total mass µ as in (2), we define the nonlinearity F as

F (u) = −∆ (∆u+ λf(µ+ u)) , with f(u) = u− u3 . (21)

In view of the Neumann boundary conditions in (1) and our two-dimensional domain, it
seems natural to consider the basis given by

φi,j(x, y) = cos(iπx) cos(jπy) for all (i, j) ∈ N
2
0 \ {(0, 0)} . (22)

Notice that these functions are not normalized in L2(Ω).
For any choice of the indices (k, `) ∈ N

2
0\{(0, 0)} we define the finite-dimensional subspace

Xk,` := span {φi,j | (i, j) 6= (0, 0) and 0 ≤ i ≤ k and 0 ≤ j ≤ `} , (23)

and let
P (k,`) : H → Xk,`

denote the orthogonal projection of H onto Xk,`. Moreover, the orthogonal complement
of Xk,` is denoted by Yk,`, and the corresponding complementary projection by

Q(k,`) = I − P (k,`) : H → Yk,` .

Finally, we define the operator

Pk,` : H → R by Pk,`(u) :=
(u, φk,`)

(φk,`, φk,`)
, (24)
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where (·, ·) denotes the scalar product in H. In other words, Pk,`(u) denotes the co-
efficient of φk,` in the Fourier series representation of u ∈ H with respect to the basis
functions {φi,j}(i,j)∈N2

0
\{(0,0)}, i.e., we have

u =
∑

(i,j)∈N2

0
\{(0,0)}

ui,jφi,j where ui,j = Pi,j (u) .

Now fix an integer m ∈ N, and set p = P (m,m)u and q = Q(m,m)u for any u ∈ H. Then (19)
can be rewritten in the new variables as

pt = P (m,m)F (p+ q) , (25)

qt = Q(m,m)F (p+ q) . (26)

The basic strategy for establishing the existence of equilibrium solutions of this system
stems from the following idea. For suitable choices of the parameter m, it should be possi-
ble to obtain information on the dynamics of the evolution equation (19) from knowledge
of the finite-dimensional system (25). More precisely, assume we know the location of an
equilibrium p = v of the finite-dimensional system (25) for the choice q = 0, either ana-
lytically or numerically. Our intention is then to compute a neighborhood U = Up × Uq,
with v ∈ Up, such that the existence of an equilibrium of (19) in U can be guaranteed.
Since the finite-dimensional system (25) depends on the infinite-dimensional parameter q,
this can only be accomplished if we can control the infinite-dimensional complementary
equation (26). It will be shown later in this section, using the estimates of Section A.1,
that this can actually be achieved. The computation of U is done numerically. For this,
we derive specific conditions which guarantee the existence of an equilibrium of (19).
These derivations crucially rely on Conley index theory, and the resulting conditions are
formulated in such a way that they can be checked with the aid of a computer. Since
these checks can be performed in rigorous interval arithmetic, we have thus obtained an
analytical proof for the existence of an equilibrium of (19). The details of this approach
will be presented in the remainder of this section.
We begin our adaptation of the results in [21] by defining the notion of self-consistent a
priori bounds. In order to simplify our presentation, we introduce some notation.

Definition 3.1 Consider the abstract situation described above and let

I∗ := N
2
0 \ {(0, 0)} .

Let H denote a Hilbert space with complete orthogonal set {φi,j}(i,j)∈I∗, and let a±i,j ∈ R

denote a family of real numbers with a−i,j < a+
i,j for all (i, j) ∈ I∗. For any nonempty

subset I ⊂ I∗ we then define

∏

(i,j)∈I

[a−i,j, a
+
i,j] :=



u =

∑

(i,j)∈I

ui,jφi,j

∣∣∣∣∣∣
a−i,j ≤ ui,j ≤ a+

i,j for all (i, j) ∈ I



 .
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Furthermore, for any integer m ∈ N we define the special index set

Im :=
{

(i, j) ∈ N
2
0

∣∣ i > m or j > m
}
.

This implies that we have both

∏

(i,j)∈I∗\Im

[a−i,j, a
+
i,j] ⊂ Xm,m and

∏

(i,j)∈Im

[a−i,j, a
+
i,j] ⊂ Ym,m ,

as long as the a±i,j decay sufficiently fast as i, j →∞. The set Xm,m was defined in (23),
and Ym,m is its orthogonal complement in H.

The above notation is a convenient way to describe subsets of the Hilbert space H, whose
images under the mappings Pi,j defined in (24) are compact intervals. Such sets lie at the
heart of the following definition.

Definition 3.2 For fixed integers 0 < m < M consider a compact set W ⊂ Xm,m and
a collection of real numbers a±i,j which satisfy a−i,j < a+

i,j for all (i, j) ∈ Im. Then W
and {a±i,j}(i,j)∈Im

are called self-consistent a priori bounds for the abstract evolution equa-
tion (19), if the following conditions hold:

(i) For all (i, j) ∈ IM−1 we have a−i,j < 0 < a+
i,j.

(ii) Every formal series in the definition of
∏

(i,j)∈Im
[a−i,j, a

+
i,j] is in fact convergent in H,

i.e., we have W ×∏(i,j)∈Im
[a−i,j, a

+
i,j] ⊂ H.

(iii) For all r, ` > m the composition P (r,`) ◦ F : Xr,` → Xr,` is Lipschitz continuous on
the intersection of Xr,` with the set W ×∏(i,j)∈Im

[a−i,j, a
+
i,j]. Here P (r,`) denotes the

orthogonal projection onto Xr,`.

(iv) If (z(r))r>M is an arbitrary sequence of functions such that for every r > M the
function z(r) is contained in the intersection of the set W ×∏(i,j)∈Im

[a−i,j, a
+
i,j] and

the finite-dimensional space Xr,r, if in addition we have P (r,r) ◦F (z(r)) = 0 for every
r > M , and if (z(r))r>M has an accumulation point z(∞) with convergence in H,
then we have both

z(∞) ∈ D(F ) and F
(
z(∞)

)
= 0 .

This definition is in some sense the first step towards establishing the existence of an equi-
librium solution of (19) from knowledge of the finite-dimensional system (25). According
to (iv), if one identifies a sequence of equilibrium solutions of (25) for q = 0, then any
accumulation point of this sequence will in fact provide an equilibrium for the original
infinite-dimensional system (19). Moreover, the above definition singles out sets of the
form given in Definition 3.1 as basis for the method.
The above notion leaves one aspect unanswered: How can we establish the existence of
a stationary solution of the finite-dimensional system (25) for all sufficiently large values
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of m, within sets of the form given in Definition 3.2? To answer this question we need to
employ tools from Conley index theory. Due to space limitations, we will not be able to
present all definitions here, but rather refer the reader to [17, 21]. The central definition
is as follows.

Definition 3.3 Let W and {a±i,j}i,j∈Im
denote self-consistent a priori bounds for (19) as

in Definition 3.2. In addition, let N ⊂ W be a compact set. Then N , W , and {a±i,j}i,j∈Im

are called strict topologically self-consistent a priori bounds for (19), if the following holds:

(i) For every u ∈ W ×∏(i,j)∈Im
[a−i,j, a

+
i,j] and all (r, `) ∈ Im we have

if Pr,`u = a+
r,` , then Pr,`F (u) < 0 , as well as

if Pr,`u = a−r,` , then Pr,`F (u) > 0 . (27)

(ii) There exists a closed subset N− ⊂ N , such that for every choice of q ∈ ∏(i,j)∈Im
[a−i,j, a

+
i,j],

the set N is an isolating block for (25) with exit set N−.

Notice that in (ii) we consider (25) as a finite-dimensional ordinary differential equation
for p ∈ Xm,m, which depends on the parameter q. Thus, the resulting flow ϕ = ϕq depends
on the choice of q as well, and (ii) states that the fixed set N ⊂ Xm,m is an isolating block
with exit set N− for all flows ϕq, where q ∈ ∏(i,j)∈Im

[a−i,j, a
+
i,j] is arbitrary. We would also

like to point out that (ii) in fact implies

h (Inv(N), ϕq) = constant for all q ∈
∏

(i,j)∈Im

[a−i,j, a
+
i,j] ,

were h denotes the Conley index of the largest invariant set Inv(N) in N . As before, we
refer the reader to [17, 21] for more details.
We are now finally in a position to present the main tool for establishing the existence of
stationary solutions for the infinite-dimensional system (19).

Theorem 3.4 In the situation of Definition 3.3, assume that N,W , and {a±i,j}i,j∈Im
are

strict topologically self-consistent a priori bounds for (19). Furthermore, suppose that

h (Inv(N), ϕq0
) =

[
Σ`0
]

for some `0 ∈ N0 and some q0 ∈
∏

(i,j)∈Im
[a−i,j, a

+
i,j], where [Σ`0 ] denotes the homotopy type

of a pointed `0-sphere. Then there exists an equilibrium v∗ of (19) in N×∏(i,j)∈Im
[a−i,j, a

+
i,j].

The above result is due to Mischaikow and Zglicszynski [21], who in contrast to our
formulation use the homological Conley index. Since the proof of the above result is
more or less analogous to their result, we refrain from presenting it in detail and refer
the reader to [17]. The basic proof idea is the fact that property (27) of Definition 3.3
allows one to lift the isolating block N to higher dimensions without changing its Conley
index. A result due to McCord [16] then furnishes the existence of a fixed point in such
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an isolating block, provided the Conley index has the form [Σ`0 ] for some `0 ∈ N0. In this
way, it is possible to construct a sequence of fixed points, and due to Definition 3.2, any
accumulation point of this sequence is an equilibrium of (19).
From a computational point of view, it is of course crucial to verify that specific sets N
and W , together with collections {a±i,j}(i,j)∈Im

indeed give rise to (strict topologically)
self-consistent a priori bounds, based on a finite amount of information. This will be
accomplished in the remainder of this section. In Section 3.2 we present a sufficient
condition for self-consistent a priori bounds, Section 3.3 addresses the estimates in Defi-
nition 3.3(i). Finally, Section 3.4 demonstrates how Definition 3.3(ii) can be verified and
how the Conley index of N can be computed.

3.2 Self-Consistent A Priori Bounds

As we have seen in Section 3.1, self-consistent a priori bounds are used to show that
stationary solutions of the finite-dimensional system (25) can be used to approximate
equilibria of (19). In order to make this construction amenable to a computational treat-
ment, one needs to be able to verify Definition 3.2 in finitely many steps. For this, we
make the following assumption.

Assumption 3.5 For fixed integers 0 < m < M , assume that there exist positive con-
stants s and C, as well as positive constants C1(i) and C2(i), where i ∈ {0, ...,M − 1},
such that the following holds. Let {a±i,j}(i,j)∈I∗ denote collections of real numbers which
satisfy a−i,j < a+

i,j for all (i, j) ∈ I∗, as well as a−i,j < 0 < a+
i,j for all (i, j) ∈ IM−1. In

addition, suppose that

∣∣a±i,j
∣∣ ≤





C1(i)
js for j ≥M and 0 ≤ i < M

C2(j)
is

for i ≥M and 0 ≤ j < M

C
isjs for i, j ≥M

. (28)

One can easily see that collections of numbers a±i,j as in Assumption 3.5 satisfy both (i)
and (ii) in Definition 3.2 as long as s > 1/2, provided the norms of the basis functions φi,j

are uniformly bounded. However, the remaining parts of Definition 3.2 do depend on the
function F in (19). For the case of the Cahn-Hilliard equation (1) on the square, the
following result establishes the validity of the situation of Definition 3.2 for all s ≥ 2 and
collections {a±i,j} as in (28).

