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Abstract This is part III of a series of papers which focus on a general framework for portfolio
theory. Here we extend a general framework for portfolio theory in a one-period financial
market as introduced in part I [12] to multi-period markets. This extension is reasonable for
applications. More importantly, we take a new approach, the “modular portfolio theory”, which
is built from the interaction among four related modules: (a) multi period market model, (b)
trading strategies, (c) risk and utility functions (performance criteria), (d) the optimization
problem (efficient frontier and efficient portfolio). An important concept that allows to deal
with the more general framework discussed here is a trading strategy generating function. This
concept limits the discussion to a special class of manageable trading strategies, which is still
wide enough to cover many frequently used trading strategies like for instance “constant weight”
(fixed fraction). As application we discuss the utility function of compounded return and the
risk measure of relative log drawdowns.

Keywords portfolio theory, modular portfolio theory, efficient frontier, trading strategy,
multi-period market model, arbitrage, bond replicating, risk-free

1 Introduction

This is part III of a series of papers which focus on a general framework for portfolio theory. We
laid out a general framework for portfolio theory in a one-period financial market for trading-off
between reward and risk in part I [12] and addressed specifically drawdown risk measures in part
II [13]. Furthermore, a fourth part is planned where we provide a case study on how to implement
the general framework in real financial markets. Here in part III we extend the general framework
for one-period financial markets to multi-period financial markets and go beyond the setting of a
finite sample space.

In addition to extending the framework in part I [12] to more general settings, we now take
a modular approach in organizing this more general framework for portfolio/trading theory. We
recognize the problem of trading-off between higher reward and lower risk using portfolio/trading
strategies within four modular blocks (modular portfolio theory): (a) multi-period market model,
(b) trading strategies, (c) risk and utility functions and (d) the optimization problem.

The multi-period market is assumed to consist of one risk-free and M ∈ N risky assets. The
trading strategy is parameter dependent and specifies how the investor, once started the investment,
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wants to trade the portfolio over time. Based on this, a (convex) risk function r and a (concave)
reward/utility function u can be defined which manifest in an optimization problem of the form

min
x∈A

r(x) subject to u(x) ≥ µ, S>0 x = β, (1)

where A ⊂ RM+1, µ ∈ R and β > 0 are fixed and S0 ∈ RM+1 gives the initial price values of the
M + 1 assets. This just sketches the situation discussed here. Especially the role of the trading
strategy and the meaning of the vector x will be discussed in more detail.

Using a one-period market, there is nothing to do in (b) because the portfolio just consists of
a simple portfolio vector x which gives the weights. This one-period case is extensively studied
in the literature. One of the first discussions on optimization problems of the form (1) is done
by Markowitz [14, 15], the so-called modern portfolio theory, and afterwards with the capital asset
pricing model (CAPM) by Lintner, Mossin and Sharpe [11, 16, 20]. In both settings the risk function
is defined by the standard deviation of the portfolio and the utility function is the mean return of the
portfolio. The only part which can be chosen in this work could be the specific one-period market
model because block (b) is trivial, block (c) is already fixed and block (d) is of the form (1), in
general with A = RM+1. Decades later, Rockafellar, Uryasev and Zabarankin [19] and also part
I [12] discuss a more general setting where block (c) gets more degrees of freedom regarding the
choice of the risk function and the utility function. In [19] the risk function is allowed to be more
general with some specific assumptions, so-called deviation measures, but the utility function still is
the (arithmetic) mean return. In [12] in addition the utility function is of more general form with
some reasonable assumptions and the one-period market model is assumed to be defined on a finite
probability space. In both cases the optimization problem is of the form (1) as well. The idea of
using a multi-period market model together with trading strategies as building blocks for a modular
portfolio theory was firstly introduced by Platen [17]. Accordingly, we here enhance on this idea
and develop an in itself complete and compact approach to this new aspect of portfolio theory. Of
course, multi-period market models are used before. For an introduction to this topic we refer to
Föllmer and Schied [8, Section 5.1] and also Carr and Zhu [2, Chapter 3].

The generalization to multi-period markets for portfolio purposes is important in applications.
In practice, investors and regulators always need to make decisions at different phases of financial
markets under different policy environments. Moreover, many important market operations such as
hedging and pricing of options and other contingent claims have to be dealt with in a multi-period
financial market setting. Finally, the multi-period financial market model is crucial in adequately
modeling certain important reward and risk measures such as compounded return and drawdown
related risk measures. The absolute drawdown was already discussed, e.g., by Chekhlov, Uryasev
and Zabarankin [3, 4], Goldberg and Mahmoud [9] and Zabarankin, Pavlikov and Uryasev [22]. The
risk functions used therein are based on the ideas of the value at risk but applied to the absolute
drawdown. The relative drawdown is much more involved and rarely discussed in the literature.
Grossman and Zhou [10] studied an optimization problem using the maximum relative drawdown
and a geometric Brownian motion with drift as market model where just one risky and also one
risk-free asset are assumed. Cvitanić and Karatzas [6] extend the results for more than one risky
asset and Cherny and Ob lój [5] discuss the setting using an abstract semimartingale financial market
and more general utility and risk functions. Properties on the mean of the logarithm of the relative
drawdown are discussed in part II [13], where the market model has a finite probability space with
independent and identically distributed returns. The same drawdown but for a more general market
model is also discussed in [17].

A more technical challenge of our extension is that the space of random variables on the sample
space that represents the payoff is no longer a finite dimensional space and, therefore, no longer
enjoys local compactness properties. We circumvent this difficulty by introducing a trading strategy
generating function. Doing so we limit ourselves to a special class of manageable trading strategies.
We illustrate by examples that the class of trading strategies we study here is wide enough to include
many frequently used trading strategies such as buy and hold and “constant weight” (fixed fractions).
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Another strategy could be to fix the amount of money invested over time, which is discussed in [17].
Although the here used strategies seem to be simple, it still shows the potential behind this new
building block in portfolio theory.

The paper is arranged as follows. In the next section, Section 2, we layout the multi-period mar-
ket models (building block (a)) and trading strategies (building block (b)) and derive several basic
properties such as the fundamental characterization of a multi-period market with no nontrivial
risk-free trading strategy (see Theorem 1). In Section 3 we discuss our main results according to
the modular approach. After giving examples for the risk and utility functions (building block (c))
based on (a) and (b) in Section 3.1, the optimization problem (building block (d)) is introduced in
Section 3.2. The corresponding notion of efficient frontier is extensively studied, e.g., in terms of
graphs (see Section 3.3) and the main theorems for the existence (and uniqueness) of solutions is
derived in Section 3.4. An application of the theory for the compounded return and the expected log
relative drawdown is discussed in detail in Section 4. To measure the return in risk and utility func-
tion as relative log returns has two reasons. Firstly, it yields the necessary convexity and concavity,
respectively. But moreover it guarantees that drawdowns and runups are measured equally. For
instance a drawdown of 50 % needs a runup of 100% for compensation. Taking log relative returns,
the absolute value of both movements is equal. The paper ends with some conclusions in Section 5.

2 Multi-period market and trading strategies

In this section we describe a multi-period (financial) market model. In such a model, investment
decisions are made over several periods with potentially different investment environments charac-
terized by different economic, financial and policy situations. The role of portfolios is replaced by
trading strategies which can be viewed as a sequence of portfolios varying in time according to an
a priori given, but possibly random, strategy. The information on the investment environment is
revealed with the progress of time and the action of the trading strategy is contingent on the exist-
ing information. The availability of the information is modeled by a filtration. This section lays a
foundation for the subsequent analysis.

2.1 Definitions

The following notion of a multi-period market is closely related to [8, Section 5.1] and [17, Sections
2.1.2, 2.2.1, and 2.2.2]. We assume that M + 1 financial instruments (one risk-free asset with index
0 and M ∈ N risky assets with indexes 1, . . . ,M) are given. Their initial prices are denoted by
S0 := (S0

0 , S
1
0 , . . . , S

M
0 ) ∈ RM+1

>0 . A model for N ∈ N future time steps is of the following form:
Let (Ω,Σ,P) be a probability space. By L2 := L2(Ω,Σ,P) := L2(Ω,Σ,P;R) we denote the set of

all random variables X : Ω → R with finite norm ‖X‖L2 := (E [X2])
1/2

, where 〈X,Y 〉L2 := E [XY ]
for X,Y ∈ L2 is the inner product. For a set of M + 1 assets we define L2(Ω,Σ,P;RM+1) where
each of the M +1 components of the elements are in L2. This could model a one-period market. For
a multi-period market model let (Ω,Σ, {Fn}0≤n≤N ,P) be a filtered probability space with filtration
{Fn}0≤n≤N which satisfies

{∅,Ω} =: F0 ⊂ F1 ⊂ · · · ⊂ FN−1 ⊂ FN := Σ.

Define

L2
(
N ;RM

)
:= L2

(
Ω,Σ, {Fn}0≤n≤N ,P;RM

)
:=

N

×
n=0
L2
(
Ω,Fn,P;RM

)
and L2(N) := L2(N ;R) with corresponding set of positive processes

L2
(
N ;RM>0

)
:= L2

(
Ω,Σ, {Fn}0≤n≤N ,P;RM>0

)
:=

N

×
n=0
L2
(
Ω,Fn,P;RM>0

)
⊂ L2

(
N ;RM

)
.
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Analogously, L0 denotes the set of all random variables and L1 the random variables with finite
(absolute) expectation. In most cases we will use L2, which, however, often is not required. In these
cases one could also use, e.g., L0.

Firstly, we define the notion of risk-free which means that there is no uncertainty and the price
development is (not necessarily strictly) monotone increasing.

Definition 1 (Risk-free asset). The stochastic process Z := (Z0, Z1, . . . , ZN ) ∈ L2(N) is called
risk-free if Zn is constant a.s. for n = 0, 1, . . . , N and Zn ≥ Zn−1 > 0 a.s. for n = 1, . . . , N .

