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Abstract

Utility and risk are two often competing measurements on the investment suc-
cess. We show that efficient trade-off between these two measurements for invest-
ment portfolios happens, in general, on a convex curve in the two dimensional
space of utility and risk. This is a rather general pattern. The modern portfo-
lio theory of [Markowitz (1959)] and its natural generalization, the capital market
pricing model [Sharpe (1964)], are special cases of our general framework when
the risk measure is taken to be the standard deviation and the utility function is
the identity mapping. Using our general framework we also recover and extend
the results in [Rockafellar, Uryasev & Zabarankin (2006)] which were already an
extension of the capital market pricing model to allow for the use of more general
deviation measures. This generalized capital asset pricing model also applies to
e.g. when an approximation of the maximum drawdown is considered as a risk
measure. Furthermore, the consideration of a general utility function allows to go
beyond the “additive” performance measure to a “multiplicative” one of cumulative
returns by using the log utility. As a result, the growth optimal portfolio theory
[Lintner (1965)] and the leverage space portfolio theory [Vince (2009)] can also be
understood under our general framework. Thus, this general framework allows a
unification of several important existing portfolio theories and goes much beyond.
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1 Introduction

The modern portfolio theory of [Markowitz (1959)] pioneered the quantitative analysis
of financial economics. The most important idea proposed in this theory is that one
should focus on the trade-off between expected return and the risk measured by the
standard deviation. Mathematically, the modern portfolio theory leads to a quadratic
optimization problem with linear constraints. Using this simple mathematical structure
Markowitz gave a complete characterization of the efficient frontier for trade-off the
return and risk. Tobin showed that the efficient portfolios are an affine function of
the expected return [Tobin (1958)]. Markowitz portfolio theory was later generalized
by [Lintner (1965)], [Mossin (1966)], [Sharpe (1964)] and [Treynor (1999)] in the capital
asset pricing model (CAPM) by involving a riskless bond. In the CAPM model, both
the efficient frontier and the related efficient portfolios are affine in terms of the expected
return [Sharpe (1964), Tobin (1958)].

The nice structures of the solutions in the modern portfolio theory and the CAPM
model afford many applications. For example, the CAPM model is designed to provide
reasonable prices for risky assets in the market place. Sharpe used the ratio of excess
return to risk (called the Sharpe ratio) to provide a measurement for investment per-
formance [Sharpe (1966)]. Also the affine structure of the efficient portfolio in terms of
the expected return leads to the concept of a market portfolio as well as the two fund
theorem [Tobin (1958)] and the one fund theorem [Sharpe (1964), Tobin (1958)]. These
results provided a theoretical foundation for passive investment strategies.

In many practical portfolio problems, however, one needs to consider more general
pairs of reward and risk. For example, the growth portfolio theory can be viewed as
maximizing the log utility of a portfolio. In order to address the issue that an opti-
mal growth portfolio is usually too risky in practice, practitioners often have to im-
pose additional restrictions on the risk [MacLean, Thorp & Ziemba (2009), Vince (2009),
Vince & Zhu (2015)]. In particular, current drawdown [Maier-Paape (2016)], maximum
drawdown and its approximations [de Prado, Vince & Zhu (2013), Maier-Paape (2015)],
[Vince & Zhu (2015)], deviation measure [Rockafellar, Uryasev & Zabarankin (2006)], as
well as conditional value at risk [Rockafellar & Uryasev (2000)] and more abstract co-
herent risk measures [Artzner, Delbaen, Eber & Heath (1999)] are widely used as risk
measures in practice. Risk, as measured by such criteria, is reduced by diversification.
Mathematically, it is to say these risk measures are convex.

The goal and main results of this paper are to extend the modern portfolio theory
into a general framework under which one can analyze efficient portfolios that trade-off
between a convex risk measure and a reward captured by a concave expected utility (see
Section 3). We phrase our primal problem as a convex portfolio optimization problem of
minimizing a convex risk measure subject to the constraint that the expected utility of
the portfolio is above a certain level. Thus, convex duality plays a crucial role and the
structure of the solutions to both the primal and dual problems often have significant
financial implications. We show that, in the space of risk measure and expected utility,



efficient trade-off happens on an increasing concave curve (cf. Proposition 3.23 and
Theorem 3.24). We also show that the efficient portfolios continuously depend on the
level of the expected utility (see Theorem 3.25), and moreover, we can describe the
curve of efficient portfolios quantitatively in a precise manner (cf. Proposition 3.27 and
Corollary 3.28).

To avoid technical complications we restrict our analysis to the practical case in which
the status of an underlying economy is represented by a finite sample space. Under this
restriction, the Markowitz modern portfolio theory and the capital asset pricing model
are special cases of this general theory. Markowitz determines portfolios of purely risky
assets which provide an efficient trade-off between expected return and risk measured
by the standard deviation (or equivalently the variance). Mathematically, this is a class
of convex programming problems of minimizing the standard deviation of the portfolio
parameterized by the level of the expected returns. The capital asset pricing model, in
essence, extends the Markowitz modern portfolio theory by including a riskless bond in
the portfolio. We observe that the space of the risk-expected return is, in fact, the space
corresponding to the dual of the Markowitz portfolio problem. The shape of the famous
Markowitz bullet is a manifestation of the well known fact that the optimal value function
of a convex programming problem is convex with respect to the level of constraint. As
mentioned above, the Markowitz portfolio problem is a quadratic optimization problem
with linear constraint. This special structure of the problem dictates the affine structure
of the optimal portfolio as a function of the expected return (see Theorem 4.1). This
affine structure leads to the important two fund theorem (cf. Theorem 4.2) that provides
a theoretical foundation for the passive investment method. For the capital asset pricing
model, such an affine structure appears in both the primal and dual representation of
the solutions which leads to the one fund theorem in the portfolio space and the capital
market line in the dual space of risk-return trade-off (cf. Theorem 4.3 and Theorem 4.5).

The flexibility in choosing different risk measures allows us to extend the analysis
of the essentially quadratic risk measure pioneered by Markowitz to a wider range. For
example, when a deviation measure [Rockafellar, Uryasev & Zabarankin (2006)] is used
as risk measure, which happens e.g. when an approximation of the current drawdown is
considered (see [Maier-Paape & Zhu (2017)]), and the expected return is used to gauge
the performance, we show that the affine structure of the efficient solution in the classical
capital market pricing model is preserved (cf. Theorem 5.1 and Corollary 5.2), recovering
and extending especially the results in [Rockafellar, Uryasev & Zabarankin (2006)]. In
particular, we can show that the condition in CAPM that ensures the existence of a
market portfolio has a full generalization to portfolio problems with positive homogeneous
risk measures (see Theorem 5.4). This is significant in that it shows that the passive
investment strategy is justifiable in a wide range of settings.

The consideration of a general utility function, however, allows us to go beyond the
“additive” performance measure in modern portfolio theory to a “multiplicative” one
including cumulative returns when, for example, using the log utility. As a result, the
growth optimal portfolio theory [Lintner (1965)] and the leverage space portfolio theory



[Vince (2009)] can also be understood under our general framework. The optimal growth
portfolio pursues to maximize the expected log utility which is equivalent to maximize
the expected cumulative compound return. It is known that the growth optimal portfolio
is usually too risky. Thus, practitioners often scale back the risky exposure from a growth
optimal portfolio. In our general framework, we consider the portfolio that minimizes a
risk measure given a fixed level of expected log utility. Under reasonable conditions, we
show that such portfolios form a path parameterized by the level of expected log utility
in the portfolio space that connects the optimal growth portfolio and the portfolio of a
riskless bond (see Theorem 6.4). In general, for different risk measures we will derive
different paths. These paths provide justifications for risk reducing curves proposed in
the leverage space portfolio theory [Vince (2009)]. The dual problem projects the efficient
trade-off path into a concave curve in the risk-expected log utility space parallel to the
role of Markowitz bullet in the modern portfolio theory and the capital market line in
the capital asset pricing model. Under reasonable assumptions, the efficient frontier
for log utility is a bounded increasing concave curve. The lower left endpoint of the
curve corresponds to the portfolio of pure riskless bond and the upper right endpoint
corresponds to the growth optimal portfolio. The increasing nature of the curve tells us
that the more risk we take the more cumulative return we can expect. The concavity of
the curve indicates, however, that with the increase of the risk the marginal increase of
the expected cumulative return will decrease.

Markowitz portfolio theory essentially maximizes a linear expected utility while the
growth optimal portfolio focuses on the log utility. Other utility functions were also con-
sidered in portfolio problems. Our general framework brings them together in a unified
way. Besides unifying the several important results laid out above, the general frame-
work, furthermore, has many new applications. In this first installment of the paper, we
layout the framework, derive the theoretical results of crucial importance and illustrate
them with a few examples. More new applications will appear in the subsequent papers
[Brenner, Maier-Paape, Platen & Zhu (in preparation), Maier-Paape & Zhu (2017)]. We
arrange the paper as follows: First we discuss necessary preliminaries in the next section.
Section 3 is devoted to our main result: a framework to efficient trade-off between risk
and utility of portfolios and its properties. In Section 4 we give a unified treatment of
Markowitz portfolio theory and capital asset pricing model using our framework. Sec-
tion 5 is devoted to a discussion of positive homogeneous risk measures under which the
optimal trade-off portfolio possesses an affine structure. This situation fully generalizes
Markowitz and CAPM theories and thus many of the conditions in Section 4 find an
analog in Section 5. Section 6 discusses growth optimal portfolio theory and leverage
portfolio theory. We conclude in Section 7 pointing to applications worthy of further
investigation.



2 Preliminaries

2.1 A portfolio model

We consider a simple one period financial market model S on an economy with finite
states represented by a sample space Q = {wy,ws, ..., wy}. We use a probability space
(€2,29, P) to represent the states of the economy and their corresponding probability of
occurring, where 2% is the algebra of all subsets of 2. The space of random variables on
(£2,292 P) is denoted RV (2,2, P) and it is used to represent the payoff of risky financial
assets. Since the sample space Q is finite, RV (€, 2%, P) is a finite dimensional vector
space. We use RV, (Q,2%, P) to represent of the cone of nonnegative random variables
in RV (Q, 2%, P). Introducing the inner product

(X,Y)ry = E[XY], X,Y € RV(Q,2° P),
RV (Q,2%, P) becomes a (finite dimensional) Hilbert space.

Definition 2.1. (Financial Market) We say that S; = (S?,SE, ..., SM)T t = 0,1 is a
financial market in a one period economy provided that Sy € Rf“ and Sy € (0,00) x
RV, (9,22 P)M. Here Sy = 1,5) = R > 0 represents a risk free bond with a positive
return when R > 1. The rest of the components S{*,m = 1,..., M represent the price of
the m-th risky financial asset at time t.

We will use the notation S, = (St -+, SM)T when we need to focus on the risky
assets. We assume that So is a constant vector representing the prices of the assets in
this financial market at ¢ = 0. The risk is modeled by assuming S; = (Si,...,SM)T
to be a nonnegative random vector on the probability space (£2,29, P), that is S7* €
RV, (9,22 P),m=1,2,...,M. A portfolio is a column vector x € RM*! whose compo-
nents x,, represent the share of the m-th asset in the portfolio and S;"z,, is the portion
of capital invested in asset m at time t. Hence xzy corresponds to the investment in the
risk free bond and Z = (x1,...,2))" is the risky part.

Remark 2.2. Restricting to a finite sample space avoids the distraction of technical
difficulties. This is also practical since in a real world one can only use a finite quantity
of information. Furthermore, we restrict our presentation to the one period market model.
However, more complex sample spaces and market models such as multi-period financial
models should be treatable with a similar approach.

