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Abstract In this paper the multivariate fractional trading ansatz of money
management from Vince [8] is discussed. In particular, we prove existence and
uniqueness of an “optimal f” of the respective optimization problem under rea-
sonable assumptions on the trade return matrix. This result generalizes a similar
result for the univariate fractional trading ansatz. Furthermore, our result guar-
antees that the multivariate optimal f solutions can always be found numerically
by steepest ascent methods.
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1 Introduction

Risk and money management for investment issues has always been at the heart of
finance. Going back to the 1950s, Markowitz [7] invented the “modern portfolio theory”,
where the additive expectation of a portfolio of different investments was maximized
subject to a given risk expressed by volatility of the portfolio.

When the returns of the portfolio are no longer calculated additive, but multiplicative
in order to respect the needs of compound interest, the resulting optimization problem
is known as “fixed fractional trading”. In fixed fractional trading strategies an investor
always wants to risk a fixed percentage of his current capital for future investments given
some distribution of historic trades of his trading strategy.

A first example of factional trading was established in the 1950s by Kelly [2] who
found a criterion for an asymptotically optimal investment strategy for one investment
instrument. Similarly, Vince in the 1990s (see [8] and [9]) used the fractional trading
ansatz to optimize his position sizing. Although at first glance these two methods look
quite different, they are in fact closely related as could be shown in [6]. However, only
recently in [10], Vince extended the fractional trading ansatz to portfolios of different
investment instruments. The situation with M investment instruments (systems) and N
coincident realizations of absolute returns of these M systems results in a trade return
matrix T described in detail in (2.1). Given this trade return matrix, the “Terminal
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Wealth Relative” (TWR) can be constructed (see (2.3)) measuring the multiplicative gain
of a portfolio resulting from a fixed vector ϕ = (ϕ1, . . . , ϕM) of fractional investments
into the M systems. In order to find an optimal investment among all fractions ϕ the
TWR has to be maximized

maximize
ϕ∈G

TWR(ϕ), (1.1)

where G is the definition set of the TWR (see Definition 2.1 and (3.2)).
Whereas in [10], Vince only stated this optimization problem and illustrated it with

examples, in Section 3 we give as our main result the necessary analysis. In particular,
we investigate the definition set G of the TWR and fix reasonable assumptions (As-
sumption 3.2) under which (1.1) has a unique solution. This unique solution may lie in
◦
G or on ∂G as different examples in Section 4 show. Our result extend the results of
Maier–Paape [4], Zhu [12] (M = 1 case only) and parts of the PhD of Hermes [1] on
the discrete multivariate TWR. One of the main ingredients to show the uniqueness of
the maximum of (1.1) is the concavity of the function [TWR(·)]1/N (see Lemma 3.5).
Uniqueness and concavity furthermore guarantee that the solution of (1.1) can always
be found numerically by simply following steepest ascent.

Before we start our analysis, some more remarks on related papers are in order.
In [5] Maier–Paape showed that the fractional trading ansatz on one investment instru-
ment leads to tremendous drawdowns, but that effect can be reduced largely when several
stochastic independent trading systems are used coincidentally. Under which conditions
this diversification effect works out in the here considered multivariate TWR situation
is still an open question. Furthermore, several papers investigated risk measures in the
context of fractional trading with one investment instrument (M = 1; see [3], [4], [6]
and [11]). Related investigations for the multivariate TWR using the drawdown can be
found in Vince [10].

In the following sections we now analyse the multivariate case of a discrete Terminal
Wealth Relative. That means we consider multiple investment strategies where every
strategy generates multiple trading returns. As noted before this situation can be seen as
a portfolio approach of a discrete Terminal Wealth Relative (cf. [10]). For example one
could consider an investment strategy applied to several assets, the strategy producing
trading returns on each asset. But in an even broader sense, one could also consider
several distinct investment strategies applied to several distinct assets or even classes of
assets.

2 Definition of a Terminal Wealth Relative

The subject of consideration in this paper is the multivariate case of the discrete Terminal
Wealth Relative for several trading systems analogous to the definition of Ralph Vince
in [10]. For 1 ≤ k ≤ M, M ∈ N, we denote the k-th trading system by (system k). A
trading system is an investment strategy applied to a financial instrument. Each system
generates periodic trade returns, e.g. monthly, daily or the like. The absolute trade
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return of the i-th period of the k-th system is denoted by ti,k, 1 ≤ i ≤ N, 1 ≤ k ≤ M .
Thus we have the joint return matrix

period (system 1) (system 2) · · · (system M)
1 t1,1 t1,2 · · · t1,M
2 t2,1 t2,2 · · · t2,M
...

...
...

. . .
...

N tN,1 tN,2 · · · tN,M

and define

T :=

(
ti,k

)
1≤i≤N
1≤k≤M

∈ RN×M . (2.1)

Just as in the univariate case (cf. [4] or [8]), we assume that each system produced at
least one loss within the N periods. That means

∀ k ∈ {1, . . . ,M} ∃ i0 = i0(k) ∈ {1, . . . , N} such that ti0,k < 0 (2.2)

Thus we can define the biggest loss of each system as

t̂k := max
1≤i≤N

{|ti,k| | ti,k < 0} > 0, 1 ≤ k ≤M.

For better readability, we define the rows of the given return matrix, i.e. the return of
the i-th period, as

ti· := (ti,1, . . . , ti,M) ∈ R1×M

and the vector of all biggest losses as

t̂ := (t̂1, . . . , t̂M) ∈ R1×M .

