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Abstract In recent years several trading platforms appeared which provide a backtest
engine to calculate historic performance of self designed trading strategies on underlying
candle data. The construction of a correct working backtest engine is, however, a subtle task
as shown by Maier-Paape and Platen (cf. [arXiv:1412.5558, q-fin.TR]). Several platforms
are struggling on the correctness.

In this work, we discuss the problem how the correctness of backtest engines can be verified.
We provide models for candles and for intra-period prices which will be applied to conduct
a proof of correctness for a given backtest engine if the here provided tests on specific model
candles are successful. Furthermore, we hint to algorithmic considerations in order to allow
for a fast implementation of these tests necessary for the proof of correctness.

Keywords backtest evaluation, historical simulation, trading system, candle chart, im-
perfect data, price model, correctness test, backtest correctness

JEL classification C15, C63, C88, C99

1. Introduction

The use of trading software allows for programming trading strategies which are then automat-
ically executed. Typically, software solutions for this task also provide a backtest engine which
evaluates the user-written scripts on historical data and provides the user with performance
values, entries and exits of positions and further data which would have occurred if the trading
script was used in the past. In general, the historical data is not exact in the sense that the
price at a specific time is not known. Instead, prices are summed up for time periods in so called
candle data or bar data which consists of the maximum price (high), the minimum price (low),
the price at the beginning of the period (open) and the price at the end of the period (close)
for a given period length (e.g. one candle per day). Due to this lack of information the unique
decidability of several combinations of orders is lost when only candle data are available, see
e.g. [7] and also the book of Pardo [10, Chapter 6, Section “Software Limitations”] or Harris [5,
Chapter 6].

Before going into the details of our backtest correctness testing model, it is worth noting
that, besides the above mentioned problems, there are also other limitations of backtesting
which cannot be neglected, see e.g. the books of Chan [4, Chapter 3], Pardo [10, Chapter 6]
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and Harris [5, Chapter 6] and for trading options the book of Izraylevich and Tsudikman [6,
Chapter 5]. Since a backtest just simulates the behavior of a trading system over the past it
is strongly limited in predicting the future. However, it is common to optimize a parameter
dependent strategy over the historical data to maximize some objective function. Such an
optimization process can rapidly get very time consuming. Therefore to efficiently backtest a
trading system for different parameter choices Ni and Zhang [8] presented a method, but they
do not explain the backtest evaluation itself. Computing such an “optimal” parameter setting
does not ensure optimal parameters for the future but can even lead to tremendous losses.
Here one often speaks of backtest overfitting, see [1, 2, 3] and also [9, Chapter 6] for a detailed
discussion. Therefore even a correct backtest engine needs to be applied carefully. Nevertheless
it gives important information about a trading strategy.

The aim of this paper, however, is not about a “right” application of backtest results, but on
how to verify whether or not the backtests are performed correctly in the first place.

One instance where common software solutions often struggle is the non-uniqueness of cor-
rect results of backtest engines. Almost all of them do not consider this issue. Furthermore,
even if situations are obviously uniquely decidable, severals platforms sometimes have incor-
rect evaluations of their backtest engines. It is, however, of great importance for the users to
have reliable correct backtest evaluations. Therefore Maier-Paape and Platen [7] asked how
backtest engines should decide for certain given standard order setups like limit and stop entry
orders combined with typical intra-period stop or target exit orders, when only candle data are
available. They could limit these examinations to single candles, arguing that any trade can be
split up into several candles with different active orders. For the order combinations discussed,
they provided decision trees with which for a given candle, depending on open, close, high and
low value, the correct behavior of a backtest engine can be determined. They also introduced
decision modes which provide deterministic rules for situations which are not uniquely decid-
able due to the lack of information in candle data. However, due to the numerous possibilities
which can occur in different situations, it is hard to verify whether a given backtest engine of
some trading platform is calculating its backtests correctly or not. In this paper, we therefore
provide means for an algorithmic approach to this problem.

In order to check whether a given backtest engine behaves according to the requirements
presented in [7], it is necessary to design test data. That means that we are looking for a finite
number of so called “test candles”. After checking the backtest evaluation on these finitely
many candles, we want to be able to conclude general correctness of the backtest engine under
reasonable assumptions.

This work is divided into five sections. In Section 2 we discuss the preliminaries under
which our examinations are conducted and formalize the problem discussed. The main result
of Section 3 is the development of a concept of “model candles”, which allows for a proof of
correctness of backtest engines in specific situations. In Section 4, a model for intra-period
prices will be introduced which allows to obtain the desired condition that guarantees the
completeness of all model candles and all corresponding possible outcomes of a backtest. We
end this paper in Section 5 with our conclusions.