Theorem 3.6 Consider the Cahn-Hilliard equation (1) on the unit square Ω = (0, 1)2.
Define the Hilbert space H as in (20), equipped with the complete orthogonal set in (22),
and let F be as in (21). Moreover, assume the situation of Assumption 3.5 with s ≥ 2.
Then the set

W :=
∏

(i,j)∈I∗\Im

[a−i,j, a
+
i,j] ⊂ Xm,m

together with {a±i,j}(i,j)∈Im
are self-consistent a priori bounds for (19).
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Proof. Property (i) in Definition 3.2 is clear. As for (ii), let u ∈ W×∏(i,j)∈Im
[a−i,j, a

+
i,j] be

arbitrary, and define âi,j = max{|a±i,j|}. Then the orthogonality of the basis functions φi,j

and the fact that their norms are bounded by 1, together with Assumption 3.5, furnishes

‖u‖2
L2(Ω) ≤

∑

(i,j)∈I∗

â2
i,j‖φi,j‖2

L2(Ω)

≤
∑

(i,j)∈I∗\IM−1

â2
i,j +

M−1∑

i=0

∑

j≥M

C1(i)
2

j2s
+
∑

i≥M

M−1∑

j=0

C2(j)
2

i2s
+
∑

i≥M

∑

j≥M

C2

i2sj2s

≤
∑

(i,j)∈I∗\IM−1

â2
i,j +

M−1∑

i=0

C1(i)
2 + C2(i)

2

(2s− 1)(M − 1)2s−1
+

C2

(2s− 1)2(M − 1)2(2s−1)

< ∞ ,

which implies Definition 3.2(ii).
Next we turn our attention to Definition 3.2(iii). According to our definitions, the map-
ping P (`,r) denotes the orthogonal projection onto the finite-dimensional space X`,r defined
in (23), and F (u) = −∆(∆u+ λf(µ+ u)) was introduced in (21). Due to (9) — see also
Section A.1 — the composition P (`,r) ◦ F is a polynomial in the first ` · r − 1 Fourier
coefficients, and therefore Lipschitz continuous on X`,r. This implies (iii).
Finally, we have to establish Definition 3.2(iv). We begin by showing that

∏

(i,j)∈I∗

[a−i,j, a
+
i,j] ⊂ W 1,2(Ω) .

For this, choose v =
∑

(i,j)∈I∗
vi,jφi,j ∈

∏
(i,j)∈I∗

[a−i,j, a
+
i,j] arbitrary. Then our assumptions

imply

‖∂xv‖2
L2(Ω) =

∑

(i,j)∈I∗

i2π2v2
i,j‖ sin(iπx) cos(jπy)‖2

L2(Ω)

≤
M−1∑

i=1

M−1∑

j=0

i2π2v2
i,j +

M−1∑

i=1

∑

j≥M

i2π2C1(i)
2

j2s
+
∑

i≥M

M−1∑

j=0

i2π2C2(j)
2

i2s

+
∑

i≥M

∑

j≥M

i2π2 C2

i2sj2s

≤
M−1∑

i=1

M−1∑

j=0

i2π2v2
i,j +

M−1∑

i=1

i2π2C1(i)
2

(2s− 1)(M − 1)2s−1

+

M−1∑

j=0

π2C2(j)
2

(2s− 3)(M − 1)2s−3
+

π2C2

(2s− 3)(2s− 1)(M − 1)4s−4
<∞ .
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Similarly, one can show that both ∂yv and v are contained in L2(Ω), which immediately
furnishes v ∈ W 1,2(Ω). In addition, we have the pointwise estimate

|v(x)| =

∣∣∣∣∣∣
∑

(i,j)∈I∗

vi,jφi,j(x)

∣∣∣∣∣∣
≤

∑

(i,j)∈I∗

|vi,j| · |φi,j(x)|

≤
∑

(i,j)∈I∗\IM−1

âi,j +

M−1∑

i=0

C1(i) + C2(i)

(s− 1)(M − 1)s−1
+

C

(s− 1)2(M − 1)2(s−1)
(29)

=: D <∞ , for almost all x ∈ Ω ,

where âi,j = max{|a±i,j|}. For an arbitrary sequence z(r) ∈ ∏(i,j)∈I∗
[a−i,j, a

+
i,j] which con-

verges to a limit function z(∞) in L2(Ω), there exists a subsequence {z(rn)}n∈N such that
for almost all x ∈ Ω we have limn→∞ z

(rn)(x) = z(∞)(x). This readily furnishes for almost
all x ∈ Ω the identity limn→∞(µ+ z(rn)(x))3 = (µ+ z(∞)(x))3, and due to (29) we have

∣∣∣
(
µ+ z(rn)(x)

)3∣∣∣
2

≤
∣∣µ+ z(rn)(x)

∣∣6 ≤ D6 almost everywhere, for all n ∈ N .

The dominated convergence theorem now furnishes limn→∞(µ + z(rn))3 = (µ + z(∞))3

in L2(Ω), as well as

f(µ+ z(rn))
n→∞−→ f(µ+ z(∞)) in L2(Ω) . (30)

Now assume that the functions z(r) ∈ Xr,r ∩ (W ×∏(i,j)∈Im
[a−i,j, a

+
i,j]), for r > M , satisfy

the identities P (r,r)F (z(r)) = 0. Furthermore, assume that the sequence (z(r))r>M has an
accumulation point z(∞) in L2(Ω). If we now fix (k, `) ∈ I∗, then for sufficiently large n
we have

0 = Pk,`F
(
z(rn)

)
=
(
k2 + `2

)
π2
(
−
(
k2 + `2

)
π2Pk,`z

(rn) + λPk,`f
(
µ+ z(rn)

))
.

Due to the continuity of the projections Pk,` and (30), and after passing to a subsequence
if necessary, one can pass to the limit n→∞, and this furnishes

(
k2 + `2

)
π2
(
−
(
k2 + `2

)
π2Pk,`z

(∞) + λPk,`f
(
µ+ z(∞)

))
= 0 ,

and therefore
λPk,`f

(
µ+ z(∞)

)
=
(
k2 + `2

)
π2Pk,`z

(∞) . (31)

According to Theorem A.14, there exist collections of real numbers {b±i,j}(i,j)∈N2

0
, as well

as positive constants B, B1(i), and B2(j), where i, j ∈ {0, ...,M − 1}, such that

∣∣b±i,j
∣∣ ≤





B1(i)
js for j ≥M and 0 ≤ i < M

B2(j)
is

for i ≥M and 0 ≤ j < M
B

isjs for i, j ≥M

,
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as well as
f(µ+ u) ∈

∏

(i,j)∈N2

0

[b−i,j, b
+
i,j] for all u ∈

∏

(i,j)∈I∗

[a−i,j, a
+
i,j] .

As before, one can show that in fact
∏

(i,j)∈N2

0

[b−i,j, b
+
i,j] ⊂ W 1,2(Ω). This in turn implies

f(µ+ z(∞)) ∈ W 1,2(Ω), and together with (31) we now obtain

−∆z(∞) =

∞∑

k,`=0

(
k2 + `2

)
π2Pk,`z

(∞) = λ

∞∑

k,`=0

Pk,`f
(
µ+ z(∞)

)
= λf

(
µ+ z(∞)

)

∈ W 1,2(Ω) . (32)

Now extend z(∞) by even reflections at the boundary of Ω to an element of W 1,2(Λ),
where Λ := (−1, 2)2, and denote the resulting function again by z(∞). Then we have
f(µ+ z(∞)) ∈ W 1,2(Λ), and in view of (32), the function z(∞) satisfies

∆z(∞) = −λf
(
µ+ z(∞)

)
in Λ

in the weak sense, i.e., we have

∫

Λ

(
∂xz

(∞)∂xϕ+ ∂yz
(∞)∂yϕ

)
dxdy =

∫

Λ

λf
(
µ+ z(∞)

)
ϕdxdy for all ϕ ∈ C1

0 (Λ) .

For more details see [9, Chapter 8, p. 177]. An application of [9, Theorem 8.8] immediately
implies z(∞) ∈ W 2,2(Λ′) for any subdomain Λ′ ⊂⊂ Λ, in particular z(∞) ∈ W 2,2(Ω). Next,
define the functions

zK :=
∑

(i,j)∈I∗\IK

Pi,jz
(∞)φi,j .

Since z(∞) ∈ W 2,2(Ω), we obtain

zK −→ z(∞) in W 2,2(Ω) for K →∞ .

The functions zK ∈ C∞(Ω̄) satisfy Neumann boundary conditions, and therefore are
elements of H2

N(Ω), and thus z(∞) ∈ H2
N(Ω). (We refer the reader to [8] for the definition

of the space H2
N(Ω).) Sobolev’s embedding theorem yields z(∞) ∈ C0,α(Ω̄), for α ∈ [0, 1),

and together we obtain z(∞) ∈ C0,α(Ω̄)∩H2
N (Ω). The latter implies f(µ+z(∞)) ∈ C0,α(Ω̄),

and therefore we obtain z(∞) ∈ C2,α(Ω̄) ∩H2
N(Ω) (see the appendix in [8]), which in turn

implies f(µ+z(∞)) ∈ C2,α(Ω̄)∩H2
N(Ω). Now (32) furnishes ∆z(∞) ∈ C2,α(Ω̄)∩H2

N(Ω), and
by repeating the argument in [8] one finally obtains z(∞) ∈ C4,α(Ω̄)∩H2

N (Ω). From this we
can deduce Definition 3.2(iv), since z(∞) ∈ D(F ) = {v ∈ C4(Ω̄)|∂νv = ∂ν∆v = 0 on ∂Ω},
and due to (32), we have F (z(∞)) = −∆(∆z(∞) + λf(µ+ z(∞))) = 0.
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3.3 Strict Topologically Self-Consistent A Priori Bounds

In view of Theorem 3.4, we have thus far achieved only the first step towards establishing
the existence of equilibria of (19). Theorem 3.6 furnishes in the situation of the Cahn-
Hilliard equation on the square a sufficient condition for self-consistent a priori bounds,
as defined in Definition 3.2. Of course, in order to apply Theorem 3.4, we need to verify
strict topologically self-consistent a priori bounds as in Definition 3.3, in particular, we
have to derive (27). This is the subject of the present subsection.
We begin by rewriting the original evolution equation (19). For this, let L := DF (0)
denote the linearization of F at 0. Then we can write (19) equivalently as

ut = Lu+R(u) , (33)

where R denotes the nonlinear part of F . We make the following assumption.

Assumption 3.7 Let L := DF (0) denote the linearization of the function F in (19).
Furthermore, assume that L has real eigenvalues {κi,j}(i,j)∈I∗ which satisfy

κi,j ≥ κk,l for i ≤ k and j ≤ l , as well as κi,i → −∞ for i→∞ .

Denote the eigenfunction of L corresponding to κi,j by φi,j. Then we assume further that
the collection {φi,j}(i,j)∈I∗ forms a complete orthogonal set in H. Finally, suppose that the
eigenfunctions are chosen in such a way that

‖φi,j‖H ≤ B and ‖φi,j‖H ≥ b > 0 for all (i, j) ∈ I∗ , (34)

where B and b are positive constants.