Definition 2 (Multi-period market model, cf. Föllmer and Schied [8, Section 5.1]). For M ∈ N let
S := (Sn)0≤n≤N ∈ L2(N ;RM+1

>0 ) with

Sn :=
(
S0
n, S

1
n, . . . , S

M
n

)> ∈ R>0 × L2
(
Ω,Fn,P;RM>0

)
⊂ L2

(
Ω,Fn,P;RM+1

>0

)
, (2)

where (S0
0 , S

0
1 , . . . , S

0
N ) ∈ L2(N), i.e., the asset with index zero, is risk-free. The stochastic process

S is called a multi-period market model of size M + 1 with N time steps.

A portfolio in a one-period market model just contains of a single vector which gives the weights
for each asset. In a multi-period market model the situation is much more complex. After each time
step we can change the weights. We even can change the weights, say after time step n, based on
information of all past time steps up to step n. Hence, in our situation we denote a series of time
varying portfolios by a trading strategy as follows.

Definition 3 (Trading strategy). For M,N ∈ N let S := (Sn)0≤n≤N ∈ L2(N ;RM+1
>0 ) be a market

model. A time dependent vector

X := (xn)1≤n≤N ∈ L
0
(
N − 1;RM+1

)
:=

N−1

×
n=0
L0
(
Ω,Fn,P;RM+1

)
,

for the same filtered probability space (Ω,Σ, {Fn}0≤n≤N ,P) from the market model, with

xn :=
(
x0
n, x

1
n, . . . , x

M
n

)> ∈ L0
(
Ω,Fn−1,P;RM+1

)
, (3)

for n = 1, . . . , N , is called a trading strategy.

We still need to give the trading strategy a meaning and a real connection to the market model
S. The values of a trading strategy X = (xn)1≤n≤N have the following interpretation:

• xn may depend on S0, . . . , Sn−1 but not on later prices,
• Sin absolute price of the ith asset at time n,
• xin: number of shares invested into the ith asset from time step n− 1 to n,
• Sin−1x

i
n: amount of money invested into the ith asset,

• Sinxin: absolute value of this investment after the time step from n− 1 to n,

• S>n xn =
∑M
i=0 S

i
nx

i
n: absolute value of all investments after the time step from n− 1 to n.

Note that (2) and (3) imply that Sn is Fn measurable while xn is Fn−1 measurable. The reason is
that xn are the number of shares for each asset hold from time step n− 1 to n. This must be known
at time step n − 1 where the shares have to be bought. Hence, it must be Fn−1 measurable. The
prices Sn, of course, are known not before time n, i.e., it must be Fn measurable. Using this, we
can define the wealth process realized by a trading strategy applied to the market model.

Definition 4 (Wealth of trading strategy). Let S ∈ L2(N ;RM+1
>0 ) be a market model and W0 ∈ R>0

the investor’s fixed initial wealth. For a trading strategy X = (xn)1≤n≤N ∈ L0(N − 1;RM+1), the

wealth process W(X) ∈ L0(N) is defined by

W0(X) :=W0

Wn(X) :=Wn(x1, . . . , xn) :=Wn−1(X) + (Sn − Sn−1)
>
xn =W0 +

n∑
k=1

(Sk − Sk−1)
>
xk (4)

for n = 1, . . . , N . Hence, W : L0(N − 1;RM+1)→ L0(N) is an affine linear functional.
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Note, that whenever X ∈ L2(N − 1;RM+1) then, by the Cauchy-Schwarz inequality, we obtain
that W(X) ∈ L1(N).

Even though the market model consists of positive stochastic processes, we may open short posi-
tions using a trading strategy. Hence, total ruin may occur. Since we always try to avoid a ruin we
define the set of admissible trading strategies.

Definition 5 (Admissible trading strategy). A trading strategy X which satisfies Wn(X) > 0 a.s.
for n = 1, . . . , N is called admissible. The set of all admissible trading strategies is denoted by
A = A(S) ⊂ L0(N − 1;RM+1).

Note, that A is a convex set.

2.2 Properties of the multi-period market model

The most important scenario we try to avoid is total ruin. This strongly depends on the trading
strategy. However, the opposite should also be impossible, i.e., it should not be possible to gain
money without risk, namely an arbitrage. This property strongly depends on the market model
itself. The literature mostly discusses the notion of arbitrage, where an arbitrage opportunity beats
the risk-free asset with positive probability while it is never worse than the risk-free asset. In part
I, see [12, Section 3.1], the notion of a risk-free portfolio is introduced for the one-period market
and a finite probability space. A risk-free portfolio is almost the same as an arbitrage opportunity
but does not have to beat the risk-free asset with positive probability. We will discuss this kind of
extension for the more general case with multi-period market models (cf. also [17, Section 2.2.3 and
Section 2.2.4] for more details).

When discussing arbitrage, the notion of self-financing is often used, (see, e.g., Föllmer and
Schied [8, Definition 5.4]), which means that all money which has been invested initially stays
invested and no fresh money is invested afterwards.

Definition 6 (Self-financing, see Föllmer and Schied [8, Definition 5.4]). Let S ∈ L2(N ;RM+1
>0 ) be

a market model for N ≥ 2. A trading strategy X := (xn)1≤n≤N with

S>n xn = S>n xn+1 (5)

for all n = 1, . . . , N − 1 is called self-financing.

The space of self-financing trading strategies is linear and simplifies the wealth process as follows.

Proposition 1. Let S ∈ L2(N ;RM+1
>0 ), N ≥ 2, be a market model. A trading strategy X is self-

financing if and only if

Wn(X) =W0 +
(
S>n xn − S>0 x1

)
(6)

for all n = 1, . . . , N . If S>0 x1 =W0, then (6) becomes Wn(X) = S>n xn.

Proof. If X is self-financing, then (4) becomes a telescoping sum and directly gives (6). On the other
hand, if (6) holds true, then, by (6) we get

Wn+1(X) =W0 +
(
S>n+1xn+1 − S>0 x1

)
and by (4) together with (6) we obtain

Wn+1(X) =Wn(X) + (Sn+1 − Sn)
>
xn+1 =W0 +

(
S>n xn − S>0 x1

)
+ (Sn+1 − Sn)

>
xn+1

for n = 1, . . . , N − 1. Equating both expressions gives Snxn = Snxn+1 for all n = 1, . . . , N − 1, i.e.,
X is self-financing.
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Remark 1 (Bond). Let Z := (zn)1≤n≤N be the trading strategy which represents the bond, i.e.,

zn :=

(
W0

S0
0

, 0, . . . , 0

)>
for n = 1, . . . , N . (7)

Of course, Z is self-financing with S>0 z1 =W0. Therefore, Proposition 1 gives

Wn(Z) = S>n zn =W0
S0
n

S0
0

for n = 1, . . . , N , (8)

A trading strategy X is called trivial, if X̂ ≡ 0 a.s., where X̂ := (x̂n)1≤n≤N with x̂n :=
(x1
n, . . . , x

M
n )> denotes the risky part of X. Analogously we define the risky part of S := (Sn)0≤n≤N

by Ŝ := (Ŝn)0≤n≤N , where Ŝn := (S1
n, . . . , S

M
n )
>

.
The following notion of arbitrage opportunity, bond replicating and risk-free trading strategy is

related to [8, Definition 5.10], see [17, Remark 2.2.17].

Definition 7 (Arbitrage opportunity, bond replicating, and risk-free). Let S ∈ L2(N ;RM+1
>0 ) for

M,N ∈ N be a market model and X := (xn)1≤n≤N a trading strategy.

(a) We say X is risk-free if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N and WN (X) ≥ W0
S0
N

S0
0

a.s. (9)

We say market model S has no nontrivial risk-free trading strategy if there does not
exist a risk-free trading strategy X with X̂ 6≡ 0 (i.e. besides the trivial ones with X̂ = 0 a.s.
there are no risk-free trading strategies).

(b) We say X is an arbitrage opportunity if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N , WN (X) ≥ W0
S0
N

S0
0

a.s.,

and

P

(
WN (X) >W0

S0
N

S0
0

)
> 0.

We say market model S is arbitrage-free, if there does not exist any arbitrage opportunity.
(c) We say X is bond replicating if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N and WN (X) =W0
S0
N

S0
0

a.s.

We say market model S has no nontrivial bond replicating trading strategy, if there
does not exist a bond replicating trading strategy X with X̂ 6≡ 0 (i.e. besides the trivial ones

with X̂ = 0 a.s. there are no bond replicating trading strategies).

Remark 2 (Interpretation of Definition 7). The first property of a risk-free trading strategy in (9)
says, that at time step n− 1 no more than the available capital is invested. The second property in
(9) means that the final wealth of the trading strategy is always at least as much as the final wealth
of the bond strategy according to Remark 1.

An arbitrage opportunity has the same properties, but on top of that the strategy wins strictly more
than the bond strategy with positive probability.

A bond replicating trading strategy also is not allowed to invest more than the available capital. In
this case, the final wealth has to be exactly the same as for the bond strategy.
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The next result gives necessary and sufficient conditions for a market model having no nontrivial
risk-free trading strategy. Those conditions are important when looking at properties for risk and
utility measures on such market models. Another essential property regarding uniqueness is that
two different trading strategies should result in two different wealth processes, which is ensured by
the addition in the next result.

Theorem 1 (Multi-period market model with no nontrivial risk-free trading strategy). The following
assertions are equivalent:

(a) S has no nontrivial risk-free trading strategy.
(b) S is arbitrage-free and has no nontrivial bond replicating trading strategy.
(c) For all n = 1, . . . , N and all η ∈ L0(Ω,Fn−1,P;RM+1) with η̂ 6≡ 0 it is

P

((
Sn −

S0
n

S0
n−1

Sn−1

)>
η < 0

)
> 0. (10)

(d) S is arbitrage-free and the following holds for all trading strategies X and Y :

W(X) =W(Y ) a.s. implies X̂ = Ŷ a.s. (11)

If in addition S0
n > S0

n−1 for all n = 1, . . . , N and one of the assertions (a), (b), (c) or (d) holds,
then the mapping W is injective, i.e., W(X) =W(Y ) a.s. implies X = Y a.s.