Having the biggest loses at hand, it is possible to “normalize” the k–th column of T
by 1/t̂k such that each system has a maximal loss of −1. Using the componentwise
quotient, the normalized trade matrix return then has the rows

(ti·/t̂) :=

(
ti,1

t̂1
, . . . ,

ti,M

t̂M

)
∈ R1×M , 1 ≤ i ≤ N .

For ϕ := (ϕ1, . . . , ϕM)>, ϕk ∈ [0, 1], we define the Holding Period Return (HPR) of
the i-th period as

HPRi(ϕ) := 1 +
M∑
k=1

ϕk
ti,k

t̂k
= 1 + 〈(ti·/t̂)>,ϕ〉RM , (2.3)
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where 〈·, ·〉RM denotes the standard scalar product on RM . To shorten the notation,
the marking of the vector space RM at the scalar product is omitted, if the dimension
of the vectors is clear. Similar to the univariate case, the gain (or loss) in each system
is scaled by its biggest loss. Therefore the HPR represents the gain (loss) of one period,
when investing a fraction of ϕk/t̂k of the capital in (system k) for all 1 ≤ k ≤ M , thus
risking a maximal loss of ϕk in the k-th trading system.

The Terminal Wealth Relative (TWR) as the gain (or loss) after the given N periods,
when the fraction ϕk is invested in (system k) over all periods, is then given as

TWRN(ϕ) : =
N∏
i=1

HPRi(ϕ)

=
N∏
i=1

(
1 +

M∑
k=1

ϕk
ti,k

t̂k

)
=

N∏
i=1

(
1 + 〈(ti·/t̂)>,ϕ〉) .

(2.4)

Note that in the M = 1–dimensional case a risk of a full loss of our capital corresponds
to a fraction of ϕ = 1 ∈ R. Here in the multivariate case we have a loss of 100% of
our capital every time there exists an i0 ∈ {1, . . . , N} such that HPRi0(ϕ) = 0. That
is for example if we risk a maximal loss of ϕk0 = 1 in the k0-th trading system (for
some k0 ∈ {1, . . . ,M}) and simultaneously letting ϕk = 0 for all other k ∈ {1, . . . ,M}.
However these degenerate vectors of fractions are not the only examples that produce a
Terminal Wealth Relative (TWR) of zero. Since we would like to risk at most 100% of
our capital (which is quite a meaningful limitation), we restrict TWRN : G→ R to the
domain G given by the following definition:

Definition 2.1. A vector of fractions ϕ ∈ RM
≥0 is called admissible if ϕ ∈ G holds,

where

G : = {ϕ ∈ RM
≥0 | HPRi(ϕ) ≥ 0, ∀ 1 ≤ i ≤ N}

= {ϕ ∈ RM
≥0 | 〈(ti·/t̂)>,ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ N}.

Furthermore we define

R := {ϕ ∈ G | ∃ 1 ≤ i0 ≤ N s.t. HPRi0(ϕ) = 0}.

With this definition we now have a risk of 100% for each vector of fractions ϕ ∈ R
and a risk of less than 100% for each vector of fractions ϕ ∈ G \R. Since

HPRi(0) = 1 for all 1 ≤ i ≤ N

we can find an ε > 0 such that

Λε := {ϕ ∈ RM
≥0 | ‖ϕ‖ ≤ ε} ⊂ G,

and thus in particular G 6= ∅ holds. ‖·‖ =
√
〈·, ·〉 denotes the Euclidean norm on RM .
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Observe that the i-th period results in a loss if HPRi(ϕ) < 1, that means 〈(ti·/t̂)>,ϕ〉 =
HPRi(ϕ)− 1 < 0. Hence the biggest loss over all periods for an investment with a given
vector of fractions ϕ ∈ G is

r(ϕ) := max

{
− min

1≤i≤N
{〈(ti·/t̂)>,ϕ〉}, 0

}
. (2.5)

Consequently, we have a biggest loss of

r(ϕ) = 1 ∀ϕ ∈ R

and

r(ϕ) ∈ [0, 1) ∀ϕ ∈ G \R.

Note that for ϕ ∈ G we do not have an a priori bound for the fractions ϕk, k = 1, . . . ,M .
Thus it may happen that there are ϕ ∈ G \ R with ϕk > 1 for some (or even for

all) k ∈ {1, . . . ,M}, or at least
M∑
k=1

ϕk > 1, indicating a risk of more than 100% for

the individual trading systems, but the combined risk of all trading systems r(ϕ) can
still be less than 100%. So the individual risks can potentially be eliminated to some
extent through diversification. As a drawback of this favorable effect the optimization
in the multivariate case may result in vectors of fractions ϕ ∈ G that require a high
capitalization of the individual trading systems. Thus we assume leveraged financial
instruments and ignore margin calls or other regulatory issues.

Before we continue with the TWR analysis, let us state a first auxiliary lemma for G.

Lemma 2.2. The set G in Definition 2.1 is convex, as is G \R.

Proof. All the conditions ϕk ≥ 0, k = 1, . . . ,M and

HPRi(ϕ) ≥ 0 ⇔ 〈(ti·/t̂)>,ϕ〉 ≥ −1, i = 1, . . . , N

define half spaces (which are convex). Since G is the intersection of a finite set of half
spaces, it is itself convex.

A similar reasoning yields that G \R is convex, too.