2. Problem statement and preliminaries

First, we want to specify the situation which we examine. In Section 2.1 we give some assump-
tions needed to make the decisions for a backtest unique. Since we can reduce the problem
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of testing for correctness to one single candle for each situation we define the setup for such
situations in Section 2.2. The concept of a backtest engine is explained in Section 2.3.

2.1. Assumptions

At this point, we will not make specific assumptions about the candles which we examine.
Clearly, every candle satisfies

low ≤ min {open, close} ≤ max {open, close} ≤ high.

Due to lack of information caused by the candle data, some general assumptions have to be
made.

Assumptions 2.1 (see [7, Section 2.1]).

• No intra-period gaps: We assume a continuous intra-period price development during a
candle.

• Market liquidity: All orders are filled at the requested price and thus without slippage.

• Local worst case/best case: Worst case and best case decisions are determined locally, i.e.
the profit of a trade is evaluated as if it were closed on the close of the candle.

• Local decision: The backtest engine decides only by considering the candle in question.
Previous and future candles do not influence the decision made.

Remark 2.2. Some of these assumptions are quite unreasonable for realistic price charts and
markets. However, since the backtest engine has only candle data at hand, these assumptions
are necessary and reasonable to decide a possible outcome of these market situations.

To ease the understanding of the concepts presented, we will use an example throughout this
work.

Example 2.3. At the beginning of a candle, we might have no open position but two active
orders, e.g. a stop buy entry order at level 53, which enters a long position if the price reaches
53, and a protective stop loss order at level 51, which exits the long position (but only if it is
opened beforehand) if the price falls below 51. Given an arbitrary candle, the backtest engine
should now decide which of these orders is executed and whether or not there are open positions
at the end of the candle.

2.2. The setup and intra period prices

We can formalize which orders are active and what the position is prior to the candle.

Definition 2.4. Suppose we have m ∈ N orders at levels L1 < . . . < Lm, respectively, with
Li ∈ R rounded to tick size of the asset for all 1 ≤ i ≤ m. Let p ∈ {−1, 0, 1} denote the position
status which was present prior to the candle in question, where 0 stands for a flat position, −1
for a short position and 1 for a long position. A combination of such m orders and the position
type p is called a setup.
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In the following we only consider setups which allow for at most one entry execution and
one exit execution. The available entry orders are limit buy/sell and stop buy/sell, i.e. “Enter-
LongLimit”, “EnterShortLimit”, “EnterLongStop” and “EnterShortStop”. As exit orders we use
stop loss and profit target (cf. [7, Section 2.2, 2.3 and 2.5] for the relevant decision trees). Note
that we neglect market orders for entry and exit since they are trivially decidable. We do not
investigate whether the results presented can be generalized to setups which allow for at most
a entry and a exit executions, where 1 < a ∈ N, but analogous concepts might be applicable.
Furthermore, we exclude the trivial case m = 0 in which no order is active.

Now, we can formalize Example 2.3.

Example 2.5. We use the combination of a stop buy entry (EnterLongStop) order at level
L2 = 53 and a protective stop loss exit order at level L1 = 51 attached to that entry order with
p = 0 as an example setup.

For technical reasons only, the intra-period prices of a candle will be assumed to be continuous
as follows, where we denote the set of all continuous functions g : A → B by C(A,B) and define
R+ := {x ∈ R | x ≥ 0}.

Definition 2.6. We call f ∈ C([a, b],R+) with a, b ∈ R and a < b an intra-period price
function (IPF). By

C(f) :=

(
f(a), f(b), max

t∈[a,b]
f(t), min

t∈[a,b]
f(t)

)
∈ (R+)4

we denote the corresponding candle of the IPF f .

Here, a and b are interpreted as the starting time and ending time of a period which is
summed up to a candle and f(t) as the price at time t for a ≤ t ≤ b. Obviously, for each candle
c ∈ (R+)4 one can construct an IFP f such that C(f) = c.

2.3. Backtest engines and results

Given an intra-period price function, we can define its result.

Definition 2.7. We define the result of an IPF f with respect to a given setup as the combi-
nation of (entryf , exitf ), where entry and exit result from the correct application of the orders
of the given setup. If entry or exit do not occur, they are denoted by value −1, respectively.
We denote the result of the IPF f by R(f). Formally, for a given setup, this can be regarded
as function

R :
⋃

a,b∈R,a<b

C([a, b],R+) → (R+ ∪ {−1})2. (1)

With this, the combined candle data and result (CR) of f with respect to a given setup
can be defined as the combination CR(f) := (C(f), R(f)).

Remarks 2.8. Note that results and CRs are defined depending on IPFs, which means that all
CRs correspond to intra-period prices which fulfill the first two assumptions made in Assump-
tions 2.1.