Proof. The equivalence of (a) and (b) directly follows from Definition 7.
Proof of implication from (a) to (c): Assume this implication is wrong, i.e., assume there exist

n0 ∈ {1, . . . , N} and η∗ ∈ L0(Ω,Fn0−1,P;RM+1) with η̂∗ 6≡ 0 such that

1 = P

((
Sn0
−

S0
n0

S0
n0−1

Sn0−1

)>
η∗ ≥ 0

)
= P

((
Ŝn0 −

S0
n0

S0
n0−1

Ŝn0−1

)>
η̂∗ ≥ 0

)
, (12)

or, equivalently, S>n0
η∗ ≥ (S0

n0
/S0

n0−1)S>n0−1η
∗ a.s. Let trading strategy Z := (zn)1≤n≤N represent

the bond, see Remark 1. Define Y := (yn)1≤n≤N by yn0
:= η∗ and yn := zn for n 6= n0. Observe

that for 1 ≤ n ≤ n0− 1 by (8) now Wn(Y ) =Wn(Z) =W0S
0
n/S

0
0 holds true. Since property (12) of

η∗ is independent on its risk-free part, we can choose, w.l.o.g., the bond part η0 ∈ L0(Ω,Fn0−1,P)

of η∗ such that S>n0−1yn0
= S>n0−1η

∗ = S0
n0−1η

0 + Ŝ>n0−1η̂
∗ = Wn0−1(Y ) = Wn0−1(Z) = S>n0−1zn0

.
For n0 ≤ n ≤ N it follows from (4), (7) and (8) that

Wn(Y ) =Wn(Z)− (Sn0
− Sn0−1)

>
zn0

+ (Sn0
− Sn0−1)

>
η∗

=W0
S0
n

S0
0

−W0

S0
n0
− S0

n0−1

S0
0

+ S>n0
η∗ − S>n0−1η

∗

≥ W0
S0
n

S0
0

−W0

S0
n0
− S0

n0−1

S0
0

+
S0
n0

S0
n0−1

S>n0−1η
∗ − S>n0−1η

∗ =W0
S0
n

S0
0

=Wn(Z) (13)

holds a.s. and using S>n−1yn = S>n−1zn = Wn−1(Z) one easily obtains with (13) that S>n−1yn ≤
Wn−1(Y ) a.s. for all n = 1, . . . , N . In particular, using (13) for n = N , trading strategy Y must be
risk-free and nontrivial. This contradicts assumption (a). Hence, there cannot be such an η∗, i.e.,
(c) must hold.

Proof of implication from (c) to (a): Let (c) hold and assume there exists a nontrivial risk-free

trading strategy X := (xn)1≤n≤N , i.e., X satisfies (9) and X̂ 6≡ 0. Let n0 ∈ {1, . . . , N} be minimal
with the property x̂n0

6≡ 0. Before time n0 trading strategy X can at most invest into the bond.
Hence,

S>n0−1xn0
≤ Wn0−1(X) ≤ W0S

0
n0−1/S

0
0 a.s. (14)
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because of the first property in (9). From (c) we get that xn0
satisfies (10) for η := xn0

and n = n0.
Hence, using (4), (10) and (14), we obtain that the following holds true with positive probability:

Wn0(X) =Wn0−1(X) + (Sn0 − Sn0−1)
>
xn0 <Wn0−1(X) +

(
S0
n0

S0
n0−1

− 1

)
S>n0−1xn0

≤ W0

S0
n0

S0
0

.

Because of the second property in (9), it must be n0 < N and there must exist a maximal n1 ∈
{n0 + 1, . . . , N} such that

P

(
Wn1−1(X) <W0

S0
n1−1

S0
0

)
> 0 and P

(
Wn1(X) ≥ W0

S0
n1

S0
0

| Wn1−1(X) <W0

S0
n1−1

S0
0

)
= 1.

Define

η# :=

xn1
, if Wn1−1(X) <W0

S0
n1−1

S0
0
,

(W0/S
0
0 , 0, . . . , 0)

>
, otherwise.

Observe that x̂n1 6≡ 0 and hence η̂# 6≡ 0. Using (4) and (9) it can then be shown, that(
Sn1 −

S0
n1

S0
n1−1

Sn1−1

)>
η# = (Sn1 − Sn1−1)

>
η# −

S0
n1
− S0

n1−1

S0
n1−1

S>n1−1η
# ≥ 0 a.s.

which contradicts (c). Hence, S has no nontrivial risk-free trading strategy.
Proof of implication from (a), (b) and (c) to (d): We just need to show (11) for an arbitrage-free

market S. Let X := (xn)1≤n≤N and Y := (yn)1≤n≤N fulfill W(X) =W(Y ) a.s. From (4) it follows

that (Sn − Sn−1)
>

(xn−yn) = 0 a.s. for n = 1, . . . , N . Now, let n ∈ {1, . . . , N} be arbitrary. W.l.o.g.
it is S>n−1(xn − yn) ≤ 0. Define η† := xn − yn + (c, 0, . . . , 0)> with c := −S>n−1(xn − yn)/S0

n−1 ≥ 0.
We have S>n−1η

† = 0 and therefore

0 ≤ (Sn − Sn−1)
>
η† =

(
Sn −

S0
n

S0
n−1

Sn−1

)>
η† a.s.

Because of (c) we then must have η̂† = x̂n − ŷn ≡ 0 a.s. Since n was arbitrary X̂ ≡ Ŷ a.s. must
hold which proofs (11).

It remains to show the implication from (d) to (c): Since S is arbitrage-free, we firstly can show
that for all n = 1, . . . , N and all η ∈ L0(Ω,Fn−1,P;RM+1) with η̂ 6≡ 0 it is

P

((
Sn −

S0
n

S0
n−1

Sn−1

)>
η < 0

)
> 0 or

(
Sn −

S0
n

S0
n−1

Sn−1

)>
η = 0 a.s. (15)

Assume not, then there exists an n0 ∈ {1, . . . , N} and η∗ with η̂∗ 6≡ 0 such that

1 = P

((
Sn0
−

S0
n0

S0
n0−1

Sn0−1

)>
η∗ ≥ 0

)
and P

((
Sn0
−

S0
n0

S0
n0−1

Sn0−1

)>
η∗ > 0

)
> 0.

(16)

We can proceed as in the proof for the implication from (a) to (c) if we replace (12) by (16). Then
the there constructed Y is still risk-free and nontrivial. In particular, (13) for n = N still holds true
and due to (16) it even holds true with a strict inequality, at least with positive probability. This
implies that the corresponding Y is an arbitrage opportunity. Since this is a contradiction, there
cannot be such an η∗.
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To show (c), i.e., to show that (10) must hold true, we need to exclude the second property
in (15) by using (11). We proof this indirectly: Assume there exist n0 ∈ {1, . . . , N} and η# ∈
L0(Ω,Fn0−1,P;RM+1) with η̂# 6≡ 0 such that(

Sn0 −
S0
n0

S0
n0−1

Sn0−1

)>
η# = 0 a.s.,

i.e., S>n0
η# = (S0

n0
/S0

n0−1)S>n0−1η
# a.s. Using this η# we can build a trading strategy Y exactly

as in the proof for the implication from (a) to (c) where again, w.l.o.g., S>n0−1η
# = Wn0−1(Y ) =

Wn0−1(Z) = W0S
0
n0−1/S

0
0 . Then, (13) holds true for η∗ = η# with equality for all n0 ≤ n ≤ N

but in particular for n = N , i.e., Y is nontrivial and bond replicating. We conclude that even
Wn(Y ) = W0S

0
n/S

0
0 = Wn(Z) a.s. for n = 1, . . . , N , i.e., W(Y ) = W(Z) a.s. Then, (11) implies

Ŷ = Ẑ a.s., which is a contradiction, because Ŷ 6≡ 0 ≡ Ẑ. Hence, (c) must hold true.
It remains to proof the additional result in case S0

n > S0
n−1 for all n = 1, . . . , N : Let W(X) =

W(Y ) a.s., X̂ = Ŷ a.s. and assume X 6≡ Y . Then, using (4) we get 0 = Wn(X) − Wn(Y ) =
(S0
n − S0

n−1)(x0
n − y0

n) for all n = 1, . . . , N , a contradiction. Hence, whenever W(X) = W(Y ) a.s.

and X̂ = Ŷ a.s. it must be X = Y a.s. which completes the proof.

Remark 3 (Connection to Maier-Paape and Zhu [12, Section 3.1]). In the one-period case N = 1
we can define R := S0

1/S
0
0 and x := x1. If we have S>0 x =W0 then we obtain from (4) that

WN (X)−W0
S0
N

S0
0

=W0 + (S1 − S0)
>
x−RW0 = (S1 −RS0)

>
x.

Hence, for all x such that S>0 x =W0 Definition 7 is equivalent to the definitions in [12, Definition 4].
Moreover, Theorem 1 implies the result [12, Theorem 2] in the one-period case with finite prob-

ability space for the case R ≥ 1 and therefore can be seen as a generalization of [12, Theorem 2].
Note, that assertion (ii) in [12, Theorem 2], which corresponds to (c) in Theorem 1, includes the
assumption that S is arbitrage-free. This assumption is not required in (c) of Theorem 1. See also
[17, Corollary 2.2.24] for more details.

2.3 Trading strategy generating function

In most cases, an investor already has a fixed strategy to trade the M risky assets and the bond
when the initial weights vector is known. For instance one could want to freeze the fractions of
capital invested in the portfolio assets. The investor’s strategy then is to reallocate the portfolio
after each time step such that these fixed fractions are reestablished. Hence, we are not interested
in finding the “optimal” trading strategy over all possibilities, but in the “optimal” initial weights
for our fixed and well-known strategy. To have a mathematical formalism for this, we make the
following definition.

Definition 8 (Trading strategy generating function). Let M,N ∈ N, A ⊂ RM+1 and a market
model S ∈ L2(N ;RM+1

>0 ) be given. We call a function v : A → L0(N − 1;RM+1), which maps a
vector y ∈ A to a trading strategy, a trading strategy generating function X = v(y), where

v(y) := (v1(y), . . . , vN (y)), vn(y) ∈ L0
(
Ω,Fn−1,P;RM+1

)
for n = 1, . . . , N .