One can easily see that for any elliptic and symmetric operator L the above assumption
is satisfied. Using Assumption 3.7 we can expand any u ∈ H and R(u) ∈ H as

u =
∑

(i,j)∈I∗

ui,jφi,j and R(u) =
∑

(i,j)∈I∗

gi,jφi,j . (35)

Due to (34), the `2-norm of the Fourier-coefficients of u and the norm of u on H, defined
by the underlying scalar product, are equivalent.

Remark 3.8 In the specific situation of the Cahn-Hilliard equation, with F = Fµ given
in (21), we obtain on the unit square Lv = Lµv = (−∆)(∆v + λf ′(µ) · v) and κi,j = (i2 +
j2)π2(−(i2 + j2)π2 +λf ′(µ)). We want to point out that this used setup with functions in
H with no mean (see (20)) is essential to have hyperbolic equilibria as needed in Theorem
3.14. Nevertheless, for computational reasons, it is more convenient to work in L2(Ω),
i.e. the considered functions do have a constant φ0,0 component given by the a priori fixed
mean µ (cf. (65)).
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In order to demonstrate how the estimates in (27) can be verified, we fix two positive
integers m and M which satisfy

κ0,m < 0 and κm,0 < 0 , as well as m < M . (36)

In addition, choose positive constants C, C1(i), and C2(i), where 0 ≤ i < M , let s > 0,
let {a±i,j}(i,j)∈I∗\IM−1

denote a collection of real numbers with a−i,j < a+
i,j, and define

a±i,j :=





± C1(i)
js for j ≥M and 0 ≤ i < M

± C2(j)
is

for i ≥M and 0 ≤ j < M

± C
isjs for i, j ≥M

. (37)

Finally, define the compact set W =
∏

(i,j)∈I∗\Im
[a−i,j, a

+
i,j]. Then according to Theorem 3.6,

for the specific situation of the Cahn-Hilliard equation on the unit square and for s ≥ 2,
the set W and the collection {a±i,j}(i,j)∈Im

are self-consistent a priori bounds for (19). Our
goal is to refine these bounds in such a way that property (27) is satisfied. This will be
accomplished by only adjusting the definition of the pairs a±i,j for (i, j) ∈ Im, i.e., for all
pairs with i > m or j > m. For this, we need the following assumption.

Assumption 3.9 Consider the nonlinearity R in (33) and its expansion in (35). We
assume that it is possible to compute bounds for the coefficients gi,j of R(u) for all u ∈
W ×∏(i,j)∈Im

[a−i,j, a
+
i,j] in the following sense. There exist constants g−i,j and g+

i,j, as well

as positive constants G, G1(i), and G2(j), for i, j ∈ {0, ...,M − 1}, such that

g−i,j < gi,j < g+
i,j for all (i, j) ∈ I∗ \ IM−1

and

|gi,j| <





G1(i)
js for j ≥M and 0 ≤ i < M

G2(j)
is

for i ≥M and 0 ≤ j < M
G

isjs for i, j ≥M

,

where s > 0 is chosen as above.

Notice that the constants g±i,j do not necessarily have to have opposite signs. For the
specific situation of the Cahn-Hilliard equation (1) on the unit square, Assumption 3.9 is
satisfied for s ≥ 2, and we refer the reader to Section A.1 for details on the computation
of these bounds. We would like to point out, however, that all these computations can be
done explicitly.
By combining (33) and (35), we now see that (33) is equivalent to the infinite system of
coupled ordinary differential equations given by

u̇i,j = κi,jui,j + gi,j , for all (i, j) ∈ I∗ . (38)

We now turn our attention to computing sufficient conditions for the validity of (27).
According to Definition 3.3, we need to satisfy the inequalities

κi,ja
+
i,j + gi,j < 0 and κi,ja

−
i,j + gi,j > 0 , whenever i > m or j > m .
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According to Assumption 3.7 and (36), these estimates are equivalent to the inequalities

a+
i,j > − gi,j

κi,j
and a−i,j < − gi,j

κi,j
.

Using the definitions

ã+
i,j := −

g−i,j
κi,j

and ã−i,j := −
g+

i,j

κi,j
for (i, j) ∈ Im with i < M , j < M , (39)

as well as

ã±i,j :=





a±i,j for (i, j) ∈ I∗ \ Im
± eC1(i)

js for j ≥M and 0 ≤ i < M

± eC2(j)
is

for i ≥M and 0 ≤ j < M

± eC
isjs for i, j ≥M

, (40)

where C̃1(i) := −C1(i)/κi,M , C̃2(j) := −C2(j)/κM,j, and C̃ := −C/κM,M , we have just
established the following result.

Lemma 3.10 Assume that Assumptions 3.7 and 3.9 are satisfied, as well as (36). Fur-
thermore, suppose that the collection {ã±i,j}(i,j)∈I∗ is defined as in (39) and (40), starting
from a collection {a±i,j}(i,j)∈I∗ as described above. Then the original collection {a±i,j}(i,j)∈I∗

satisfies property (27) of Definition 3.3 if

a+
i,j ≥ ã+

i,j > ã−i,j ≥ a−i,j for all (i, j) ∈ I∗ . (41)

It is immediate that the refined bounds ã±i,j satisfy Assumption 3.5, and therefore they
are self-consistent a priori bounds if the original collection {a±i,j}(i,j)∈I∗ had that property.
Thus, the above procedure can be repeated (possibly several times) with the adjusted
constants, and at each step one can test for (27) with (41). This furnishes an iterative
method for deciding the validity of (27) for given self-consistent a priori bounds.

Remark 3.11 Due to Theorem 3.6 we can use the procedure given in Lemma 3.10 par-
ticularly for the Cahn-Hilliard equation on the unit square with s ≥ 2.

3.4 Isolating Blocks and Conley Index Computation

In this final subsection we demonstrate how Definition 3.3(ii) can be established, i.e., we
construct an isolating block N in W ⊂ Xm,m. In addition, it is shown how the Conley
index of the largest invariant set in N can be computed.
In order to avoid double indices in the following presentation, we introduce the bijective
transformation σ̂ : N0 × N0 → N0 defined as

σ̂(i, j) =

{
i + j(m+ 1) for 0 ≤ i, j ≤ m

σ(i, j) otherwise
,

40



where σ(i, j) = max{i, j}2 + j + (j − i)
�
{i<j}. The bijection σ̂ is introduced so that one

can work with coordinate vectors in the following, rather than with “coordinate matrices”
which arise when using the basis φi,j directly.
Assume that W and {a±i,j}(i,j)∈Im

are self-consistent a priori bounds for (19) which sat-
isfy (27) of Definition 3.3. Let n = (m + 1)2 − 1 and let v = (v1, . . . , vn) be a hyperbolic
equilibrium of (25) with q = 0 and v ∈ W . More precisely, suppose that the function

v =
n∑

l=1

vlφbσ−1(l) ∈ Xm,m

solves (25) with q = 0. Our goal is to apply Theorem 3.4. For this, we have to construct
strict topologically self-consistent a priori bounds for (19). In view of the previous subsec-
tions, this amounts to finding an isolating block N ⊂ W with closed exit set N− for (25),
for all q ∈ ∏(i,j)∈Im

[a−i,j, a
+
i,j]. For this, we rewrite (25), or more precisely its interpretation

in R
n ' Xm,m, by using both (33) and (38) as

ṗk = γk(p1, . . . , pn) + εk , for k = 1, . . . , n ,

where γ := (γ1, . . . , γn) : R
n → R

n denotes the right-hand side of (25) with q = 0, i.e., we
have

γk(p) = Pbσ−1(k)(L+R(p, 0)) ,

as well as
εk(p, q) = Pbσ−1(k)(R(p, q)− R(p, 0)) . (42)

We make the following assumption.

Assumption 3.12 Assume that the function γ : R
n → R

n is differentiable at v and that
the Jacobian A := Dγ(v) ∈ R

n×n is diagonalizable in R, i.e., we can find an invertible
matrix B ∈ R

n×n with A = BDB−1, where D = (dij)i,j=1,...,n ∈ R
n×n is a diagonal matrix

containing the eigenvalues of A, all of which are assumed to be real.

Remark 3.13 It is possible, though more complicated, to compute an isolating block even
if the Jacobian A has complex eigenvalues. However, for our application to the Cahn-
Hilliard equation it suffices to only consider the case of real eigenvalues.

If we now define x := p − v ∈ R
n and use a Taylor expansion of γ around v, then we

obtain
ẋ = γ(v) + Ax + ε̃(x, q) , (43)

where the new “error” term ε̃ contains, in addition to the old “error” term ε, also the
higher-order terms in the expansion of γ, i.e., we have ε̃(x, q) = ε(x, q) + o(x2). Recall
that γ is the right-hand side of (25) with q = 0, which implies γ(v) = 0, as well as

ẋ = BDB−1x+ ε̃(x, q) , (44)
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and with y = B−1x this furnishes

ẏ = Dy +B−1ε̃(By, q) . (45)

According to Assumption 3.9, we can compute estimates for the nonlinear term R. There-
fore, we may assume that (

B−1ε̃(By, q)
)

k
⊂ [sk, Sk] ,

for all k ∈ {1, ..., n}, as well as all x = By ∈ W̃ := W−v and q ∈ ∏(i,j)∈Im
[a−i,j, a

+
i,j]. Notice

that if the equilibrium v is determined numerically, one additionally has to incorporate
the numerical error into the estimate for ε̃. This implies

dkk ·
(
yk +

sk

dkk

)
< ẏk < dkk ·

(
yk +

Sk

dkk

)
. (46)

For all k with dkk < 0 we now define rk := −sk/dkk and Rk := −Sk/dkk, for the remaining
values of k set rk := −Sk/dkk and Rk := −sk/dkk. Recall that since v is a hyperbolic
equilibrium, all eigenvalues dkk are non-zero. If we now define

Ñ :=
n

X
k=1

[rk, Rk] ⊂ B−1(W̃ ) (47)

then Ñ is an isolating block for (45) — due to (46) the flow is transverse to the boundary

of Ñ at each point on the boundary. Thus, the set B(Ñ) ⊂ W̃ is an isolating block

for (44) and N := B(Ñ) + v is an isolating block for (25), for all q ∈ ∏(i,j)∈Im
[a−i,j, a

+
i,j],

which clearly satisfies N ⊂ W .
It remains to show that exit set N− of N is closed. For this, we consider the exit set Ñ−

of Ñ and define
E := {k ∈ {1, . . . , n} |dkk > 0} , (48)

as well as

Ñ− =
⋃

k∈E

(
∂[rk, Rk]× X

1≤i≤n,i6=k

[ri, Ri]

)
.

One can readily see that the set Ñ− is closed, and consequently also the set B(Ñ−) + v
is closed. Yet, the latter is exactly the exit set N−, since B is a change of variables
that preserves eigenvalues and therefore the directions of the flows of the corresponding
differential equations. Altogether, we have shown the following result.