For given setup and candle data (open, close, high, low), finding all possible results (entry,
exit) can be reformulated as finding im(CR)∩

(
{(open, close, high, low)} × R2

)
. Note that this

set can have more than just one element, which means that the result for this candle is not
unique.
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For a given fixed setup, we can formalize the concept of a backtest engine used in this work.
As we want to examine the behavior of a backtest engine on candle data, we can take such
a candle as input data. The backtest engine should return a possible entry price at which a
position may be opened and a possible exit price at which the position may be closed. Of course,
entry or exit might not occur or might not have a price which can be uniquely determined (cf.
Remark 2.8). Thus, the backtest engine also needs a “backtest decision mode” (short: backtest
mode) which makes the entry and exit price unique.

Definition 2.9. For BM := {best case,worst case, ignore} we interpret a value in (R+)4 ×
BM as the combination of the candle data (open, close, high, low) ∈ (R+)4 and the backtest
mode according to Assumptions 2.1.

For a given setup, we call a mapping

E : (R+)4 ×BM → (R+ ∪ {−1})2

a backtest engine.
The result E(c0,M) ∈ (R+ ∪ {−1})2 for a candle c0 ∈ (R+)4 and a backtest mode M ∈ BM

is interpreted as the combination of entry price and exit price, respectively, where again −1
denotes no entry/no exit.

Remark 2.10. On a particular chart, here a candle chart, the backtest engine of a platform
decides the outcomes of a given strategy. It has to simulate scripts which are typically executed
at the end of each candle and place orders. Furthermore, it has to keep track of placed orders
and open positions. When all orders placed before a candle, which form the setup, are known,
the backtest engine has to decide which of these orders are executed. Here, we consider only
this last part of a backtest engine. So for us, a backtest engine E has only the candle data (and
the setup) as input, whereas the result function R from (1) requires an IPF, i.e. intra-period
data. Thus, E has to find results which correspond to the given candle, i.e. for a given candle
c0 the backtest engine has to find a result r0 ∈ (R+ ∪ {−1})2 s.t. r0 = R(f) and c0 = C(f)
for an appropriate IPF f . The backtest mode specifies which IPF has to be chosen if there are
several results possible corresponding to the given candle.

Continuing Example 2.5, we show these concepts in application.

Example 2.11. Using the setup from Example 2.5 (stop buy entry order at L2 = 53, stop loss
exit order at L1 = 51 with a flat position before the candle, i.e. p = 0) and the IPF

f :

[
0,

5

2
π

]
→ R+, t 7→ sin(t) + 52,

(see Figure 1 (a)) we obtain the CR

(C(f), R(f)) = (open = 52, close = 53, high = 53, low = 51, entryf = 53, exitf = 51).

In this example, we can see the non-uniqueness of results, if only a candle is given, by
considering the IPF

g :

[
0,

3

2
π

]
→ R+, t 7→ − sin(t) + 52,

(see Figure 1 (b)) with the same resulting candle as for f , i.e. C(f) = C(g), but the result

R(g) = (entryg = 53, exitg = −1) 6= R(f).
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51

53

0 5
2π

f

(a) IPF f .

51

53

0 3
2π

g

(b) IPF g.

Figure 1: IPFs from Example 2.11 with the resulting candles.

Here, g corresponds to the best case for this candle and f to the worst case, as with a fictional
close of the candle we have for the cash value of f and g that

close− entryg = close− 53 = 53 − 53 = 0 > −2 = 51− 53 = exitf − entryf .

At this point, we actually do not know whether there could be other cases, but for this setup
there are at most 2 possible results for a given candle. Choosing a backtest mode M ∈ BM then
makes the decision for the backtest engine unique and allows to either choose the result from f ,
or from g or also to ignore this trade.

Since we cannot check a backtest engine for each candle contained in the infinitely dimensional
space (R+)4 we need to reduce the problem to finitely many model candles. However, for this
step we need the backtest engine to be stable under transformation of candles which we discuss
in the next section.

3. Suitable test cases for a proof of correctness

In this section we want to examine whether or not a given backtest engine works correctly. For
this goal, we design “model candles”, i.e. a set of finitely many candles which allow for a proof
of correctness under the assumption of “stability under transformations”, a concept which will
be introduced as well.

In general, the values of a CR do not coincide with the levels of the underlying setup, but we
observe that possible values for entry and exit prices are the open of the candle and the levels
of the setup. The exact values of open, close, high and low are not important for the resulting
entry and exit, but rather their position relative to the levels L1, . . . , Lm. We therefore define
l2i−1 := Li for i = 1, . . . ,m and introduce intermediate levels l2i with Li < l2i < Li+1 such that
l0 < l1 < . . . < l2m. Restricting the candle data to these values results in a system of finitely
many representative candles. We observe that the number of representative candles is at
most (2m+ 1)4, as open, close, high and low can only take the 2m+ 1 values l0, . . . , l2m.