We say the set A ⊂ RM+1 is admissible, if v(y) ∈ A(S) is an admissible trading strategy for all
y ∈ A, i.e., v(A) ⊂ A(S), see Definition 5.

When dealing with a one-period market model there are always some constraints. One of the most
reasonable conditions is to require that all wealth is invested into the M + 1 assets and there is no
cash (or the bond may simulate the cash position). In a multi-period market the same holds true,
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i.e., the initial investment x1 = v1(y) should also be fixed by say β ∈ R (e.g. β = W0) such that
S>0 v1(y) = β. If the trading strategy generating function v in addition always gives self-financing
portfolios, see Definition 6, and β = W0, we know that after each time step the complete wealth is
invested.

Under some reasonable assumptions, the following result gives the boundedness of admissible sets
under the constraint S>0 v1(y) = β. Note that Maier-Paape and Zhu [12, Lemma 2] show a related
result for a one-period market using a general class of expected utility functions. Here, we just focus
on a general trading strategy and its admissible sets. Such a result is also shown in [17, Lemma
2.2.29].

Lemma 1. Assume the market model S ∈ L2(N ;RM+1
>0 ) has no nontrivial risk-free trading strategy.

Let v : RM+1 → L0(N − 1;RM+1) be a trading strategy generating function and assume there is a
matrix B ∈ R(M+1)×(M+1) with full rank such that v1(y) = By for all y ∈ RM+1. Define Aβ :=
{y ∈ RM+1 : S>0 (By) = β} for some fixed β > 0. Then, each admissible subset A ⊂ Aβ is bounded.

Proof. We use an indirect proof. Assume the assertion does not hold and A is unbounded. Then,
there must be a sequence (ym)m∈N ⊂ A with S>0 (Bym) = β and ‖ym‖ → ∞ as m → ∞. Then
for (xm)m∈N := (Bym)m∈N we also have ‖xm‖ → ∞ as m → ∞, because ‖ym‖ = ‖B−1Bym‖ ≤
‖B−1‖‖xm‖ and ‖B−1‖ > 0. The assumption of v, the definition of admissible in Definition 5, and
(4) gives

W1(v(ym)) =W0 + (S1 − S0)
>
v1(ym) =W0 + (S1 − S0)

>
xm > 0 (17)

a.s. for all m ∈ N.
Property S>0 x

m = β implies that ‖x̂m‖ → ∞ as m→∞. Then there exists a subsequence (w.l.o.g.
the original sequence) such that xm/‖x̂m‖ → x∗ = (x∗0, (x̂

∗)>)> ∈ RM+1 as m→∞ where ‖x̂∗‖ = 1
and x∗0 = −S>0 x̂∗/S0

0 . Consequently, we have S>0 x
∗ = 0. Dividing (17) by ‖x̂m‖ and taking the limit

as m→∞ yields S>1 x
∗ ≥ 0 a.s. Therefore, it must be

P

((
S1 −

S0
1

S0
0

S0

)>
x∗ < 0

)
= P

(
S>1 x

∗ < 0
)

= 0,

which is a contradiction, because by assumption the market has no nontrivial risk-free trading
strategy (cf. Theorem 1 (c)).

Now we give two examples for trading strategy generating functions.

Example 1 (Buy and hold; constant number of shares). The buy and hold (bnh) strategy simply
buys the assets at the beginning and does not change the number of shares for each asset in the
subsequent time steps. Hence, the corresponding trading strategy generating function is defined by

vbnh : RM+1 → L0
(
N − 1;RM+1

)
, y 7→ X = (xn)1≤n≤N with xn := y for n = 1, . . . , N.

Obviously, the trading strategy X = vbnh(y) is self-financing for each y ∈ RM+1 (cf. Definition 6).
Therefore, (4) in Definition 4 and Proposition 1 give

Wn(vbnh(y)) =W0 +

n∑
k=1

(Sk − Sk−1)
>
y =W0 + (Sn − S0)

>
y (18)

for n = 1, . . . , N . The largest admissible set for vbnh according to Definition 8 is given by

Abnh :=
{
y ∈ RM+1 : S>0 y −W0 < S>n y a.s. for n = 1, . . . , N

}
.

For this example, Lemma 1 can directly be applied using B = Id ∈ R(M+1)×(M+1) if the mar-
ket model S has no nontrivial risk-free trading strategy. Then, for β > 0 fixed, the set Abnh ∩
{y ∈ RM+1 : S>0 y = β} is bounded.
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Example 2 (Constant weight/fixed fraction). Constant weights means, that the fractions invested
into the assets stay constant in time. For this it is needed that the portfolio is reallocated after each
time step.

First we define the rates of return T of the multi-period market model S by

Tn :=
(
T 0
n , T

1
n , . . . , T

M
n

)>
, T in :=

Sin
Sin−1

− 1 > −1 a.s., i = 0, 1, . . . ,M , (19)

for time steps n = 1, . . . , N (cf. Definition 2).
For the corresponding trading strategy generating function, which we denote by vtwr, we need to

make sure that after each time step, the same fractions of wealth, given by some fixed f ∈ RM+1,
are invested into the assets. Using trading strategy X = vtwr(f), this should result into a wealth
process

Wn(vtwr(f)) =Wn−1(vtwr(f)) ·
(
1 + T>n f

)
=W0

n∏
k=1

(
1 + T>k f

)
(20)

for n = 1, . . . , N , which is related to the terminal wealth relative (TWR), see, e.g., Vince [21].
To achieve this, we first define f 7→ X = vtwr(f) by

vtwr(f) := ((vtwr)1(f), . . . , (vtwr)N (f)), (vtwr)n(f) :=
(
(vtwr)

0
n, (vtwr)

1
n, . . . , (vtwr)

M
n

)
,

for n = 1, . . . , N where

(vtwr)
i
1(f) :=

fi
Si0
W0, (vtwr)

i
n(f) :=

fi
Sin−1

Wn−1(vtwr(f)) =
fi

Sin−1

W0

n−1∏
k=1

(
1 + T>k f

)
(21)

for n = 2, . . . , N and i = 0, 1, . . . ,M . Here, for instance, (vtwr)
i
1(f) denotes the amount of shares of

the ith asset which have to be bought initially in order to invest the fraction fi of the initial wealth
W0 into this asset for the first time step.

Now we need to show that this indeed yields (20). Inserting (21) into the definition of the wealth,
see Definition 4, and using (19) we obtain

Wn(vtwr(f)) =Wn−1(vtwr(f)) + (Sn − Sn−1)
>

(vtwr(f))n

=Wn−1(vtwr(f)) ·

(
1 +

M∑
i=1

(
Sin − Sin−1

) fi
Sin−1

)
=Wn−1(vtwr(f)) ·

(
1 + T>n f

)
for n = 1, . . . , N and (20) follows by induction. Of course, this only makes sense for admissible
trading strategies. Therefore, we define

Atwr :=
{
f ∈ RM+1 : 1 + T>n f > 0 a.s. for n = 1, . . . , N

}
. (22)

Note that, in general, vtwr is nonlinear for N ≥ 2.
Also in this case we can apply Lemma 1 directly if the market model S has no nontrivial risk-free

trading strategy using a diagonal matrix B with diagonal entries bii =W0/S
i
0 > 0 for i = 0, 1, . . . ,M .

Remark 4. Let the situation of Example 2 for N ≥ 2 be given and f ∈ RM+1 be fixed. Assume
there exists some n ∈ {1, . . . , N − 1} such that P (1 + T>n f 6= 1) > 0. Then, one can show that

vtwr(f) is self-financing if and only if
∑M
i=0 fi = 1. Also note that

∑M
i=0 fi = 1 if and only if

W0 = S>0 (vtwr)1(f). A proof can be found in [17, Proposition 2.2.32].
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3 Efficient portfolios

Having the multi-period financial market set up in the previous section, we are ready to focus on the
main theme of the paper. In this section we extend the general framework for portfolio theory from
part I [12] to the setting of multi-period financial markets. We will derive a characterization of the
efficient frontier for trading-off risk and reward using admissible trading strategies. Furthermore,
we also discuss the relationship between points on this efficient frontier and their corresponding
trading strategies. We do so using the modular approach alluded to in the introduction. The
general portfolio/trading strategy trade-off problem is considered in the light of the interaction
among four related modules. While we already discussed the modules (a) multi-period market and
(b) trading strategies in the last section, we now want to concentrate on (c) risk and utility function
(performance criteria; see Subsection 3.1) and (d) the optimization problem (including discussion of
efficient frontier and efficient portfolios; see Subsections 3.2, 3.3 and 3.4).

3.1 Performance criteria

In part I [12] we chose to introduce risk and utility functions to measure performance criteria in
an axiomatic way. This is not necessary here. Indeed for our modular portfolio theory it suffices
to assume the risk functions to be (closed) proper convex and the utility function to be (closed)
proper concave. Clearly this is more general than often used assumptions like for instance positive
homogeneous risk functions.

One reason to choose a multi-period market model over a one-period market model could be the
possibility to involve complex trading strategies. Another and maybe a more important reason could
be path-dependent risk measures, which cannot be directly used on a one-period market. One well-
known path-dependent risk measure is the drawdown, which can be defined in different ways and
different variants.

Definition 9 (Absolute/relative drawdown process). Assume we have a model for a wealth process
W := (Wn)0≤n≤N ∈ L2(N), e.g., W = W(X) for some trading strategy X and a multi-period
market model S (see Definition 3 and Definition 4). The absolute drawdown process Dabs =
((Dabs)1, . . . , (Dabs)N) is defined by

(Dabs)n(W ) := max
0≤`≤n

{W`} −Wn ≥ 0, (23)

for n = 0, 1, . . . , N . The relative drawdown process Drel = ((Drel)1, . . . , (Drel)N) is defined for
positive wealth processes (e.g. when using admissible trading strategies) by

(Drel)n(W ) :=
(Dabs)n(W )

max
0≤`≤n

{W`}
= 1− Wn

max
0≤`≤n

{W`}
= 1− min

0≤`≤n

{
Wn

W`

}
∈ [0, 1), (24)

for n = 0, 1, . . . , N . Both, Dabs and Drel, are stochastic processes and no risk measures up to now.