We often need to restrict the selection of portfolios. For example, in many applications
we consider only portfolios with unit initial cost, i.e. Sy x = 1. The following definition
makes this precise.

Definition 2.3. (Admissible Portfolio) We say that A C RM*1 js a set of admissible
portfolios provided that A is a nonempty closed and convex set. We say that A is a set

of admissible portfolios with unit initial price provided that A is a closed convex subset
of {v € RMT1: Sl x =1},



2.2 Convex programming

The trade-off between convex risks and concave expected utilities yields essentially convex
programming problems. For convenience of the reader we collect notation and relevant
results in convex analysis which are important in the discussion below. We omit most
of the proofs which can be found in [Borwein & Zhu (2016), Carr & Zhu (to appear),
Rockafellar (1970)]. Readers who know convex programming well can skip this section.

Let X be a finite dimensional Banach space. Recall that a set C' C X is convex if,
for any x,y € C and s € [0,1], sz + (1 — s)y € C. For an extended valued function
f: X = RU{+4o00} we define its domain by

dom(f) :={zr € X : f(z) < oo}
and its epigraph by
epi(f) :={(z,r) e X xR:r > f(x)}.

We say f is lower semi-continuous if epi(f) is a closed set. The following proposition
characterizes an epigraph of a function.

Proposition 2.4. (Characterization of Epigraph) Let F' be a closed subset of X x R
such that inf{r : (z,r) € F} > —oo for all x € R. Then F is the epigraph for a lower
semi-continuous function f: X — (—o0,00], i.e. F =epi(f), if and only if

(x,r) € F= (z,r+k) € F, Vk > 0. (2.1)

Proof. The key is to observe that, for a set F' with the structure in (2.1), a function
f(z) =inf{r: (z,r) € F} (2.2)

is well defined and then F' = epi(f) holds. Q.E.D.

We say a function f is convex if epi(f) is a convex set. Alternatively, f is convex if
and only if, for any z,y € dom(f) and s € [0, 1],

f(sz+ (1 —38)y) <sf(z)+(1—3)f(y).

Consider f : X — [—o00,+00). We say [ is concave when —f is convex and we say
f is upper semi-continuous if —f is lower semi-continuous. Define the hypograph of a
function f by

hypo(f) = {(z,r) e X xR :r < f(x)}.

Then a symmetric version of Proposition 2.4 is

Proposition 2.5. (Characterization of Hypograph) Let F' be a closed subset of X x R
such that sup{r : (z,7) € F'} < 400 for all x € R. Then F is the hypograph of an upper
semi-continuous function f: X — [—00,00), i.e. F'=hypo(f), if and only if

(x,r) € F= (x,r—k) € F, Vk > 0. (2.3)
Moreover, the function f can be defined by
f(z) =sup{r: (z,r) € F}. (2.4)



Remark 2.6. The value of the function f in Proposition 2.4 (Proposition 2.5) at a given
point x cannot assume —oo (+00 ) and therefore {x} x R ¢ F.

Since utility functions are concave and risk measures are usually convex, the analysis
of a general trade-off between utility and risk naturally leads to a convex programming
problem. The general form of such convex programming problems is

v(y,z) == wlg)f([f(:c) cg(z) <y, h(z) = 2], fory e RM 2 € RY, (2.5)

where f, g and h satisfy the following assumption.

Assumption 2.7. Assume that f : X — RU{+o00} is a lower semi-continuous extended
valued convex function, g : X — RM is a vector valued function with convex components,
< signifies componentwise minorization and h : X — RY is an affine mapping, for
natural numbers M, N. Moreover, at least one of the components of g has compact
sublevel sets.

Convex programming problems have nice properties due to the convex structure. We
briefly recall the pertinent results related to convex programming. First the optimal
value function v is convex. This is a well-known result that can be found in standard
books on convex analysis, e.g. [Borwein & Zhu (2005)].

Proposition 2.8. (Convexity of Optimal Value Function) Let f, g and h satisfy As-
sumption 2.7. Then the optimal value function v in the convex programming problem
(2.5) is convex and lower semi-continuous.

By and large, there are two (equivalent) general approaches to help solving a con-
vex programming problem: by using the related dual problem and by using Lagrange
multipliers. The two methods are equivalent in the sense that a solution to the dual
problem is exactly a Lagrange multiplier (see [Borwein & Zhu (2016)]). Using Lagrange
multipliers is more accessible to practitioners outside the special area of convex analysis.
We will take this approach. The Lagrange multipliers method tells us that under mild
assumptions we can expect there exists a Lagrange multiplier A = (\,, \,) € R? x RY
with A, > 0 such that Z is a solution to the convex programming problem (2.5) if and
only if it is a solution to the unconstrained problem of minimizing

Lz, A) = [f(2)+ (A (9(z) =y, h(z) — 2))paxrw (2.6)
= f(z)+ Ny, 9(2) — y)rm + (A2, h(z) — 2)RN.

The function L(z,A) is called the Lagrangian. To understand why and when does a
Lagrange multiplier exist, we need to recall the definition of the subdifferential.

Definition 2.9. (Subdifferential) Let X be a finite dimensional Banach space and X*
its dual space. The subdifferential of a lower semi-continuous convex function ¢ : X —
R U {400} at x € dom(¢) is defined by

dg(z) ={z" € X" : ¢(y) — d(x) = (2",y —x) Vy € X}.



Geometrically, an element of the subdifferential gives us the normal vector of a support
hyperplane for the convex function at the relevant point. It turns out that Lagrange
multipliers of problem (2.5) are simply the negative of elements of the subdifferential of
v as summarized in the lemma below.

Theorem 2.10. (Lagrange Multiplier) Let v : RM x RN — R U {+oc0} be the optimal
value function of the constrained optimization problem (2.5) with f,g and h satisfying
Assumption 2.7. Suppose that, for fized (y,z) € RM x RN, —X\ = —(\,, \,) € dv(y, 2)
and T is a solution of (2.5). Then

(i) Ay 20,
(i1) the Lagrangian L(x,\) defined in (2.6) attains a global minimum at T, and

(11i) X\ satisfies the complementary slackness condition

(A (9(Z) =y, (@) — 2)) = (A, 9(F) —y) =0, (2.7)
where (-,-) signifies the inner product.
Proof. See [Carr & Zhu (to appear), Theorem 1.2.15]. Q.E.D.

Remark 2.11. By Theorem 2.10 Lagrange multipliers exist when (2.5) has a solution &
and Jv(y, z) # 0. Calculating dv(y, z) requires to know the value of v in a neighborhood
of (y,z) and is not realistic. Fortunately, the well-known Fenchel-Rockafellar theorem
(see e.g. [Borwein & Zhu (2005)]) tells us when (y, z) belongs to the relative interior of
dom(v), then du(y,z) # 0. This is a very useful sufficient condition. A particularly
useful special case is the Slater condition (see also [Borwein & Zhu (2005)]): there exists
x € dom(f) such that g(x) < y. Under this condition dv(y) # 0 holds.

3 Efficient trade-off between risk and utility

We consider the financial market described in Definition 2.1 and consider a set of ad-
missible portfolios A € RM*! (see Definition 2.3). The payoff of each portfolio z € A
at time ¢t = 1 is S| z. The merit of a portfolio x is often judged by its expected utility
E[u(S] x)] where u is an increasing concave utility function. The increasing property of u
models the more payoff the better. The concavity reflects the fact that with the increase
of payoff, its marginal utility to an investor decreases. On the other hand investors are
often sensitive to the risk of a portfolio which can be gauged by a risk measure. Because
diversification reduces risk, the risk measure should be a convex function.

3.1 Technical Assumptions

Some standard assumptions on the utility and risk functions are often needed in the more
technical discussion below. We collect them here.



Assumption 3.1. (Conditions on Risk Measure) Consider a continuous risk function
t: A —[0,400) where A is a set of admissible portfolios according to Definition 2.3. We
will often refer to some of the following assumptions.

(r1) (Riskless Asset Contributes No risk) The risk measure v(x) =%(Z) is a function of
only the risky part of the portfolio, where x7 = (x¢,T").

(rln) (Normalization) There is at least one portfolio of purely bonds in A. Furthermore,
t(x) = 0 if and only if x contains only riskless bonds, i.e. x' = (xo,f)\r) for some
Tg € R.

(r2) (Diversification Reduces Risk) The risk function v is convex.

(r2s) (Diversification Strictly Reduces Risk) The risk function T is strictly convez.

(r3) (Positive homogeneous) Fort > 0, T(t7) = (7).

) (
) (
) (
) (

(r3s) (Diversification Strictly Reduces Risk on Level Sets) The risk function T satisfies

(r3) and, for all T # y with¥(Z) =%(y) =1 and o € (0, 1),
Tz + (1 —a)y) < ar(@) + (1 —a)(y) = 1.

Condition (r3) precludes (r2s). Thus, condition (r3s) serves as a replacement for (r2s)
when the risk measure satisfies (r3). Moreover we have the following useful result.
Lemma 3.2. Assuming a risk measure v satisfies (r1), (rin) and (r3s) then,

(a) v satisfies (r2), and
(b) f(x)= f(fn\) = [v(2))? satisfies (r1), (rIn) and (12s).

Proof. Let o € (0,1) and T # y be given. If z and ¥ lie on the same ray through 0,
say T = cy for some ¢ > 0, then convexity of T there is clear due to (r3). For T and g not
on the same ray and with Z/t(Z) # y/7(y), defining

ar(7)

T at(@) + (L—an)

we have R
(1 - a)t(y)

A

ar(Z) + (1 — a)e(y)’
and since T(Z/t(7)) =T(y/t(y)) = 1, by (r3s), we have

1> w(A2/e(@) + (1 - Ny/e®)) (3.1)
_ /t\< aZ + (1 —a)y )
ar(Z) + (1 — a)e(y)
t(az + (1 — a)y)
at(Z) + (1 — a)e(y)

1-\=

9



verifying (r2) for v since t(z) = t(Z) depends only on Z by (rl).

Clearly, f(7) = [¢(Z)]? has the properties (rl) and (rln). Squaring (3.1) we derive

(a2 + (1 - a)p)]* < [07(@) + (1 - aft(@)]° < oft@))* + (1 - (@)% (3.2)
Furthermore, on rays {Z | = c¢y,c¢ > 0} due to (r3) we have f(t/y\) = tzf@) and the
strict convexity of f there is clear as well. Hence, the square of the risk measure satisfies
(r2s). Q.E.D.

Remark 3.3. (Deviation measure) Our risk measure is described in terms of the portfo-
lio. Assumptions (r1), (r1in), (r2) and (r3) are equivalent to the azioms of a deviation
measure in [Rockafellar, Uryasev & Zabarankin (2000)], which is described in terms of
the random payoff variable generated by the portfolio. Assumption (r1) excludes the widely
used coherent risk measure introduced in [Artzner, Delbaen, Eber € Heath (1999)] which
requires cash reserve reduces risk.

Assumption 3.4. (Conditions on Utility Function) Utility functions v : R — RU{—o00}
are upper semi-continuous functions on their domain dom(u) = {t € R : u(t) > —oo}
and are usually assumed to satisfy some of the following properties.

(ul
u

(u2

Profit Seeking) The utility function u is an increasing function.

Diminishing Marginal Utility) The utility function u is concave.

(u3

) (
) (
(u2s) (Strict Diminishing Marginal Utility) The utility function u is strictly concave.
) (Bankrupcy Forbidden) Fort <0, u(t) = —o0.

) (

(u4) (Unlimited Growth) Fort — 400, we have u(t) — +o0.

Another important condition which often appears in the financial literature is no
arbitrage (see [Carr & Zhu (to appear), Definition 3.5]).