Theorem 3.14 Let W and {a±i,j}(i,j)∈Im
be self-consistent a priori bounds for (25) which

satisfy (27) of Definition 3.3. Assume that W contains a hyperbolic equilibrium v of (25)

for q = 0. Assume further that the set N = B(Ñ + v) is derived as above from the set Ñ
in (47). If N ⊂ W , then N , W , and {a±i,j}(i,j)∈Im

are strict topologically self-consistent a
priori bounds for (19).
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Combined with the previous sections, the above result furnishes a complete technique to
find strict topologically self-consistent a priori bounds. In order to apply Theorem 3.4,
one now only has to determine the Conley index h(Inv (N), ϕq0

) with the help of the index
pair (N,N−). This will be accomplished in the remainder of this section.
Consider strict topologically self-consistent a priori bounds N , W , and {a±i,j}(i,j)∈Im

, and
assume that the isolating block N was obtained by the method described above. Hence,
we have N = B(Ñ) + v, and the exit set N− is closed and given by N− = B(Ñ−) + v.
Since B,B−1 : R

n → R
n are linear and therefore continuous functions, it is fairly easy to

verify that

[(
N/N−, [N−]

)]
=
[((

B(Ñ) + v
)
/
(
B(Ñ−) + v

)
,
[
B(Ñ−) + v

])]
=
[(
Ñ/Ñ−, [Ñ−]

)]
.

Recall that according to Definition 3.3, the pair (N,N−) is an index pair for equation (25)
for all q ∈ ∏

(i,j)∈Im
[a−i,j, a

+
i,j]. Now fix q0 ∈ ∏

(i,j)∈Im
[a−i,j, a

+
i,j] and let ϕq0

denote the

corresponding flow of (25). Then we have

h (Inv (N,ϕq0
)) =

[(
N/N−, [N−]

)]
=
[(
Ñ/Ñ−, [Ñ−]

)]
. (49)

Due to (47) and (48) we have both

Ñ =
n

X
k=1

[rk, Rk] and Ñ− =
⋃

k∈E

(
∂[rk, Rk]× X

1≤i≤n,i6=k

[ri, Ri]

)
.

Now choose z0 ∈ int(Ñ) and define the diagonal matrix DE ∈ R
n×n by

(DE)k,k :=

{
1 for k ∈ E

− 1 otherwise
,

where E is defined as in (48). Finally, consider the equation

ż = DE(z − z0) ,

with induced flow ψ. This system has a hyperbolic equilibrium z0 with |E| positive

eigenvalues. Furthermore, the set (Ñ , Ñ−) is an index pair for Inv(Ñ , ψ) = {z0}. But
this immediately implies

[
Σ|E|

]
= h ({z0}) = h

(
Inv
(
Ñ , ψ

))
=
[(
Ñ/Ñ−, [Ñ−]

)]
,

and together with (49) one finally obtains for all q ∈ ∏(i,j)∈Im
[a−i,j, a

+
i,j] the identity

h (Inv (N,ϕq)) =
[
Σ|E|

]
.

In other words, the Conley index takes the form required in Corollary 3.4, and we are
guaranteed that the set N ×∏(i,j)∈Im

[a−i,j, a
+
i,j] contains an equilibrium v∗ of (19).

Remark 3.15 It should be pointed out that it is not necessary that N×∏(i,j)∈Im
[a−i,j, a

+
i,j]

contains the hyperbolic equilibrium (v, 0) of (25). The latter is only used as a starting
point for the iteration mentioned earlier.
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4 Uniqueness of Equilibrium Solutions

In this section we demonstrate how one can establish the uniqueness of the equilibrium
guaranteed by Theorem 3.4 in the set N × ∏(i,j)∈Im

[a−i,j, a
+
i,j]. In order to make our

presentation as simple as possible, we will avoid the double index notation and consider
a linearly ordered complete orthogonal set {ψk}k∈N0

in the underlying Hilbert space H,
similar to our proceeding in Section 3.4.
To fix our notation, let X ⊆ D(F ) ⊆ H denote a suitable Banach space containing the
orthogonal basis {ψk}k∈N0

, and as in (34) we assume that

‖ψk‖H ≤ B and ‖ψk‖H ≥ b > 0 for all k ∈ N0 , (50)

where b and B are positive constants. Moreover, similar to (24) we define the operator

Pk : H → R by Pk(u) :=
(u, ψk)

(ψk, ψk)
, (51)

where (·, ·) denotes the scalar product in H. Then for all x ∈ X the sequence {xk}k∈N0

with xk = Pkx converges to zero as k →∞. For T ∈ L(X,H) we now set

ti,j := Pi (Tψj) ,

which readily implies

Tx =

∞∑

j=0

xjTψj =

∞∑

i=0

Pi

(
∞∑

j=0

xjTψj

)
ψi =

∞∑

i,j=0

ti,jxjψi ,

since T and the projections Pk are continuous. Here we used again the definition xk = Pkx

yielding x =
∞∑

j=0

xjψj. We begin by proving the following auxiliary result.

Lemma 4.1 Consider the notation introduced above, and assume that

|tk,k| >
∑

i∈N0\{k}

|tk,i| for all k ∈ N0 .

Then we have ‖Tx‖H > 0 for all x ∈ X\{0}.
Proof. Let x =

∑
i∈N0

xiψi ∈ X\{0} be arbitrary and consider an index i0 ∈ N0 such
that |Pi0x| = |xi0 | > 0. Then there exists a p ∈ N0 such that |xq| < |xi0 | for all q > p.
Using the abbreviation µ∗ := max0≤k≤p |xk| one obtains µ∗ ≥ |xi0 | > |xq| for all q > p.
This in turn implies that µ∗ ≥ |xk| for all k ∈ N0, and according to the definition of µ∗
there exists an index k0 ≤ p with |xk0

| > 0 and |xk0
| ≥ |xk| for all k ∈ N0. This furnishes

|Pk0
(Tx)− tk0,k0

xk0
| =

∣∣∣∣∣
∑

i∈N0

tk0,ixi − tk0,k0
xk0

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i∈N0\{k0}

tk0,ixi

∣∣∣∣∣∣

≤
∑

i∈N0\{k0}

|tk0,i| · |xi| ≤ |xk0
| ·

∑

i∈N0\{k0}

|tk0,i|

< |xk0
| · |tk0,k0

| = |tk0,k0
xk0
| .
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Therefore we have both 0 < |tk0,k0
xk0
| − |Pk0

(Tx)− tk0,k0
xk0
| ≤ |Pk0

(Tx)| and

‖Tx‖2
H =

∑

i∈N0

|Pi(Tx)|2 ‖ψi‖2
H ≥ |Pk0

(Tx)|2 · ‖ψk0
‖2

H > 0 ,

which completes the proof of the lemma.

The above Lemma 4.1 can be viewed as an infinite-dimensional extension of a theorem
of Gershgorin [20] about the location of eigenvalues of matrices. For our applications, we
also need the following extension of the lemma.

Lemma 4.2 Consider the notation introduced above, and let U ⊂ X denote an open set.
Furthermore, let T : U → L(X,H) be continuous and set t(u)i,j := Pi(T (u)ψj). Finally,
suppose that

|t(u)k,k| >
∑

i∈N0\{k}

|t(u)k,i| for all k ∈ N0 and u ∈ U .

Then for every continuous curve γ : [0, 1] → U and for all x ∈ X\{0} we have

∥∥∥∥
∫ 1

0

T (γ(t))x dt

∥∥∥∥
H

> 0 .

Proof. Let x =
∑

i∈N0
xiψi ∈ X\{0} be arbitrary, and let k0 be as in the proof of

Lemma 4.1. Then we obtain Pk0
(T (u)x) 6= 0 for all u ∈ U as in Lemma 4.1, and this

immediately shows that Pk0
(T (u)x) does not change sign on any connected component

of U . Due to ∫ 1

0

T (γ(t))x dt =

∞∑

k=0

(∫ 1

0

Pk(T (γ(t))x) dt

)
ψk

this furnishes

∥∥∥∥
∫ 1

0

T (γ(t))x dt

∥∥∥∥
2

H

=

∞∑

k=0

(∫ 1

0

Pk(T (γ(t))x) dt

)2

· ‖ψk‖2
H

≥
(∫ 1

0

Pk0
(T (γ(t))x) dt

)2

· ‖ψk0
‖2

H > 0 ,

and the proof of the lemma is complete.

Now assume that U ⊆ X is convex, suppose that F is Frechét differentiable in U with
derivative DF (u) ∈ L(X,H), and set

z(u)i,j := Pi (DF (u)ψj) .

Then we have the following result.
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Theorem 4.3 Let v ∈ U be an equilibrium of (33), i.e., assume that u = v solves

F (u) = Lu+R(u) = 0 . (52)

If in addition we have

|z(u)k,k| >
∑

i∈N0\{k}

|z(u)k,i| for all k ∈ N0 and u ∈ U , (53)

then v is the unique solution of (52) in U .

Proof. Assume there exist two equilibria v =
∑

i∈N0
viψi ∈ U and w =

∑
i∈N0

wiψi ∈ U
with w 6= v. Due to F (w) = F (v) = 0, the integral version of the mean value theorem
implies ∫ 1

0

DF (w + t(v − w)) dt · (v − w) = 0 ,

which contradicts Lemma 4.2 if we set γ(t) = w + t(v − w), since v − w 6= 0.

It is well-known that Gershgorin’s theorem is a very rough tool for establishing the in-
vertibility of a matrix. Since its infinite-dimensional extension forms the basis for our
uniqueness test, it is therefore not surprising that condition (53) often fails — even if our
solution seems to be unique. On the other hand, we usually have good information on
the finite-dimensional part A(u) ∈ R

M×M of the operator DF (u), where

(A(u))ij := z(u)i,j , for all i, j ∈ {0, . . . ,M − 1} .
By making use of this information, we can improve our approach. Notice that Theorem 4.3
can only be applied if the diagonal of the infinite-dimensional matrix representing DF (u)
is extremely dominant. This may not always be the case, especially for the diagonal entries
of the above-mentioned finite-dimensional part. In the following we therefore introduce
some sort of preconditioning to diagonalize the finite-dimensional part of that matrix.

Assumption 4.4 Assume that there exists a function u0 ∈ X such that A(u0) is diago-
nalizable, i.e., suppose there exists an invertible matrix B = (bij)i,j=0,...,M−1 ∈ R

M×M such
that A(u0) = BDB−1, where D = (dij)i,j=0,...,M−1 ∈ R

M×M is a diagonal matrix which
contains the real eigenvalues of A(u0).

In most cases u0 is the numerically computed equilibrium of the finite-dimensional sys-
tem (25) with q = 0. Note that it is not necessary for the following that u0 lies in the
set U . In fact, it suffices to assume that u0 lies in X and that F is Frechét differentiable
at u0. See also Remark 3.15. Let (̃bij)i,j=0,...,M−1 denote the entries of B−1. We define

Ξ(u) := B−1 (A(u)− A(u0))B ∈ R
M×M ,

and denote its coefficients by (ξ(u)ij)i,j=0,...,M−1. In addition, define the bijective contin-
uous linear operator Q : H → H by

Pi (Qψj) =

{
bij for 0 ≤ i, j < M
δij otherwise

.
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Since we assume that X contains the orthogonal basis {ψk}k∈N0
, we have Q(X) = X.

The inverse of Q is given by

Pi

(
Q−1ψj

)
=

{
b̃ij for 0 ≤ i, j < M
δij otherwise

.

Using this notation, we can now present a refined tool for checking the uniqueness of an
equilibrium.