Example 3.1. In Example 2.5, we may choose

l0 := 50 < l1 = L1 = 51 < l2 := 52 < l3 = L2 = 53 < l4 := 54. (2)

Figure 2 shows all representative candles for this setup.

In order to further restrict the levels li to fixed values, we need to introduce a notion of
transformation from one set of levels to another one.
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l0
l1
l2
l3
l4

Figure 2: All 105 possible candles with values in {l0, . . . , l4} from Example 3.1.

Definition 3.2. A strictly monotonously increasing bijective function

T : R+ → R+

is in the following called a transformation. In order to apply a transformation to results, we
set T (−1) := −1 for entries and exits.

A transformation can be used to transfer setups, candles, IPFs, results and CRs from one set
of levels to another one.

Example 3.3. Continuing Example 3.1 with levels given in (2) and examining the correspond-
ing CR (52, 51, 53, 51, 53, 51) of the IPF f from Example 2.11, we might apply the transforma-
tion

T : R+ → R+, t 7→ 2t+ 1.

This results in a setup with the same orders but at levels

l̃0 := 101 < l̃1 = L̃1 = 103 < l̃2 := 105 < l̃3 = L̃2 = 107 < l̃4 := 109

and a transformation of the CR given by (105, 103, 107, 103, 107, 103) ∈ R6.
Apparently, this tuple itself is a CR, i.e. it is derived from an IPF. This can be shown by

using the IPF f from Example 2.11 and transforming it to T ◦ f .

Now we introduce the main assumption about the given backtest engine, which will allow us
to prove correctness of that backtest engine.

Definition 3.4. We call a backtest engine E stable under transformations, if the following
holds true for any given IPF f , transformation T and setup at levels L1, . . . , Lm:
If the result of the backtest engine E with backtest mode M ∈ BM is given by

E(C(f),M) = (entry, exit),

then the result of the backtest engine after transformation for the new setup at levels T (L1), . . . ,
T (Lm) and the new IPF given by T ◦ f yields

E(C(T ◦ f),M) = (T (entry), T (exit)) =: T (entry, exit).

Remark 3.5. For a backtest engine, it is desirable to be stable under transformations. This is
due to the structure of orders which are independent of the exact levels but depend only on their
relative values. The decision trees in [7], which outline how correct results for several order
setups can be obtained, are also independent of the exact levels and only depend on relative
values. Therefore the decision tree and thus also the corresponding results are naturally stable
under transformations. We conclude that results only depend on relative positions of orders,
or, formally, for all IPFs f we have R(T ◦ f) = T (R(f)).

Additionally, by the monotonicity of transformations, best cases remain best cases and worst
cases remain worst cases under transformations, which can again be seen in the decision trees
in [7].
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L1 = l1

l2 = l2,1

l2,2

l2,3

l2,4

L2 = l3

(a) “model candles”.

L1 = l1

l2

L2 = l3

(b) corresponding “representative candle”.

Figure 3: An example of candles with values in {l2,j | j = 1, . . . , 4} (see Definition 3.6).

From representative candles with values in {l0, . . . , l2m}, we can now cover almost all possible
candles by applying transformations, but some important cases are missing: The “generic” can-
dle has a range [low, high] that does not include any level from {L1, . . . , Lm} but nonetheless
the values for open, close, high and low may differ from each other (see Figure 3 (a) for exam-
ples of such candles). These cases are not covered by the considerations made so far, but can
easily be taken into account by the following considerations. Combining our observations, we
arrive at the set of “model” candles we want to examine by introducing four intermediate levels
between Li−1 and Li.

Definition 3.6. Let a setup at levels L1, . . . , Lm be given. Furthermore, choose values l2i, l2i−1,
l2i,j ∈ R+ for i = 1, . . . ,m and j = 1, . . . , 4 with

l0 = l0,1 < l0,2 < l0,3 < l0,4 < L0,

l2i−1 := Li < l2i = l2i,1 < l2i,2 < l2i,3 < l2i,4 < l2i+1 := Li+1 for 1 ≤ i ≤ m− 1,

Lm < l2m = l2m,1 < l2m,2 < l2m,3 < l2m,4.

A model candle is a candle with values

open, close, high, low ∈ {li | 0 ≤ i ≤ 2m} ∪ {l2i,j | 0 ≤ i ≤ m, 1 ≤ j ≤ 4}

with the further restriction

∀i ∈ {0, . . . ,m} ∃ri ∈ {1, . . . , 4} : if {open, close, high, low} ∩ {l2i,j | 1 ≤ j ≤ 4} 6= ∅

then {open, close, high, low} ∩ {l2i,j | 1 ≤ j ≤ 4} = {l2i,j | 1 ≤ j ≤ ri} . (3)

Figure 3 shows examples of some candles, where in this extremal case we have up to 12 model
candles for one of the representative candles introduced.