3 Optimal Fraction of the Discrete Terminal Wealth Relative

If we develop this line of thought a little further a necessary condition for the return
matrix T for the optimization of the Terminal Wealth Relative gets clear:

Lemma 3.1. Assume there is a vector ϕ0 ∈ Λε with r(ϕ0) = 0 then

{s ·ϕ0 | s ∈ R≥0} ⊂ G \R.

If in addition there is an 1 ≤ i0 ≤ N such that HPRi0(ϕ0) > 1 then

TWRN(s ·ϕ0) −−−→
s→∞

∞.
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Proof. If

r(ϕ0) = max

{
− min

1≤i≤N
{〈(ti·/t̂)>,ϕ0〉}, 0

}
= 0,

it follows that

HPRi(ϕ0) ≥ 1 for all 1 ≤ i ≤ N. (3.1)

For arbitrary s ∈ R≥0 the function

s 7→ HPRi(sϕ0) = 1 + 〈(ti·/t̂)>, sϕ0〉 = 1 + s 〈(ti·/t̂)>,ϕ0〉︸ ︷︷ ︸
≥0

≥ 1

is monotonically increasing in s for all i = 1, . . . , N and by that we have

sϕ0 ∈ G \R.

Moreover, if there is an i0 with HPRi0(ϕ0) > 1 then

HPRi0(sϕ0) −−−→
s→∞

∞

and by that

TWRN(s ·ϕ0) −−−→
s→∞

∞.

An investment where the holding period returns are greater than or equal to 1 for
all periods denotes a “risk free” investment (r(ϕ) = 0) and considering the possibility
of an unbounded leverage, it is clear that the overall profit can be maximized by in-
vesting an infinite quantity. Assuming arbitrage free investment instruments, any risk
free investment can only be of short duration, hence by increasing N ∈ N the condition
HPRi(ϕ0) ≥ 1 will eventually burst, cf. (3.1). Thus, when optimizing the Terminal
Wealth Relative , we are interested in settings that fulfill the following assumption

∀ϕ ∈ ∂Bε(0) ∩ Λε ∃ i0 = i0(ϕ) such that 〈(ti0·/t̂)>,ϕ〉 < 0,

always yielding r(ϕ) > 0.

With that at hand, we can formulate the optimization problem for the multivariate
discrete Terminal Wealth Relative

maximize
ϕ∈G

TWRN(ϕ) (3.2)

and analyze the existence and uniqueness of an optimal vector of fractions for the prob-
lem under the assumption
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Assumption 3.2. We assume that each of the trading systems in (2.1) produced at least
one loss (cf. (2.2)) and furthermore

∀ϕ ∈ ∂Bε(0) ∩ Λε ∃ i0 = i0(ϕ) ∈ {1, . . . , N}
such that 〈(ti0·/t̂)>,ϕ〉 < 0 (no risk free investment)

(a)

1

N

N∑
i=1

ti,k > 0 ∀ k = 1, . . . ,M (each trading system is profitable)(b)

ker(T ) = {0} (linear independent trading systems)(c)

Assumption 3.2(a) ensures that, no matter how we allocate our portfolio (i.e. no
matter what direction ϕ ∈ G we choose), there is always at least one period that
realizes a loss, i.e. there exists an i0 with HPRi0(ϕ) < 1. Or in other words, not only
are the investment systems all fraught with risk (cf. (2.2)), but there is also no possible
risk free allocation of the systems.

The matrix T from (2.1) can be viewed as a linear mapping

T : RM → RM ,

“ker(T )” denotes the kernel of the matrix T in Assumption 3.2(c). Thus this assumption
is the linear independence of the trading systems, i.e. the linear independence of the
columns

t·k ∈ RN , k ∈ {1, . . . ,M}

of the matrix T . Hence with Assumption 3.2(c) it is not possible that there exists an
1 ≤ k0 ≤M and a ψ ∈ RM \ {0} such that

(−ψk0)

 t1,k0
...

tN,k0

 =
M∑
k=1
k 6=k0

ψk

 t1,k
...

tN,k

 ,

which would make (system k0) obsolete. So Assumption 3.2(c) is no actual restriction
of the optimization problem.

Now we point out a first property of the Terminal Wealth Relative .

Lemma 3.3. Let the return matrix T ∈ RN×M (as in (2.1)) satisfy Assumption 3.2(a)
then, for all ϕ ∈ G \ {0}, there exists an s0 = s0(ϕ) > 0 such that TWRN(s0ϕ) = 0.
In fact s0ϕ ∈ R.

Proof. For some arbitrary ϕ ∈ G \ {0} we have ε
‖ϕ‖ · ϕ ∈ ∂Bε(0) ∩ Λε. Then Assump-

tion 3.2(a) yields the existence of an i0 ∈ {1, . . . , N} with 〈(ti0·/t̂)>,ϕ〉 < 0. With

j0 := argmin
1≤i≤N

{〈(ti·/t̂)>,ϕ〉} ∈ {1, . . . , N}
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and

s0 := − 1

〈(tj0·/t̂)>,ϕ〉 > 0

we get that

HPRj0(s0ϕ) = 1 + 〈(tj0·/t̂)>, s0ϕ〉 = 1 + s0〈(tj0·/t̂)>,ϕ〉 = 0

and HPRi(s0ϕ) ≥ 0 for all i 6= j0. Hence TWRN(s0ϕ) = 0 and clearly soϕ ∈ R
(cf. Definition 2.1).