Definition 3.5. (No Arbitrage) We say a portfolio v € R™*! is an arbitrage on the
financial market S if

<Sl — RS(),ZL’) 2 0 and <Sl — RSO,JI> 7é 0.

We say market S; has no arbitrage if there does not exist any arbitrage portfolio for the
financial market S;.

An arbitrage is a way to make return above the risk free rate without taking any risk
of losing money. If such an opportunity exists then investors will try to take advantage
of it. In this process they will bid up the price of the risky assets and cause the arbitrage
opportunity to disappear. For this reason, usually people assume a financial market does
not contain any arbitrage.

The following is a weaker requirement than arbitrage:

10



Definition 3.6. (No Nontrivial Riskless Portfolio) We say a portfolio x € RM+L s
riskless if
<Sl - RSO,$> Z 0.

We say the market has no nontrivial riskless portfolio if there does not exist a riskless
portfolio x with * # 0.

A trivial riskless portfolio of investing everything in the riskless asset S always exists.
A nontrivial riskless portfolio, however, is not to be expected and we will often use this
assumption.

It turns out that the difference between no nontrivial riskless portfolio and no arbi-
trage is exactly the following:

Definition 3.7. (Nontrivial Bond Replicating Portfolio) We say that " = (x0,2") is a
nontrivial bond replicating portfolio if = # 0 and

<Sl - RSO, (L’> = 0.
The three conditions in Definitions 3.5, 3.6 and 3.7 are related as follows:

Proposition 3.8. Consider financial market S; of Definition 2.1. There is no nontrivial
riskless portfolio in Sy if and only if S; has no arbitrage portfolio and no nontrivial bond
replicating portfolio.

Proof. The conclusion follows directly from Definitions 3.5, 3.6 and 3.7. Q.E.D.
Corollary 3.9. No nontrivial riskless portfolio implies no arbitrage portfolio.

Assuming the financial market has no arbitrage then no nontrivial riskless portfolio
is equivalent to no nontrivial bond replicating portfolio and has the following character-
ization.

Theorem 3.10. (Characterization of no Nontrivial Bond Replicating Portfolio) Assum-
ing the financial market Sy in Definition 2.1 has no arbitrage. Then the following asser-
tions are equivalent:

(i) There is no nontrivial bond replicating portfolio.

(ii) For every nontrivial portfolio v with T # 0, there exists some w € Q such that

(S1(w) — RSy, x) < 0. (3.3)
(ii*) For every risky portfolio T # 0, there exists some w € Q such that

(S (w) — RSy, %) < 0. (3.4)

11



(iii) The matriz

St(wi) = RSy Sf(wi) = RSy ... S{(w1) — RSY'
SHws) — RS S?(wy) — RS? ... SM(wy) — RSM

oo | St —ms st st i) Rl |
Sll(OJN) — RS& S%(WN) — RSg PN S{W(WN) — RS(])V[

has rank M, in particular N > M.

Proof. We use a cyclic proof. (i)— (ii): If (ii) fails then (S; — RSy,x) > 0 for
some nontrivial . By (i) # must be an arbitrage, which is a contradiction. (ii)— (ii*):
obvious. (ii*)— (iii): If (iii) is not true then GZ = 0 has a nontrivial solution which is
a contradiction to (3.4). (iii)— (i): Assume that there exists a portfolio z* with Z* # 0
which replicates the bond. Then (S; — RSy, #*) = 0. This implies that (S; — RSy, 7*) = 0
so that GZ* = 0 which contradicts (iii). Q.E.D.

A rather useful corollary of Theorem 3.10 is that any of the conditions (i)—(iii) of that
theorem ensures the covariance matrix of the risky assets to be positive definite.

Corollary 3.11. (Positive Definite Covariance Matrix) Assume the financial market Sy
in Definition 2.1 has no nontrivial riskless portfolio. Then the covariant matriz of the
risky assets

Y o= E[(S - E(@l))(§1‘—E<sl).)T] (3.6)
= (E[(S] —E(SD)(S1 — E(SD)])ij=1,..m,

is positive definite.

Proof. We note that under the assumption of the corollary, for any nontrivial risky
portfolio 7, S Z cannot be a constant. Otherwise, (Sl RS, z) would be a constant
which contradlcts S; has no nontrivial riskless portfolio. It follows that for any nontrivial
risky portfolio Z,

Var(S]%) =2"%7 > 0.

Thus, ¥ is positive definite. Q.E.D.

Remark 3.12. Corollary 3.11 shows that the standard deviation as a risk measure sat-
isfies the properties (r1), (rin), (r2) and (r3s) in Assumption 3.1.

3.2 Efficient Frontier for the Risk-Utility trade-off

We note that to increase the utility one often has to take on more risk and as a result the
risk increases. The converse is also true. For example, if one allocates all the capital to
the riskless bond then there will be no risk but the price to pay is that one has to forgo
all the opportunities to get a high payoff on risky assets so as to reduce the expected
utility. Thus, the investment decision of selecting an appropriate portfolio becomes one
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of trading-off between the portfolio’s expected return and risk. To understand such a
trade-off we define, for a set of admissible portfolios A C R™*! in Definition 2.3, the set

G(r,u; A) == {(r,p) : Jx € A st. r > v(z), u < Elu(S] z)]} C R?, (3.7)

on the two dimensional risk-expected utility space for a given risk measure v and utility
u. Given a financial market S; and a portfolio z, we often measure risk by observing
Sl w.

Corollary 3.13. (Induced Risk Measure) (a) Fizing a financial market S; as in Defini-
tion 2.1. Suppose that p : RV (Q,2% P) — [0, +00) is a lower semi-continuous, conver
and positive homogeneous function. Moreover, assume that p(S{z) = p(S[%). Then
t: A — [0,400), t(x) := p(S]z) is a lower semi-continuous risk measure satisfying
properties (rl), (r2) and (r3) in Assumption 3.1.

(b) If the financial market S; has no nontrivial riskless portfolio and p is strictly
convez then for a set A of admissible portfolios with unit initial cost, T : A — [0, +00)
satisfies (r2s) in Assumption 3.1.

Proof. Since z + S| x is a linear mapping, the risk measure v inherits the properties
of p so that it satisfies properties (rl), (r2) and (r3) in Assumption 3.1. One sufficient
condition for t to preserve the strict convexity of p is that the matrix G in (3.5) is of
full rank since all portfolios have unit initial cost. It follows from Theorem 3.10 that this
condition follows from no nontrivial riskless portfolio in the financial market S;. Q.E.D.

Remark 3.14. The following are two sufficient conditions ensuring p(S] z) = p(glrf)
that are easy to verify:

(1) When p is invariant under adding constants, i.e., p(X) = p(X + ¢), for any X €
RV (Q,2%, P) and c € R. A useful evample is when p is the standard deviation.

(2) When p is restricted to a set of admissible portfolios A with unit initial cost. In
this case we can see that

A7) == p(R+ (S, — RS))"7) = p(S] z). (3.8)
Similarly, we are interested in when the expected utility @ — E[u(S] x)] of S|z is
strictly concave in x. Below is a set of useful sufficient conditions.
Lemma 3.15. (Strict Concavity of Expected Utility) Assume that
(a) the financial market S; has no nontrivial riskless portfolio,
(b) the utility function u satisfies condition (u2s) in Assumption 3.4, and

(c) A is a set of admissible portfolios with unit initial cost as in Definition 2.3.

13



Then the expected utility E[u(S] x)] as a function of the portfolio x is upper semi-
continuous and strictly concave on A.

Proof. Since u is concave so is z — E[u(S] x)]. To prove that this function is strictly
concave on A, consider two distinct portfolios xq1,22 € A. By assumption (c), both x;
and x5 have unit initial cost and thus Z; # Z5. Assumption (a) and Proposition 3.8
implies that for the matrix G defined in (3.5), GZ; # GZ3. Thus, using again the fact
that both z; and x5 have unit initial cost, we have

STz =R+ (5, — RS))TZ1 # R+ (51 — RSy) %5 = 5] 2s.

The strictly concavity of x — E[u(S] z)] now follows from the strict concavity of the util-
ity function u as assumed in (b). Since u is upper semi-continuous so is = — E[u(S] x)].
Q.E.D.

When t(z) = p(S] z) is induced by p as in Corollary 3.13 we also use the notation
G(p,u, A). Clearly, if A” C A then G(v,u; A’) C G(v,u; A). The following assumption will
be needed in concrete applications.

Assumption 3.16. (Compact Level Sets) Either (a) for each p € R, {x € RM*1 ./ <
Elu(S] z)],x € A} is compact or (b) for each r € R, {x € RM*1 . r > v(z),2 € A} is
compact.

Proposition 3.17. Assume that A is a set of admissible portfolios as in Definition 2.5.
We claim: (a) Assume that the risk measure v satisfies (r2) in Assumption 3.1 and the
utility function u satisfies (u2) in Assumption 3.4. Then set G(v,u; A) is convex and
(ryp) € G(r,u; A) implies that, for any k > 0, (r + k,u) € G(v,u; A) and (r,u — k) €
G(v,u; A). (b) Assume furthermore that Assumption 3.16 holds. Then G(t,u; A) is closed.

Proof. (a) The property (r,u) € G(v,u; A) implies that, for any & > 0, (r + k, u) €
G(v,u; A) and (r,n — k) € G(v,u; A) follows directly from the definition of G(t, u; A).
Suppose that (ry, i), (re, o) € G(r,u; A) and s € [0,1]. Then there exists x', 2% € A
such that
r; > v(z') and p; < Elu(S] 2)],i =1, 2.

Then convexity of t in  yields
st + (1 — 8)rg > st(z!) + (1 — s)v(z?) > t(sz’ + (1 — s)2?),
and (u2) gives
st + (1 = s)pz < sE[u(SY 2)] + (1 = s)E[u(S) 2°)] < E[u(S) (s2' + (1 = s)2?))].

Thus,
3(7"1,,&1) + (1 - 3)(7"27N2) € g<ta Uus; A)

so that G(t,u; A) is convex.
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(b) Suppose that (r,, u,) — (r, p), for a sequence in G(t,u; A). Then there exists a
sequence x" € A such that

rn > t(2") and g, < E[u(S] z™)]. (3.9)

By Assumption 3.16 a subsequence of =" (denoted again by ™) converges to, say, T € A.
Taking limits in (3.9), by the upper semicontinuity of u, we arrive at

r > v(z) and p < E[u(S] z)]. (3.10)

Thus, (r, 1) € G(v,u; A) and hence G(v,u; A) is a closed set. Q.E.D.

Now we can represent a portfolio + € A C RM*! as a point (v(z),E[u(S] z)]) €
G(v,u; A) in the two dimensional risk-expected utility space. Investors prefer portfolios
with lower risk if the expected utility is the same or with higher expected utility given
the same level of risk.

Definition 3.18. (Efficient Portfolio) We say that a portfolio x € A is eflicient provided
that there does not exist any portfolio ' € A such that either

t(2') < v(x) and E[u(S] 2)] > E[u(S, z)]

t(z') < v(z) and E[u(S] 2")] > E[u(S] 2)].

Definition 3.19. (Efficient Frontier) We call the set of images of all efficient portfolios
in the two dimensional risk-expected utility space the efficient frontier and denote it by

geff(ta U; A) .
The next theorem characterizes efficient portfolios in the risk-expected utility space.

Theorem 3.20. (Efficient Frontier) Efficient portfolios represented in the two dimen-
sional risk-expected utility space are all located in the (mon vertical or horizontal) bound-

ary of the set G(v,u; A).

Proof. If a portfolio x represented in the risk-expected utility space as (r, i) is not
on the (non vertical or horizontal) boundary of the G(v,u; A), then for £ small enough
we have either (r —e,u) € G(r,u; A) or (r,u+¢) € G(r,u; A). This means z can be
improved. Q.E.D.