Chekhlov, Uryasev, and Zabarankin [3, 4] studied the absolute drawdown for a simple trading
strategy and a finite probability space. The risk measure they define is called conditional drawdown
at risk (CDaR) and can be seen as a conditional value at risk of the absolute drawdown process.
Later, Zabarankin, Pavlikov, and Uryasev [22] propose to use the absolute drawdown but this time
on a rolling frame of size τ ∈ N, i.e. they use

(Dabs,τ )n(W ) := max
nτ≤`≤n

{W`} −Wn

for n = 1, . . . , N , where nτ := max{1, n − τ}. Again, they use the concept of the conditional value
at risk.
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Goldberg and Mahmoud [9] define the so-called conditional expected Drawdown (CED), which
is similarly defined as CDaR. The CED is the conditional value at risk of the maximum absolute
drawdown over all scenarios, where the market model is defined in a continuous time setting.

Maier-Paape and Zhu [13] study the expected value of the logarithm of the relative drawdown
at time step N (called current drawdown) in a finite probability space. Therein, the multi-period
market is constructed using a one-period market model by K ∈ N iid drawings. We want to use
this variant, but in our more general setting with a multi-period market model and using a general
trading strategy generating function. It is defined as follows:

Definition 10 (Multi-path expected log drawdown). Let S ∈ L2(N ;RM+1
>0 ) be the market model

and v be a trading strategy generating function with domain A ⊂ RM+1 and with wealth process
W(v(x)), x ∈ A. Then, the multi-path expected log drawdown is defined by

ρln : A→ [0,∞], x 7→

{
E [− ln (1− (Drel)N(W(v(x))))], if v(x) is admissible (cf. Definition 5),

∞, otherwise.

Remark 5. Assuming the range of S is bounded (which is reasonable for real markets) and the
trading strategy generating function v is continuous as a function from A to L2(N), then x 7→
W(v(x)) is continuous and, therefore, so is ρln.

A reasonable utility function (corresponding to the drawdown in Definition 10) may have the form

u : A→ R, x 7→ E [WN (v(x))−W0]. (25)

Using the buy and hold strategy we obtain

ubnh(x) := E [WN (vbnh(x))−W0] = E [SN − S0]
>
x, (26)

which is linear. Another variant uses the terminal wealth relative (TWR), which, in our setting, is
defined by

TWR(f) :=

N∏
n=1

(
1 + T>n f

)
∈ L0(R>0), f ∈ Atwr (cf. (22)),

with the rates of return T from (19). Note that, because of (20) in Example 2, we have

TWR(f) =
WN (vtwr(f))

W0
, (27)

i.e., it is the quotient of end and start capital and the vtwr trading strategy is strongly related to the
variant used in [21]. As a utility function for the TWR we define

ulogTWR : RM+1 → [−∞,∞], f 7→

{
E [ln (TWR(f))], f ∈ Atwr,

−∞, f /∈ Atwr,
(28)

with Atwr from (22). Inserting the above characterizations of TWR gives

ulogTWR(f) = E [ln (WN (vtwr(f)))− ln (W0)] = E

[
ln

(
N∏
n=1

(
1 + T>n f

))]
=

N∑
n=1

E
[
ln
(
1 + T>n f

)]
(29)

for f ∈ Atwr. A corresponding risk function would be the drawdown in Definition 10 with v := vtwr.
With

TWRb
a(f) :=

b∏
n=a

(
1 + T>n f

)
∈ L0(R>0), for 1 ≤ a ≤ b ≤ N , (30)
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and using (20) we get

ρln(f) = E

[
− ln

(
min

0≤`≤N

{
WN (vtwr(f))

W`(vtwr(f))

})]
(31)

= E

[
− ln

(
min

{
1, min

1≤`≤N

{
TWRN

` (f)
}})]

= E

[
max

{
0, max

1≤`≤N

{
− ln

(
TWRN

` (f)
)}}]

.

for f ∈ Atwr, see also [13, Definition 6 and Theorem 8]. Under reasonable assumptions on the market
we will see later (see Section 4) that ρln is proper convex and can therefore be used as a risk function.
Similarly, we will find that ulogTWR is proper concave and use it as a utility function.

3.2 Optimization

At the core of our framework for the portfolio / trading strategy theory is an optimal trade-off
between the two competing performance criteria risk and reward. This subsection discusses two
related optimization problems: either minimizing the risk with a lower bound for the reward or
maximizing the reward with a upper bound for the risk under the setting below.

Setting 1. Assume we have the following:

(i) Multi-period market model S ∈ L2(N ;RM+1
>0 ), M,N ∈ N, see Definition 2.

(ii) Trading strategy, which is defined by a given trading strategy generating function v : A →
L0(N − 1;RM+1) as in Definition 8 with non-empty and convex domain A ⊂ RM+1.

(iii) Utility function u : A→ R ∪ {−∞}, which is assumed to be proper concave.
(iv) Risk function r : A→ R ∪ {∞}, which is assumed to be proper convex.

We always assume that dom(u) ∩ dom(r) 6= ∅ holds, where dom(u) = {x ∈ A : u(x) > −∞} and
dom(r) = {x ∈ A : r(x) <∞} are both convex.

Here technically both u and r are defined on A. In practice they are functions of the trading
strategy payoff, i.e., they depend on the trading strategy generating function v. Thus, the properties
of u and r in fact may require, e.g., continuity of v.

Problem 1. Assume we have given Setting 1. We are looking at the two following problems:

(a) Let β > 0 and µ ∈ R be fixed. The minimum risk optimization problem is defined by

min
x∈A

r(x) subject to u(x) ≥ µ, S>0 v1(x) = β. (MinR)

(b) Let β > 0 and r ∈ R be fixed. The maximum utility optimization problem is defined by

max
x∈A

u(x) subject to r(x) ≤ r, S>0 v1(x) = β. (MaxU)

Note that v1(x) represents the initial portfolio allocation at time t = 0 and thus by S>0 v1(x) = β
the initial investment size is fixed.

3.3 Efficient frontier

In this section we will define the efficient frontier related to Problem 1 and develop several helpful
characterizations of this frontier. This generalizes several results known for the one-period model
(see e.g. [12]) to multi-period markets with trading strategy (see also [17, Section 2.4.2]).
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Definition 11 (Risk utility space). Let Setting 1 be given. The sublevel and superlevel sets of r and
u for thresholds r, µ ∈ R are denoted by

Br,A(r) := {x ∈ A : r(x) ≤ r} ⊂ dom(r) and Bu,A(µ) := {x ∈ A : u(x) ≥ µ} ⊂ dom(u),

respectively. For its intersection we write

Br,u,A(r, µ) := {x ∈ A : r(x) ≤ r and u(x) ≥ µ} = Br,A(r) ∩ Bu,A(µ) ⊂ A.

Then

G(r, u;A) := {(r, µ) : Br,u,A(r, µ) 6= ∅} ⊂ R2 (32)

is the set of valid risk and utility levels in the risk utility space.

Remark 6. We will need u and r to be upper and lower semi-continuous, respectively, where both
functions, in practice, should be defined on top of a trading strategy generating function v. Note that
then it is reasonable that v is continuous. Otherwise it might be impossible for u and r to have these
semi-continuity properties.

Remark 7. Instead of [12, Assumption 4], which says that either Br,A(r) or Bu,A(µ) is compact for
all r, µ ∈ R, respectively, we here often require in the following that Br,u,A(r, µ) is compact for all
r, µ ∈ R, which is less, see Proposition 2 (b) in the following.

The following is an analog result to [12, Proposition 7] and [17, Proposition 2.4.6].

Proposition 2 (Properties in risk utility space). Let Setting 1 be given. Then, the following holds
true:

(a) r is closed proper convex if and only if Br,A(r) is closed for all r ∈ R, and
u is closed proper concave if and only if Bu,A(µ) is closed for all µ ∈ R.

(b) Assume Bu,A(µ) and Br,A(r) are closed for all µ, r ∈ R. If either Bu,A(µ) is compact for all
µ ∈ R or Br,A(r) is compact for all r ∈ R, then Br,u,A(r, µ) is convex and compact for all
r, µ ∈ R.

(c) G(r, u;A) is convex and (r, µ) ∈ G(r, u;A) implies, that for any k > 0 we have (r + k, µ) ∈
G(r, u;A) and (r, µ− k) ∈ G(r, u;A).

(d) If Br,u,A(r, µ) is compact for all r, µ ∈ R, then G(r, u;A) is closed.

Proof. Proof of (a): Note that r is by definition closed proper convex, if it is proper convex and
moreover its epigraph epi(r) = {(x, s) ∈ A× R : r(x) ≤ s} is closed. Thus the claim here follows
from a classical result from convex analysis, see [18, Theorem 7.1]. The same holds true for − u
which gives the statement for u.

Proof of (b): The compactness of Br,u,A(r, µ) follows directly. The convexity of Br,u,A(r, µ) follows
from convexity of Br,A(r) and Bu,A(µ) (see [18, Theorem 4.6]).

Proof of (c): Clearly (r, µ) ∈ G(r, u;A) implies directly from the definition that, for any k > 0, we
have (r + k, µ) ∈ G(r, u;A) and (r, µ − k) ∈ G(r, u;A). Furthermore, convexity of G(r, u;A) follows
directly from the convexity of r and the concavity of u.