In this way, we obtain sufficiently many candles to cover the “generic” candles described
above as well.

Remarks 3.7. Condition (3) for the sublevels l2i,j is introduced to minimize the use of these
additional levels by, figuratively speaking, filling up the levels l2i,j for a fixed i by increasing j
as far as necessary. This reduces the total number of model candles.

For an application of the construction, all values can be chosen equidistant. It is important
to consider the tick size used and especially to not choose the sublevels l2i,j with too little
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distance. For example if we have a tick size of 0.01 we could choose li := 50.05 + i and
l2i,j := 49.95 + 2i + 0.1j for i = 0, . . . ,m, j = 1, . . . , 4, which allows us to also check for
rounding errors.

With all these preparations, we are now able to conduct a proof of correctness for given
backtest engine and setup.

Theorem 3.8. Let a backtest engine E be given which is stable under transformations for
a setup at (ordered) levels L1 < . . . < Lm. If the backtest engine works correctly (e.g. for
the criteria given in [7]) on the set of all model candles of this setup with fixed li, l2i,j as in
Definition 3.6, then it works correctly on this setup with any (ordered) levels L̃1 < . . . < L̃m

(and arbitrary candles).

Proof. Let an arbitrary candle c = (open, close, high, low) ∈ (R+)4, ordered levels L̃1, . . . , L̃m ∈

R+ and a backtest mode M be given. Set (ẽntry, ẽxit) := E(c,M).

We have to show that (ẽntry, ẽxit) is a correct result for the candle c, i.e. that there exists

some IPF f̃ with c = C(f̃) and R(f̃) = (ẽntry, ẽxit), or, if M = ignore and there is no unique

result, that (ẽntry, ẽxit) = (−1,−1).

In order to do this let us define l̃2i−1 := L̃i for 1 ≤ i ≤ m and l̃2i,j, l̃i ∈ R+ such that the

requirements from Definition 3.6 are fulfilled and open, close, high, low ∈
{
l̃i | 0 ≤ i ≤ 2m

}
∪

{
l̃2i,j | 0 ≤ i ≤ m, 1 ≤ j ≤ 4

}
which fulfill the minimal sublevel condition (3) for the level l̃2i,j

instead of l2i,j. Such a choice is obviously always possible.

Now we construct a transformation T that transforms the setup at levels L̃i to the setup at
levels Li. This can be done by setting T (0) = 0, T (l̃2i−1) = l2i−1, T (l̃2i,j) = l2i,j for i = 0, . . . ,m
and j = 1, . . . , 4 and interpolating piecewise linearly in between these values. Formally,

T : R+ → R+, t 7→





l0,1

l̃0,1
t, t < l̃0,1,

l2i,j + (t− l̃2i,j)
l2i,j+1−l2i,j

l̃2i,j+1−l̃2i,j
, l̃2i,j ≤ t < l̃2i,j+1, 0 ≤ i ≤ m, 1 ≤ j ≤ 3,

li + (t− l̃i)
li+1,1−li

l̃i+1,1−l̃i
, l̃i ≤ t < l̃i+1,1, i odd,

li−1,4 + (t− l̃i−1,4)
li−li−1,4

l̃i−l̃i−1,4
, l̃i−1,4 ≤ t < l̃i, i odd,

l2m,4 − l̃2m,4 + t, t ≥ l̃2m,4.

By construction, T is continuous, strictly monotonously increasing and bijective. Further-
more, T (c) := (T (open), T (close), T (high), T (low)) is a model candle w.r.t. Li, li, li,j (cf. Fig-
ure 4).

By assumption, E works correctly on model candles w.r.t. Li, li, li,j . Therefore, we know that
E(T (c),M) is the desired result of the model candle T (c) and (T (c), E(T (c),M)) the desired
CR.

If M = ignore and there is no unique result for T (c), this still holds true after applying the
inverse transformation T−1, so we have (−1,−1) = E(T (c),M) = E(c,M) by stability under
transformations, which is the correct result by Remark 3.5.

Otherwise, i.e. M 6= ignore or the result for T (c) is unique, there exists an IPF f = fT (c),M

(depending on T (c) and M only) such that C(f) = T (c) and R(f) = E(T (c),M), because each
result corresponds to some IPF. Then clearly C(T−1 ◦ f) = c. Therefore setting f̃ := T−1 ◦ f ,
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L̃i = l̃2i−1

l̃2i = l̃2i,1
l̃2i,2

l̃2i,3

l̃2i,4L̃i+1 = l̃2i+1

(a) Candle c and levels L̃i, l̃i, l̃i,j .