The following relationship is straightforward but very useful.

Theorem 3.21. (Efficient Frontier of Subsystem) Consider admissible portfolios A, B.
If B C A then Gegs(v,u; A) NG (v, u; B) C Gess(t,u; B).

Proof. The conclusion directly follows from G(v,u; B) C G(v,u; A). Q.E.D.
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Remark 3.22. (Empty Efficient Frontier) If (a,0) € A for all « € R and the increasing
utility function u has no upper bound then for any risk measure ¢ satisfying (r1) and
(rin) in Assumption 3.1, {0} x R C G(v,u; A). By Proposition 3.17 [0,400) x R C
G(v,u; A) which implies that Gesr(v,u; A) = 0. Thus, practically meaningful G (¢, u; A)
always correspond to sets of admissible portfolios A such that the initial cost Sy -x for all
x € A is limited. Moreover, if the initial cost has a range and riskless bonds are included
in the portfolio, then we will see a vertical line segment on the pu axis and the efficient
portfolio corresponds to the upper bound of this vertical line segments. Thus, it suffices
to consider sets of portfolios A with unit initial cost.

3.3 Representation of Efficient Frontier

In view of Remark 3.22, in this section we will consider a set of admissible portfolios
A with unit initial cost as in Definition 2.3. By Proposition 3.17 we can view the set
G(v,u; A) as an epigraph on the expected utility-risk space or a hypograph on the risk-
expected utility space. By Propositions 2.4 and 2.5, the set G(v,u; A) naturally defines
two functions v: R — RU {400} and v : R - RU {—00}:

p () = inf{r: (r,u) € G(v,u; A)} (3.11)
= inf{e(x) : E[u(S] z)] > p,z € A} >0,

and

r—uv(r) = sup{p: (r,pu) € G(v,u; A)} (3.12)
= sup{E[u(S, 2)] : t(x) < r,x € A},

where we assume Assumption 3.16 to ensure v is well defined, i.e. v(r) < oo for all r € R.

Proposition 3.23. (Function Related to the Efficient Frontier) Assume that, the risk
measure v satisfies (r2) in Assumption 3.1 and the utility function u satisfies (u2) in
Assumption 3.4. Furthermore, assume that Assumption 3.16 holds for a set of admissible
portfolios A with unit initial cost. Then the functions p — ~v(u) and r — v(r) are
increasing lower semi-continuous convexr and increasing upper semi-continuous concave,
respectively.  Moreover, for any (1o, fto) € Gess(t,u; A), (—00, po] C dom(y) :=={u e R:
v(p) < oo} and [rg,00) C dom(v) :=={r € R:v(r) > —oo}.

Proof. The increasing property of v and v follows directly from the second represen-
tation in (3.11) and (3.12), respectively.

The properties for the domains of 7 and v follow directly from Proposition 3.17.

The other properties of v and v follow directly from Propositions 2.4 and 2.5 since
G(r,u; A) is closed and convex according to Proposition 3.17.

Alternatively, we can also directly apply Proposition 2.8 to the second representation
in (3.11) and (3.12) to derive the convexity and concavity of v and v, respectively. Q.E.D.

To describe a representation of the efficient frontier in the next theorem we will use
the exchange operator P : R? — R? defined by P(x1, x3) = (22, 21).
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Theorem 3.24. (Representation of the Efficient Frontier) Assume that the risk measure
t satisfies (12) in Assumption 3.1 and the utility function u satisfies (u2) in Assumption
3.4. Furthermore, assume that Assumption 3.16 holds for a set of admissible portfolios
A with unit initial cost. Then the efficient frontier has the following representation

~

Gery(v,u; A) = Plgraph(y)] N graph(v) (3.13)
or equivalently
Gepr(e,u; A) = {(v(n), 1) - p € dom(y) C R} N {(r,v(r)) : v € dom(v) CR}. (3.14)
More specifically, setting
I := dom(v) Nrange(7) = {r € R : 3p with (r, 1) € Geys(r,u; A)} (3.15)
and
.= dom(7) Nrange(r) = {u € R: Ir with (r, 1) € Gupp(r,u; A)}, (3.16)

we find that I and J are intervals and the representation

~

Gesg(r,u; A) = Pgraph(v | ;)] = graph(v |;) (3.17)

holds, where v : J — R and v : I — R are continuous. Moreover, v : J — I and
v: 1 — J are strictly increasing, bijective and inverse to each other, i.e.

vyov(r)y=rVrel and vory(u)=pVue J (3.18)

Proof. First we show that the right hand side of (3.13) is a subset of the left hand

side. Let (1o, 10) € Plgraph(v)] N graph(v). Since Plgraph(v)] := {(y(n), ) : p € R}
and graph(v) = {(r,v(r)) : r € R} necessarily (rg, o) € R?. Note that, in particular,
(3.14) holds. Using (7o, io) € graph(v), we get from (3.12)

o = v(ro) = sup{E[u(S] z)] : v(z) < ro,x € A}. (3.19)
Similarly, from (3.11)
ro = Y(1o) = inf{r(z) : E[u(S] z)] > o, € A}. (3.20)

With (3.19) we can select a sequence x,, € A such that t(x,) < ro and E[u(S] z,)]  po.
By Assumption 3.16, either {x € A : tv(z) < 1o} or {z € A : E[u(S]x)] > o — 1}
is compact. Hence, without loss of generality we may assume that z, — z* € A with
t(z*) < ro and E[u(S]2*)] > uo by the upper semicontinuity of x — E[u(S] z)]. Note
that v(z*) < o would contradict (3.20). Thus, t(z*) = 7o, so that (rg, zo) € G(v,u; A).
Now, consider (71, p1) € G(v,u; A). If g > po and r; < rg, then

v(ry) == sup{p: (ri, 1) € G(v,u; A)} > 1 > po = v(ro)
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contradicting that v is increasing. On the other hand if r; < r¢y and g1 > po then

V() = inf{r: (r, ) € G(v,us A)} <1< 1o = 7(po)

contradicting the increasing property of v. Thus, (ro, pto) € Gepr(t, u; A).

To conclude (3.13) it remains to show that the left hand side of (3.13) is a subset of the
right hand side. Let (rg, o) € Gess(t,u; A) C G(v,u; A) C R% Then there exists some
efficient 2* € A with ro = t(z*) and po = E[u(S] 2*)]. This means both the supremum
in (3.19) and the infimum in (3.20) are attained at =* so that ro = y(po) and po = v(ry).
It follows that R

(ro, o) € Plgraph(y)] N graph(v).

Since, by Proposition 3.23, v and ~ are convex and concave functions, respectively,
they are continuous in the interior of its domain. When G, (¢, u; A) is not a single point,
it is therefore a continuous curve except for the possible finite endpoints. By Proposition
3.23 if Gesp(r, u; A) contains (r, p) then (—oo, u] C dom(y) and [r,00) C dom(v). Thus,
if Gepr(r,u; A) has a finite left endpoint we can represent it in the form (y(g.), pt.) where
e is in the interior of dom(~y). Thus, for any u — pet, (v(1), 1) = (Y(ie), fte) s0
that Gepr(v, u; A) is right continuous. Similarly, if G.ss(t,u; A) has a finite right endpoint
then it is left continuous at this endpoint. Finally, representation (3.14) implies that the
projection of G.sr(t,u; A) onto the r and p axises are intervals I and J, respectively,
giving (3.15) and (3.16). Moreover, the representations in (3.17) follow immediately.
Furthermore, since G.f¢(t,u; A) contains no vertical or horizontal lines (see Theorem
3.20), v :J — I and v : [ — J are strictly increasing. Thus, both are injective, and
surjectivity follows from (3.15) and (3.16). Finally, (3.18) follows from (3.14). Q.E.D.

3.4 Efficient Portfolios

We now turn to analyze how the corresponding efficient portfolios behave. Ideally we
would want that each point on the efficient trade-off frontier corresponds to exactly one
portfolio. For this purpose we need additional assumptions on risk measures and utility
functions.

Theorem 3.25. (Efficient Portfolio Path) Consideer a financial market S; as defined
in Definition 2.1 and assume that A is a set of admissible portfolios with unit initial cost
as in Definition 2.3. We also assume Assumption 3.16 holds and

(c0) there exists some T € A with i := E[u(S] Z)] and 7 := v(Z) finite.
In addition, suppose that one of the following conditions holds:

(cl) The risk measure v satisfies conditions (r1) and (r2s) in Assumption 3.1 and the
utility function satisfies conditions (ul) and (u2) in Assumption 3.4.

(c2) The risk measure v satisfies conditions (r1) and (r2) in Assumption 3.1 and the
utility function satisfies conditions (ul) and (u2s) in Assumption 3.4.
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(¢3) The risk measure v satisfies conditions (r1), (rin) and (r3s) in Assumption 3.1 and
the utility function satisfies conditions (ul) and (u2) in Assumption 3.4.

Then, each point (r, 1) € Gers(t,u; A) corresponds to a unique efficient portfolio x(r, 1) €
A and the mapping (r, p) — x(r, ) is continuous on Gepr(t, u; A) (onesided continuous at
the finite endpoint(s)). Moreover, efficient portfolios have the continuous representation
r— x(r,v(r)) and p — x(y(p),pn) on intervals I defined in (3.15) and J defined in
(3.16), respectively.

Proof. Note that Assumption 3.16 and condition (c0) ensures that G.ss(t,u; A) is
nonempty.

We first show the uniqueness of the efficient portfolio. Suppose that portfolios x! # x?
both correspond to (7, 1) € Gesr(t,u; A). We consider only the case when (cl) is satisfied
(and the case when (c2) or (c3) is satisfied can be argued in a similar way). Then,
by (r1) and (3.13), we must have r = T(z') = ¥(@?) = t(z!) = v(2?) = ~(n) and
E[u(S] z%)] = u, 2" € A,i = 1,2. Note that because A has unit initial cost, T' # 2. Since
A'is convex, r* = (z' +12)/2 € A. Conditions (12s) and (u2) imply that E[u(S] 2*)] > u
and due to the strict convexity of T by (rl), v(z*) =7%(Z*) < v(u), a contradiction. Thus,
the efficient portfolio corresponding to (r,u) € Gess(t,u; A) is unique and we denote it
by x(r, ). The mapping (r, u) — x(r, u) is well defined.

Next we show the continuity of the mapping (r,u) — z(r,u). If Gers(r,u; A) is
a single point there is nothing to prove. When G.rs(r,u; A) is not a single point by
Theorem 3.24 we can represent all the efficient portfolios either as the image of the
mapping 7 +— z(r,v(r)) on I or as the image of the mapping p — x(y(u),p) on J.
Suppose that x(r, ) is discontinuous at (7, 1) € Gerr(r, u; A). We first focus on the case
when Assumption 3.16 (a) holds. Then, for a fixed positive number ¢y > 0, there exist
sequences i, — i (pn @ if o= max(J) or p, \, @ if 1 = min(J)) and such that
(v (kn), i) — 2( (1), B)|| = €0 where

Elu(S] z(v(kn); 1n))] > i and (z((ttn), pn)) = TZ(y(ptn); n)) = ¥(ptn).  (3.21)

By Assumption 3.16 (a) we may assume without loss of generality that x(y(pn), fin)
converges to some portfolio x* with ||z* — z(v(@), i)|| > €. Furthermore, by Proposition
3.23, 1 — y(u) is concave, and by Proposition 3.24 continuous on J. Taking limits in
(3.21) and using the upper semicontinuity of = — E[u(S] z)] yields

E[u(S] z*)] > i and T(z*) = () = 7. (3.22)

But the uniqueness of the efficient portfolio (3.22) implies that «* = x(y(j1), 1), which is
a contradiction. If Assumption 3.16 (b) holds we can use the mapping r — z(r, v(r)) on

the interval I to obtain a similar contradiction.
Q.E.D.

