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Abstract

We introduce an agent–based model for stock prices that reacts on investors’
market sentiment. This is a further development of a model of Cross, Grinfeld,
Lamba and Seaman [6]. The original model of Cross et al. was already good
in showing phenomena like herding of the investors or long periods of bullish as
well as bearish sentiment with relatively short transition periods in between. Our
newly developed models are furthermore capable to show trend patterns in which
sharp movements and prolonged corrections can alternate but move in the same
direction. In particular the investors’ sentiment is no longer bistable as in Cross
et al. . Furthermore price overreactions are not a priori fixed and bounded as in
the predecessor model. Other stylized facts of real market data, such as fat tails
or clustered volatility can also be reproduced.

Keywords: investor psychology, herding, trend pattern, volatility clustering

1 Introduction

Models which generate realistic data of stock price evolution are extremely helpful e.g.

for testing mechanical trading systems, because the data pool thus generated is far richer

as the one at hand while backtesting. Usually models of financial markets are based

on standard assumptions called efficient market hypotheses (EMH, cf. [8]). Although

models with EMH are good for mathematical calculation and even option pricing, they
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do not reproduce typical stylized facts of real market data. In fact, the universality

of non–Gaussian statistics in various financial markets seems to suggest that human

psychology is the driving force for violating the EMH.

To obtain more realistic market behavior, therefore agent–based market models have

been introduced (see e.g. [2], [3], [10], [11], [12], [13], [15], [16], [17], [18], [19] ).

We particularly want to emphasize the recently introduced model for discrete time stock

price evolution by Cross et al. [6] (see also [4], [7], [5]).

In this agent based model agents react to certain tension thresholds. The first tension

is ”cowardice”, which is stress caused by remaining in a minority position with respect

to overall market sentiment. This feature leads to herding–type behavior. The second is

”inaction”, which is the increasing desire to act or reevaluate one’s investment position

every now and then. The later tension is modeled by two thresholds where either profits

or losses are realized.

Numerical simulations of the original model of Cross et al. [6] show, that the influence

of investors’ sentiment on the price building is capable to interpret several phenomena

observed in stock markets. For instance

∙ herding of the investors,

∙ long periods of bullish as well as bearish sentiment,

∙ relatively short transition periods between bullish and bearish sentiment with sharp

price adjustments.

In Figure 1 we see a typical price evolution in Cross’s model: The evolution of a ”market

price process” is printed in dark and the corresponding ”fair market price process”

evolution is printed in light. Whereas the light curve is solely news driven, the dark

curve also reacts on investors’ behavior.
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Figure 1: Simulation Cross et al. model [6]
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Investors tend to exaggerate the market price over the fair price. The light curve on the

bottom shows the ”sentiment” of the investors (close to ”−1”: bearish sentiment; close

to ”+1”: bullish sentiment).

Although sharp price adjustments during short transitions are common when investors’

sentiment changes, the model of Cross et al. [6] is nevertheless unrealistic in two points

∙ bistable sentiment,

∙ a priori fixed price overreaction due to investors’ sentiment.

With bistable sentiment we mean the fact that the investors’ sentiment only switches

from bearish to bullish and then back. However typical e.g. up–trend periods allow

several sharp up–movements of the price during bullish sentiment with only minor price

corrections in between. The corrections usually last much longer than the movements.

Similarly, in down–trend periods sharp down–movements and extended minor corrections

interchange.

The a priori fixed price overreaction in the model of Cross et al. [6] stems from the fact

that the maximal influence of a switch in investors’ sentiment from bearish to bullish

and vice versa is bounded. Once the investors’ sentiment has switched to, say, bullish,

no additional positive influence of the bullish sentiment on the price is possible.

To see that, we introduce the basic price adaptation process of Cross et al. [6] (without

actually stating how the investors are updated):

The state (long or short) of the i–th investor over the n–th time interval is denoted by

si(n) ∈ {±1} , i = 1, . . . ,M , and

�(n) =
1

M

M
∑

i=1

si(n) (1)

is a measure of the ratio of long to short investors called sentiment.

The market price at the end of the n–th time interval is denoted by p(n) and updated

via

p(n+ 1) = p(n) ⋅ exp
(√

ℎΔW (n) + �Δ�(n)
)

, (2)

where ΔW (n) is a standard Gaussian random variable that represents news and Δ�(n) =

�(n) − �(n − 1) denotes the current change of investors’ sentiment (�, ℎ > 0 are con-

stants).

Since �(n) ∈ [−1, 1], also Δ�(n) is bounded, and furthermore, if the majority of the

investors is say bullish (i.e. �(n − 1) is close to 1), no further upside potential of the

investors’ sentiment on the price process is possible (Δ�(n) ≤ 0 !).
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This is actually a proof for the two already mentioned unrealistic points: bistable senti-

ment and a priori fixed price overreaction due to investors’ sentiment (see again Figure

1; the fair market process in light is obtained from (2) with � = 0).

In this paper we propose two improvements to the original model of Cross et al. [6].

Both are capable to show such trend pattern in which sharp movements and prolonged

corrections can alternate but move in the same direction.

Model A. Whereas in Cross’s model investors are only allowed to switch between +1

(long) and −1 (short), our investors can accumulate arbitrary amounts of

short or long positions. We nevertheless use the average investment as

sentiment of the investors and similarly as in Cross’s model the cowardice

of the individual investor increases, in case his investment position differs

from the average investment. Since these investors act pro–cyclic, we call

them traders.