Li = l2i−1

l2i = l2i,1

l2i,2

l2i,3

l2i,4

Li+1 = l2i+1

(b) Candle T (c), a model candle w.r.t. Li, li, li,j .

Figure 4: An example of the application of the transformation T on an arbitrary candle.

we already have C(f̃) = c as desired. Furthermore, applying the stability of E under the
transformation T−1 (cf. Definition 3.4), we obtain

(ẽntry, ẽxit)
def.
= E(c,M) = E(C(T−1 ◦ f),M)

stability u.t. of E
= T−1(E(C(f),M)).

Since, by construction, C(f) = T (c) and R(f) = E(T (c),M), we conclude from the stability
under transformation of results (cf. Remark 3.5) that

(ẽntry, ẽxit) = T−1(E(T (c),M)) = T−1(R(f)) = R(f̃),

which is, again by Remark 3.5, the correct result.
As c and L̃1, . . . , L̃m were chosen arbitrarily, we conclude general correctness of E for this

setup.

Theorem 3.8 allows us to reduce the verification of a stable backtest engine to simply check
the backtest evaluation on one set of model candles. Therefore this set is focused in the next
section.

4. A model for intra-period prices

Our goal in this section is to develop a model for IPFs which allows for only finitely many model
price functions but still results in all possible CRs. The results for all CRs are needed to test
a given backtest engine by comparing its results with correct results. They can be determined
by the means of this section with the help of a correct reference backtest engine on the finitely
many model price functions.

We can restrict ourselves to model candles which do not take the values l2i,2, l2i,3, l2i,4, but
only l2i = l2i,1 for all 1 ≤ i ≤ m, because, as we see below, we can reconstruct the results for
the model candles with values in l2i,2, l2i,3, l2i,4.

Remark 4.1. Let a setup and a backtest mode M be given.
Furthermore, let c = (open, close, high, low) be a model candle w.r.t. the levels

L := {li | 0 ≤ i ≤ 2m} ∪ {l2i,j | 0 ≤ i ≤ m, 1 ≤ j ≤ 4} ,

i.e. c ∈ L4. We can obtain the result for c by first applying the substitution

l2i,j 7→ l2i for all 0 ≤ i ≤ m, 1 ≤ j ≤ 4
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to c which leads to a new candle c′. Calculating the result r′ of c′ and then “re-substituting”

l2i0 7→ l2i0,j0 in case l2i0,j0 = open of the candle c

in r′ gives us the result r. Indeed, r is the desired result for c.
This procedure is possible due to the fact that entry and exit can only occur at levels Li or at

the open value.

Example 4.2. Remark 4.1 can be illustrated for our setup from Example 2.5 (EnterLongStop
at L2, stop loss at L1) with the model candle

c := (open = l4,2, close = l4,1 = l4, high = l4,3, low = l3 = L2),

which has the unique result r := (entry = open = l4,2, exit = −1). By substituting l4,j with l4
for all 1 ≤ j ≤ 4, we get the representative candle

c′ := (open′ = l4, close
′ = l4, high

′ = l4, low
′ = l3 = L2)

with the unique result r′ := (entry′ = open′ = l4, exit
′ = −1). We can reconstruct r from r′ by

substituting l4 = open′ 7→ open = l4,2 in r′.

The following model for intra period prices allows only for the values l0, . . . , l2m at certain
interpolation points.

Definition 4.3. An intra-period model price series (IPMS) w.r.t. a given setup is a finite
sequence s := (li1 , . . . , lik) with 0 ≤ ij ≤ 2m for all 1 ≤ j ≤ k and ij+1 = ij +1 or ij+1 = ij − 1
for all 1 ≤ j ≤ k − 1. We call |s| := k the size of the IPMS. By M := Mm, we denote the set
of all IPMS w.r.t. a number of levels m.

The connection with intra-period price functions is the following:

Observation 4.4. Every IPMS s = (li1 , . . . , lik) can be interpreted as an IPF by using piecewise
linear interpolation as follows: Define f (s) : [1, k] → R+ by

f (s)(t) := li⌊t⌋ + (t− ⌊t⌋)(li⌊t⌋+1
− li⌊t⌋), where lik+1

:= lik ,

such that f (s)(j) = lij for j = 1, . . . , k. Indeed, f (s) is continuous by construction.

Through this connection, we define the result of an IPMS.

Definition 4.5. For a given setup with m levels, we define

R : M → (R+ ∪ {−1})2, s 7→ R(f (s))

and call R(s) the result of s.
Similarly, by C(s) := C(f (s)) we denote the candle resulting from s.