Remark 3.26. Interval [ = dom(v)Nrange(y) is always bounded from below by 0 because
the risk measure is always none negative. Other then that both I = dom(v)Nrange(7y) and
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J = dom(v) Nrange(rv) can be open, closed, half open and half closed. They can be finite
or infinite. Although various situations are possible we do have a precise characterization
of their endpoints in the next proposition.

Proposition 3.27. Under the conditions of Theorem 3.25, define
Tmin := inf[dom(v) Nrange(y)] = inf I,

Tmax = sup[dom(v) N range(y)] = sup I,
fmin = inf[dom(y) Nrange(r)] = inf J,

and
Hmax = supldom(y) Nrange(v)] = sup J.
Then
Pmin = inf{t(z) : E[u(S] z)] > —o00,2 € A} >0, (3.23)
fimax = Sup{E[u(S] z)],r € A} > —o0, (3.24)
pmin = _lim sup{E[u(S 2)] : v(z) < 7,2 € A} < fima, (3.25)
and
Tmax = }Hn inf{v(z) : E[u(S, 2)] > p,x € A} > ruin. (3.26)
M,/ Hmax

Proof. We start with (3.23). Let 7 := inf{v(z) : E[u(S]z)] > —oo,z € A}. Tt is
clear that, for any u, 7 < «(u) so that 7 is a lower bound for I = dom(v) Nrange(7), i.e.
7 < 7Tmn. For any r > 7, there exist some finite p such that

S(u,r) :={x € A:E[u(S] z)] > p > —oo and v(x) < r} # 0. (3.27)

By Assumption 3.16, S(u,7) is compact. Thus, v(u) € [F,r] is attained by some z* € A
with E[u(S] 2*)] > u. It follows that S(u,v(u)) defined in (3.27) is nonempty and,
therefore, compact by Assumption 3.16. Thus, v(y(p)) > —oo implying v(u) € dom(v)N
range(y) = I and hence y(u) > rpi. But since r > 7 was arbitrary, v(u) can be chosen
close to 7 implying 7 > ry;, and in conclusion 7 = rpy;,.

Note that since t(z) is always finite we have

sup{E[u(S] )],z € A} = sup{E[u(S] z)],t(z) < oo,z € A}.

Thus, the proof of (3.24) is parallel to that of (3.23). Having determined 7, and fipax
we have rpa = limy, », y(1) and fugin = lim,~, ., v(r). Hence, representations (3.25)
and (3.26) directly follow from the definitions of v and ~, respectively. Q.E.D.
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Corollary 3.28. Under the conditions of Theorem 3.25 we have
(
(

a) Tmin € 1 if and only if pimin € J, and ryax € 1 if and only if pimax € J.
b) If rmm € I then pimin = V(Tmin) and ¥ (fmin) = Tmin-
)
)

(c
(d

]f Hmax € J then Tmax = 7<Nmax) and V(rmax) = HUmax-

(1) If rmim € I and pimax € J then I = [Fmin, Tmax) and J = [fmin, fmax) -
(i) If rmin € I and pimax € J then I = (Fmin, Tmax] ond J = (—00, fimax) -
(ill) If rmin € I and pimax € J then I = [rpin, 00) and J = [fmin, fomax) -
(iv) If rmm € I and pimax € J then I = (rmim, 00) and J = (—00, fimax)-

Proof. Let ryy, € I C dom(v). Then ryp, = (i) for some g € J by Theorem
3.24. Since v is an increasing function, we have g = min.J. Hence i = py;, and
Pmin = Y(fmin). Then v(rpm) = i = fimin follows since v o v = id is the identity mapping
on I. The converse and the case for max can be proved analogously. This proves (a), (b)
and (c). Moreover, (d)(i) directly follows from (b) and (c).

If o & I, we show i = —oo. In fact, if g, > —oo then for any natural number
n we can select 2" € A such that v(z") < 7y + 1/n and E[u(S] 2")] > pmim. By
Assumption 3.16 we may assume without loss of generality that ™ — z* € A. Taking
limits as n — oo we conclude that v(z*) < rpy, and E[u(S] 2*)] > fimin and both have to
be equality. Thus, ("min, min) € Gerr(t,u; A), a contradiction. This shows (d)(ii).

Analogously, one gets that pimax & J implies rp.x = 0o, which shows (d)(iii) and
(d)(iv). Q.E.D.

Remark 3.29. Several interesting cases when G.sr(v,u; A) has finite endpoints are dis-
cussed below:

(a) The quantity rym is always finite and pmi, may be finite as well as illustrated in
Figure 1. But pmin may also be —oo as Example 3.31 shows. A typical efficient frontier
corresponding to this case s illustrated in Figure 2.

(b) Suppose pimax 1S finite and attained at an efficient portfolio x(y(fmax)s fmax)- Un-
der the conditions of Theorem 3.25 the portfolio k := x(Y(fimax); fmax) S unique and
independent of the risk measure. A graphic illustration is given in Figure 3.

(c) Trade-off between wutility and risk is thus implemented by portfolios x(~y(w), 1)
which trace out a curve in the so called leverage space introduced by [Vince (2009)]. Note
that the curve x(y(u), 1u) depends on the risk measure v as well as the utility function
u. This provides a method for systematically selecting portfolios in the leverage space to
reduce risk exposure.

(d) If, in addition, ¢ satisfies (r1n) in Assumption 3.1 and u(R) > —o0 then Ty = 0,
fmin = W(R) and z(rmin, fmin) = (1,6T)T (see Figure /).
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Example 3.30. (for p,, = —oo) Consider a portfolio problem with the log utility on a
financial market that contains no bond and two risky assests (i.e. M = 2)

v(r) == sup{E[In(S]2)] : ¥@) < r, 5, 7 = 1}. (3.28)

ZeR?

The financial market S, = (SX,S2)T (since the riskless asset is not involved in (3.28) it
is irrelavent to the problem) is specified as follows: Sy = [1,1]7, S} is a random vector
on the sample space ) = {wy,wq, w3} with P(wy) = P(w2) = P(ws) = 1/3 and a payoff
matriz

(3.29)

[S1(n), Sifwn), Si(ws)] = {0%5 0?8 ?g ]

Note that for instance with R = 1 this market has no nontrivial riskless portfolio. We
use the risk measure

UZ) = /(21 — 222)2 + 100(211 + 22)2 (3.30)

which satisfies (r1), (rin) and (r3s) and, therefore, Assumption 3.16 (b) holds. Clearly,
v(¥([1,0]7)) > 0 and finite. Notice that on the feasible set SJT =1, i.e. x5 =1 —ay. It
follows that the risk measure

@) == /(3x1 — 2)2 + 100(2; + 1)2

attains a minimum rm,, = 55109 at T,y = (—94/109,203/109)". Observing ST (w2) T <

0 we must have ryy, >y and

Pmin = lim v(r) = —oo.
7”\17‘min

Example 3.31. (for g < 00 and 7. = 0o ) Consider the same risk measure as in
the previous example, but use instead the utility function u(t) =1 —e~*. We analyze
v(r) == sup{E[u(S]2)] : ¥(@) < r, 5] % = 1}, (3.31)
ZER?

where the financial market is defined by

~ ~ ~ { 1 3.6 0.5}

[Si(w), Si(wa), Si(ws)l = | o5 {5 g3 (3.32)

on the sample space Q@ = {wy,wa, w3} with P(wy) = P(wy) = P(ws) = 1/3. Again on the
feasible set Sy =1, i.e. x9 =1 — 1. The portfolio as a function of x, implies

(S] (wi)[z1,1 — 1] )iz103 = [0.5,1.2,0.3] + 21[0.5,2.4,0.2].

As xy — 0o we can see that T(T) — oo and E[U(S’Ti’)] — 1. Hence ryax = 00 and fipmax =
1 < co. Notice that (3.32) with, e.g. R =1 has an arbitrage portfolio 7 = (1,—1)", but
the existence of an arbitrage seems to be necessary in constructing such an example.
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Figure 1: Efficient frontier with both r.;, and gy, are finite and attained.

geff(t,/u;/ﬂr
.

( G(r,u; A)

Figure 2: Efficient frontier with p,;, = —o0.
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geff(t7 U; A)

G(r,u; A)

Figure 3: Efficient frontier when r;, > 0 and piay is finite and attained as maximum.

Figure 4: Efficient frontier with (1,07)7 € A.
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4 Markowitz Portfolio Theory and CAPM Model

Let us now turn to applications of the general theory. We show that the results in the
previous section provide a general unified framework for several familiar portfolio theories.
They are Markowitz portfolio theory, CAPM model, growth optimal portfolio theory and
leverage space portfolio theory. Of course, when dealing with concrete risk measures
and expected utilities related to these concrete theories additional helpful structure in
the solutions often emerge. Although many different expositions of these theories do
already exist in the literature, for convenience of readers we include brief arguments
using Lagrange multiplier methods. In this entire section we will assume that the market
S; from Definition 2.1 has no nontrivial riskless portfolio.

4.1 Markowitz Portfolio Theory

Markowitz portfolio theory which considers only risky assets (see [Markowitz (1959)])
can be understood as a special case of the framework discussed in Section 3. The risk
measure is the standard deviation o and the utility function is the identity function. So
we face the problem

min (5, @) (4.1)
Subject to  E[S] 7] > 4,
Siz=1.

We assume E[gl] is not proportional to §0, that is, for any a € R,

Since the variance is a monotone increasing function of the standard deviation we can
minimize half of variance for convenience.

s 1 P PPN PC
Erélﬂi& () = §Var(§lTx) = 502(81T3:) =3 G (4.3)
Subject to  E[S] 7] > pu,

Siz=1.

Optimization problem (4.3) is already in the form (3.11) with A = {z € RM*1: Sz =
1,29 = 0}. We can check condition (c1) in Theorem 3.25 is satisfied. Moreover, Corollary
3.11 implies that X is positive definite since S; has no nontrivial riskless portfolio. Hence,
the risk function t has compact level sets. Thus, Assumption 3.16 is satisfied and Theorem
3.25 is applicable. Let Z(x) be the optimal portfolio corresponding to u. Consider the
Lagrangian

1 ~ ~
L(3,)) 1= 57 58 + A (n — TEIS)) + ha(1 - 77 5)), (4.4)
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where A; > 0. Thanks for Theorem 2.10 we have
0=VsL =SZ(u) — (ME[S1] + A2Sp). (4.5)
In other words
2(p) = SHME[SY] + AoSo). (4.6)

We must have \; > 0 because otherwise Z(x) would be unrelated to the payoff Si. The
complementary slackness condition implies that B[S Z(u)] = p. Left multiplying (4.5)
by 7' (1) we have

(1) = Mpp+ Ag. (4.7)

To determine the Lagrange multipliers, we need the numbers o = E[§1]TE*1E[§1], B =
E[S;]T¥71Sy and v = SJ X71Sp. Left multiplying (4.6) by E[S;]" and S] we have

n = )\10& —+ )\2/6 (48)
and
Solving (4.8) and (4.9) we derive
—p a—fp
)\1 = ay — 52 and )\2 = m, (410)

where

~

E[S)]

oy — 2 = det ([JE[§1T 55157
0

> >0 (4.11)

since X! is positive definite and condition (4.2) holds. Substituting (4.10) into (4.7) we
see that the efficient frontier is determined by the curve

w2 —28uta 0 B\ 11
“WM o —\/m<“‘;>+;2ﬁ -

usually referred to as the Markowitz bullet due to its shape. A typical Markowitz bullet
is shown in Figure 5 with an asymptote

uzgww,/‘wT‘ﬁz. (4.13)

Note that G(3Var,id,{Sjz = 1,290 = 0}) = G(0,id,{Sq & = 1,29 = 0}). Thus,
relationships (4.12) and (4.13) describe the efficient frontier G (o, id, {Sy * = 1,29 = 0})
as in Definition 3.19. Also note that (4.12) implies that pw, = /7 and rum = 1/,/7.
Thus, as a corollary of Theorem 3.25, we have
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NG

Figure 5: Markowitz Bullet

Theorem 4.1. (Markowitz Portfolio Theorem) Assume that the financial market S,
has no nontrivial riskless portfolio and E[S}] is not proportional to Sy (see (4.2)). The
Markowitz efficient portfolios of (4.1) represented in the (o, u)—plane are given by

Geps(0,id; {Sy x = 1,19 = 0}).