Model B. Besides the traders of Model A, we here also introduce fundamental in-

vestors, which on the one hand act on a larger time scale and on the other

hand every now and then have the possibility to observe the fair market price

(at least approximately) and adjust their investment accordingly. This way

it is guaranteed that the market price will not deviate from the fair price in

the long run. Properties of fundamental investors are the following:

∙ they act anti–cyclic

∙ they are capable to observe the fair market price, at least approximately

∙ they open new positions, as the actual market price moves away from

the fair price

∙ they close positions, as the actual market price returns to the fair price

∙ they react to a ”fundamental” market sentiment

∙ their relative position opposed to other investors increases with the

distance of the actual market price to the fair market price

In both models agents are only coupled via the overall market sentiment and the market

price. We do not use inductive learning as e.g. [1]. Nevertheless our model violates

the EMH. In particular future prices are not independent of market price history as in

Markovian markets. Only when the investors’ states are added to the state space of the

system, the Markov property is regained.

The paper is organized as follows. In Section 2 we introduce our Model A together with

a variant of it all Model A* and in Section 3 we introduce our Model B together with
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a variant, Model B*. Section 4 is used to discuss statistics of sample paths reproducing

Non–Gaussian market statistics of real market data. In particular stylized facts such as

trend patterns, fat tails and clustered volatility can be reproduced. With the exception

of Model A, the simulated actual market price of our models does not deviate from the

fair market price (representing economical data) by too much. Nevertheless, all of our

models support extreme exaggerations of the actual market price compared to the fair

market price. We believe that this feature could be a first step in understanding large

price movements of stocks or even stock indices occurring e.g. during financial crises.

So far our models were not used for market predictions or option pricing, but that is

subject to further research.

A continuous market model obtained as limit of our discrete models as the mesh of the

time steps goes to zero seems to be very difficult to get. However, comparisons with

other realistic continuous models like e.g. [9] and [14] would be desirable.

Acknowledgement. The first author wishes to thank Christian J. Zimmer from Banco

Itaú S.A., Sãu Paulo for helpful discussions on the subject.

2 The Model A

2.1 Construction of the Model

We construct a Markov chain with 5M + 2 state variables

(

p(n) , si(n) , �(n) , ci(n) , Pi(n) , Ki(n) , Hi(n)
)

1≤ i ≤M , n≥ 0
.

Here si(n) ∈ ℤ is the state (amount of positions; long or short) of the i–th investor

over the n–th period and �(n) := 1
M

M
∑

i=1

si(n) is a measure of the ratio of long to

short investors called market sentiment.

This ratio has to be known also from the previous time step to evaluate the fluctuation

Δ�(n) := �(n) − �(n− 1) of the most recent change in market sentiment.

The actual market price p(n) at the end of the n–th time period is updated via

p(n+ 1) = p(n) ⋅ exp
(

�
(√

ℎ ΔW (n) + �Δ�(n)
)

)

, (3)

where Z∗
n := ΔW (n) , n ∈ ℕ0 , is a standard Gaussian random variable that represents

the creation of new, uncorrelated and globally available information over the period n.

If � = 1 is used, the parameter ℎ > 0 represents the time step since VAR(Z∗
n) = 1

and the parameter � > 0 is used to balance the influence of internal market dynamics
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to the generation of new market information. Accordingly, with 0 < � < 1 we can

simulate smaller price movements. In the sequel we will compare the price (3) with the

”fundamental” or fair market price pf(n) obtained from (3) by setting � = 0, i.e.

pf(n+ 1) = pf (n) ⋅ exp
(

�
(√

ℎΔW (n)
)

)

. (4)

To update the price in (3) we need to know Δ�(n) and thus the investors states si(n).

The update of those states is described below. The fact that p(n) reacts on Δ�(n) can

be justified as a result of the law of supply and demand.

We introduce the tension states (cowardice level) ci(n) and last switching prices Pi(n)

of the i–th investor and how they are updated. In order to do so we need a pool of

predetermined stochastic i.i.d. variables
(

K∗
i (n)

)

1≤ i≤M
, n ∈ ℕ0 , with uniformly

distributed values in
[

K−, K+
]

⊂ (0,∞), and i.i.d. variables
(

H∗
i (n)

)

1≤ i≤M
, n ∈ ℕ0 ,

with uniformly distributed values in [H−, H+] ⊂ (0,∞), from witch the investors may

choose cowardice and inaction thresholds, Ki(n) and Hi(n), whenever they switch po-

sitions. More precisely, we proceed as follows:

A0 Initialization (n = 0)

We choose p(0) = pstart with arbitrary starting price level pstart > 0 and mimic

the situation that all investors are flat at time n = −1 and decide randomly and

independently to go long (+1), short (−1) or flat (0), at time n = 0. Therefore

si(0) := S∗
i , 1 ≤ i ≤ M , where S∗

i are predetermined i.i.d. random variables with

equally distributed values in {±1, 0} ,

�(−1) = 0,

Pi(0) = p(0) , 1 ≤ i ≤ M (initial last switching price),

Hi(0) = H∗
i (0) , 1 ≤ i ≤ M (initial price range threshold),

Ki(0) = K∗
i (0) , 1 ≤ i ≤ M (initial cowardice threshold),

ci(0) = �∗i ⋅Ki(0) , 1 ≤ i ≤ M (initial cowardice level; �∗i ∈ [0, 1] uniformly i.i.d.) .

Step n → n + 1

The market price p(n) can immediately be updated to p(n + 1) via (3).

A1 Cowardice level

Denoting [x] ∈ ℤ the closest integer to x ∈ ℝ , and 1A the characteristic function

of the set A, let
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Δi(n) :=
∣

∣

∣
si(n) −

[

�(n)
]

∣

∣

∣
∈ ℕ0 ,

(absolute distance of investor’s position to market sentiment)

Σi(n) :=
{

Δi(n) > 1
2

}

and

Ci(n+ 1) := ci(n) + ℎΔi(n) 1Σi(n) = ci(n) + ℎΔi(n) ,

i.e. we let the cowardice level ci(n) increase to Ci(n + 1) (cf. (7) for the actual

update of ci) in case the i–th investor’s state is not in accordance with the overall

market sentiment
[

�(n)
] (

i.e. in case ! ∈ Σi(n)
)

and otherwise unchanged.