Furthermore the following holds.

Lemma 3.4. Let the return matrix T ∈ RN×M (as in (2.1)) satisfy Assumption 3.2(a)
then the set G is compact.

Proof. For all ϕ ∈ ∂Bε(0) ∩ Λε Assumption 3.2(a) yields an i0(ϕ) ∈ {1, . . . , N} such
that 〈(ti0·/t̂)>,ϕ〉 < 0. With that we define

m : ∂Bε(0) ∩ Λε → R,ϕ 7→ m(ϕ) := min
1≤i≤N

{〈(ti·/t̂)>,ϕ〉} < 0.

This function is continuous on the compact support ∂Bε(0) ∩ Λε. Thus the maximum
exists

M := max
ϕ∈∂Bε(0)∩Λε

m(ϕ) < 0.

Consequently the function

g : ∂Bε(0) ∩ Λε → RM
≥0,ϕ 7→

1

|m(ϕ)|
·ϕ

is well defined and continuous. Since for all ϕ ∈ ∂Bε(0) ∩ Λε

〈(ti·/t̂)>, 1

|m(ϕ)|
ϕ〉 =

〈(ti·/t̂)>,ϕ〉
| min

1≤i≤N
{〈(ti·/t̂)>,ϕ〉}| ≥ −1 ∀ 1 ≤ i ≤ N

with equality for at least one index ĩ0 ∈ {1, . . . , N}, we have

HPRi

(
1

|m(ϕ)|
ϕ

)
≥ 0 ∀1 ≤ i ≤ N

and

HPRĩ0

(
1

|m(ϕ)|
ϕ

)
= 0,

hence
1

|m(ϕ)|
ϕ ∈ R.
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Altogether we see that

g (∂Bε(0) ∩ Λε) =

{
1

|m(ϕ)|
·ϕ | ϕ ∈ ∂Bε(0) ∩ Λε

}
= R,

thus the set R is bounded and connected as image of the compact set ∂Bε ∩ Λε under
the continuous function g and by that the set G is compact.

Now we take a closer look at the third assumption for the optimization problem.

Lemma 3.5. Let the return matrix T ∈ RN×M (as in (2.1)) satisfy Assumption 3.2(c)

then TWR
1/N
N is concave on G\R. Moreover if there is a ϕ0 ∈ G\R with ∇TWRN(ϕ) =

0, then TWR
1/N
N is even strictly concave in ϕ0.

Proof. For ϕ ∈ G \R the gradient of TWR
1/N
N is given by the column vector

∇TWR
1/N
N (ϕ)

= TWR
1/N
N (ϕ) · 1

N

N∑
i=1

1

1 +
M∑
k=1

ϕk
ti,k
t̂k

·


ti,1/t̂1
ti,2/t̂2

...
ti,M/t̂M


= TWR

1/N
N (ϕ) · 1

N

N∑
i=1

1

1 + 〈(ti·/t̂)>,ϕ〉 · (
t
i·/t̂)> ∈ RM×1, (3.3)

where TWR
1/N
N (ϕ) > 0. The Hessian-matrix is then given by

Hess
TWR

1/N
N

(ϕ)

= ∇
[(
∇TWR

1/N
N (ϕ)

)>]
= ∇

[
TWR

1/N
N (ϕ) · 1

N

N∑
i=1

1

1 + 〈(ti·/t̂)>,ϕ〉(
t
i·/t̂)

]

= ∇TWR
1/N
N (ϕ) · 1

N

N∑
i=1

1

1 + 〈(ti·/t̂)>,ϕ〉(
t
i·/t̂)

+ TWR
1/N
N (ϕ)

1

N

N∑
i=1

(
− 1

(1 + 〈(ti·/t̂)>,ϕ〉)2
(ti·/t̂)> · (ti·/t̂)

)

= TWR
1/N
N (ϕ)

[
1

N2

N∑
i=1

y>i

N∑
i=1

yi −
1

N

N∑
i=1

y>i yi︸ ︷︷ ︸
=:−1/N·B(ϕ)∈RM×M

]
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where yi := 1
1+〈(ti·/t̂)>,ϕ〉(ti·/t̂) ∈ R1×M is a row vector. The matrix B(ϕ) can be rear-

ranged as

B(ϕ) =
N∑
i=1

y>i yi −
1

N

(
N∑
i=1

y>i

)(
N∑
i=1

yi

)

=
N∑
i=1

y>i yi −
1

N

[
N∑
i=1

y>i

(
N∑

u=1

yu

)]
− 1

N

[
N∑
i=1

(
N∑
v=1

y>v

)
yi

]

+
1

N2

(
N∑
i=1

1

)(
N∑
v=1

y>v

)(
N∑

u=1

yu

)

=
N∑
i=1

[
y>i yi − y>i

1

N

(
N∑

u=1

yu

)
− 1

N

(
N∑
v=1

y>v

)
yi

+
1

N2

(
N∑
v=1

y>v

)(
N∑

u=1

yu

)]

=
N∑
i=1

[
y>i

(
yi −

1

N

N∑
u=1

yu

)
− 1

N

(
N∑
v=1

y>v

)(
yi −

1

N

N∑
u=1

yu

)]

=
N∑
i=1

[(
y>i −

1

N

N∑
v=1

y>v

)(
yi −

1

N

N∑
u=1

yu︸ ︷︷ ︸
:=wi∈R1×M

)]

=
N∑
i=1

w>i wi.