Example 4.6. In Example 2.5, an IPMS could be given by s := (l2 = 52, l3 = 53, l2 = 52, l1 =
51, l2 = 52, l3 = 53). The corresponding piecewise linear IPF f (s) in a graphical representation
is given in Figure 5.

This example has the same CR as the IPF f in Example 2.11, which is generalized in the
following theorem.

Page 11



R. Löw, S. Maier-Paape, and A. Platen

50 = l0

51 = l1

52 = l2

53 = l3

54 = l4

Figure 5: IPF f (s) for IPMS s in Example 4.6 with the resulting candle.

Theorem 4.7. Every CR r ∈ {l0, . . . , l2m}4 × (R+ ∪ {−1})2 is the CR of an IPMS.

Proof. Let f ∈ C([a, b],R+) be an IPF with C(f) ∈ {l0, . . . , l2m}4 such that (C(f), R(f)) = r
for an arbitrary but fixed CR r. Such an f exists by the definition of CRs, see Definition 2.7.

In order to construct an IPMS with the same result r, we use piecewise linear interpolation:
W.l.o.g. we assume that f assumes values in {l0, . . . , l2m} only at finitely many discrete points,
because otherwise we can easily modify f in such a way without changing the CR r. Now
define t1, . . . , tk s.t.

tj < tj+1 for all 1 ≤ j ≤ k − 1,

f(tj) ∈ {l0, . . . , l2m} for all 1 ≤ j ≤ k, and

f(t) /∈ {l0, . . . , l2m} for all t ∈ [a, b] \ {t1, . . . , tk} .

Next, we remove all those tj from the {t1, . . . , tk} with f(tj) = f(tj−1) (remember that one
requirement for an IPMS s is that sj+1 6= sj) by defining t′j s.t.

{
t′1, . . . , t

′
k′

}
= {t1, . . . , tk} \ {tj | f(tj) = f(tj−1)} and t′j < t′j+1 for all 1 ≤ j ≤ k′ − 1.

By continuity of f and the intermediate value theorem, s := (f(t′1), . . . , f(t
′
k′)) is an IPMS and,

again by the intermediate value theorem, R(s) = R(f) = r.

Example 4.6 gives actually the IPMS obtained from f in Example 2.11 by the construction
in the proof of Theorem 4.7.

For an algorithmic approach, we want to limit ourselves to finitely many IPMSs from which
all CRs can be obtained. For this, we need to limit the size of the IPMSs.

Definition 4.8. By Mn we denote the set of all CRs of IPMSs of size of at most n, i.e.

Mn := {r | ∃s ∈ M, |s| ≤ n, r = (C(s),R(s))} .

Now we can limit the size of IPMSs used to obtain all possible CRs for a given setup.

Theorem 4.9. For given setup and n0 ∈ N, the following holds true: If Mn0
= Mn0+1, then

Mn = Mn0
for all n ≥ n0.

Proof. We show that Mn = Mn+1 implies Mn+1 = Mn+2. Then, the claim follows inductively.
For the following construction we perform four steps. An example for these steps are illus-

trated in four images in Figure 6, respectively, to which we refer correspondingly.
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Let Mn = Mn+1 and s = (li1 , . . . , lin+2
) be an IPMS of size n+2 with CR r = (C(s),R(s)) =

(open, close, high, low, entry, exit) ∈ Mn+2 (cf. Figure 6 (a)). We have to construct an IPMS
of size of at most n+ 1 which has the same CR r.

Consider the IPMS s′ = (li1 , . . . , lin+1
) which is the same IPMS as s but shortened by the

last element, i.e. we have s = (s′, lin+2
) (cf. Figure 6 (b)). The size of s′ is n+1 and we denote

its CR by r′ = (C(s′),R(s′)) = (open′, close′, high′, low′, entry′, exit′) ∈ Mn+1. By definition
of an IPMS we have |close′ − lin+2

| = 1. By assumption we have r′ ∈ Mn, i.e. there exists an
IPMS s̄′ of size |s̄′| ≤ n with CR r′ (cf. Figure 6 (c)). W.l.o.g. let |s̄′| = n (otherwise, the same
proof can be conducted with a different index in use).

We construct s̄ ∈ Rn+1 as the concatenation s̄ := (s̄′, lin+2
) with CR r̄ = (C(s̄),R(s̄)) =

(open, close, high, low, entry, exit) (cf. Figure 6 (d)). Indeed, s̄ is an IPMS, as s̄n = s̄′n = close′

and by definition |s̄n − s̄n+1| = |close′ − lin+2
| = 1.

We now claim that s̄ has the CR r, i.e. r̄ = r. By the structure as concatenation it is obvious
that open = open′ = open and close = lin+2

= close. Furthermore, the high and low values
can be determined as maximum and minimum, respectively:

high = max
{
max s̄′, lin+2

} C(s̄′)=C(s′)
= max{high′, lin+2

} = max{li1 , . . . , lin+1
, lin+2

} = high,

low = min
{
low′, lin+2

}
= low.