They correspond to the upper boundary of the Markowitz bullet given by

o(p) = \/7M2_25M+a, W e {g,—l—oo).

ay — §?

The optimal portfolio T(u) can be determined by (4.6) and (4.10) as

A Y UAE[S] — 8S)) Y YaS, — BE[S
T(p) = p (vm[_l]wﬁ o) (O;f;_é 5

(4.14)

which is affine in p.

The structure of the optimal portfolio in (4.14) implies the well known two fund
theorem derived by [Tobin (1958)].

Theorem 4.2. (Two Fund Theorem) Select two distinct portfolios on the Markowitz ef-
ficient frontier. Then any portfolio on the Markowitz efficient frontier can be represented
as the linear combination of these two portfolios.

4.2 Capital Asset Pricing Model

The capital asset pricing model (CAPM) is a theoretical equilibrium model independently
proposed by [Lintner (1965)], [Mossin (1966)], [Sharpe (1964)] and [Treynor (1999)] for
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pricing a risky asset according to its expected payoff and market risk, often referred to as
the beta. The core of the capital asset pricing model is including a riskless bond in the
Markowitz mean-variance analysis. Thus we can apply the general framework in Section
3 with the same setting as in Section 4.1. Similar to the previous section we can consider
the equivalent problem of

- Y SR PC SO
Dnin 5o (S; ) = 5 Yr =1(7) (4.15)
Subject to  E[S] z] > p,

Sgr=1.

Similar to the last section problem (4.15) is in the form (3.11) with A = {x € RM*! .
Sy x = 1}. We can check condition (c1) in Theorem 3.25 is satisfied. Again the risk
function T has compact level sets since ¥ is positive definite. Thus, Assumption 3.16 is
satisfied and Theorem 3.25 is applicable. The Lagrangian of this convex programming
problem is

L(xz,\) = %ATE/x\ + Mg — 2 "E[S1]) + Xao(1 — 2" Sp), (4.16)
where A\; > 0. Again we have
0=V,L=1(0,52(n)) — (ME[S1] + A250). (4.17)
Using S = R and S{ = 1, the first component of (4.17) implies
Ay = —\R. (4.18)
So that (4.17) becomes
0=V,L=1(0,X2(n)) — M (E[Si] — RSp). (4.19)

Clearly \; > 0 for Z(p) # 0. Using the complementary slackness condition E[S] x(u)] = u
we derive

o*(n) =7 (W)EZ(1) = M(p — R), (4.20)
by left multiplying =" (x) in (4.19). Solving Z(x) from (4.19) we have
(1) = MY Y(E[S)] — RSp). (4.21)

Left multiplying with IE[:S’T | and §0T and using the «, § and 7 introduced in the previous
section we derive

5= 2o(u)R = M — RB) (4.22)
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and
1= xo(p) = (B = R), (4.23)
respectively. Multiplying (4.23) by R and subtract it from (4.22) we get
p—R=X\(a—2B8R+~R?). (4.24)
Combining (4.20) and (4.24) we arrive at

(1 — R)?
a— 28R+ VR

o*(p) = (4.25)

Clearly, efficient portfolio only occur for p > R, since for 4 = R the pure bond portfolio
(1,0M)T is the only efficient (and risk free) portfolio. Relation (4.25) defines a straight
line on the (o, 1)-plane

o(p) = L\/ZR or pu=R+a(u)VA, (4.26)

where A := a — 28R +vR? > 0 if
E[Sy] — RSy #0 (4.27)

since ¥ is positive definite. The line given in (4.26) is called the capital market line.
Also combining (4.21), (4.23) and (4.24) we have

2" (1) = A= BR— u(B — yR), (n — R)(B[S]] — RS;)=7"]. (4.28)

Again we see the affine structure of the solution. Note that although the computation is
done in terms of the risk function ¥(Z) = $Z " X7, relationships in (4.26) are in terms the
risk function o (S x). Thus, they describe the efficient frontier G.;;(o,id; {S; z = 1}) as
in Definition 3.19. In summary, we have

Theorem 4.3. (CAPM) Assume that the financial market S; of Definition 2.1 has no
nontrivial riskless portfolio. Moreover assume that condition (4.27) holds. The efficient
portfolios for the CAPM model G.ss(0,id;{Sg x = 1}) represented in the (o, u)—plane
are a straight line passing through (0, R) corresponding to the portfolio of pure risk free
bond. The optimal portfolio x(u) can be determined by (4.28) which is affine in p and
can be represented as points in the (o, u)-plane as located on the capital market line

,u:R—i-J\/Z, o > 0.

In particular, when © = R and u = (a — BR)/(8 — vR) we derive, respectively,
the portfolio (1,07)7 that contains only the riskless bond and the portfolio (0, (I[*E[S\lr ] —
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(oar, par)

(0, R)

Figure 6: Capital Market Line and Markowitz Bullet

R%)Eil/(ﬂ —~R))T that contains only risky assets. We call this portfolio the market
portfolio and denote it x,,. The market portfolio corresponds to the coordinates

VA A )

Ry (4.29)

Since the risk o is non negative we see that the market portfolio exists only when

(UM,MM) = (

B—~vR > 0.
This condition is
SyYYE[S] — RSp) > 0. (4.30)
By Theorem 3.21

(oar, tiar) € Gep(oyid; {Sg v =1}) N G(o,id; {Sy v = 1,29 = 0}) (4.31)
C Gep(o,id; {Sy v = 1,29 = 0}).
Thus, the market portfolio has to reside on the Markowitz efficient frontier. Moreover,

by (4.28) we can see that the market portfolio x; is the only portfolio on the CAPM
efficient frontier that consists of purely risky assets. Thus,

Goss(0,id: {STx = 1) N G(oyidi {S] = L wg = 0}) = {(ourojiar)},  (4:32)

so that the capital market line is tangent to the Markowitz bullet at (o, ) as illus-
trated in Figure 6.

Remark 4.4. Observe that S~(E[Sy] — RSy) is proportional to the optimal portfolio in
(4.21). Thus, condition (4.30) means that any optimal portfolio should have an positive
initial cost. Note that (4.30) also implies (4.27).
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The affine structure of the solutions is summarized in the following one fund theorem

[Sharpe (1964), Tobin (1958)].

Theorem 4.5. (One Fund Theorem) Assume that the financial market S; has no non-
trivial riskless portfolio. Moreover assume that condition (4.30) holds. All the optimal
portfolios in the CAPM model (4.15) are generalized conver combinations of the riskless
bond and the market portfolio xp = (0, (E[gf] - RST)F)Z_I/(B—’yR))T which corresponds
to (oa, par). The capital market line is tangent to the boundary of the Markowitz bullet
at the coordinates of the market portfolio (oar, uar) and intercepts the p axis at (0, R)
(see Fig. 6).

Alternatively we can write the slope of the capital market line as

VA=t =R (4.33)

oM

This quantity is called the price of risk and we can rewrite the equation for the capital
market line (4.26) as

pyv — R
oM

=R+

o. (4.34)

5 Affine Efficient Frontier for Positive Homogeneous
Risk measure

The affine dependence of the efficient portfolio on the return p observed in the CAPM
still holds when the standard deviation is replaced by the more general deviation mea-
sure (see [Rockafellar, Uryasev & Zabarankin (2006)]). In this section we derive this
affine structure using the general framework discussed in Section 3 and provide a proof
different from that of [Rockafellar, Uryasev & Zabarankin (2006)]. Moreover, we pro-
vide a sufficient condition for the existence of the master fund in the one fund theorem
generalizing condition 8 — Ry > 0 (see (4.30)) for the existence of the market portfolio
in the CAPM model. We also construct a counter-example showing that the two fund
theorem (Theorem 4.2) fails in this setting. Let’s consider a risk measure v that satisfies
(rl), (rln), (r2) and (r3) in Assumption 3.1 and the related problem of finding efficient
portfolios becomes

nin t(z) =7() (5.1)
Subject to  E[S] z] > p,
Sgr=1.

Since for p1 = R there is an obvious solution z(R) = (1,07 corresponding to t(z(R)) =
T(0) = 0, we have rp, = 0 and piuin = R. In what follows we will only consider

31



p > R. Moreover, we note that for T satisfying the positive homogeneous property (r3)
in Assumption 3.1, § € Jt(Z) implies that

W) = (7,9) 52)
In fact, for any ¢t € (—1,1),
(Z) =7((1 +t)7) —*(7) > t(y,T), (5.3)

and (5.2) follows. Now we can state and prove the theorem on affine dependence of the
efficient portfolio on the return pu.

Theorem 5.1. (Affine Efficient Frontier for Positive Homogeneous Risk Measures) As-
sume that the risk measure v satisfies assumptions (r1), (rin), (r2) and (r3) in Assump-
tion 3.1 with A = {x € RM*1: o = 1} and Assumption 3.16 (b) holds. Furthermore,
assume

E[S)] — RS, # 0. (5.4)

Then there exists an efficient portfolio x' corresponding to (ri,u1) = (¢(z'), R + 1)
on the efficient frontier for problem (5.1) such that the efficient frontier for problem
(5.1) in the risk-expected return space is a straight line that passes through the points
(0,R) corresponding to a portfolio of pure bond (1,6T)T and (ry, pn) corresponding to the
portfolio x', respectively. Moreover, the straight line connecting (1,6T)T and x* in the
portfolio space, namely for n > R,

o(1) = (m — ) (1,007 + (u = R)a' (5.5)

represents a set of efficient portfolios for (5.1) that corresponds to

(v(w), 1) = (1 = R)ro, p) (5.6)
in the risk-expected return space (see Definition 3.19 and (3.11)).

Proof. The Lagrangian of this convex programming problem (5.1) is
L(z,A) i=v(z) + A\ — 2 "E[S1]) + Mo (1 — 27 .Sp), (5.7)

where A\ > 0 and Ay € R.

Condition (5.4) implies that there exists some m € {1,2,..., M}, such that E[S]"] #
RS[™. Hence, for any u there exists a portfolio of the form y = (4,0, ...,0,ym,0,...,0)"
satisfying

R A B S 3 I B
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because the matrix in (5.8) is invertible. Thus, for any p > R, Assumption 3.16 (b)
with A = {z € RM*1: Sz = 1} and condition (5.4) ensure the existence of an optimal
solution to problem (5.1).