Since the matrices w>i wi are positive semi-definite for all i = 1, . . . , N , the same holds

for B(ϕ) and therefore TWR
1/N
N is concave. Furthermore if there is a ϕ0 ∈ G \R with

∇TWRN(ϕ0) = 0

TWRN (ϕ0)>0⇔
N∑
i=1

1

1 + 〈(ti·/t̂)>,ϕ0〉
(ti·/t̂) = 0

⇔
N∑
i=1

yi = 0,

where yi = yi(ϕ0), the matrix B(ϕ0) further reduces to

B(ϕ0) =
N∑
i=1

y>i yi.
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If B(ϕ0) is not strictly positive definite there is a ψ = (ψ1, . . . , ψM)> ∈ RM \ {0} such
that

0 = ψ>B(ϕ0)ψ =
N∑
i=1

ψ>y>i yiψ =
N∑
i=1

〈y>i ,ψ〉2︸ ︷︷ ︸
≥0

and we get that

〈y>i ,ψ〉 =
1

1 + 〈(ti·/t̂)>,ϕ0〉
〈(ti·/t̂)>,ψ〉 = 0 ∀ 1 ≤ i ≤ N

⇔ 〈(ti·/t̂)>,ψ〉 = 0 ∀ 1 ≤ i ≤ N,

yielding a non trivial element in ker(T ) and thus contradicting Assumption 3.2(c). Hence

matrix B(ϕ0) is strictly positive definite and TWR
1/N
N is strictly concave in ϕ0.

With this at hand we can state an existence and uniqueness result for the multivariate
optimization problem.

Theorem 3.6. (optimal f existence) Given a return matrix T =

(
ti,k

)
1≤i≤N
1≤k≤M

as in

(2.1) that fulfills Assumption 3.2, then there exists a solution ϕopt
N ∈ G of the optimiza-

tion problem (3.2)

maximize
ϕ∈G

TWRN(ϕ). (3.4)

Furthermore one of the following statements holds:

(a) ϕopt
N is unique, or

(b) ϕopt
N ∈ ∂G.

For both cases ϕopt
N 6= 0, ϕopt

N /∈ R and TWRN(ϕopt
N ) > 1 hold true.

Proof. We show existence and partly uniqueness of a maximum of the N -th root of
TWRN , yielding existence and partly uniqueness of a solution ϕopt

N of (3.4) with the
claimed properties.
With Lemma 2.2 and Lemma 3.4, the support G of the Terminal Wealth Relative is
convex and compact. Hence the continuous function TWR

1/N
N attains its maximum on

G. For ϕ = 0 we get from (3.3)

∇TWR
1/N
N (0) = TWR

1/N
N (0)︸ ︷︷ ︸

=1

· 1
N

N∑
i=1

(ti·/t̂)>,

which is a vector whose components are strictly positive due to Assumption 3.2(b).

Therefore 0 ∈ G is not a maximum of TWR
1/N
N and a global maximum reaches a value

greater than
TWR

1/N
N (0) = 1.
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Since for all ϕ ∈ R
TWR

1/N
N (ϕ) = 0

holds, a maximum can not be attained in R either.
Now if there is a maximum on ∂G, assertion (b) holds together with the claimed

properties. Alternatively, a maximum ϕ0 is attained in the interior G̊. In this case,
Lemma 3.5 yields the strict concavity of TWR

1/N
N at ϕ0. Suppose there is another

maximum ϕ∗ ∈ G \R then the straight line connecting both maxima

L := {t ·ϕ0 + (1− t) ·ϕ∗ | t ∈ [0, 1]}

is fully contained in the convex set G \ R (cf. Lemma 2.2). Because of the concavity

of TWR
1/N
N all points of L have to be maxima, which is a contradiction to the strict

concavity of TWR
1/N
N in ϕ0. Thus the maximum is unique and assertion (a) holds

together with the claimed properties.

In the remaining of this section, we will further discuss case (b) in Theorem 3.6. We
aim to show that the maximum ϕopt

N ∈ ∂G is unique either, but we proof this using a
completely different idea. In order to lay the grounds for this, first, we give a lemma:

Lemma 3.7. If T ∈ RN×M from (2.1) is a return map satisfying Assumption 3.2 and
if M ≥ 2, then each return map T̃ ∈ RN×(M−1), which results from T after eliminating
one of its columns, is also a return map satisfying Assumption 3.2.

Proof. Since each of the M trading systems of the return matrix T ∈ RN×M has a
biggest loss t̂k, 1 ≤ k ≤ M , the same holds for the (M − 1) trading systems of the
reduced matrix T̃ ∈ RN×(M−1).

For T̃ , Assumption 3.2 (b) and (c) follow straight from the respective properties of
the matrix T .

Now let, without loss of generality, T̃ be the matrix that results from T by eliminating
the last column, i.e. the M -th trading system is omitted. Let t

(M−1)
i· ∈ RM−1, i =

1, . . . , N , denote the rows of T̃ and t̂(M−1) ∈ RM−1 the vector of biggest losses of T̃ .
Then for Assumption 3.2 (a) we have to show that

∀ϕ(M−1) ∈ ∂B(M−1)
ε (0) ∩ Λ(M−1)

ε ∃ i0 = i0(ϕ(M−1)) ∈ {1, . . . , N},

such that

〈(t(M−1)

i· /t̂(M−1))>,ϕ(M−1)〉 < 0. (3.5)

Using Assumption 3.2 (a) for matrix T and

ϕM :=


ϕ

(M−1)
1

...