Proof of (d): Let ((rn, µn))n∈N ⊂ G(r, u;A) be an arbitrary convergent sequence with (rn, µn) →
(r, µ) ∈ R2 as n → ∞. Then there exists a sequence (xn)n∈N ⊂ A with xn ∈ Br,u,A(rn, µn) ⊂
dom(u) ∩ dom(r), i.e., r(xn) ≤ rn and u(xn) ≥ µn. For all ε > 0 there exists n0 ∈ N such that
rn < r + ε and µn > µ − ε and, therefore, xn ∈ Br,u,A(r + ε, µ − ε) for all n ≥ n0. By assumption
Br,u,A(r + 1, µ− 1) is compact. Then there must be a convergent subsequence, w.l.o.g. the original
sequence, with xn → x as n→∞ with x ∈ Br,u,A(r+ 1, µ− 1). Moreover, compactness of Br,u,A(r+
ε, µ−ε) yields that r restricted to {x ∈ A : u(x) ≥ µ− ε} is lower semi-continuous (cf. [18, Theorem
7.1]). Similarly, u restricted to {x ∈ A : r(x) ≤ r + ε} is upper semi-continuous. Thus, r(x) ≤ r + ε
and u(x) ≥ µ − ε follow for all ε > 0. For this, it must be x ∈ Br,u,A(r, µ) and, hence, (r, µ) ∈
G(r, u;A).
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As in [12, Definition 5] we define the efficient frontier.

Definition 12 (Efficient portfolio and efficient frontier). In the situation of Setting 1, we say an
element x ∈ A is called efficient provided that there does not exist any x′ ∈ A such that either

[r(x′) ≤ r(x) and u(x′) > u(x)] or [r(x′) < r(x) and u(x′) ≥ u(x)].

We call set

Geff(r, u;A) :=
{

(r(x), u(x)) ∈ R2 : x ∈ A is efficient
}
⊂ G(r, u;A)

the efficient frontier.

An important property is that the efficient frontier lies on the boundary of the set of valid risk and
utility levels, which is shown next, see [12, Theorem 3] for the one-period case with finite probability
space and also [17, Theorem 2.4.8] for more details.

Theorem 2 (Properties of efficient frontier). Assume we are in the situation of Setting 1.

(a) The efficient frontier Geff(r, u;A) is located in the boundary of G(r, u;A) and has no vertical
and no horizontal line segments.

(b) If Br,u,A(r, µ) is compact for all r, µ ∈ R, then Geff(r, u;A) is non-empty and equals to the
non-vertical and non-horizontal part of the boundary of G(r, u;A), i.e.,

Geff(r, u;A) = {(r, µ) ∈ ∂G(r, u;A) : (r − k, µ), (r, µ+ k) /∈ ∂G(r, u;A) ∀k > 0}, (33)

where ∂G(r, u;A) denotes the boundary of G(r, u;A) in R2.
(c) If B ⊂ A is convex, then Geff(r, u;A) ∩ G(r, u;B) ⊂ Geff(r, u;B).

Proof. For proof of (a) and (c) see the proof in [12, Theorem 3]. It remains to proof (b), see [17,
Theorem 2.4.8] for more details:

1. “⊂” follows from (a).
2. Show “⊃”: Let (r0, µ0) ∈ {(r, µ) ∈ ∂G(r, u;A) : (r − k, µ), (r, µ+ k) /∈ ∂G(r, u;A) ∀k > 0} be

arbitrary. Then, since G(r, u;A) is closed by Proposition 2 (d), it has to be (r0, µ0) ∈ G(r, u;A).
Hence, there must exist an x0 ∈ A such that r(x0) ≤ r0 and u(x0) ≥ µ0. In addition, it must be
(r, µ) /∈ G(r, u;A) for all r ≤ r0 and µ ≥ µ0 with (r, µ) 6= (r0, µ0), because G(r, u;A) is convex
and unbounded from below and unbounded to the right by Proposition 2 (c). Consequently,
even r(x0) = r0 and u(x0) = µ0 must hold and x0 thus is efficient, i.e., x0 ∈ Geff(r, u;A).

3. Show Geff(r, u;A) 6= ∅: Because of Setting 1 we have dom(u) ∩ dom(r) 6= ∅, i.e., there exists
x1 ∈ dom(u) ∩ dom(r) and it is (r1, µ1) := (r(x1), u(x1)) ∈ G(r, u;A). Since r is convex and
u is concave, r is bounded below and u is bounded above on each compact set. The set
Br,u,A(r1, µ1) is compact by assumption. Hence, by definition of Br,u,A(r1, µ1), the function r
on Br,u,A(r1, µ1) is contained in say [r∗, r1] and the function u on Br,u,A(r1, µ1) is contained in
say [µ1, µ

∗]. Therefore, the image of (r, u) restricted on Br,u,A(r1, µ1) is a subset of G(r, u;A)
and ∅ 6= G(r, u;A) ∩ Q ⊂ [r∗, r1] × [µ1, µ

∗] for Q = {(r′, µ′) : r′ ≤ r1, µ
′ ≥ µ1}, see Figure 1.

Clearly, there must be a point (r2, µ2) ∈ ∂G(r, u;A) ∩Q such that (r2 − k, µ2) and (r2, µ+ k)
do not belong to G(r, u;A) for all k > 0. Since G(r, u;A) is closed, by (33) the point (r2, µ2)
belongs to Geff(r, u;A), i.e., Geff(r, u;A) 6= ∅.

This completes the proof.

As indicated by the last theorem, the efficient frontier Geff(r, u;A) does not necessarily be the
whole boundary of G(r, u;A). As a consequence, Geff(r, u;A) might be bounded. The corresponding
bounds are defined as follows.
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µ∗

µ1

r1r∗

G(r, u;A) ∩Q

∂G(r, u;A)

r

µ

Figure 1: Illustration to show Geff(r, u;A) 6= ∅.

Definition 13. In the situation of Setting 1 assume that Geff(r, u;A) is non-empty. Define the
bounds for risk and utility of efficient elements by

rmin := inf
(r,µ)∈Geff(r,u;A)

{r}, µmin := inf
(r,µ)∈Geff(r,u;A)

{µ}, (34a)

rmax := sup
(r,µ)∈Geff(r,u;A)

{r}, µmax := sup
(r,µ)∈Geff(r,u;A)

{µ}, (34b)

respectively.

The following alternative representation is similar as the one in [12, Proposition 9] for the one-
period market, see also [17, Lemma 2.4.10].

Lemma 2 (Infima/Suprema of Geff(r, u;A)). Let Setting 1 be given and assume Br,u,A(r, µ) is com-
pact for all r, µ ∈ R, so that by Theorem 2 (b) in particular Geff(r, u;A) is non-empty. Then

rmin = inf
x∈dom(u)∩dom(r)

{r(x)} <∞,

µmax = sup
x∈dom(u)∩dom(r)

{u(x)} > −∞,

and, depending on rmin and µmax, we have

rmax =

 min
x∈Bu,A(µmax)

{r(x)}, if µmax <∞ and Bu,A(µmax) ∩ dom(r) 6= ∅,

∞, otherwise.

µmin =

 max
x∈Br,A(rmin)

{u(x)}, if rmin > −∞ and Br,A(rmin) ∩ dom(u) 6= ∅,

−∞, otherwise,

If Br,A(r) is compact for all r ∈ R, then rmin > −∞ and Br,A(rmin) 6= ∅. If Bu,A(µ) is compact for
all µ ∈ R, then µmax <∞ and Bu,A(µmax) 6= ∅.

Proof. We define B := dom(u)∩dom(r). By assumption B 6= ∅. Since the vertical part of ∂G(r, u;A),
if it exists, does not change the infimum in r, we get

rmin = inf
(r,µ)∈Geff(r,u;A)

{r} = inf
(r,µ)∈∂G(r,u;A)

{r} = inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈B
{r(x)} <∞. (35)

Analogously, the horizontal part of ∂G(r, u;A), if it exists, does not change the supremum in µ and
therefore

µmax = sup
(r,µ)∈Geff(r,u;A)

{µ} = sup
(r,µ)∈∂G(r,u;A)

{µ} = sup
(r,µ)∈G(r,u;A)

{µ} = sup
x∈B
{u(x)} > −∞. (36)
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µmax

r(x0)

G(r, u;A)

r
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Figure 2: Illustration for the proof of Lemma 2.

We next show the properties of rmax and µmin. Since the properties of µmin can be shown similarly,
we just show it for rmax.

Firstly, assume that µmax <∞ and Bu,A(µmax) ∩ dom(r) 6= ∅. Then there exists x0 ∈ Bu,A(µmax)
such that r(x0) ∈ R. Of course, (r(x0), u(x0)) = (r(x0), µmax) is on the horizontal part of ∂G(r, u;A),
see Figure 2. By assumption Geff(r, u;A) 6= ∅ and hence the set {(r, µmax) : r ∈ R} cannot be
a subset of G(r, u;A). Therefore and since G(r, u;A) is closed by Proposition 2 (d), we obtain
r∗ := min {r : (r, µmax) ∈ G(r, u;A)} > −∞. Using (33), we get (r∗, µmax) ∈ Geff(r, u;A) yielding
an efficient portfolio x1 ∈ A with (r(x1), u(x1)) = (r∗, µmax). From (34b) we conclude rmax = r∗ =
min {r(x) : x ∈ Bu,A(µmax)} and the assertion is proved.

Now assume that µmax = ∞ or Bu,A(µmax) ∩ dom(r) = ∅. In both cases, the supremum µmax of
the µ values of Geff(r, u;A) is not attained in the risk utility space. Since G(r, u;A) is closed and
convex by Proposition 2 (c) and (d), there cannot be a horizontal part of ∂G(r, u;A). In addition,
Geff(r, u;A) 6= ∅ by Theorem 2 (b) and because of (33) there is a sequence [(rn, µn)]n∈N ⊂ Geff(r, u;A)
such that µn → µmax as n→∞, which is, w.l.o.g., strictly increasing in µn. Then this sequence must
be strictly increasing in rn as well, otherwise, (rn, µn) would not belong to an efficient element in
A. If µmax =∞ it then must be rmax =∞ because G(r, u;A) is convex. If Bu,A(µmax) ∩ dom(r) = ∅
(and µmax < ∞) it must be rmax = ∞ as well, because otherwise, (r, µmax) ∈ ∂G(r, u;A) for all
r > rmax but (r, µmax) /∈ G(r, u;A), which contradicts that G(r, u;A) is closed.