Theorem 4.5 Using the notation introduced above, suppose that Assumption 4.4 holds
and assume that v ∈ U is an equilibrium of (33), i.e., we have Lv+R(v) = 0. In addition,
assume that for all u ∈ U we have

|dkk| >
∞∑

i=M

∣∣∣∣∣
M−1∑

l=0

b̃klz(u)l,i

∣∣∣∣∣+
M−1∑

i=0

|ξ(u)ki| (54)

for k ∈ {0, . . . ,M − 1}, and that for k ≥M we have

|z(u)k,k| >
M−1∑

i=0

∣∣∣∣∣
M−1∑

l=0

z(u)k,lbli

∣∣∣∣∣ +
∑

i≥M,i6=k

|z(u)k,i| . (55)

Then v is the unique solution of (52) in U .

Proof. Let u ∈ U be arbitrary and consider the operator Q−1DF (u)Q ∈ L(X,H). Then
for all 0 ≤ i, j < M one obtains

Pi

(
Q−1DF (u)Qψj

)
= PiQ

−1DF (u)
∑

k∈N0

Pk (Qψj)ψk = PiQ
−1DF (u)

M−1∑

k=0

bkjψk

= PiQ
−1

M−1∑

k=0

bkjDF (u)ψk = PiQ
−1

M−1∑

k=0

bkj

∑

l∈N0

z(u)l,kψl

= Pi

M−1∑

k,l=0

z(u)l,kbkjQ
−1ψl + Pi

∞∑

l=M

M−1∑

k=0

z(u)l,kbkjQ
−1ψl

= Pi

M−1∑

k,l=0

z(u)l,kbkj

M−1∑

n=0

b̃nlψn =

M−1∑

k,l=0

b̃ilz(u)l,kbkj

=
M−1∑

k,l=0

b̃il (z(u0)l,k + z(u)l,k − z(u0)l,k) bkj = dij + ξ(u)ij .

Similarly, for 0 ≤ i < M and j ≥ M one obtains

Pi

(
Q−1DF (u)Qψj

)
= PiQ

−1DF (u)ψj = PiQ
−1
∑

l∈N0

z(u)l,jψl
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= PiQ
−1

M−1∑

l=0

z(u)l,jψl + PiQ
−1

∞∑

l=M

z(u)l,jψl

= Pi

M−1∑

l=0

z(u)l,j

M−1∑

n=0

b̃nlψn =
M−1∑

l=0

b̃ilz(u)l,j ,

for i ≥M and 0 ≤ j < M one has

Pi

(
Q−1DF (u)Qψj

)
= Pi

M−1∑

k,l=0

z(u)k,lbljQ
−1ψk + Pi

∞∑

k=M

M−1∑

l=0

z(u)k,lbljQ
−1ψk

=

M−1∑

l=0

z(u)i,lblj ,

and finally for i ≥M and j ≥M one has

Pi

(
Q−1DF (u)Qψj

)
= PiQ

−1
∑

l∈N0

z(u)l,jψl = z(u)i,j .

An application of (54) now furnishes for all 0 ≤ k < M the estimate

∑

i∈N0\{k}

∣∣Pk

(
Q−1DF (u)Qψi

)∣∣ =
∞∑

i=M

∣∣∣∣∣
M−1∑

l=0

b̃klz(u)l,i

∣∣∣∣∣+
∑

0≤i<M,i6=k

|ξ(u)ki|

< |dkk| − |ξ(u)kk| ≤ |dkk + ξ(u)kk|
=

∣∣Pk(Q
−1DF (u)Qψk)

∣∣ ,

and (55) implies for all k ≥M the estimate

∑

i∈N0\{k}

∣∣Pk

(
Q−1DF (u)Qψi

)∣∣ =
M−1∑

i=0

∣∣∣∣∣
M−1∑

l=0

z(u)k,lbli

∣∣∣∣∣+
∑

i≥M,i6=k

|z(u)k,i|

< |z(u)k,k| =
∣∣Pk

(
Q−1DF (u)Qψk

)∣∣ .

Using Lemma 4.2 we now obtain
∫ 1

0
Q−1DF (γ(t))Qxdt 6= 0 for all x ∈ X\{0}, which

immediately implies
∫ 1

0
DF (γ(t))x dt 6= 0 for all x ∈ X\{0}. Now the result follows as in

the proof of Theorem 4.3.

We now reformulate the results of this section for the case of double index basis functions.
For this, define

z(u)p,q
r,s := Pp,q (DF (u)φr,s)

and consider the finite part A(u) ∈ R
(M2−1)×(M2−1) of DF (u), with coefficients

(A(u))i,j=1,...,M2−1 = z(u)
bσ−1(i)
bσ−1(j) ,
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where σ̂ : N0 × N0 → N0 is a bijective transformation similar to the one introduced in
Section 3.4. This time we consider

σ̂(k, l) =

{
k + lM for 0 ≤ k, l < M
σ(k, l) otherwise

.

The analogue of Assumption 4.4 now takes the following form.

Assumption 4.6 Assume that there exists a function u0 ∈ X, as well as an invertible
matrix B = (bij)i,j=1,...,M2−1 ∈ R

(M2−1)×(M2−1) such that the identity A(u0) = BDB−1

holds, where D = (dij)i,j=1,...,M2−1 ∈ R
(M2−1)×(M2−1) denotes a diagonal matrix which

contains the real eigenvalues of A(u0).

In most cases, u0 is the numerically computed solution of the finite-dimensional sys-
tem (25). The entries of the inverse matrix B−1 are denoted by (̃bij)i,j=1,...,M2−1, and we
define

Ξ(u) := B−1 (A(u)− A(u0))B ∈ R
(M2−1)×(M2−1) ,

with coefficients (ξ(u)ij)i,j=1,...,M2−1. Finally, define the bijective continuous linear opera-
tor Q : H → H as

Pp,q (Qφr,s) =

{
bbσ(p,q)bσ(r,s) for 0 ≤ p, q, r, s < M
δprδqs otherwise

.

As before, the Banach space X ⊆ D(F ) ⊆ H is chosen in such a way that it contains the
orthogonal basis {φi,j}(i,j)∈I∗. The inverse of Q is given by

Pp,q

(
Q−1φr,s

)
=

{
b̃bσ(p,q)bσ(r,s) for 0 ≤ p, q, r, s < M
δprδqs otherwise

.

In the new setting, Theorem 4.5 can now be restated as follows.

Theorem 4.7 Using the notation introduced above, suppose that Assumption 4.6 holds
and assume that v ∈ U is an equilibrium of (33) on a two-dimensional domain. In
addition, assume that for all u ∈ U we have

∣∣dbσ(k,l)bσ(k,l)

∣∣ >
∑

(r,s)∈IM−1

∣∣∣∣∣∣
∑

(p,q)∈I∗\IM−1

b̃bσ(k,l)bσ(p,q)z(u)
p,q
r,s

∣∣∣∣∣∣
+

M2−1∑

j=1

∣∣ξ(u)bσ(k,l)j

∣∣

for (k, l) ∈ I∗ \ IM−1, and that otherwise we have

∣∣∣z(u)k,l
k,l

∣∣∣ >
∑

(p,q)∈I∗\IM−1

∣∣∣∣∣∣
∑

(r,s)∈I∗\IM−1

z(u)k,l
r,sbbσ(r,s)bσ(p,q)

∣∣∣∣∣∣
+

∑

(r,s)∈IM−1\{(k,l)}

∣∣z(u)k,l
r,s

∣∣ .

Then v is the unique solution of the two-dimensional form of (52) in U .
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5 Rigorous Path-Following

In this section we combine the method described in the preceding sections with a path-
following algorithm — such as for example [13] — in order to rigorously compute branches
of solutions. We consider the equation

ut = F (u, λ) , (56)

in the Hilbert space H, where F depends continuously on the real parameter λ. By
orthogonal projection onto the spaces Xm,m and Ym,m one obtains as in (25) and (26) the
coupled system

pt = P (m,m)F ((p+ q), λ) , (57)

qt = Q(m,m)F ((p+ q), λ) . (58)

Central to our proceeding is the following result.

Theorem 5.1 Assume that N , W , and {a±i,j}(i,j)∈Im
are strict topologically self-consistent

a priori bounds for (56) as introduced in Definition 3.3, for all λ ∈ [λ−, λ+] ⊂ R. If we
have

h (Inv (N,ϕq0,λ0
)) =

[
Σl0
]

for some l0 ∈ N0, q0 ∈
∏

(i,j)∈Im
[a−i,j, a

+
i,j] and λ0 ∈ [λ−, λ+], then for all λ ∈ [λ−, λ+] there

exist equilibria v∗λ ∈ N ×∏∞
(i,j)∈Im

[a−i,j, a
+
i,j] of (56).

Proof. According to our assumption, the set N is an isolating block with closed exit set
for all λ ∈ [λ−, λ+] and all q ∈ ∏(i,j)∈Im

[a−i,j, a
+
i,j]. Due to the continuation property of the

Conley index [18], we then obtain

h (Inv (N,ϕq0,λ0
)) = h (Inv (N,ϕq0,λ)) ,

for all λ ∈ [λ−, λ+]. Hence,
h (Inv (N,ϕq0,λ)) =

[
Σl0
]

for all λ ∈ [λ−, λ+], and Theorem 3.4 furnishes an equilibrium v∗λ ∈ N ×∏(i,j)∈Im
[a−i,j, a

+
i,j]

for each λ.

Our strategy for rigorously computing branches is as follows, see also Figure 41. First, we
compute an equilibrium of the finite-dimensional equation (57) with q = 0 and λ = λ0.
Then we try to find bounds nearby, which are strict topologically self-consistent a priori
bounds for all λ ∈ [λ−, λ+]. By Theorem 5.1 we then obtain a solution, possibly unique,
for each λ ∈ [λ−, λ+]. Using a path-following algorithm we now compute another solution
of (57) with q = 0 and search again for strict topologically self-consistent a priori bounds
in a certain λ-interval, in order to apply Theorem 5.1 again. The goal is to cover the
whole branch with such λ-intervals.
We now turn our attention to the Cahn-Hilliard equation (1). The equilibria of (1) are
given by the three-parameter problem (5) and (2), and we consider the two-dimensional
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algorithm

λ− λ+λ0λ

Figure 41: Strategy for rigorous path-following

case Ω = (0, 1)2. Note that µ = 1
|Ω|

∫
Ω
u(x)dx = P0,0u. The general strategy for path-

following a three-parameter problem is to fix one parameter, advance the second parame-
ter, and adjust the third one, as well as all the variables related to the solution. Our goal
is to compute paths of solutions of (5), or equilibria of (1), using the strategy described
above. Assume we know an equilibrium of the Cahn-Hilliard version of (57) with q = 0
and parameters (µ0, λ0, c0). If, for example, we want to determine a piece of the path in
λ-direction with fixed mass µ = µ0, then we have to take into account an additional error
term in (9) (see also (65) and Lemma A.1), namely

u̇i,j = −
(
i2 + j2

)2
π4ui,j + λ

(
i2 + j2

)
π2

(
ui,j −

1

4
ci,j

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)

= −
(
i2 + j2

)2
π4ui,j + λ0

(
i2 + j2

)
π2

(
ui,j −

1

4
ci,j

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)

+εi,j(λ, u) , (59)

where

εi,j(λ, u) := (λ− λ0)
(
i2 + j2

)
π2

(
ui,j −

1

4
ci,j

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)
,

with i, j ∈ N0 and λ in a certain interval [λ−, λ+] around λ0. Of course, one can compute
bounds for εi,j(λ, u) for all λ ∈ [λ−, λ+] by employing the estimates from Section A.1
for the infinite sum. Hence, in order to determine a path of solutions v∗λ of (5) in a
predetermined interval [λ−, λ+] around λ0, we have to apply our method to (59) with the
additional error term εi,j(λ, u). Upon success, one then computes another approximate
solution by a path-following algorithm and proceeds as before. In this way one can try to
cover the whole branch with λ-intervals. See also Figure 41.
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For paths in µ-direction with fixed λ, no new error term is necessary. One only has
to realize that µ = P0,0u and that the estimates of Section A.1 are not restricted to
fixed P0,0u. Therefore, one can simply use the bounds that are computed there.
Unfortunately, it is not possible to use the above strategy if one wants to consider the
parameter c, neither for path-following in c-direction nor for following µ with fixed c.
This parameter does not appear in (1) explicitly, so one cannot incorporate a fixed c0 or
a predetermined interval [c−, c+] into the equation. Yet, in order to avoid this problem,
one can consider the Allen-Cahn equation

ut = ∆u+ λf(u)− λc in Ω , (60)

∂νu = 0 on ∂Ω .