ϕ
(M−1)
M−1

0

 ∈ ∂B(M)
ε (0) ∩ Λ(M)

ε ,
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the inequality

〈(ti·/t̂)>,ϕ(M)〉 < 0,

holds true. Thus (3.5) holds likewise.

Having this at hand, we can now extend Theorem 3.6.

Corollary 3.8. (optimal f uniqueness) In the situation of Theorem 3.6 the unique-
ness also holds for case (b), i.e. a maximum ϕopt

N ∈ ∂G is also a unique maximum of
TWRN(ϕ) in G.

Proof. Assume that the optimal solution ϕ0 := ϕopt
N ∈ ∂G is not unique, then there

exists an additional optimal solution ϕ∗ ∈ ∂G with ϕ∗ 6= ϕ0. Since G \R is convex (c.f.
Lemma 2.2), the line connecting both solutions

L := {t ·ϕ0 + (1− t) ·ϕ∗ | t ∈ [0, 1]}

is fully contained in G\R. Because of the concavity of TWR
1/N
N on G\R (c.f. Lemma 3.5),

all points on L are optimal solutions. Therefore L must be a subset of ∂G \ R, since
we have seen that an optimal solution in the interior G̊ would be unique. Hence, there
is (at least) one k0 ∈ {1, . . . ,M} such that, for all investment vectors in L, the trading
system (system k0) is not invested . I.e. the k0-th component of ϕ0, ϕ∗ and all vectors
in L is zero.

Without loss of generality, let k0 = M . Then

ϕ0 =


ϕ1
...

ϕM−1

0

 6=


ϕ∗1
...

ϕ∗M−1

0

 = ϕ∗

are two optimal solutions for

TWRN(ϕ)
!
= max

But with that, the (M − 1)-dimensional investment vectors ϕ
(M−1)
0 := (ϕ̃1, . . . , ϕ̃M−1)>

and ϕ∗,(M−1) := (ϕ∗1, . . . , ϕ
∗
M−1)> are two distinct optimal solutions for

TWR
(M−1)
N (

 ϕ1
...

ϕM−1

) :=
N∏
i=1

(
1 +

M∑
k=1

ϕk
ti,k

t̂

)
!
= max .

With Lemma 3.7 the return map T̃ ∈ RN×(M−1), which results from T after eliminating
the M -th column (i.e. (system M)) satisfies Assumption 3.2. Applying Theorem 3.6 to

the sub-dimensional optimization problem, yields that ϕ
(M−1)
0 and ϕ∗,(M−1) again lie at

the boundary of the admissible set of investment vectors G(M−1) ⊂ RM−1.
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Hence, we have two distinct optimal solutions on the boundary ∂G(M−1) for the opti-
mization problem with (M−1) investment systems. By induction this reasoning leads to
the existence of two distinct optimal solutions for an optimization problem with just one
single trading system. But for that type of problem, we already know that the solution
is unique (see for example [4]), which causes a contradiction to our assumption. Thus,
also for case (b) we have the uniqueness of the solution ϕopt

N ∈ ∂G.

Remark 3.9. Note that Assumption 3.2(c) is necessary for uniqueness. To give a
counterexample imagine a return matrix T with two equal columns, meaning the same
trading system is used twice. Let ϕopt be the optimal f for this one dimensional trading
system. Then it is easy to see that (ϕopt, 0), (0, ϕopt) and the straight line connecting
these two points yield TWR optimal solutions for the return matrix T .

4 Example

As an example we fix the joint return matrix T := (ti,k)1≤i≤6
1≤k≤4

for M = 4 trading systems

and the returns from N = 6 periods given through the following table.

period (system 1) (system 2) (system 3) (system 4)
1 2 1 −1 1
2 2 −1

2
2 −1

3 −1
2

1 −1 2
4 1 2 2 −1
5 −1

2
−1

2
2 1

6 −1 −1 −1 −1

(4.1)

Obviously every system produced at least one loss within the 6 periods, thus the vector
t̂ = (t̂1, t̂2, t̂3, t̂4)> with

t̂k = max
1≤i≤6

{|ti,k| | ti,k < 0} = 1, k = 1, . . . , 4,

is well-defined. For ϕ ∈ G \R the TWR6 takes the form

TWR6(ϕ) =(1 + 2ϕ1 + ϕ2 − ϕ3 + ϕ4)(1 + 2ϕ1 − 1
2
ϕ2 + 2ϕ3 − ϕ4)

(1− 1
2
ϕ1 + ϕ2 − 1ϕ3 + 2ϕ4)(1 + ϕ1 + 2ϕ2 + 2ϕ3 − ϕ4)

(1− 1
2
ϕ1 − 1

2
ϕ2 + 2ϕ3 + 1ϕ4)(1− ϕ1 − ϕ2 − ϕ3 − ϕ4),

where the set of admissible vectors is given by

G = {ϕ ∈ R4
≥0 | 〈(ti·/t̂)>,ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ 6}

= {ϕ ∈ R4
≥0 | 〈(t6·/t̂)>,ϕ〉 = min

i=1,...,6
〈(ti·/t̂)>,ϕ〉 ≥ −1}

= {ϕ ∈ [0, 1]4 | ϕ1 + ϕ2 + ϕ3 + ϕ4 ≤ 1}.
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Since for all ϕ ∈ G

〈(ti·/t̂)>,ϕ〉 ≥ 〈(t6·/t̂),ϕ〉 ≥ −1 ∀ i = 1, . . . , 6

we have

〈(ti·/t̂)>,ϕ〉 = −1 for some i ∈ {1, . . . , 6} ⇒ 〈(t6·/t̂)>,ϕ〉 = −1.