It remains to show the result in the special situation when Br,A(r) is compact for all r ∈ R. Then,
r is lower semi-continuous, see, e.g., [18, Theorem 4.6 and 7.1]. Let x′ ∈ dom(r) be arbitrary. Since
Br,A(r(x′)) is compact, the minimum of r is attained in Br,A(r(x′)), see, e.g., [1, Theorem 2.8].

The case when Bu,A(µ) is compact again can be shown similarly.

Related to the bounds we define next all relevant risk and utility levels of the efficient frontier.

Definition 14. For Setting 1 we define the projection of Geff(r, u;A) to the r- and µ-axis by

I := {r ∈ R : ∃µ ∈ R s.t. (r, µ) ∈ Geff(r, u;A)},
J := {µ ∈ R : ∃ r ∈ R s.t. (r, µ) ∈ Geff(r, u;A)},

respectively.

From Lemma 2 we already obtain the possibilities for the intervals I and J , see [12, Corollary 2]
for a related result in the one-period case.

Corollary 1. In the situation of Lemma 2, we have rmin = inf(I), rmax = sup(I), µmin = inf(J)
and µmax = sup(J). Furthermore, exactly one of the following situations holds true depending on
the situation:

• I = [rmin, rmax] and J = [µmin, µmax],
• I = [rmin,∞) and J = [µmin, µmax), where µmax =∞ is possible,
• I = (rmin, rmax] and J = (−∞, µmax], where rmin = −∞ is possible,
• I = (rmin,∞) and J = (−∞, µmax), where µmax =∞ and/or rmin = −∞ is possible.

In particular I and J are non-empty intervals. Figure 3 shows some examples.
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Proof. This is a direct consequence from Lemma 2.

µmax

µmin

rmaxrmin

G(r, u;A)

Geff(r, u;A)

r

µ

(a)
I = [rmin, rmax]
J = [µmin, µmax]

µmax

µmin

rmin

G(r, u;A)

Geff(r, u;A)

r

µ

(b)
I = [rmin,∞)
J = [µmin, µmax)

µmax

rmaxrmin

G(r, u;A)

Geff(r, u;A)

r

µ

(c)
I = (rmin, rmax]
J = (−∞, µmax]

G(r, u;A)

Geff(r, u;A)

r

µ

(d)
I = (−∞,∞)
J = (−∞,∞)

Figure 3: Illustration of efficient frontiers for different cases of the intervals I and J .

In Definition 14 we defined all valid r and µ values (separated from each other and not the com-
binations of them) of the efficient frontier Geff(r, u;A), which must be on the boundary of G(r, u;A)
according to Theorem 2. Within the valid r and µ area this boundary is defined by the two functions

ν : I → R, r 7→ sup
(r,µ)∈G(r,u;A)

{µ} = sup
x∈Br,A(r)

{u(x)}, (37a)

γ : J → R, µ 7→ inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈Bu,A(µ)

{r(x)}, (37b)

where I and J are from Definition 14. Next we show some important properties for both functions,
see [12, Proposition 8] for the one-period case and see also [17, Proposition 2.4.15].

Proposition 3 (Functions related to efficient frontier). In the situation of Setting 1 assume that
Br,u,A(r, µ) is compact for all r, µ ∈ R. Then, the functions ν : I → R and γ : J → R from (37) are
well-defined and continuous. Furthermore, we have

ν(r) = max
(r,µ)∈G(r,u;A)

{µ} = max
x∈Br,A(r)

{u(x)}, for all r ∈ I, (38a)

γ(µ) = min
(r,µ)∈G(r,u;A)

{r} = min
x∈Bu,A(µ)

{r(x)}, for all µ ∈ J , (38b)

while ν is increasing and concave and γ is increasing and convex.

Proof. We show only the properties of γ. The proof for ν can be done similarly.
Let µ ∈ J be arbitrary. From µmax in Lemma 2 and Definition 14 we know that there must

exist x∗ ∈ dom(u) ∩ dom(r) (note that dom(u) ∩ dom(r) 6= ∅) such that µ ≤ u(x∗) ≤ µmax and
r∗ := r(x∗) ∈ R. We then have x∗ ∈ Br,u,A(r∗, µ) 6= ∅ and

γ(µ) = inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈Bu,A(µ)

{r(x)} = inf
x∈Br,u,A(r∗,µ)

{r(x)}. (39)

The function r restricted to the compact set Br,u,A(r∗, µ) ⊂ dom(r) must have closed (even compact)
sublevel sets and hence is lower semi-continuous on Br,u,A(r∗, µ), see [18, Theorem 7.1]. Consequently
the infimum in (39) becomes a minimum. Hence, (38b) follows and γ is well-defined. The function
γ is increasing which directly follows from the definition in (37b) because Bu,A(µ1) ⊃ Bu,A(µ2) for
all µ1 < µ2.

Obviously, (γ(µ), µ) ∈ ∂G(r, u;A) for all µ ∈ J . Hence, convexity of γ follows from convexity
of G(r, u;A). Then we already know that γ is continuous in the interior of the domain J , see [18,
Theorem 10.1]. Closedness of G(r, u;A), see Proposition 2 (d), together with the possibilities for
I and J , see Corollary 1, implies closedness of the epigraph of γ. Therefore, γ must be lower
semi-continuous, see [18, Theorem 7.1]. Since γ is convex, it must even be continuous on J .
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An important consequence of the last result is the representation of Geff(r, u;A) as graph of ν
and (after interchanging coordinates) of γ, see [12, Theorem 4] for the one-period case and also [17,
Corollary 2.4.16].

Corollary 2 (Parametrization of efficient frontier as graph). Let Setting 1 be given and assume that
Br,u,A(r, µ) is compact for all r, µ ∈ R. Then, the efficient frontier has the representation

Geff(r, u;A) = {(r, ν(r)) : r ∈ I} = {(γ(µ), µ) : µ ∈ J}. (40)

Moreover, ν and γ are strictly increasing and ν = γ−1, i.e., ν(γ(µ)) = µ for all µ ∈ J and γ(ν(r)) = r
for all r ∈ I.

Proof. Theorem 2 (b), see (33), and the definitions of I and J , see Definition 14, imply Geff(r, u;A) =
∂G(r, u;A) ∩ (I × J). Because of Proposition 2 (c) together with (33), there is exactly one element
(r∗(µ), µ) ∈ Geff(r, u;A) for each fixed µ ∈ J and there is exactly one element (r, µ∗(r)) ∈ Geff(r, u;A)
for each fixed r ∈ I. Obviously, it must be r∗(µ) = γ(µ) and µ∗(r) = ν(r). Uniqueness of the
elements implies (40).

Because of (40) it directly follows that ν = γ−1. Hence, ν and γ are bijective and, because of
Proposition 3, increasing. Consequently, they must even be strictly increasing.

This gives many reasonable results which we can use to show solvability of the two optimization
problems (MinR) and (MaxU).

3.4 Efficient portfolios

This final subsection links points on the efficient frontier to their corresponding portfolio / trading
strategy. The first result gives the existence of solutions, see [17, Theorem 2.4.19] for similar results.
Note that from now on we formally “hide” the side condition S>0 v1(x) = β of (MinR) and (MaxU)
in the set A.

Theorem 3 (Existence for Problem 1). Let Setting 1 and β > 0 be given and assume A ⊂ {x ∈
RM+1 : S>0 v1(x) = β} is non-empty and convex. Suppose Br,u,A(r, µ) is compact for all r, µ ∈ R
and let I, J ⊂ R be the intervals from Definition 14.

(a) For each µ ∈ J there exists an efficient element xµ ∈ A with u(xµ) = µ. The element xµ also
solves (MinR).

(b) For each r ∈ I there exists an efficient element yr ∈ A with r(yr) = r. The element yr also
solves (MaxU).

(c) Each solution of (MinR) for µ ∈ J and each solution of (MaxU) for r ∈ I is efficient.
Moreover, each efficient element x∗ ∈ A solves (MinR) for µ = u(x∗) and (MaxU) for
r = r(x∗).

Proof. Statements (a) and (b) follow from Corollary 2. For instance by (40) for every r ∈ I there
exists some yr ∈ A with r(yr) = r and u(yr) = ν(r). Clearly S>0 v1(yr) = β by assumption on A.
Using (38a) we conclude

u(yr) = ν(r) = max
x∈A
{u(x) : r(x) ≤ r}

yielding that yr solves (MaxU) and, moreover, each efficient element x∗ ∈ A with risk value r solves
(MaxU) as well. Conversely, any (other) solution y′r of (MaxU) for r ∈ I satisfies u(y′r) = ν(r) =
u(yr) and r(y′r) ≤ r. Since yr is efficient, r(y′r) < r is not possible, i.e., we must have r(y′r) = r.
Therefore, y′r is efficient as well. The claim for µ ∈ J follows similarly.

For uniqueness, more assumptions are required. If either u is strictly concave or r is strictly convex,
the uniqueness is guaranteed, see [12, Theorem 5] for the one-period case with finite probability space
and also [17, Theorem 2.4.20] for a similar result.
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Theorem 4 (Uniqueness and efficient portfolio path). Let the situation in Theorem 3 be given.
Furthermore assume that either u is strictly concave in dom(u) or r is strictly convex in dom(r).
Then the following holds.

(a) For each µ ∈ J there is exactly one efficient element xµ ∈ A with u(xµ) = µ, which in addition
is the unique solution of (MinR).
Furthermore, the mapping γ̃ : J → A, µ 7→ xµ is continuous.
For each µ /∈ J and µ ≥ µmax = sup J there does not exist any solution of (MinR).
If µmin > −∞, then for µ /∈ J and µ ≤ µmin (i.e. µ < µmin, see Corollary 1) the solution of
(MinR) is not necessarily unique and can be an element in A which is not efficient.

(b) For each r ∈ I there is exactly one efficient element yr ∈ A with r(yr) = r, which in addition
is the unique solution of (MaxU).
Furthermore, the mapping ν̃ : I → A, r 7→ yr is continuous.
For each r /∈ I and r ≤ rmin = inf I there does not exist any solution of (MaxU).
If rmax < ∞, then for r /∈ I and r ≥ rmax (i.e. r > rmax) the solution of (MaxU) is not
necessarily unique and can be an element in A which is not efficient.