The equilibria of the Allen-Cahn equation and of the Cahn-Hilliard equation coincide.
Also, Theorem 3.6 applies to (60) as well, and due to Lemma A.1 we have (see (64)
and (63))

u̇i,j = −
(
i2 + j2

)
π2ui,j + λ

(
ui,j −

1

4
ci,j

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)
, (61)

for (i, j) ∈ I∗. In addition, since c0,0 = 1
16

by Lemma A.1, we have

u̇0,0 = λ

(
u0,0 −

1

64

∑

p,q,r,s∈Z

ũp,qũr,sũp+r,q+s

)
− λc , (62)

because the mass of Allen-Cahn solutions may change with time. Now, if we search for a
path in c-direction around c0 with fixed λ = λ0, then we replace (62) by

u̇0,0 = λ

(
u0,0 −

1

64

∑

p,q,r,s∈Z

ũp,qũr,sũp+r,q+s

)
− λc0 + ε0,0(c, λ) ,

where
ε0,0(c, λ) := λ(c0 − c) .

Note that rigorous path-following in c with fixed µ is not possible with this technique. If
we restrict ourselves to a fixed µ, we lose the information gathered by considering (60),
namely the dynamics in u0. Hence, we cannot take equation (62) into account and are
again left with the problem that c does not occur explicitly in equations (61). Rigorous
path-following for all the other combinations of the parameters is possible, see Table 11.

A Appendix

A.1 Estimates for the Truncation Error

As we have seen in Section 3, our method for establishing computer-assisted existence
proofs for equilibria of the Cahn-Hilliard equation relies crucially on the ability to control
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fixed advanced adjusted technique
λ µ c method with Cahn-Hilliard or Allen-Cahn equation

c µ method with Allen-Cahn equation
µ λ c method with Cahn-Hilliard or Allen-Cahn equation

c λ not possible
c λ µ method with Allen-Cahn equation

µ λ method with Allen-Cahn equation

Table 11: Parameter combinations for rigorous path-following

the truncation error which arises in passing from the infinite system (9) to the truncated
finite system (10). This is the subject of the current, fairly technical, section, which is
therefore part of the appendix. The form of the estimates are motivated in part by the
work of Day [4],[5]
Consider the Cahn-Hilliard equation (1) on the square domain Ω = (0, 1)2, with the
specific cubic nonlinearity f(u) = u− u3. Furthermore, we choose the functions

φi,j(x, y) = cos(iπx) cos(jπy) for all i, j ∈ N0

defined in (22) as the complete orthogonal system of the underlying Hilbert space L2(Ω).
Any function in L2(Ω) can be written as Fourier series with respect to the above basis, and
we use the following notation which was introduced in (24). Let u ∈ L2(Ω) be arbitrary.
Then its (i, j)-th Fourier coefficient is denoted by Pi,j(u), i.e., we have

u =

∞∑

i,j=0

ui,jφi,j where ui,j = Pi,j (u) . (63)

Since we are considering a polynomial nonlinearity, one of the first steps towards bounding
the truncation error is to rewrite the product of two functions in terms of their Fourier
coefficients. This is accomplished in the following lemma.

Lemma A.1 Let v, w ∈ L2(Ω) be arbitrary functions such that their pointwise product
satisfies vw ∈ L2(Ω). Let v =

∑
i,j≥0 vi,jφi,j and w =

∑
i,j≥0wi,jφi,j. In addition, define

for all (i, j) ∈ Z
2 the coefficients

ṽi,j :=





4v|i|,|j| for(i, j) = (0, 0)
2v|i|,|j| fori = 0, j 6= 0ori 6= 0, j = 0
v|i|,|j| otherwise

,

and similarly for w̃i,j. Then the (i, j)-th Fourier coefficient Pi,j(vw) of the product vw as
in (24) is given by

Pi,j(vw) = ci,j ·
∑

p,q∈Z

ṽp,qw̃i−p,j−q for all i, j ≥ 0 ,

where c0,0 = 1/16, ci,0 = c0,j = 1/8, and ci,j = 1/4, for i, j > 0.

53



The proof of the above lemma is rather long, but straightforward, and is therefore omitted.
It is based on the formula

φp,qφr,s =
1

4
·
(
φp+r,q+s + φp+r,|q−s| + φ|p−r|,q+s + φ|p−r|,|q−s|

)
,

details can be found in [17, Lemma 5.0.1]. In order to describe the Fourier coefficients of
the cubical term in the nonlinearity f one only has to apply Lemma A.1 twice. In this
way, one can show that the (i, j)-th Fourier coefficient gi,j of u3 is given explicitly by

gi,j = Pi,j

(
u3
)

=
ci,j
4
·
∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s . (64)

Inserting (63) and (64) into (1), we finally obtain an infinite system of coupled differential
equations which is equivalent to the Cahn-Hilliard equation. This system is given by

u̇i,j = −
(
i2 + j2

)2
π4ui,j + λ

(
i2 + j2

)
π2

(
ui,j −

ci,j
4

∑

p,q,r,s∈Z

ũp,qũr,sũi−p−r,j−q−s

)
, (65)

where i, j ∈ N0. Note that there is no dynamics in u0,0, which is a reflection of the mass
conservation of the Cahn-Hilliard equation. Nevertheless, particularly for the computa-
tions to come, it is convenient to add u̇0,0 = 0 and u0,0 = µ.
After these preliminary comments, we now turn our attention to the main topic of this
section, i.e., estimating the truncation error. As a first step, we derive estimates for
expressions of the form

IS(a, b, i, j) =
∑

p,q∈Z

ap,qbi−p,j−q , (66)

for i, j ∈ Z. In view of the later applications of these estimates, one needs to obtain tight
bounds on the possible values of IS(a, b, i, j), if the numbers ap,q and bp,q are chosen from
suitable intervals. It is therefore natural to pursue an interval arithmetic approach, i.e.,
we consider the factors after the summation sign in IS(a, b, i, j) as compact intervals of
the form am,n = [a−m,n, a

+
m,n] and bm,n = [b−m,n, b

+
m,n]. In addition, we define

‖am,n‖I := max
{∣∣a−m,n

∣∣ ,
∣∣a+

m,n

∣∣} . (67)

In order to make the estimation problem for the sums IS(a, b, i, j) feasible, additional
assumptions are necessary. These are collected in the following.

Assumption A.2 Consider sums IS(a, b, i, j) of the form defined in (66), where i, j ∈ Z,
and let a = (ap,q)p,q∈Z and b = (bp,q)p,q∈Z denote collections of intervals. Suppose that for
p, q ∈ Z we have ap,q = a|p|,|q| and bp,q = b|p|,|q|, and thus IS(a, b, i, j) = IS(a, b, |i|, |j|).
In addition, we require that there are constants s ≥ 2, A > 0, B > 0, and an integer
M ≥ 2, as well as positive constants A1(p) and B1(p) for p ∈ {0, ...,M − 1}, and positive
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constants A2(q) and B2(q) for q ∈ {0, ...,M − 1} such that

‖ap,q‖I ≤





A1(|p|)
|q|s

for |q| ≥M and |p| < M
A2(|q|)
|p|s

for |p| ≥M and |q| < M
A

|p|s|q|s
for |p|, |q| ≥M ,

(68)

‖bp,q‖I ≤





B1(|p|)
|q|s

for |q| ≥M and |p| < M
B2(|q|)
|p|s

for |p| ≥M and |q| < M
B

|p|s|q|s
for |p|, |q| ≥M ,

(69)

where ‖ap,q‖I was defined in (67).

In order to shorten terms in the following derivations, we define

A1(p) = A2(p) :=
A

ps
and B1(p) = B2(p) :=

B

ps
,

for all p ≥M . We start with estimates for i, j ∈ {0, ...,M − 1}.

Lemma A.3 Under Assumption A.2 we have for i, j ∈ {0, ...,M − 1}, that

IS(a, b, i, j) ⊂ FS(a, b, i, j) +
4ABτ 2

(i +M + 1)s(j +M + 1)s
[−1, 1]

+2τ

(
S2(j)

(i+M + 1)s
+

S1(i)

(j +M + 1)s

)
[−1, 1]

where we use the abbreviations τ = 1/((s− 1)M s−1),

FS(a, b, i, j) =

M+i∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q , (70)

S1(i) = S1,M(i) =
∑M+i

p=−M A1(|p|)B1(|i−p|), S2(j) = S2,M(j) =
∑M+j

q=−M A2(|q|)B2(|j−q|).

Proof. In order to estimate IS(a, b, i, j) we rewrite the sum in the form

IS(a, b, i, j) =
i+M∑

p=−M

j+M∑

q=−M

ap,qbi−p,j−q +
∑

p<−M

∑

q<−M

ap,qbi−p,j−q

+
∑

p<−M

M+j∑

q=−M

ap,qbi−p,j−q +
∑

p<−M

∑

q>M+j

ap,qbi−p,j−q

+
∑

p>M+i

∑

q<−M

ap,qbi−p,j−q +
∑

p>M+i

M+j∑

q=−M

ap,qbi−p,j−q (71)
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+
∑

p>M+i

∑

q>M+j

ap,qbi−p,j−q +

M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q

+

M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q ,

and Lemma A.3 is established by deriving estimates for each of the terms in (71) by
using (68) and (69). First of all, one obtains

∑

p<−M

∑

q<−M

ap,qbi−p,j−q ⊆
∑

p<−M

∑

q<−M

A

|p|s|q|s
B

|i− p|s|j − q|s [−1, 1]

⊆ AB

(i +M + 1)s(j +M + 1)s

∑

p<−M

∑

q<−M

1

|p|s
1

|q|s [−1, 1]

⊂ AB

(i +M + 1)s(j +M + 1)s

∫ ∞

M

∫ ∞

M

1

xsys
dx dy [−1, 1]

⊆ AB

(i +M + 1)s(j +M + 1)s(s− 1)2M2(s−1)
[−1, 1]

=
ABτ 2

(i +M + 1)s(j +M + 1)s
[−1, 1] .