A2 Switching

Ψi(n) :=
{

Ci(n + 1) > Ki(n)
}

,

Φi(n) :=

{

p(n+ 1) /∈
[

Pi(n)
/(

1 +Hi(n)
)

, Pi(n)
(

1 +Hi(n)
)

]

}

,

Θi(n) := Ψi(n) ∪ Φi(n) .

The i–th investor switches his position only on Θi(n), i.e. whenever his individ-

ual cowardice level increases over his cowardice threshold
(

! ∈ Ψi(n)
)

or, if the

updated price leaves his individual price range of comfort
(

! ∈ Φi(n)
)

.

To be more precise, in case of breakout the investors act pro–cyclic, i.e. they

increase their position in case of bullish breakout and decrease their position in

case of bearish breakout.

If on the other hand this is not the case, i.e. on Φc
i(n), but the investor’s cowardice

threshold is broken, i.e. on Ψi(n), he will move his position one step in the direc-

tion of the market sentiment, i.e. to

(

si(n)− sign
(

si(n)−
[

�(n)
]

)

)

1Ψi(n)∩Φc
i
(n) .

Let

Φup

i (n) :=
{

p(n + 1) > Pi(n)
(

1 +Hi(n)
)

}

,

Φdown

i (n) :=
{

p(n + 1) < Pi(n)
/ (

1 +Hi(n)
)

}

,

si(n+ 1) := si(n) 1Θc
i
(n) +

(

si(n)− sign
(

si(n)−
[

�(n)
]

)

)

1Ψi(n)∩Φc
i
(n)

+
(

si(n) + 1
)

1Φup
i

(n)

+
(

si(n)− 1
)

1Φdown
i

(n) .

(5)
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Equivalently, the update of the i−th investor reads as follows

si(n + 1) :=

⎧



























⎨



























⎩

si(n) , if ! /∈ Θi(n) (no action)

(comfort price range left: act pro–cyclic)

si(n) + 1 , if ! ∈ Φi(n) and p(n + 1) > Pi(n)
(

1 +Hi(n)
)

si(n)− 1 , if ! ∈ Φi(n) and p(n + 1) < Pi(n)
/(

1 +Hi(n)
)

(cowardice action: move towards market sentiment)

si(n) + 1 , if ! ∈ Ψi(n) ∩ Φc
i(n) and si(n) <

[

�(n)
]

si(n)− 1 , if ! ∈ Ψi(n) ∩ Φc
i(n) and si(n) >

[

�(n)
]

A3 Updates

Only in case the i-th investor switched his position, i.e. on Θi(n), the last switching

price Pi, the cowardice threshold Ki and the comfort price range Hi have to be

updated. Otherwise they are left unchanged:

Pi(n + 1) := p(n+ 1) 1Θi(n) + Pi(n) 1Θc
i
(n) , (6)

Ki(n + 1) := K∗
i (n + 1) 1Θi(n) + Ki(n) 1Θc

i
(n) ,

Hi(n+ 1) := H∗
i (n+ 1) 1Θi(n) + Hi(n) 1Θc

i
(n) .

The new cowardice level is reset to zero at switching and otherwise raised to

Ci(n + 1):

ci(n+ 1) := Ci(n+ 1) 1Θc
i
(n) . (7)

2.2 Markov property

As already noted, we assume the random variables S∗
i , K

∗
i (n) and H∗

i (n) as

predetermined and the associated �–algebra

G0 := � (S∗
i , K

∗
i (n) , H

∗
i (n) : 1 ≤ i ≤ M , n ≥ 0)

is known at time zero. We set

ℱn = �
(

Z∗
k : 0 ≤ k ≤ n

)

∪ G0 ,

where Z∗
k = ΔW (k) is the driving news process (cf. (3)). Hence

f(n) :=
(

p(n) , si(n) , �(n− 1) , ci(n) , Pi(n) , Ki(n) , Hi(n)
)

1≤ i≤M
(8)
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is ℱn–measurable for all n ≥ 0 by induction. Furthermore, the conditional law of f(n)

given ℱn−1 depends only on f(n − 1), yielding a Markov chain. By assuming G0 to be

given, the underlying probability space
(

Ω,A,ℙ
)

is generated only by the news process

Z∗
n , n ≥ 0.

2.3 Numerical results for Model A

We fix parameters similarly as the ones in Cross et al. [6], i.e.

M = 100 , pstart = 5000 , � = 0.05 ,

� = 0.15 ,
√
2ℎ = 10−2 , or ℎ = 5 ⋅ 10−5 ,

and IK :=
[

K−, K+
]

= [0.001, 0.003] ,

IH :=
[

H−, H+
]

= [0.004, 0.02] ,

i.e. we have comfort price range thresholds between 0.4% and 2.0% .

(9)

The simulation in Figure 2 shows how trends (i.e. several movements in one direction

interrupted by minor corrections) can be obtained with this new model. The price

process p(n) (in bold face) exaggerates the movements of the fair market price process

pf(n) (in light) – see (3) and (4). Furthermore sharp price adjustments can be observed

every now and then, which are not obviously triggered by respective movements in the

fair market price.

0 2000 4000 6000 8000 10000
4600

4800

5000

5200

5400

5600

5800
Model A: steps = 10000, M = 100

Figure 2: Trend behavior
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Figure 3 shows the same simulation as above, but instead of the price process p(n) we

plot the corresponding investors’ sentiment �(n) (scaled by a factor M to see the total

amount of open positions) (in bold) and besides also the MACD/signal lines (moving av-

erage convergence/divergence indicator with standard 26∣12∣9 periods) of this simulation

(scaled by a factor 25).