Accordingly we get

R = {ϕ ∈ G | ∃ 1 ≤ i0 ≤ 6 s.t. 〈(ti·/t̂)>,ϕ〉 = −1}
= {ϕ ∈ [0, 1]4 | ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1}.

When examining the 6-th row t6· = (−1,−1,−1,−1) of the matrix T we observe that
Assumption 3.2(a) is fulfilled with i0 = 6. To see that let, for some ε > 0, ϕ ∈ ∂Bε∩Λε,
then

〈(t6·/t̂)>,ϕ〉 = −ϕ1 − ϕ2 − ϕ3 − ϕ4 < 0.

For Assumption 3.2(b) one can easily check that all four systems are “profitable”, since
the mean values of all four columns in (4.1) are strictly positive. Lastly, for Assumption
3.2(c) we check that the rows of matrix T are linearly independent

det

∣∣∣∣∣∣∣∣
t1·
t2·
t3·
t4·

∣∣∣∣∣∣∣∣ = det

∣∣∣∣∣∣∣∣
2 1 −1 1
2 −1

2
2 −1

−1
2

1 −1 2
1 2 2 −1

∣∣∣∣∣∣∣∣ = 22.75 6= 0.

Thus Theorem 3.6 yields the existence and uniqueness of an optimal investment fraction
ϕopt

6 ∈ G with ϕopt
6 6= 0, ϕopt

6 /∈ R and TWR6(ϕopt
6 ) > 1, which can numerically be

computed

ϕopt
6 ≈


0.2362
0.0570
0.1685
0.1012

 .

In the above example, a crucial point is that there is one row in the return matrix
where the k-th entry is the biggest loss of (system k), k = 1, . . . , 6. Such a row in the
return matrix implies, that all trading systems realized their biggest loss simultaneously,
which can be seen as a strong evidence against a sufficient diversification of the systems.
Hence we analyze Assumption 3.2(a) a little closer to see what happens if this is not the
case.

With the help of Assumption 3.2(a), for all ϕ ∈ ∂Bε(0) ∩ Λε, there is a row of the
return matrix ti0·, i0 ∈ {1, . . . , N} such that 〈(ti0·/t̂)>,ϕ〉 < 0. The sets

{ϕ ∈ RM | 〈(ti·/t̂)>,ϕ〉 = 0}, i = 1, . . . , N
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describe the hyperplanes generated by the normal direction (ti·/t̂)> ∈ RM , i = 1, . . . , N .
Thus each ϕ from the set ∂Bε(0) ∩ Λε has to be an element of one of the half spaces

Hi := {ϕ ∈ RM | 〈(ti·/t̂)>,ϕ〉 ≤ 0}, i = 1, . . . , N.

In other words the set ∂Bε(0) ∩ Λε has to be a subset of a union of half spaces

(∂Bε(0) ∩ Λε) ⊂
N⋃
i=1

Hi.

If there exists an index i0 such that ti0,k = −t̂k for all 1 ≤ k ≤ M , then the normal
direction of the corresponding hyperplane is

(ti0·/t̂)> =


−1
−1
...
−1

 ∈ RM ,

hence

(∂Bε(0) ∩ Λε) ⊂ RM
≥0 ⊂ Hi0

and therefore Assumption 3.2(a) is fulfilled. Figure 1 shows a hyperplane for M = 2
and a row of the return matrix where all entries are the biggest losses, that means the
normal direction of this hyperplane is the vector

−t̂1
−t̂2

/
t̂1
t̂2

 =

(
−1
−1

)
.

However, it is not necessary for Assumption 3.2(a) that the set ∂Bε(0)∩Λε is covered
by just one hyperplane. Again for M = 2 an illustration of possible hyperplanes can be
seen in Figure 2. The figure on the left shows a case where Assumption 3.2(a) is violated
and the figure on the right a case where it is satisfied.

For the next example we fix the return matrix T as

T :=
1

5


−3 3
9 12
6 −3
−6 3/2

3 −15/2

 , (4.2)

with N = 5 and M = 2. Thus the biggest losses of the two systems are

t̂1 =
6

5
and t̂2 =

3

2
.
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ϕ2

ϕ1

Figure 1: Hyperplane for a return vector consisting of “biggest losses”

To determine the set of admissible investments (and to check Assumption 3.2) we ex-
amine the vectors (ti·/t̂) for i = 1, . . . , 5

A :=


−1/2 2/5

3/2 8/5

1 −2/5

−1 1/5

1/2 −1

 (4.3)

and solve the linear equations

〈(ti·/t̂)>,ϕ〉 = −1, i = 1, . . . , 5. (4.4)

The solutions for i = 1, . . . , 5 are shown in Figure 3.