Similarly one obtains

∑

p<−M

∑

q>M+j

ap,qbi−p,j−q ⊂ ABτ 2

(i+M + 1)s(j +M + 1)s
[−1, 1] ,

∑

p>M+i

∑

q<−M

ap,qbi−p,j−q ⊂ ABτ 2

(i+M + 1)s(j +M + 1)s
[−1, 1] , as well as

∑

p>M+i

∑

q>M+j

ap,qbi−p,j−q ⊂ ABτ 2

(i+M + 1)s(j +M + 1)s
[−1, 1] .

In addition, we have

∑

p<−M

M+j∑

q=−M

ap,qbi−p,j−q ⊆
∑

p<−M

M+j∑

q=−M

A2(|q|)
|p|s

B2(|j − q|)
|i− p|s [−1, 1]

⊂ 1

(i+M + 1)s
·

M+j∑

q=−M

A2(|q|)B2(|j − q|) ·
∫ ∞

M

1

xs
dx [−1, 1]

⊆ τS2(j)

(i+M + 1)s
[−1, 1] ,

and analogously

∑

p>M+i

M+j∑

q=−M

ap,qbi−p,j−q ⊂ τS2(j)

(i +M + 1)s
[−1, 1] ,
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M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q ⊂ τS1(i)

(j +M + 1)s
[−1, 1] , and

M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q ⊂ τS1(i)

(j +M + 1)s
[−1, 1] .

The result now follows by combining all these estimates.

Before proceeding, we need the following two auxiliary results.

Lemma A.4 The sum

S(M) :=

M−1∑

p=1

M2

p2(M − p)2

is decreasing in M for all M ≥ 4.

Proof. Using the identity

M2

p2(M − p)2
=

1

p2
+

2

M

(
1

p
+

1

M − p

)
+

1

(M − p)2

one obtains

S(M) = 2

M−1∑

p=1

1

p2
+

4

M

M−1∑

p=1

1

p
,

which furnishes for all M ≥ 4 the estimate

S(M)− S(M + 1) = 2

(
M−1∑

p=1

1

p2
−

M∑

p=1

1

p2

)
+

4

M

M−1∑

p=1

1

p
− 4

M + 1

M∑

p=1

1

p

= − 2

M2
+

4

M(M + 1)

(
(M + 1)

M−1∑

p=1

1

p
−M

M∑

p=1

1

p

)

= − 2

M2
+

4

M(M + 1)

(
M−1∑

p=1

1

p
− 1

)
> − 2

M2
+

4

M(M + 1)
· 5

6

> − 2(M + 1)

M2(M + 1)
+

3M

M2(M + 1)
=

M − 2

M2(M + 1)
> 0 .

This completes the proof of the lemma.

Lemma A.5 For i ≥M and s ≥ 2, we have

i−1∑

p=1

1

ps(i− p)s
≤ γs,M

is
,
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where

γs = γs,M :=

{
41
9

(
M

M−1

)s−2
if M ∈ {2, 3}

S(M)
(

M
M−1

)s−2
if M ≥ 4

Proof. For s = 2 and M ≥ 4 the proof follows from Lemma A.4. Furthermore, we
have the identities supM>1 S(M) = max1<M≤4 S(M) = S(4) = 41/9, which completes the
proof for the case s = 2. Now assume that s > 2 and i ≥ M . In this case one obtains

i−1∑

p=1

1

ps(i− p)s
=

i−1∑

p=1

1

ps−2(i− p)s−2
· 1

p2(i− p)2

≤ 1

(i− 1)s−2
· γ2,M

i2
=

is−2

(i− 1)s−2
· γ2,M

is
≤ γs,M

is
,

and the proof is complete.

In order to formulate the following estimates more concisely, we have to introduce the
following abbreviations.

Definition A.6 We define

V2(j) = V2,M,s :=

M+j∑

q=−M

max
1≤r≤M−1

max
1≤t≤r

(
max (‖ar,q‖I · rs, A2(|q|))

·max (‖bM−t,j−q‖I · (M − t)s, B2(|j − q|))
)
,

S?
2(j) = S?

2,M(j) :=

0∑

p=−M

M+j∑

q=−M

(‖ap,q‖I ·B2(|j − q|) + A2(|j − q|)‖bp,q‖I) ,

W1 = W1,M,s := max
1≤r≤M−1

max
1≤t≤r

(max (A1(r)r
s, A) ·max (B1(M − t)(M − t)s, B)) ,

A?
1 = A?

1,M :=
0∑

p=−M

A1(|p|) , and B?
1 = B?

1,M :=
0∑

p=−M

B1(|p|) .

With these abbreviations one obtains the following estimate.

Lemma A.7 Under Assumption A.2 and for i ≥M and j ∈ {0, ...,M − 1} we have

IS(a, b, i, j) ⊂ 1

is
·
(
S?

2(j) + γsV2(j) + 2τS2(j)

+
2τ

(j +M + 1)s
(2ABτ +BA?

1 + γsW1 + AB?
1)

)
[−1, 1]
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Proof. We use the same strategy as in the proof of Lemma A.3 and write

IS(a, b, i, j) =
M+i∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q +
∑

p<−M

∑

q∈Z

ap,qbi−p,j−q +
∑

p>M+i

∑

q∈Z

ap,qbi−p,j−q

+
M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q +
M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q .

Again we consider each of the sums in the above identity separately. Starting with the
first sum, one obtains

M+i∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q =

0∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q +

i−1∑

p=1

M+j∑

q=−M

ap,qbi−p,j−q

+

M+i∑

p=i

M+j∑

q=−M

ap,qbi−p,j−q

⊆
0∑

p=−M

M+j∑

q=−M

‖ap,q‖I
B2(|j − q|)
|i− p|s [−1, 1]

+

M+j∑

q=−M

i−1∑

p=1

psap,q

ps
· |i− p|sbi−p,j−q

|i− p|s

+
0∑

p=−M

M+j∑

q=−M

A2(|j − q|)
|i− p|s ‖bp,q‖I [−1, 1]

⊆ 1

is
(S?

2(j) + γsV2(j)) [−1, 1] , and

∑

p<−M

∑

q∈Z

ap,qbi−p,j−q ⊆
∑

p<−M

∑

q<−M

A

|p|s|q|s ·
B

|i− p|s|j − q|s [−1, 1]

+
∑

p<−M

M+j∑

q=−M

A2(|q|)
|p|s · B2(|j − q|)

|i− p|s [−1, 1]

+
∑

p<−M

∑

q>M+j

A

|p|s|q|s ·
B

|i− p|s|j − q|s [−1, 1]

⊂ 1

(i+M + 1)s

(
2ABτ 2

(j +M + 1)s
+ τS2(j)

)
[−1, 1]

⊆ 1

is

(
2ABτ 2

(j +M + 1)s
+ τS2(j)

)
[−1, 1] .

Similarly one can show that

∑

p>M+i

∑

q∈Z

ap,qbi−p,j−q ⊂ 1

is

(
2ABτ 2

(j +M + 1)s
+ τS2(j)

)
[−1, 1] ,
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M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q ⊂ τ

is(j +M + 1)s
(BA?

1 + γsW1 + AB?
1) [−1, 1] , as well as

M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q ⊂ τ

is(j +M + 1)s
(BA?

1 + γsW1 + AB?
1) [−1, 1] ,

which completes the proof.

In some sense dual to the abbreviations in Definition A.6 are the following constant
definitions, and the subsequent lemma.

Definition A.8 We define

V1(i) = V1,M,s :=
M+i∑

p=−M

max
1≤r≤M−1

max
1≤t≤r

(
max (‖ap,r‖Ir

s, A1(|p|))

·max (‖bi−p,M−t‖I(M − t)s, B1(|i− p|))
)
,

S?
1(i) = S?

1,M(i) :=

M+i∑

p=−M

0∑

q=−M

(‖ap,q‖IB1(|i− p|) + A1(|i− p|)‖bp,q‖I) ,

W2 = W2,M,s := max
1≤r≤M−1

max
1≤t≤r

(max (A2(r)r
s, A) ·max (B2(M − t)(M − t)s, B)) ,

A?
2 = A?

2,M :=

0∑

q=−M

A2(|q|) , and B?
2 = B?

2,M :=

0∑

q=−M

B2(|q|) .

Lemma A.9 Let Assumption A.2 be satisfied, and assume the notation of Lemma A.5,
Lemma A.3, and Definition A.8. Then we have for all i ∈ {0, ...,M − 1} and j ≥M

IS(a, b, i, j) ⊂ 1

js
(S?

1(i) + γsV1(i) + 2τS1(i)

+
2τ

(i +M + 1)s
(2ABτ +BA?

2 + γsW2 + AB?
2)

)
[−1, 1] .

Proof. The proof is similar to the one of Lemma A.7 and is therefore omitted.

Definition A.10 For the case i, j ≥ M we define

R1 :=

0∑

p=−M

max
1≤r≤M−1

max
1≤t≤r

(max (rs‖ap,r‖I , A1(|p|)) ·max (B2(M − t)(M − t)s, B)) ,

R2 :=

0∑

p=−M

max
1≤r≤M−1

max
1≤t≤r

(max (rs‖bp,r‖I , B1(|p|)) ·max (A2(M − t)(M − t)s, A)) ,
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T1 :=
0∑

q=−M

max
1≤r≤M−1

max
1≤t≤r

(max (rs‖ar,q‖I , A2(|q|)) ·max (B1(M − t)(M − t)s, B)) ,

T2 :=
0∑

q=−M

max
1≤r≤M−1

max
1≤t≤r

(max (rs‖br,q‖I , B2(|q|)) ·max (A1(M − t)(M − t)s, A)) ,

a? :=

0∑

p=−M

0∑

q=−M

‖ap,q‖I , b? :=

0∑

p=−M

0∑

q=−M

‖bp,q‖I ,

Z := max
1≤k,r≤M−1

max
1≤l≤k

max
1≤t≤r

(
max(ksrs‖ak,r‖I , A1(k)k

s, A2(r)r
s) ·

max((M − l)s(M − t)s‖bM−l,M−t‖I , B1(M − l)(M − l)s, B2(M − t)(M − t)s)
)

Notice that in fact R1 = R1,M,s, R2 = R2,M,s, T1 = T1,M,s, T2 = T2,M,s, a
? = a?

M , b? = b?M ,
and Z = ZM,s.

Lemma A.11 Consider the notation of Lemma A.5 and Definitions A.6, A.8, and A.10,
and suppose that Assumption A.2 holds. Then for all i ≥M and j ≥M we have

IS(a, b, i, j) ⊂ 1

isjs

(
2τ (B (A?

1 + A?
2) + A (B?

1 +B?
2) + γs (W1 +W2) + 2τAB) +Ba?

+A?
1B

?
2 + A?

2B
?
1 + Ab? + γs (R1 +R2 + γsZ + T1 + T2)

)
[−1, 1] .

Proof. Again we rewrite (66), this time in the form

IS(a, b, i, j) =
M+i∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q +
M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q +
M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q

+
∑

p<−M

∑

q∈Z

ap,qbi−p,j−q +
∑

p>M+i

∑

q∈Z

ap,qbi−p,j−q .