0 2000 4000 6000 8000 10000
−600

−400

−200

0

200

400

600

800
Model A: steps = 10000, M = 100

Figure 3: MACD and sentiment of Fig. 2
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Model A: steps = 10000, M = 100

Figure 4: Alternating sentiment moves of
Fig. 5

In the simulation of our Model A given in Figures 4 and 5 exaggerations to the upper

and lower side interchange, yielding non trend behavior.

0 2000 4000 6000 8000 10000
4800

4900

5000

5100

5200

5300

5400
Model A: steps = 10000, M = 100

Figure 5: Non trend behavior

Looking at the corresponding investors’ sentiment �(n) (in Figure 4 bold), we see even

interchanging of trend patterns on a lower time scale. Again the price process p(n) (in

bold in Figure 5) exaggerates the movements of the fair market price process pf (n) (in

light).

The next simulation of Model A in Figures 6 and 7 shows the price development on

a much longer time period than before (100000 steps versus 10000 before). In this
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simulation one problem of Model A gets obvious: the market price may deviate from

the fair price over all bounds as time proceeds. Similarly the sentiment may grow over

all bounds. This is clearly unsatisfactory. We therefore introduce Model A*.

0 2 4 6 8 10

x 10
4

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500
Model A: steps = 100000, M = 100

Figure 6: Long simulation of Model A
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4
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−500

0

500

1000

1500

2000

2500

3000

3500

4000
Model A: steps = 100000, M = 100

Figure 7: Corresponding sentiment

2.4 The Model A*

To overcome the above problem we let our investors decrease their position (both long

or short) at a faster pace than the pace used to establish the position, at least once the

absolute value of the position has increased over a certain individual risk level Ri > 0.

A0* Initialization

The initialization of our traders works exactly as for Model A in A0, except for

the initialization of an individual risk level

Ri := %/2 +
[

∣% ⋅ �∗i ∣ ] , 1 ≤ i ≤ M ,

where �∗i are i.i.d. standard Gaussian variables and % > 0 is a parameter.

Step n → n + 1:

A1* Cowardice level

The cowardice levels are chosen as in A1.

A2* Switching

The sets Θi(n) , Ψi(n) and Φi(n) determining the instances when the positions get

switched remain unchanged as in A2. However the update of the i−th investor

reads as follows
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si(n+1) :=

⎧









































⎨









































⎩

si(n) , if ! /∈ Θi(n) (no action)

(comfort price range left: act pro–cyclic, single action)

si(n) + 1 , if ! ∈ Φi(n), p(n+ 1) > Pi(n)
(

1 +Hi(n)
)

and si(n) ≥ −Ri

si(n)− 1 , if ! ∈ Φi(n), p(n+ 1) < Pi(n)
/(

1 +Hi(n)
)

and si(n) ≤ Ri

(comfort price range left: act pro–cyclic, double action)

si(n) + 2 , if ! ∈ Φi(n), p(n+ 1) > Pi(n)
(

1 +Hi(n)
)

and si(n) < −Ri

si(n)− 2 , if ! ∈ Φi(n), p(n+ 1) < Pi(n)
/(

1 +Hi(n)
)

and si(n) > Ri

(cowardice action: move towards market sentiment)

si(n) + 1 , if ! ∈ Ψi(n) ∩ Φc
i(n) and si(n) <

[

�(n)
]

si(n)− 1 , if ! ∈ Ψi(n) ∩ Φc
i(n) and si(n) >

[

�(n)
]

A3* Updates

The updates are again performed as in Model A, according to A3.

2.5 Numerical simulation of Model A*

In Figures 8 and 9 we see a simulation of Model A* corresponding to the parameters

chosen in Subsection 2.3 with additionally

% = 20 .

We also take exactly the same driving news process
(

Z∗
n

)

n≤106
as was used to obtain

Figures 6 and 7.
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Model A*: steps = 100000, M = 100

Figure 8:Long simulation of Model A∗
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Model A*: steps = 100000, M = 100

Figure 9:Corresponding sentiment
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One can see that the deviation of market price and fair market price is, as hoped for,

much less in the simulation of Model A*. A direct comparison of the distribution for
(

p(n)
/

pf (n)
)

−1 of Model A and Model A* along that sample path is depicted in Figures

10 and 11, respectively.

−0.5 −0.25 0 0.25 0.5
0

10

20

30

40

50

60

70
Model A: steps = 100000, M = 100

Figure 10:Distribution of
(

p(n)
/

pf (n)
)

− 1
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80

90

100
Model A*: steps = 100000, M = 100

Figure 11:Distribution of
(

p(n)
/

pf (n)
)

− 1

The deviations over 0.2 for Model A increase even more as time proceeds and do not

seem to converge. However, as we will see later in Subsection 4.2, this distribution

stabilizes for Model A*.

3 The Model B

In the long run the deviation of the price process p(n) and the fair market price process

pf(n) is not bounded in our Model A. Although Model A* already fixed this problem to

some extend, we here try a completely different ansatz.

3.1 Construction of the model

To do so, besides the traders of Model A, in Model B we also introduce fundamental

investors.