Each solution corresponds to a “cyan” line. The area where the inequality 〈(ti·/t̂)>,ϕ〉 ≥
−1 holds for some i ∈ {1, . . . , 5} is shaded in “light blue”. The set where the inequalities
hold for all i = 1, . . . , 5 is the section where all shaded areas overlap, thus the “dark
blue” section. Therefore the set of admissible investments is given by

G = {ϕ ∈ R2
≥0 | 〈(ti·/t̂)>,ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ 5}

= {ϕ ∈ R2
≥0 | ϕ2 ≤ 1 + 1

2
ϕ1 and ϕ1 ≤ 1 + 1

5
ϕ2},

with

R = {ϕ ∈ G | ∃ 1 ≤ i0 ≤ 5 s.t. 〈(ti·/t̂)>,ϕ〉 = −1}
= {ϕ ∈ R2

≥0 | ϕ2 = 1 + 1
2
ϕ1 or ϕ1 = 1 + 1

5
ϕ2}.

Assumption 3.2 is fulfilled, since
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ϕ2

ϕ1

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

ϕ2

ϕ1

Figure 2: Two hyperplanes and the set ∂Bε(0) ∩ Λε

(a) the half spaces for rows 4 and 5 of the return matrix cover the whole set R2
≥0 (cf.

Figure 2 b),

(b) 1
5

5∑
i=1

ti,1 = 9
5
> 0 and 1

5

5∑
i=1

ti,2 = 6
5
> 0 and

(c) obviously, the columns of the return matrix are linearly independent.

A plot of the Terminal Wealth Relative for the return matrix T from (4.2) can be seen
in Figure 4 and 5 with a maximum at

ϕopt
5 ≈

(
0.4109
0.3425

)
. (4.5)

Therefore the maximum is clearly attained in the interior G̊.
The following example will show that the unique maximum ϕopt

N of Theorem 3.6 can
indeed be attained on ∂G, i.e. the case discussed in Corollary 3.8. For that we add a
third investment system to our last example (4.3) with the new returns

t1,3, t2,3, t3,3 = 1 and t4,3, t5,3 = −1 (hence t̂3 = 1)

such that the vectors (ti·/t̂), i = 1, . . . , 5, form the matrix

Ã := (ai,k) i=1,...,5
k=1,...,3

=


−1/2 2/5 1
3/2 8/5 1
1 −2/5 1
−1 1/5 −1
1/2 −1 −1

 ∈ R5×3 (4.6)
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-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

ϕ2

ϕ1

Figure 3: Solutions of the linear equations from (4.4)

This set of trading systems fulfills Assumption 3.2(b) since
N=5∑
i=1

ti,3 = 1 > 0.

Assumption 3.2(c) is satisfied as well, because the three columns of Ã are linearly
independent. For Assumption 3.2(a) we have to show that

∀ϕ ∈ ∂Bε(0) ∩ Λε ∃ i0 = i0(ϕ), with 〈(ti0·/t̂)>,ϕ〉 < 0 (4.7)

holds. If not, we would have an investment vector

ϕ̂ =
(
ϕ̂1, ϕ̂2, f̂

)
∈ ∂Bε(0) ∩ Λε,

such that (4.7) is not true for all rows of the matrix Ã. In particular if we look at lines
4 and 5

−ϕ̂1 +
1

5
ϕ̂2 − f̂ ≥ 0

1

2
ϕ̂1 − ϕ̂2 − f̂ ≥ 0,
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ϕ2

ϕ1

TWR5(ϕ1, ϕ2)

Figure 4: The Terminal Wealth Relative for T from (4.2)

the sum of both inequalities still has to be true

−1

2
ϕ̂1 −

4

5
ϕ̂2 − 2f̂ ≥ 0,

which is a contradiction to ϕ̂ being an element of ∂Bε(0) ∩ Λε ⊂ R3
≥0.

Now we examine the following vector of investments

ϕ∗ =

ϕ∗1ϕ∗2
f ∗

 :=

ϕ∗1ϕ∗2
0


with (ϕ∗1, ϕ

∗
2)> ≈ (0.4109, 0.3425)> the unique maximum of the optimization problem of

the reduced set of trading systems from the last example (cf. (4.5)).
The first derivative of the Terminal Wealth Relative in the direction of the third

component at ϕ∗ is given by

∂

∂f
TWR5(ϕ∗) = TWR5(ϕ∗)︸ ︷︷ ︸

>0

·
N=5∑
i=1

ai,3
1 + 〈(ti·/t̂)>,ϕ∗〉 ≈ −0.359 < 0

Moreover with ϕ∗ being the optimal solution of the last example in two variables we
have

∂

∂ϕ1

TWR5(ϕ∗1, ϕ
∗
2, 0) = 0 =

∂

∂ϕ2

TWR5(ϕ∗1, ϕ
∗
2, 0)
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ϕ2

ϕ1

Figure 5: The Terminal Wealth Relative from Figure 4, view from above

and

∂2/∂ϕ2
i TWR5(ϕ∗1, ϕ

∗
2, 0) < 0, i = 1, 2.

Thus ϕ∗ is indeed a local maximal point on the boundary of G for TWR5 with the three
trading systems in (4.6). Corollary 3.8 yields the uniqueness of this maximal solution
for

maximize
ϕ∈G

TWR5(ϕ).

5 Conclusion

With our main theorems, Theorem 3.6 and Corollary 3.8, we were able give a complete
existence and uniqueness theory for the optimization problem (3.2) of a multivariate
Terminal Wealth Relative under reasonable assumptions. Furthermore, due to the con-
vexity of the domain G (Lemma 2.2), the concavity of [TWR(·)]1/N (see Lemma 3.5)
and the uniqueness of the “optimal f” solution, it is always guaranteed that simple
numerical methods like steepest ascent will find the maximum.
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