Denoting one of those solutions by z(x) (may not be unique) we have

Y(p) = v(z(p) =*(@(n)). (5.9)
Fixing ; = R+ 1 > R, denote 2! = z(y;). Then
ME[S1] + A2Sp € Or(z?). (5.10)
Since t is independent of xy we have
ME[SY] + A28y =0 or Ay = =\ R. (5.11)
Substituting (5.11) into (5.10) we have
ME[S, — RSy] € 07" (5.12)
so that, for all 7 € RM,
(@) —T@) = ME[(S) - RSy) (@ - 7)) = M(E[(S - RS)) 7] — (1 — R)) (5.13)

because at the optimal solution Z' the constraint is binding. Using (r3) it follows from
(5.2) and (5.12) that

@) = ME[(S, — RS))TZY = Ai(u1 — R) = Ap. (5.14)
Thus, we can write (5.13) as
(@) > T@EHE[(S; — RS) 7). (5.15)
For ¢ > 0 define the homotopy between 20 := (1,077 and 2!
ot = (tzg + (1 —t),t2"). (5.16)
We can verify that Sy ' = 1 and
E[S 2] = R+t
so that
E[(S; — RSy) "2'] = t. (5.17)
On the other hand it follows from assumptions (rl) and (r3) that
t(zt) =T(tzh) =t T(@"). (5.18)
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Thus, for any z satisfying Sj z = 1 and
E[S, 7] > R+t
it follows from (5.15) that

@) > TN, (5.19)

For any p > R, letting ¢, := u — R, we have u = R + ¢, and hence z'* = x(u). Thus,
by inequality (5.19) we have T(Z(p)) > ¢,v(z'). On the other hand z(p) is an efficient
portfolio implies that T(Z(u)) <7¥(@'™) = t,v(z") yielding equality

V() =T(@(p) =7@") = ,8@") = (u — RJE(@"), for p = R. (5.20)

In other words () is an affine function in p. Also, we conclude that points (y(p), 1) on
this efficient frontier correspond to efficient portfolios

o(p) =2 = ((p— Rz + 1 — p, (p— R)T') = (u — p)(1,07)7 + (n— R)z* (5.21)

as an affine mapping of the parameter p into the portfolio space showing (5.5).
Also using r; we can write (5.20) as

Y(w) =r1(p— R). (5.22)

That is to say the efficient frontier of (5.1) in the risk-expected return space is given by
the parameterized straight line (5.6). Q.E.D.

Corollary 5.2. In Theorem 5.1, if instead of (r83) the stronger condition (r3s) holds,
then the portfolio x* constructed there is unique and, therefore, for each fived > R the
efficient portfolio x(u) in (5.5) is unique.

Proof. Apply Theorem 3.25 with condition (c3). Q.E.D.

Theorem 5.1 and Corollary 5.2 manifest a full generalization of Theorem 4.3 on the
capital market pricing model to positive homogeneous risk measures. Note that the
necessary conditions on the financial market in (4.27) and (5.4) are the same.

Remark 5.3. (a) Clearly, x'% corresponds to the portfolio (1,6T)T with v(R) = ?(6) =0.
]' AN AN

“llzfgo and 7y = y(par) =@ /(1 — ) we see that (rar, par)

on the efficient frontier corresponds to a purely risky efficient portfolio of (5.1)

If z§ < 1, setting pas =

Ty = atr = (0 L(fl)T)T. (5.23)

’ 1

Since xp belongs to the image of the affine mapping in (5.21), the family of efficient
portfolios as described by the affine mapping in (5.21) contains both the pure bond (1,6—r)T
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and the portfolio x; that consists only of purely risky assets. In fact, we can represent
the affine mapping in (5.21) as a parametrized line passing through (1,07)7 and xy; as

- R ~ w—R
zh = <1— o ) L,0NT + zy, for p> R, 5.24
MM—R ( ) MM—RM H= ( )

which is a similar representation of the efficient portfolios as (5.5). The portfolio
is called a master fund in [Rockafellar, Uryasev € Zabarankin (2006)]. When v = o it
is the market portfolio in the CAPM. For a general risk measure v satisfying conditions
(r1), (rin), (r2) and (r3) in Assumption 3.1 the master funds xy are not necessarily
unique. However, all master funds correspond to the same point (rpr, par) in the risk-
expected return space.

(b) We can also consider problem (5.1) on the set of admissible portfolios of purely
risky assets, namely Gers(t,id; {Sq x = 1,29 = 0}). Then similar to the relationship be-
tween the Markowitz efficient frontier and the capital market line, it follows from Theorem
5.1 that

G(v,id; {Sg = 1,0 = 0}) N Gepp(v,id; {Sg & = 1}) = {(rar, par) }, (5.25)

as tllustrated in Figure 7.
(c) If x5 = 1 then the efficient portfolios in (5.5) are related to u in a much simpler
fashion

(1,0 + (u— R)(0, @), (5.26)

There is no master fund as observed in [Rockafellar, Uryasev € Zabarankin (2006)] in
this case. In the language of [Rockafellar, Uryasev €& Zabarankin (2006)], the portfolio
x! is called a basic fund. Thus, Theorem 5.1 recovers the results in Theorem 2 and
Theorem 3 in [Rockafellar, Uryasev & Zabarankin (2006)] with a different proof and a
weaker condition (condition (5.4) is weaker than (A2) on page 752 of Rockafellar et al.).
However, Corollary 5.2 is a significant improvement yielding uniqueness in case (r3s)
holds. This will help below when we derive a sufficient condition for the existence of a

master fund, which is solely depending on the risk measure and the financial market.

We see in Remark 5.3 that the existence of a master fund depends on whether or not
z} < 1. Below we characterize this condition in terms of f(Z) := [¢(Z)]?/2 and its Fenchel
conjugate f* : RM — R, defined by f*(9) := supsepm{(7,Z) — f(Z)}.

Theorem 5.4. Under the conditions of Corollary 5.2, assuming that f* is dzﬁer@ntzable
at B[Sy — RS,), a master fund exists if and only if S ker (E[S; — RS,)) >

Proof. Combining (5.12) and (5.14) and using the chain rule we can see that

F@H]PE[S, — RS,] € af@Y). (5.27)
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By virtue of the Fenchel-Young equality (see [Carr & Zhu (to appear), Proposition 1.3.1])
we have

FEY) + £(EGEYPELS: — RS)) = (RE")E[S, — RS, 7"), (5.28)
and
VI (FEYHPE[S, — RS,)) = 7. (5.29)
It follows that 2} < 1 is equivalent to

0<1l-az) = 55 (5.30)

SoVI([ (AI)]QE[Sl RS))

= [{@"]'Sg VI (E[S: - RS).
The last equality is because f(tZ) = t*f(Z) implies f*(ty) = t*f* (7). Q.E.D.
Remark 5.5. We refer to [Borwein & Vanderwerff (2009)] for conditions ensuring the

differentiability of f* in Theorem 5.4. In CAPM model f(T) = 3Z'5T and f*(y) =
%@TE_lg. Thus the master fund exists if and only if

B — Ry=S]S'E[S, — RS,] > 0,

which exactly recovers the condition in (4.30) for the existence of a market portfolio in
the one fund theorem (cf. Theorem 4.5).
In general, for a risk measure with (r1), (rIn) and (r3s), if f(T) = [t(Z)]?/2 is C*

then f(Z) = —a:TEx where S is the Hessian of f at 0. Thus, a criterion for the existence

of a master fund similar to (4.30) holds with 3 replaced by 5.

Another very useful case is ©(Z) = ||Z||max- It is not hard to show that the conjugate
of f(Z) = ||Z]|%u/2 is [*(@) = ||7l|2/2. In fact, it follows from the Cauchy inequality that
17 20x/2 + 19113/2 > (2, 7). Thus,

19l13/2 > f*(®). (5.31)
On the other hand, for any § = (y1,...,yum) ', defining Ty := t(sgn(y1),...,sgn(ya)) "
we have

(@6, 0) = 17t /2 = Gl — /2. (5.32)
The mazimum of the expression in (5.32) as a function of t is ||[g||3/2. It follows that
19113/2 < £ (@) (5.33)

Combining (5.31) and (5.33) we arrive at ||y||3/2 = f*(y). This example illustrates
that using ©2/2 and its conjugate often helps. In fact, f* is differentiable everywhere
except for the coordinate azises. But || - ||, is an indicator function on the closed set
{7 : |ylls < 1} (see [Carr & Zhu (to appear), Proposition 2.4.2]), whose derivative is 0
at any differentiable point and, therefore, is not useful for our purpose.
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Since the standard deviation satisfies Assumptions (rl), (rln), (r2) and (r3s), the
result above is a generalization of the relationship between the CAPM model and the
Markowitz portfolio theory. We note that the standard deviation is not the only risk mea-
sure that satisfies these assumptions. For example, some forms of approximation to the
expected drawdowns also satisfy these assumptions (cf. [Maier-Paape & Zhu (2017)]).

Theorem 5.1 and Corollary 5.2 are a full generalization of Theorem 4.3 on the CAPM
and Theorem 5.4 is a generalization of the one fund theorem in Theorem 4.5. On the
other hand in [Rockafellar, Uryasev & Zabarankin (2006)], footnote 10, it has been noted
that a similar generalization of the two fund theorem (Theorem 4.2) is not to be expected.
We construct a concrete counter-example below.

Example 5.6. (Counter-example to a Generalized Two Fund Theorem) Let’s consider
for example

i (7 5.34
min  *(Z) (5.34)
Subject to  E[S| Z] > p,

Sqz =1,
with M = 3.

Choose all Si* =1, so that :S'\Orf =1 1isx1 4+ 2o+ 23 = 1. Choose the payoff S1 such
that E[S]Z] = z1 so that x1 = p at the optimal solution. Finally, let’s construct T(Z) so
that the optimal solution T(u) is not affine in .

We do so by constructing a convex set G- with 0 € intG (interior of G) and then set
T(7) =1 for T € 0G (boundary of G) and extend T to be positive homogeneous. Then
(r1), (rin), (r2) and (r3) are satisfied.

Now let’s specify G. Take the convex hull of the set [—5,5] x [—1,1] x [—1,1] and
five other points. One point is E = (10,0,0)" and the other four points A, B,C and D,
are the corner points of a square that lies in the plane x1 = 9 and has unit side length.
To obtain that square take the standard square with unit side length in x1 = 9, i.e. the
square with corner points (9,£1/2,4+1/2)" and rotate this square by 30 degrees counter
clockwise in the xoxs3-plane. Doing some calculation one gets:

A = (9, (-1+V3)/4,(1+V3)/4)T
B = (9,(-1-V3)/4,(-1+V3)/4)T
D = (9,(1+V3)/4),(1-V3)/4)".

Obviously for p = 1 the optimal solution is (1) = (1,0,0)" with T(Z(1)) = 1/10 For
1= 1+e€ with € > 0 small we have T(14€) = (1+¢,ev/3(+1—+3)/6,eV/3(=1—/3)/6))7
(they lie on the ray through a point on the convex combination of C' and (10,0,0)") and
for w=14d with d > 0 large we have (1 +d) = (1 +d,—d/2,—d/2)" (they lie on the
ray through a point on the set {(z1,—1,—1)" : 21 € (2,5)}. Therefore, T(u) cannot be
affine in .
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(rar, par)

(0, R)

Figure 7: Capital Market Line for (5.1) when 1 — z{ > 0

6 Growth Optimal and Leverage Space Portfolio

Growth portfolio theory is proposed by [Lintner (1965)] and is also related to the work
of [Kelly (1956)]. It is equivalent to maximizing the expected log utility:

max E[In(S] z)] (6.1)

reRM+1
Subject to Sy x = 1.
Remark 6.1. Problem (6.1) is equivalent to

max E[In(R + (S; — RSy)"7)] (6.2)

ZTeRM

The following theorem establishes the existence of the growth optimal portfolio as
a corollary of our results in Section 3. This theorem reconfirms previous results in
[Hermes & Maier-Paape (2017)] with somewhat different conditions and a shorter proof.

Theorem 6.2. (Growth Optimal Portfolio) Assume that the financial market S; of Def-
inition 2.1 has no nontrivial riskless portfolio. Then problem (6.1) has a unique opti-

mal portfolio, which is often referred to as the growth optimal portfolio and is denoted
Kk € RM+L

To prove Theorem 6.2 we need the following lemma.