The fundamental investors on the one hand should act on a larger time scale and on the

other hand every now and then have the possibility to observe the fair market price (at

least approximately) and adjust their investment accordingly. This way it is guaranteed

that the market price will not deviate from the fair price in the long run. The properties

of the fundamental investors are stated at the end of the introduction.
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We denote the number of fundamental investors by M̃ . Say s̃j(n) ∈ ℤ , j = 1, . . . , M̃ ,

is the state of the j–th fundamental investor and

�̃(n) =
1

M̃

M̃
∑

j=1

s̃j(n)

is their average grade of investment. With

�̂(n) =
1

M + M̃

⎛

⎝

M
∑

i=1

si(n) +

M̃
∑

j=1

s̃j(n)

⎞

⎠

we measure the total sentiment. Again Δ�̂(n) = �̂(n) − �̂(n − 1) measures the most

recent change in market sentiment. Similarly as in (3) we obtain a new price process

p̃(n) , n ∈ ℕ0 , which is updated according to

p̃(n + 1) = p̃(n) ⋅ exp
(

�
(√

ℎΔW (n) + �̃Δ�̂(n)
)

)

,
(

ℎ, �̃ > 0
)

(10)

i.e., besides the news process Z∗
n = ΔW (n), n ∈ ℕ , and traders, now also fundamental

investors enter the price building procedure.

The difference between the traders of Model A and the new fundamental investors is

their trading strategy, i.e., how they update their position. The fundamental investors

act anti–cyclic and are capable to observe the fair market price

p̃f (n+ 1) = p̃f(n) ⋅ exp
(

�
√
ℎΔW (n)

)

, (11)

at least approximately. They are not influenced by market sentiment of the traders but

they do react on cowardice in reaction to the sentiment �̃(n) within all fundamental

investors. Their relative position opposed to other investors increases with the distance

of the actual market price to the fair market price (anti–cyclic action). This is again

modeled through a price range of comfort

(

P̃j(n)
/(

1 + H̃j(n)
)

, P̃j(n) ⋅
(

1 + H̃j(n)
)

)

,

where P̃j(n) is the last switching price of the j–th fundamental investor, and H̃j(n) ∈
[

H̃−, H̃+
]

⊂ (0,∞) is a measure for the length of that price range.

H̃j(n) is as before chosen at random every time the position gets switched out of a pool

of i.i.d. variables
(

H̃∗
j (n)

)

1≤ j≤ M̃
, n ∈ ℕ0 , with uniformly distributed values in

[

H̃−, H̃+
]

⊂ (0,∞). Similarly, at switching time the individual threshold for the cow-

ardice level of the j–th fundamental investor, K̃j(n), is chosen at random out of a
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pool of i.i.d. variables
(

K̃∗
j (n)

)

1≤ j≤ M̃
, n ∈ ℕ0 , with uniformly distributed values in

[

K̃−, K̃+
]

⊂ (0,∞).

Compared to the respective interval for the traders
[

H−, H−
]

we choose H̃− = �H− and

H̃+ = �H+ with some parameter � > 1 , which guarantees that fundamental investors

act on a longer time scale. Similarly, the respective cowardice thresholds in
[

K̃−, K̃+
]

are chosen scaled with the factor � larger compared with the one of the traders, i.e.

K̃− = �K− and K̃+ = �K+. Together with the state variables inherited from Model

A we obtain 5M + 5M̃ + 3 state variables
(

p̃(n), si(n), �(n), ci(n), Pi(n), Ki(n), Hi(n), s̃j(n), �̃(n), c̃j(n), P̃j(n), K̃j(n), H̃j(n)
)

1≤ i≤M ,

1≤ j≤ M̃, n≥ 0

.

B0 Initialization (n = 0)

We choose p̃(0) = pstart with arbitrary starting price level pstart and mimic the situa-

tion that all investors are flat at time n = −1 and decide randomly and independent

to go long (+1), short (−1) or flat (0), at time n = 0. Therefore si(0) := S∗
i , 1 ≤

i ≤ M , s̃j(0) = S̃∗
j , 1 ≤ j ≤ M̃ , where S∗

i , S̃
∗
j are predetermined i.i.d. random

variables with equally distributed values in {±1, 0} ,

�(−1) = 0 , �̃(−1) = 0 and furthermore for the

traders:

Pi(0) = p̃(0) , 1 ≤ i ≤ M (initial last switching price) ,

Hi(0) = H∗
i (0) , 1 ≤ i ≤ M (initial price range threshold) ,

Ki(0) = K∗
i (0) , 1 ≤ i ≤ M (initial cowardice threshold) ,

ci(0) = �∗i ⋅Ki(0) , 1 ≤ i ≤ M (initial cowardice level; �∗i ∈ [0, 1] uniformly i.i.d.) .

fundamental investors:

P̃j(0) = p̃(0) , 1 ≤ j ≤ M̃ (initial last switching price) ,

H̃j(0) = H̃∗
j (0) , 1 ≤ j ≤ M̃ (initial price range threshold) ,

K̃j(0) = K̃∗
j (0) , 1 ≤ j ≤ M̃ (initial cowardice threshold) ,

c̃j(0) = �̃∗j ⋅ K̃j(0) , 1 ≤ j ≤ M̃ (initial cowardice level; �̃∗j ∈ [0, 1] uniformly i.i.d) ,

Ñj = �̃∗j , 1 ≤ j ≤ M̃ (noise level for fair market observation;

�̃∗j standard Gaussian i.i.d.) .
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Step n → n + 1

The market price p̃(n) and the fair market price p̃f(n) are updated via (10) and (11) to

p̃(n+ 1) and p̃f (n+ 1).

The update of the traders i = 1, . . . ,M is exactly as in Model A, with only p(n+ 1)

replaced by p̃(n + 1) witch evolves according to (10). Hence only the update of the

fundamental investors is described in the sequel.

B1 Cowardice level

Let Δ̃j(n) :=
∣

∣

∣
s̃j(n) −

[

�̃(n)
]

∣

∣

∣
,

Σ̃j(n) :=
{

Δ̃j(n) > 1
2

}

and

C̃j(n+ 1) := c̃j(n) + ℎ Δ̃j(n) .

The cowardice level c̃j(n) of the j–th fundamental investor increases to C̃j(n+ 1)

(cf. (14) below) if his state is not in accordance with the sentiment of all funda-

mental investors.