Therefore we have C(s̄) = C(s).
If there is no entry for s, the same holds true for s̄ because the range [low, high] = [low, high]

contains no level of an entry order. If the entry occurs during the first n+1 interpolation points
of s, we get entry = entry′ = entry. Otherwise the entry of s was executed on the (n + 2)nd
interpolation point with value entry = lin+2

. Then entry′ is −1 and we obtain entry = lin+2
.

Therefore entry = entry. Analogously, it follows that exit = exit.
In conclusion, R(s̄) = R(s) and thus r̄ = r, but |s̄| = n+ 1 and therefore r ∈ Mn+1.

This allows for an algorithmic approach to find all relevant CRs.

Corollary 4.10. In order to obtain all possible CRs of model candles with values in {l0, . . . , l2m}
for a given setup, it suffices to compute Mn0

, where n0 = min {n | Mn = Mn+1}.

Proof. The claim follows from Theorem 4.7 and Theorem 4.9.

Remark 4.11. In the proof of Theorem 4.9, we showed that for s̄′ and s′ the equality

(C(s̄′),R(s̄′)) = (C(s′),R(s′))

carries forward after appending lin+2
as

(C(s̄′, lin+2
),R(s̄′, lin+2

)) = (C(s′, lin+2
),R(s′, lin+2

)).

Analogously and by induction, we obtain the following: If the CRs of two IPMSs s1 and s2 are
the same, so are the CRs of all IPMSs obtained from s1 and s2 by concatenation of arbitrary
consistent IPMSs, i.e. if C(s1) = C(s2) and R(s1) = R(s2) then

for all k ∈ N, s3 ∈ Rk such that (s1, s3) and (s2, s3) are IPMSs, the following holds true:

C((s1, s3)) = C((s2, s3)) and R((s1, s3)) = R((s2, s3)).

Therefore an algorithm only needs to consider one of these IPMSs when appending other IPMSs,
which yields an enormous speedup for the calculation of all model candles and their results.
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Example 4.12. Continuing Example 2.5, we can apply the results. In order to abbreviate
notation, we set li := i here. Algorithmically we found the value n0 = 11 to be sufficiently large
in the sense of Corollary 4.10. The example for the constructions from the proof of Theorem 4.9
shown in Figure 6 has the following data:

s =(1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3), |s| = 13,

(C(s),R(s)) = (open = 1, close = 3, high = 4, low = 0, entry = 3, exit = 1),

s′ =(1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4), |s′| = 12,

(C(s′),R(s′)) = (open′ = 1, close′ = 4, high′ = 4, low′ = 0, entry′ = 3, exit′ = 1),

s̄′ =(1, 2, 3, 2, 1, 0, 1, 2, 3, 4), |s̄′| = 10, (C(s̄′),R(s̄′)) = (C(s′),R(s′)),

s̄ =(1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3), |s̄| = 11, (C(s̄),R(s̄)) = (C(s),R(s)).

0 = l0

1 = l1

2 = l2

3 = l3

4 = l4

(a) Initial IPMS s.

0 = l0

1 = l1

2 = l2

3 = l3

4 = l4

(b) Shortened IPMS s′.

0 = l0

1 = l1

2 = l2

3 = l3

4 = l4

(c) IPMS s̄′ with the same result as s′, but smaller
size.

0 = l0

1 = l1

2 = l2

3 = l3

4 = l4

(d) IPMS s̄ with the same result as s, but smaller
size.

Figure 6: Construction of smaller IPMS with the same CR (cf. Proof of Theorem 4.9 and
Example 4.12).

5. Conclusion

In this work, we provided the utilities to test correctness of backtest engines for setups with
at most one entry and one exit. By this many practical situations are covered, such as Enter-
Long/Short Limit/Stop with accompanying intra-period stop loss and target orders.

By constructing all relevant intra-period price functions, which we could limit to finitely many
intra-period model price series (IPMSs), and then running a reference backtest for IPMSs, we
can obtain the correct result for all model candles. Comparing these results with the results of
a given backtest engine on all model candles, we can decide correctness of the backtest engine
under the assumption of stability under transformations by the results of Section 3.

Many of those concepts can be generalized to more complex situations with more than one
entry or exit. It remains to be shown how our results can be transferred to these setups.
Furthermore, in that case there would no longer necessarily be unique worst cases and best
cases.
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Another extension of our work could be the consideration of other order types, e.g. OCO-
orders (i.e. “one cancels other”), which would require a revision of the theory presented.
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[81] Löw R., Maier-Paape S. and Platen A.: Correctness of Backtest Engines, S 15, 09/15