Lemma 6.3. Assume that the financial market S; of Definition 2.1 has no nontrivial
riskless portfolio. Let u be a utility function satisfying (u3) in Assumption 3.4. Then for
any p € R,

{z € RM* Elu(S] 2)] > u, Sy x = 1} (6.3)

is compact (and possibly empty in some cases).
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Proof. Since by Assumption 3.4 u is upper semi-continuous, the set in (6.3) is closed.
Thus, we need only to show it is also bounded. Assume the contrary that there exists a
sequence of portfolios 2™ with

Sga™ =1 (6.4)
and [|z"|| — oo satisfying
Efu(ST")] > 4. (6.5)

Equation (6.4) implies that ||2"|| — co. Then without loss of generality we may assume

a"/||z"|| converges to z* = (x§, (z*)")" where ||7*|| = 1. Condition (u3) and (6.5) for
arbitrary p € R imply that, for each natural number n,

Sla™ > 0. (6.6)

Dividing (6.4) and (6.6) by ||z"|| and taking limits as n — oo we derive

Sgx* =0 (6.7)
and
Sy a* > 0. (6.8)
Combining (6.7) and (6.8) we have
(S) — RSy)T7* >0, (6.9)
and thus z* is a nontrivial riskless portfolio, which is a contradiction. Q.E.D.

Proof. of Theorem 6.2 We can verify that the utility function v = In satisfies
conditions (ul), (u2s), (u3) and (ud). Also {z : E[In(S]z)] > In(R),Sjz = 1} # 0
because it contains (1,07)7. Thus, Lemma 6.3 implies that problem (6.1) has at least
one solution and

e = max {E[In(S]'x)] : Sz = 1}
is finite. By Lemma 3.15, x — E[In(S] z)] is strictly concave. Thus problem (6.1) has a
unique optimal portfolio. Q.E.D.

Assuming one repeatedly invests in the identical one period financial market, the
growth optimal portfolio has the nice property that it provides the fastest compounded
growth of the capital. By Remark 3.29 (b) it is independent of any risk measures. In
the special case that all the risky assets are representing a certain gaming outcome, s is
the Kelly allocation in [Kelly (1956)]. However, the growth portfolio is seldomly used in
investment practice for being too risky. The book [MacLean, Thorp & Ziemba (2009)]
provides an excellent collection of papers with chronological research on this subject.
These observations motivated [Vince (2009)] to introduce his leverage space portfolio to
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scale back from the growth optimal portfolio. Recently, [de Prado, Vince & Zhu (2013),
Vince & Zhu (2015)] further introduce systematical methods to scale back from the
growth optimal portfolio by, among other ideas, explicitly accounts for limiting a certain
risk measure. The analysis in [Vince & Zhu (2015)], and [de Prado, Vince & Zhu (2013)]
can be phrased as solving

v(p) = inf{x(z) =%(@) : E[In(S] z)] > p, Sy x = 1}, (6.10)

where v is a risk measure that satisfies conditions (rl) and (r2). Alternatively, to derive
the efficient frontier we can also consider

v(r) := sup{E[In(S] z)] : v(z) =%(@) < r, Sy & = 1}, (6.11)

Applying Proposition 3.23, Theorem 3.25 and Remark 3.29 to the set of admissible
portfolios A = {z € RM*1: Sz =1} we derive

Theorem 6.4. (Leverage Space Portfolio and Risk Measure) We assume that the fi-
nancial market Sy in Definition 2.1 has no nontrivial riskless portfolio and that the risk
measure v satisfies conditions (r1), (rin) and (r2). Then the problem

sup E[n(S; z)] (6.12)

zERM+1

subject to  t(z) =T(Z) <r, S, x =1,

has a bounded efficient frontier which can be parameterized as follows:

(a) problem (6.10) defines ~v(u) : [In(R), us) — R as a continuous increasing con-
vex function, where p, = E[In(S] k)] and s is the optimal growth portfolio. More-
over, problem (6.10) has a continuous path of unique solutions z(p) = x(y(p), p) that
maps the interval [In(R), p) into a curve in the leverage portfolio space RM+L Finally,
A((R)) = (1,01)7, 2(n)) = , y(In(R)) = ¥(0) = 0 and 5(ju.) = t(x)

(b) problem (6.11) defines v(r) : [0,t(k)] — R as a continuous increasing concave
function, where K is the optimal growth portfolio. Moreover, problem (6.11) has a con-
tinuous path of unique solutions y(r) := x(r,v(r)) that maps the interval [0,v(k)] into
a curve in the leverage portfolio space RM*L. Finally, y(0) = (1,017, y(x(r)) = &,
v(0) =In(R) and v(t(k)) = px.

Proof. Note that Assumption 3.16 (a) holds due to Lemma 6.3 and (¢2) in Theorem
3.25 is also satisfied. Then (a) follows straight forward from Theorem 3.25 where fiya =
p and i, = In(R) are finite and attained and (b) follows from Theorem 3.25 with
Tmin = 0 and . = t(K). Q.E.D.

Remark 6.5. Theorem 6.4 relates the leverage portfolio space theory to the framework
setup in Section 3. It becomes clear that each risk measure satisfying conditions (r1),
(rin) and (r2) generates a path in the leverage portfolio space connecting the portfolio of a
pure riskless bond to the growth optimal portfolio. Theorem 6./ also tells us that different
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risk measures usually correspond to different paths in the portfolio space. Many commonly
used risk measures satisfy conditions (r1) and (r2). The curve z(u) provides a pathway
to reduce risk exposure along the efficient frontier in the risk-expected log utility space.
As observed in [de Prado, Vince & Zhu (2013), Vince & Zhu (2015)], when investments
have only a finite time horizon then there are additional interesting points along the path
z(p) such as the inflection point and the point that mazimizes the return/risk ratio. Both
of which provide further landmarks for investors.

Similar to the previous sections we can also consider the related problem of using
only portfolios involving risky assets, i.e.,

max E[In(S] 2)] (6.13)
subject to §0T”f =1.

Theorem 6.6. (Existence of Solutions) Suppose that
Si(w) >0, Vwe Qi=1,..., M. (6.14)
Then problem (6.13) has a solution.

Proof. As in the proof of Theorem 6.4, we can see that Assumption 3.16 (a) holds
due to Lemma 6.3. Observe that for 7% = (1/M,1/M, ..., 1/M)" we get from (6.14) that
E[In(S] 7*)] is finite. Then we can directly apply Theorem 3.25 with A = {x € RM*1
Syz=1,z9=0}. Q.E.D.

With the help of Theorem 6.6 we can conclude that problem

sup  E[ln(S; 7)] (6.15)

ZeRM
subject to  T(Z) < r, S, 7 =1,

generates an efficient frontier as well (comparable to the Markowitz bullet for u = id).
However, due to the involvement of the log utility function, the relative location of efficient
frontiers stemming from (6.12) and (6.15) may have several different configurations. The
following is an example.

Example 6.7. Let M = 1. Consider a sample space 2 = {0, 1} with probability P(0) =
0.45 and P(1) = 0.55 and a financial market involving a riskless bond with R = 1 and
one risky asset specified by Sp = 1, SH(0) = 0.5 and S{(1) = 1 + a with o > 9/22 so
that E[S}] > S3. Use the risk measure vi(xg,z1) = |x1| (which is an approzimation of
the drawdown cf. [Vince & Zhu (2015)]). Then it is easy to calculate that the efficient
frontier corresponding to (6.12) is

v(r) =0.55In(1 + ar) + 0.45In(1 — 0.5r),r € [0,r2 ], (6.16)

7P max
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G(vy,In; {Sjz =1}) G(vy,In; {Sjz = 1,20 = 0})

Figure 8: Separated efficient frontiers

where 1%, = (22a — 9)/20ac.  On the other hand the efficient frontier stemming from
(6.15) is a single point {(1,v(1))} where v(1) = 0.55In(1 + ) — 0.451n(2)}.

When « € (9/22,9/2) the two efficient frontiers corresponding to (6.12) and (6.15)
have no common points (see Figure 8). However, when a > 9/2, Gep(vy,In; {Sgx =
Lzg = 0}) C Geppl(vy,In; {Sgx = 1}) (see Figure 9). In particular, when o = 9/2,
Gepp(rr,In; {S x = 1,29 = 0}) coincides with the point on Gepf(vy,In; {Sg x = 1}) corre-
sponding to the growth optimal portfolio as illustrated in Figure 10.

In fact, a far more common restriction to the set of admissible portfolios are limits
of risk. For this example if, for instance, we restrict the risk by vi(z) < 0.5 then we will

create a shared efficient frontier from (6.12) when v is a priori restricted (see Figure 11).

Remark 6.8. (Efficiency Index) Although the growth optimal portfolio is usually not
implemented as an investment strateqy, the mazximum utility pmax corresponding to the
growth optimal portfolio k, empirically estimated using historical performance data, can
be used as a measure to compare different investment strategies. This is proposed in
[Zhu (2007)] and called the efficiency index. When the only risky asset is the payoff of a
game with two outcomes following a given playing strategy, the efficiency coefficient co-
incides with Shannon’s information rate (see [Kelly (1956), Shannon & Weaver (1949),
Zhu (2007)]). In this sense, the efficiency index gauges the useful information contained
in the investment strategy it measures.

7 Conclusion and Open Problems

Following the pioneering idea of Markowitz to trade-off the expected return and standard
deviation of a portfolio, we consider a general framework to efficiently trade-off between
a concave expected utility and a convex risk measure for portfolios. Under reasonable
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G(ry,In; {Sy-x =129 =0})

Figure 9: Touching efficient frontiers

G(vy,In; {Sjz = 1,10 = 0})

Gy |ln; {Sgz = 1})

Figure 10: Touching efficient frontiers at growth optimal
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G(ry,In; {Sgz = 1,v(z) <0.5})

Figure 11: Shared efficient frontiers

assumptions we show that (i) the efficient frontier in such a trade-off is a convex curve
in the expected utility-risk space, (ii) the optimal portfolio corresponding to each level
of the expected utility is unique and (iii) the optimal portfolios continuously depend
on the level of the expected utility. Moreover, we provide an alternative treatment and
enhancement of the results in [Rockafellar, Uryasev & Zabarankin (2006)] showing that
the one fund theorem (Theorem 4.5) holds in the trade-off between a deviation measure
and the expected return (Theorem 5.4) and construct a counter-example illustrating that
the two fund theorem (Theorem 4.2) fails in such a general setting. Furthermore, the
efficiency curve in the leverage space is supposedly an economic way to scale back risk
from the growth optimal portfolio (Theorem 6.4).

This general framework unifies a group of well known portfolio theories. They are
Markowitz portfolio theory, capital asset pricing model, the growth optimal portfolio
theory, and the leverage portfolio theory. It also extends these portfolio theories to more
general settings.

The new framework also leads to many questions of practical significance worthy fur-
ther explorations. For example, quantities related to portfolio theories such as the Sharpe
ratio and efficiency index can be used to measure investment performances. What other
performance measurements can be derived using the general framework in Section 37
Portfolio theory can also inform us about pricing mechanisms such as those discussed
in the capital asset pricing model and the fundamental theorem of asset pricing (see
[Carr & Zhu (to appear), Section 2.3]. What additional pricing tools can be derived
from our general framework?

Clearly, for the purpose of applications we need to focus on certain special cases.
Drawdown related risk measures coupled with the log utility attracts much attention in
practice. In Part II of this series [Maier-Paape & Zhu (2017)] several drawdown related
risk measures are constructed and analyzed. We will conduct a related case study in the
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third part of this series [Brenner, Maier-Paape, Platen & Zhu (in preparation)].
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