Fundamental investors will only consider new positions, once the actual market price

p̃(n+ 1) is far from the fair price p̃f(n+ 1). This gap is measured by

q = q(n + 1) := max

{

p̃(n + 1)

p̃f(n+ 1)
,
p̃f(n+ 1)

p̃(n + 1)

}

≥ 1 . (12)

Since each fundamental investor can only observe the fair price approximately, we intro-

duce a noisy variant of q, i.e.

qj(n+ 1) := q(n+ 1) + " ⋅ Ñj , 1 ≤ j ≤ M̃ , n ∈ ℕ0 ,

for some parameter " > 0. The switching decision of the j–th fundamental investor will

now depend on whether the market price is close to the fair price, i.e. on Λ̃close

j (n), or

far from the fair price, i.e. on Λ̃far

j (n) , where

Λ̃close

j (n) :=
{

qj(n+ 1) ≤ 
}

and Λ̃far

j (n) :=
{

qj(n+ 1) > 
}

,

for some parameter  > 1 building a threshold.

Whereas in Λ̃far

j (n) the j–th fundamental investor may build new positions and reduce

old positions according to market movements, in Λ̃close

j (n) he will only reduce his old

positions once a signal occurs.

The amount of positions the j-th fundamental investor is buying/selling at switching

time should also depend on the gap between actual market price and fair price. It will

be determined by the function
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f(q) := max
{

1,
[

�(q − 1)
]

}

, q ≥ 1 ,

where � > 0 is a parameter. Note that f(q) ∈ ℕ for q ≥ 1. If the actual market

price is far away from the fair price, the fundamental investor will therefore invest more

aggressively.

B2 Switching

Let Ψ̃j(n) :=

{

C̃j(n+ 1) > K̃j(n)

}

, (cowardice action trigger)

Φ̃j(n) :=

{

p̃(n+ 1) /∈
[

P̃j(n)
/(

1 + H̃j(n)
)

, P̃j(n)
(

1 + H̃j(n)
)

]

}

,

(comfort price range left)

Φ̃up

j (n) :=

{

p̃(n+ 1) > P̃j(n)
(

1 + H̃j(n)
)

}

, (to upside)

Φ̃down

j (n) :=

{

p̃(n+ 1) < P̃j(n)
/

(

1 + H̃j(n)
)

}

, (to downside)

Ξ̃up(n) :=

{

p̃(n+ 1) > p̃f (n+ 1)

}

, (market above fair price)

Ξ̃down(n) :=

{

p̃(n+ 1) ≤ p̃f(n + 1)

}

. (market below fair price)

The switching set for which selling or buying actions are triggered is the following:

Θ̃j(n) :=

[

Λ̃far

j (n) ∩
(

Φ̃j(n) ∪ Ψ̃j(n)
)

]

∪̇
[

Λ̃close

j (n) ∩
[

(

{

s̃j(n) ∕= 0
}

∩ Ψ̃j(n)
)

∪
(

{

s̃j(n) > 0
}

∩ Φ̃up

j (n)
)

∪
(

{

s̃j(n) < 0
}

∩ Φ̃down

j (n)
)

]

]

.
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We distinguish five disjoint cases for the update of s̃j(n):

(i) for ! /∈ Θ̃j(n) let s̃j(n+ 1) := s̃j(n) (no action) ,

(ii) for ! ∈ Λ̃far

j (n) ∩ Ξ̃up(n) let (only short positions supported)

s̃j(n+1) :=

⎧





































⎨





































⎩

(comfort price range left:)

min
(

0, s̃j(n) − f
(

qj(n + 1)
)

)

, if ! ∈ Φ̃up

j (n)

(bullish breakout; anti–cyclic action)

min
(

0, s̃j(n) + f
(

qj(n+ 1)
)

)

, if ! ∈ Φ̃down

j (n)

(bearish breakout; anti–cyclic action)

(cowardice action:)

min
(

0, s̃j(n) + 1
)

, if ! ∈ Ψ̃j(n) ∩ Φ̃c
j(n) and s̃j(n) <

[

�̃(n)
]

min
(

0, s̃j(n) − 1
)

, if ! ∈ Ψ̃j(n) ∩ Φ̃c
j(n) and s̃j(n) >

[

�̃(n)
]

,

(iii) for ! ∈ Λ̃far

j (n) ∩ Ξ̃down(n) let (only long positions supported)

s̃j(n+1) :=

⎧





































⎨





































⎩

(comfort price range left:)

max
(

0, s̃j(n) − f
(

qj(n + 1)
)

)

, if ! ∈ Φ̃up

j (n)

(bullish breakout; anti–cyclic action)

max
(

0, s̃j(n) + f
(

qj(n+ 1)
)

)

, if ! ∈ Φ̃down

j (n)

(bearish breakout; anti–cyclic action)

(cowardice action:)

max
(

0, s̃j(n) + 1
)

, if ! ∈ Ψ̃j(n) ∩ Φ̃c
j(n) and s̃j(n) <

[

�̃(n)
]

max
(

0, s̃j(n) − 1
)

, if ! ∈ Ψ̃j(n) ∩ Φ̃c
j(n) and s̃j(n) >

[

�̃(n)
]

,

(iv) for ! ∈ Λ̃close

j (n) ∩ {s̃j(n) > 0} (long position possibly reduced)

s̃j(n+1) :=

⎧







⎨







⎩

max
(

0, s̃j(n) − f
(

qj(n+ 1)
)

)

, if ! ∈ Φ̃up

j (n) ,

(bullish breakout; anti–cyclic action)

s̃j(n) − 1 , if ! ∈
(

Φ̃up

j (n)
)c

∩ Ψ̃j(n) . (cowardice action)
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(v) for ! ∈ Λ̃close

j (n) ∩ {s̃j(n) < 0} (short position possibly reduced)

s̃j(n+1) :=

⎧







⎨







⎩

min
(

0, s̃j(n) + f
(

qj(n+ 1)
)

)

, if ! ∈ Φ̃down

j (n) ,

(bearish breakout; anti–cyclic action)

s̃j(n) + 1 , if ! ∈
(

Φ̃down

j (n)
)c

∩ Ψ̃j(n) . (cowardice action)

Comments:

ad (ii): If ! ∈ Λ̃far

j (n) the fundamental investors can buy and sell freely according

to their anti–cyclic strategy, i.e. in case of bullish breakout
(

! ∈ Φ̃up

j (n)
)

they sell and in case of bearish breakout
(

! ∈ Φ̃down

j (n)
)

they buy stocks.