The first sum can be rewritten as

M+i∑

p=−M

M+j∑

q=−M

ap,qbi−p,j−q =
0∑

p=−M

0∑

q=−M

ap,qbi−p,j−q +
0∑

p=−M

j−1∑

q=1

ap,qbi−p,j−q

+
0∑

p=−M

M+j∑

q=j

ap,qbi−p,j−q +
i−1∑

p=1

M+j∑

q=−M

ap,qbi−p,j−q

+

M+i∑

p=i

0∑

q=−M

ap,qbi−p,j−q +

M+i∑

p=i

j−1∑

q=1

ap,qbi−p,j−q

+
M+i∑

p=i

M+j∑

q=j

ap,qbi−p,j−q .
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By considering each of the terms separately one obtains

0∑

p=−M

0∑

q=−M

ap,qbi−p,j−q ⊆
0∑

p=−M

0∑

q=−M

‖ap,q‖I
B

|i− p|s|j − q|s [−1, 1] ⊆ Ba?

isjs
[−1, 1] ,

0∑

p=−M

j−1∑

q=1

ap,qbi−p,j−q ⊆
0∑

p=−M

j−1∑

q=1

‖ap,q‖I
B2(|j − q|)
|i− p|s [−1, 1]

⊆ 1

is

0∑

p=−M

j−1∑

q=1

qs‖ap,q‖I

qs
· B2(|j − q|)|j − q|s

|j − q|s [−1, 1]

⊆ γsR1

isjs
[−1, 1] ,

0∑

p=−M

M+j∑

q=j

ap,qbi−p,j−q ⊆
0∑

p=−M

M+j∑

q=j

A1(|p|)B2(|j − q|)
qs|i− p|s [−1, 1] ⊆ A?

1B
?
2

isjs
[−1, 1] ,

i−1∑

p=1

M+j∑

q=−M

ap,qbi−p,j−q ⊆
0∑

q=−M

i−1∑

p=1

‖ap,q‖Ip
sB1(|i− p|)|i− p|s

ps|i− p|s|j − q|s [−1, 1]

+

i−1∑

p=1

j−1∑

q=1

‖ap,q‖Ip
sqs

psqs
· ‖bi−p,j−q‖I |i− p|s|j − q|s

|i− p|s|j − q|s [−1, 1]

+

M+j∑

q=j

i−1∑

p=1

psA1(p)|i− p|s‖bi−p,j−q‖I

ps|i− p|sqs
[−1, 1]

⊆ γs

isjs
(T1 + γsZ + T2) [−1, 1] ,

M+i∑

p=i

0∑

q=−M

ap,qbi−p,j−q +
M+i∑

p=i

j−1∑

q=1

ap,qbi−p,j−q ⊆ A?
2B

?
1

isjs
[−1, 1] +

γsR2

isjs
[−1, 1] , and

M+i∑

p=i

M+j∑

q=j

ap,qbi−p,j−q ⊆ A

isjs

M+i∑

p=i

M+j∑

q=j

‖bi−p,j−q‖I [−1, 1] ⊆ Ab?

isjs
[−1, 1] .

The next two terms can be bounded using estimates of the proof of Lemma A.7, namely

M+i∑

p=−M

∑

q<−M

ap,qbi−p,j−q ⊂ τ

isjs
(BA?

1 + γsW1 + AB?
1) [−1, 1] , and

M+i∑

p=−M

∑

q>M+j

ap,qbi−p,j−q ⊂ τ

isjs
(BA?

1 + γsW1 + AB?
1) [−1, 1] .
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The remaining estimates follow similarly to the proof of Lemma A.7, see also Lemmas A.3
and A.9):

∑

p<−M

∑

q∈Z

ap,qbi−p,j−q ⊂ τ

isjs
(2ABτ +BA?

2 + γsW2 + AB?
2) [−1, 1] , as well as

∑

p>M+i

∑

q∈Z

ap,qbi−p,j−q ⊂ τ

isjs
(2ABτ +BA?

2 + γsW2 + AB?
2) [−1, 1] ,

which completes the proof of the lemma.

So far we have established bounds on the auxiliary expression IS(a, b, i, j) defined in (66).
Yet, our main interest lies in bounding the truncation error when passing from the infinite
system (65) to the truncated finite system (10). For this, we need to establish estimates
for expressions of the form

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s =
∑

p,q∈Z

ap,qIS(a, a, i− p, j − q) . (72)

These estimates will be derived under the following assumptions.

Assumption A.12 Let a = (am,n)n,m∈Z be a collection of intervals am,n = [a−m,n, a
+
m,n]

with ap,q = a|p|,|q| for all p, q ∈ Z. Furthermore, assume that there are constants A > 0,
s ≥ 2 and an integer M ≥ 2, as well as positive constants A1(p) for p ∈ {0, ...,M − 1}
and positive constants A2(q) for q ∈ {0, ...,M − 1}, such that

‖ap,q‖I ≤





A1(|p|)
|q|s

for |q| ≥M and |p| < M
A2(|q|)
|p|s

for |p| ≥M and |q| < M
A

|p|s|q|s
for |p|, |q| ≥M ,

where we use the definition in (67).

Definition A.13 For |k|, |l| < M , we set

bk,l := FS(a, a, |k|, |l|) +
4A2τ 2

(|k|+M + 1)s(|l|+M + 1)s
[−1, 1]

+2τ

(
Ŝ2(|l|)

(|k|+M + 1)s
+

Ŝ1(|k|)
(|l|+M + 1)s

)
[−1, 1] ,

where we use

Ŝ1(i) =
M+i∑

p=−M

A1(|p|)A1(|i− p|) and Ŝ2(j) =

M+j∑

q=−M

A2(|q|)A2(|j − q|) .
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Similarly, we use the notation of Definitions A.6, A.8, and A.10 with a hat, when all
entries related to bp,q (B, B1(p), B2(q)) are replaced by ap,q (A, A1(p), A2(q)). Finally,
we define

B1(|k|) := Ŝ?
1(|k|) + γsV̂1(|k|) + 2τ Ŝ1(|k|) +

2τ(2A2τ + 2AA?
2 + γsŴ2)

(|k|+M + 1)s
,

B2(|l|) := Ŝ?
2(|l|) + γsV̂2(|l|) + 2τ Ŝ2(|l|) +

2τ(2A2τ + 2AA?
1 + γsŴ1)

(|l|+M + 1)s
,

B := 2τ
(
2A (A?

1 + A?
2) + γs

(
Ŵ1 + Ŵ2

)
+ 2τA2

)
+ 2Aa? + 2A?

1A
?
2

+γs

(
R̂1 + R̂2 + γsẐ + T̂1 + T̂2

)
,

as well as

bk,l :=





B1(|k|)
|l|s

[−1, 1] for |l| ≥M and |k| < M
B2(|q|)
|p|s

[−1, 1] for |k| ≥M and |l| < M
B

|p|s|q|s
[−1, 1] for |k|, |l| ≥M.

Using Lemmas A.3, A.7, A.9, and A.11 one can readily see that

IS(a, a, k, l) ⊂ bk,l for all k, l ∈ Z , (73)

which in combination with (72) furnishes

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s ⊂
∑

p,q∈Z

ap,qbi−p,j−q ,

and by employing our estimates again, we finally obtain the following theorem.

Theorem A.14 Let a = (am,n)n,m∈Z denote a collection of intervals am,n = [a−m,n, a
+
m,n]

as in Assumption A.12, and let b = (bm,n)n,m∈Z be defined as in Definition A.13 such
that (73) holds. Using the notation of Lemmas A.3 and A.5, as well as Definitions A.6,
A.8, and A.10, we have the following inclusions.

(i) If i, j ∈ {0, ...,M − 1}, then

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s ⊂ FS(a, b, i, j) +

(
4ABτ 2

(i +M + 1)s(j +M + 1)s

+2τ

(
S2(j)

(i+M + 1)s
+

S1(i)

(j +M + 1)s

))
[−1, 1] ,

where FS(a, b, i, j) was defined in (70).
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(ii) If i ≥M and j ∈ {0, ...,M − 1}, then

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s ⊂ 1

is

(
S?

2(j) + γsV2(j) + 2τS2(j)

+
2τ(2ABτ +BA?

1 + γsW1 + AB?
1)

(j +M + 1)s

)
[−1, 1] .

(iii) If i ∈ {0, ...,M − 1} and j ≥ M , then

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s ⊂ 1

js

(
S?

1(i) + γsV1(i) + 2τS1(i)

+
2τ(2ABτ +BA?

2 + γsW2 + AB?
2)

(i+M + 1)s

)
[−1, 1] .

(iv) If i, j ≥M , then

∑

p,q,r,s∈Z

ap,qar,sai−p−r,j−q−s ⊂ 1

isjs

(
2τ (B (A?

1 + A?
2) + A (B?

1 +B?
2)

+2τAB + γs (W1 +W2)) +Ba? + A?
1B

?
2 + A?

2B
?
1

+Ab? + γs (R1 +R2 + γsZ + T1 + T2)

)
[−1, 1] .

The above theorem is the main tool for establishing strict topologically self-consistent a
priori bounds in Section 3. Similar results for one-dimensional base domains can be found
in [4, 6, 7].

A.2 Numerical Description

We close this article with a brief description of the numerical and implementational as-
pects of our methods. The rigorous results described in Section 2 using the methods
outlined in the remaining sections of this paper were all obtained using MATLAB. The
actual programs can be divided into two parts: One set is implementing a path-following
algorithm, and is used to calculate approximate solutions along solution paths. The sec-
ond set implements the rigorous method described in Section 3, by employing the explicit
estimates of Section A.1. We describe each set separately in the following.
The path-following algorithm was originally developed for the numerical analysis of equi-
libria of the two-dimensional Cahn-Hilliard equation in [13]. It is based on a predictor-
corrector algorithm with step-length adaption. See for example Allgower and Georg [1,
Chapter 3]. In the appendix of [13], our implementation is described in more detail. In
contrast to [13], for the present paper we approximate the Laplace operator by a discrete
Laplacian on a fairly small equidistant grid, usually consisting of 50x50 grid points. The
solutions gathered in this way are then used as initial points for the rigorous numerics.
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Therefore, it is sufficient to consider small grid sizes as above, since the higher accuracy
will be achieved in the second part of the implementation.
The second part of the implementation is aimed at computing a box-neighborhood U
around an approximative solution. The projection of U onto one Fourier coefficient is
usually a closed interval, as described in Section 3. Hence, our implementation makes
heavy use of interval arithmetic. Note that

[a, b] � [c, d] = [min{x � y|x ∈ [a, b], y ∈ [c, d]},max{x � y|x ∈ [a, b], y ∈ [c, d]}] ,
where ’�’ can be replaced by the operators for addition, subtraction, multiplication, or
division. (In the case of division one of course has to assume that 0 /∈ [c, d].) Of course,
the use of interval arithmetic alone does not suffice to obtain rigorous computer-assisted
proofs. In addition, one has to be able to keep track of rounding errors. This is accom-
plished by the MATLAB toolbox INTLAB by Siegfried Rump. This toolbox comprises
interval arithmetic for real and complex data including vectors and matrices, including
MATLAB’s sparse matrix commands. Moreover, it contains rigorous interval versions
of standard MATLAB functions such as sin or exp, which do keep track of rounding
errors. More precisely, applying such a MATLAB function to an interval returns an in-
terval which contains all possible function values. See [11] or INTLAB’s homepage at
www.ti3.tu-harburg.de/∼rump/intlab/ for more detail. For detailed information on
the implementation of the rigorous numerical method we refer the reader to the appendix
of [17].
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[21] P. Zgliczyński and K. Mischaikow. Rigorous numerics for partial differential equa-
tions: the Kuramoto-Sivashinsky equation. Foundations of Computational Mathe-
matics, 1(3):255–288, 2001.

67