If only cowardice action is triggered
(

! ∈ Ψ̃j(n) ∩ Φ̃j(n)
c
)

, the position of

the j–th fundamental investor is moved one step towards common sentiment

of the fundamental investors. Taking the minimum relative to 0 guarantees

that for ! ∈ Ξ̃up(n) only short positions are possible. This is a consequence

of the anti–cyclic strategy and the fact that the market price is above the

fair price.

ad (iii): similar as (ii)

ad (iv) and (v):

for ! ∈ Λ̃close

j (n) only reductions of open positions are allowed, i.e. for
{

s̃j(n) > 0
}

only selling and for
{

s̃j(n) < 0
}

only buying is possible, once

a cowardice action or a breakout giving this anti–cyclic action is triggered.

B3 Updates

In case the j–th fundamental investor switched his position, the last switching

price P̃j , the comfort price range H̃j and the cowardice threshold K̃j has to be

updated,

P̃j(n+ 1) := p̃(n+ 1) 1Θ̃j(n)
+ P̃j(n) 1Θ̃c

j
(n) ,

K̃j(n+ 1) := K̃∗
j (n + 1) 1Θ̃j(n)

+ K̃j(n) 1Θ̃c
j
(n) ,

H̃j(n+ 1) := H̃∗
j (n+ 1) 1Θ̃j(n)

+ H̃j(n) 1Θ̃c
j
(n) ,

(13)

and the new cowardice level is reset to zero at switching or otherwise updated

c̃j(n+ 1) := C̃j(n + 1) 1Θ̃c
j
(n) . (14)
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3.2 Numerical results for Model B

In this subsection, numerical simulation of Model B with the same underlying news

process as was used in Subsection 2.3 is given. We used the same parameters as in (9)

and additionally

M̃ = 100 , � = 20 , � = 5 ,  = 1.05 , " = 0.005 , �̃ = 0.3 .

In Figure 12 we show a sample trajectory of Model B. Exaggerations can still be observed

(in bold: actual market price; in light: fair price).

The fundamental investors (dashed–bold: M̃ ⋅ �̃; see Figure 13) enter, when the market

price is too far from the fair price. In bold: M ⋅ � (traders); in light:
(

M + M̃
)

⋅ �̂ (all

investors).
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Figure 12: Long simulation of Model B
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Figure 13: Corresponding sentiment of dif-
ferent investors

In Figure 14 we see the distribution of
(

p̃(n)
/

p̃f(n)
)

− 1 for the sample path of Figure

12. Similarly as Model A* (see Figure 11), Model B follows the fair price more closely

than Model A (see Figure 10).
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Figure 14: Distribution of
(

p̃(n)
/

p̃f(n)
)

− 1
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Figure 15: Distribution of
(

p̃(n)
/

p̃f(n)
)

− 1
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3.3 The Model B*

If we combine the traders of Model A* (see Subsection 2.4) with the fundamental in-

vestors of Model B we obtain Model B* (cf. Figures 15, 16 and 17).
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Figure 16: Long simulation of Model B*
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Figure 17: Corresponding sentiment of dif-
ferent investors

This model follows the fair price the closest, but still allows sharp price adjustments and

also trends with cumulating sentiment.

4 Statistics of sample paths

4.1 Short term simulation

The statistics produced here relates to the same sample path with 100000 steps that was

already used in the sections before. Nevertheless, the distributions and autocorrelations

seem to be extremely stable when other samples of the news process Z∗
n , n ∈ ℕ , are

used. Also, quite remarkably, the presented distributions do almost not change when

other samples of the remaining involved processes S∗
i , K

∗
i (n) and H∗

i (n) are used. Even

the price process evolution changes only marginally when a fixed sample of the news

process, but variant samples of the other involved processes are used.
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Short term statistics of Model A∗

Figure 18 shows the evolution of price returns after N = 10 periods:

retN (n) =
p(n)

p(n−N)
− 1 , n ≥ N .

The data for the actual market price (dashed–light) versus the fair market price (bold)

are compared.
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Figure 18: Evolution of price returns ret10
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Figure 19: Price return distribution ret10

Figure 19 exhibits the histograms of price returns after 10 periods (data for the ac-

tual market price (bold) versus the fair market price (dashed–light)). The difference is

only marginal although Figure 18 shows numerous breakouts of the actual market price

returns.

Figure 20 shows the activity (in percent) of the investors (traders). The next Figure 21

shows the autocorrelation function of the one period price returns Xn = ret1(n). We

see that Xn and Xn−m for m ≥ 2 are completely uncorrelated.
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Figure 20: Activity of the investors
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Figure 21: Autocorrelation of ret1
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In Figure 22 the evolution of the normalized time averaged volatility (N = 26 periods)

is given:

volaN (n) =

√

√

√

⎷

1

N

n
∑

i=n−N+1

(

p(i)
/

m(i)− 1
)2

, n ≥ 2N , where m(n) =
1

N

n
∑

i=n−N+1

p(i) .

Note that due to normalization volaN(n) is scale invariant, i.e. a constant multiple of

the price process p would produce the same volatility. This is essential for a possible

convergence of the distributions as the simulated amount of steps gets large.

Again the data for the actual market price (dashed–light) versus the fair market price

(bold) are compared. Clearly, large volatility every now and then is only seen in the data

for the actual market price, but not in the fair market price data (volatility clustering).
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Figure 22: Short term volatility evolution
vola26
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Figure 23: Distribution of short term volatil-
ity vola26

The distribution of the time averaged volatility vola26 is given in Figure 23 (fair price:

dashed–light; market price: bold). Similarly, Figures 24 and 25 show the evolution and

distribution for the long term volatility vola1000, averaged over N = 1000 periods. As

for the short term volatility vola26, we again see that cumulation of high volatility is

much more supported by the actual market price (in Figure 24 dashed–light; in Figure

25 bold) than by to the fair market price data.
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Figure 24: Evolution of vola1000
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Figure 25: Distribution of vola1000

Short term statistics of Model B

The following figures for Model B are produced in complete analogy to the ones for

Model A* before hand. Not only the meaning of the figures, but also the statistical

interpretation has many similarities.
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Figure 26: Evolution of price returns ret10
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Figure 27: Price return distribution ret10
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In Figures 26 and 27 the evolution and distribution of price returns after 10 periods are

compared (in Figure 26 data for the actual market price (dashed–light) versus the fair

market price (bold); in Figure 27 vice versa, e.g. the actual market price data is printed

in bold).

Figure 28 shows the activity (in percent) of the traders (dashed–light) and the funda-

mental investors (bold). The interpretation of the autocorrelation function in Figure 29

is as for Figure 21.
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Figure 28: Activity of the investors
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Figure 29: Autocorrelation of ret1

Figures 30 and 32 show again the evolution of short and long term volatility, respectively

(bold: fair price, dashed–light: actual market price).
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Figure 30: Evolution of vola26
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Figure 31: Distribution of vola26
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The distributions of short and long term volatilities are given in Figures 31 and 33 (bold:

actual market price; dashed–light: fair price).
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Figure 32: Evolution of vola1000
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Figure 33: Distribution of vola1000

While the data for price returns and short term volatility are almost identical for Model

A* and B, the long term volatility of model A* seems to support larger values (above

0.02) more than Model B.

4.2 Long term simulation

In case the distributions of our sample data converge as the number of simulated pe-

riods go to infinity, this should show when we do long simulations. We therefore give

simulations with 10 million steps. For all models the same news process Z∗
n is used.

Long term statistics of Model A and A∗
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Figure 34: Distribution of
(
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Figure 35: Distribution of vola1000
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Figure 36: Distribution of
(

p(n)
/

pf(n)
)

− 1

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140
Model A*: steps = 10000000, M = 100

Figure 37: Distribution of vola1000

Long term statistics of Model B and B*

In Figures 34, 36, 38 and 40 we give the distribution of
(

p(n)
/

pf (n)
)

− 1 that compares

market price and fair price for all four models. Models A* and B* support the center

area (where market price and fair price are close) with deviations up to 25%. On

the other hand Model B does support even deviations of 100% and more. As already

conjectured for Model A the deviation of market price and fair price apparently grows

without bounds, which is unrealistic. In effect only Model A is not suitable for long

simulations.
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Figure 38: Distribution of
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Figure 39: Distribution of vola1000
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Figure 41: Distribution of vola1000

The long time volatility distributions of Figures 35, 37, 39 and 41 (dashed–light: fair

price; bold: market price) do confirm that Model A* supports high long term volatility

more than Model B. The distributions of Model A, A* and B* are extremely close. We

skip the distributions of vola26 because they are for all four models extremely close, as

were already Figures 23 and 31.

4.3 Matlab Code

The simulation of all four models is written in Matlab (the code is available on our

web site http://www.instmath.rwth-aachen.de/∼maier). The input is organized via a

parameter file (cf. Table 1), which allows for individual adjustments of all parameters.

Besides the statistics produced here also tick data of the price evolution can be simulated.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 0 1 2 3 Number of Models, List of Models (0=A, 1=A*, 2=B, 3=B*)
100 100 20 M, tilde M, rho
20 5 5000 alpha, beta, p-start
0.15 0.3 1.05 0.05 kappa, tilde kappa, gamma, delta
0.001 0.003 0.004 0.02 K-, K+, H-, H+
0.00005 0.005 1 10000000 h, epsilon, FactorKH (factor scales similarly K+- and H+-), steps
0 Discrete (0=normally distributed, 1= discrete number generator)
1 Output Statistics (1=yes,0=no)
2 Output Mode (0= no, 1= write tick file, 2=write data, 3= both),
1 Output factor (scales the time when producing tick data)
1 Input Mode, (0=for random generator, 1=use input file, 2=write input file)
DAX.tick Output tick File
inputrandom.mat Input Random News Process Data
liste.mat Output Data

Table 1: Input file parameter.txt
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5 Conclusion

All models introduced here show typical stylized facts of real market date like e.g. fat

tails and volatility clustering. With the exception of Model A, our models also do not

deviate from the fair market price by too much, even in the long run.

Although the innovation process Z∗
n is standard Gaussian, the market price p(n) is far

from behaving like geometric Brownian motion. The actions of the investors every now

and then yield short transition periods with sharp price adjustments. Even trend behav-

ior with short movements and long corrections can be observed. Clearly those features

would intensify, if the underlying news process would be perturbed by ”news–spikes”,

which usually occur in connection with the release of economic data. Also perturbing

the innovation process by a long term periodic function, representing economic cycles,

would probably even generate long term trend behavior of the market price.
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