Proof. The existence of efficient elements is already guaranteed by Theorem 3. Let (r∗, µ∗) ∈
Geff(r, u;A) be arbitrary. The uniqueness of an efficient element x∗ ∈ A with (r(x∗), u(x∗)) = (r∗, µ∗)
follows from strict convexity of r or strict concavity of u, respectively, which we will show next:
Assume the solution x∗ is not unique. Then there is an efficient element x′ ∈ A with x′ 6= x∗ and
(r(x′), u(x′)) = (r∗, µ∗) = (r(x∗), u(x∗)). For x0 := (x∗ + x′)/2 we have

r(x0) ≤ 1

2
r(x∗) +

1

2
r(x′) = r∗ and u(x0) ≥ 1

2
u(x∗) +

1

2
u(x′) = µ∗. (41)

Since either r is strictly convex or u is strictly concave one of the two inequalities in (41) must be strict,
which contradicts (r∗, µ∗) ∈ Geff(r, u;A). Hence, the efficient portfolio for (r∗, µ∗) ∈ Geff(r, u;A) is
unique.

Furthermore, γ̃ and ν̃ are well-defined. Next we show continuity. We will show this only for γ̃
(continuity for ν̃ can be shown similarly). Suppose γ̃ is discontinuous at some point µ0 ∈ J . Then,
there exist c > 0 and a sequence (µn)n∈N ⊂ J with µn → µ0 as n → ∞ and ‖γ̃(µn) − γ̃(µ0)‖ ≥ c
for all n ∈ N. Since γ is continuous, see Proposition 3, we obtain that (r(γ̃(µn)), u(γ̃(µn))) =
(γ(µn), µn)→ (γ(µ0), µ0) as n→∞. Hence, for all ε > 0 there exists n0(ε) ∈ N such that γ̃(µn) ∈
Br,u,A(γ(µ0)+ε, µ0−ε) for all n ≥ n0(ε). Since, e.g., Br,u,A(γ(µ0)+1, µ0−1) is compact, there exists
a convergent subsequence of (γ̃(µn))n∈N with limit x∗ ∈ Br,u,A(γ(µ0) + 1, µ0− 1). Using again lower
semi-continuity of r restricted to Br,u,A(γ(µ0) + 1, µ0 − 1) and upper semi-continuity of u restricted
to Br,u,A(γ(µ0) + 1, µ0 − 1) as in the proof of Proposition 2 (d) gives x∗ ∈ Br,u,A(γ(µ0), µ0). Then,
x∗ must be efficient, because (γ(µ0), µ0) ∈ Geff(r, u;A), and we have (r(x∗), u(x∗)) = (γ(µ0), µ0), i.e.,
x∗ = γ̃(µ0). This is a contradiction, because it must be ‖x∗ − γ̃(µ0)‖ ≥ c > 0. Consequently, γ̃ is
continuous.

The situations where µ /∈ J or r /∈ I follow easily: For instance in case µ ≥ µmax and µ /∈ J , there
is no portfolio x ∈ A such that u(x) ≥ µ, see (36). In case −∞ < µ < µmin there is an efficient
element (which also solves (MinR)), namely γ̃(µmin), but there might also be a solution of (MinR),
say x′ ∈ A, such that r(x′) = r(γ̃(µmin)) and µ ≤ u(x′) < u(γ̃(µmin)) = µmin. But this element x′ is
not efficient.

Remark 8 (Connection to Maier-Paape and Zhu [12, Theorem 5]). In [12, Theorem 5] a related
result is shown for the one-period case N = 1 for a finite probability space. The utility function
therein is of the form u(x) = E [u(S>1 x)], for some concave function u : R → R ∪ {−∞}, and the
risk function r must be non-negative, convex and independent of x0. Additional assumptions are that
Br,A(r) is compact for all r ∈ R or Bu,A(µ) is compact for all µ ∈ R. This implies that Br,u,A(r, µ)
is compact for all r, µ ∈ R (cf. Proposition 2 (b)). Since [12, Theorem 5] assumes moreover unit
initial cost (i.e. S>0 x = 1), this already gives all assumptions for Theorem 3 in case that v1(x) := x
for all x ∈ A.
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However, the result in [12, Theorem 5] is also a uniqueness result and therefore requires additional
assumptions on u and/or r. For this, either u must be strictly concave or r must be strictly convex in
the risky part (note that (c3) in [12, Theorem 5] implies that r2 is strictly convex in the risky part).
[12, Theorem 5] then gives uniqueness.

Since Theorems 3 and 4 with v1(x) = x are restricted to the set Aβ := {x ∈ RM+1 : S>0 x = β},
e.g., for β = 1, this additional assumption on r (being strictly convex in the risky part) implies, that
the function r restricted to the set Aβ ∩A is strictly convex (and not only strictly convex on the risky
part). Hence, the assumptions of [12, Theorem 5] are stronger than the assumptions in Theorem 4
and give a similar result. Therefore, Theorem 4 is a full generalization of [12, Theorem 5].

Note that the assumption in [12, Theorem 5] that u is strictly concave, is not enough to obtain
strict concavity of u in the setting of [12, Theorem 5]. Hence, assumption (c1) in [12, Theorem 5]
may not be enough to obtain uniqueness (other than falsely stated there). However, e.g., if S has no
nontrivial risk-free portfolio, then u(x) = E [u(S>1 x)] is strictly concave, see [12, Proposition 6], and
uniqueness follows.

4 Application

Let us focus on Example 2 with the trading strategy generating function vtwr which ensures that the
portfolio weights are constant after each time step. Our admissible set is given by

Atwr =
{
f ∈ RM+1 : 1 + T>n f > 0 a.s. for n = 1, . . . , N

}
, (42)

see (22).
Looking at Problem 1 for some special risk and utility functions, we also need to ensure the second

constraint. Using (21), this constraint reads

S>0 (vtwr)1(f) =W0

M∑
i=0

fi = β.

The risk and utility functions we are looking at in the following are independent on W0. Hence,
w.l.o.g., we may set W0 := 1. The set of all vectors fulfilling the second constraint in Problem 1 is
then given by

Aβ :=
{
f ∈ RM+1 : S>0 (vtwr)1(f) = β

}
=

{
f ∈ RM+1 :

M∑
i=0

fi = β

}
. (43)

Lemma 3 (utility function; logarithm of TWR). Let the multi-period market model S be given and
assume that Tn ∈ L1(Ω,Fn,P;RM+1) for n = 1, . . . , N , where Tn is from (19) in Example 2. Define
ulogTWR as in (28), i.e.,

ulogTWR(f) = E [ln (TWR(f))] =

N∑
n=1

E
[
ln
(
1 + T>n f

)]
(44)

for f ∈ Atwr and ulogTWR(f) = −∞ for all f /∈ Atwr.
Then, ulogTWR is proper concave and ulogTWR < ∞. Furthermore, if S has no nontrivial risk-

free trading strategy, then ulogTWR restricted to dom(ulogTWR) ∩ Aβ, with Aβ from (43), is strictly
concave and BulogTWR,Aβ (µ) is bounded for all µ ∈ R and all β > 0.

Proof. Since ln(1 + s) ≤ s for all s > −1 and Tn has a finite expectation by assumption, we have for
all f ∈ Atwr that

ulogTWR(f) =

N∑
n=1

E
[
ln
(
1 + T>n f

)]
≤

N∑
n=1

E [Tn]
>
f <∞ (45)

Of course, we also have ulogTWR(f) = −∞ <∞ for all f /∈ Atwr.
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The mapping f 7→ ln (1 + Tn(ω)>f) is concave for each ω ∈ Ω. Because of linearity and mono-
tonicity of the expectation, the mapping f 7→ E [ln (1 + T>n f)] is concave. The same holds true for
ulogTWR. Obviously, 0 ∈ dom(ulogTWR) because ulogTWR(0) = 0 and therefore we obtain that the
function ulogTWR is proper concave.

Now assume that S has no nontrivial risk-free trading strategy. Because of Theorem 1 (d), W
is injective in the risky part. Using the definition of vtwr in (21), we obtain that W(vtwr(f)) =

W(vtwr(f
′)) a.s. for f, f ′ ∈ Aβ implies f̂ = f̂ ′. Since f, f ′ ∈ Aβ , it even must be f = f ′ if

W(vtwr(f)) =W(vtwr(f
′)) a.s.

Consequently, for arbitrary f, f ′ ∈ dom(ulogTWR) ∩ Aβ with f 6= f ′ there exists n ∈ {1, . . . , N}
such that T>n f 6≡ T>n f

′, i.e., T>n f 6= T>n f
′ with positive probability, see (20). Therefore, for all

λ ∈ (0, 1) we obtain from strict concavity of ln that

P
(

ln
(
1 + T>n (λf + (1− λ)f ′)

)
> λ ln

(
1 + T>n f

)
+ (1− λ) ln

(
1 + T>n f

′)) > 0.

It follows that

E
[
ln
(
1 + T>n (λf + (1− λ)f ′)

)]
> E

[
λ ln

(
1 + T>n f

)
+ (1− λ) ln

(
1 + T>n f

′)].
This implies strict concavity for at least one summand of ulogTWR which directly gives strict concavity
of ulogTWR restricted to dom(ulogTWR) ∩Aβ .

The boundedness of BulogTWR,Aβ (µ) ⊂ dom(ulogTWR)∩Aβ directly follows from Lemma 1, because
dom(ulogTWR) ∩Aβ ⊂ Atwr ∩Aβ is admissible for the trading strategy generating function vtwr (see
Definition 8 and (20)) and the corresponding matrix B in Lemma 1 for this example is a diagonal
matrix with positive entries bii =W0/S

i
0 > 0, for i = 0, 1, . . . ,M , on the diagonal, see (21).

Lemma 4 (risk function; logarithm of TWR). As in Lemma 3 let the multi-period market model
S be given and assume that Tn ∈ L1(Ω,Fn,P;RM+1) for n = 1, . . . , N , where Tn is from (19) in
Example 2. Define the log drawdown function ρln, see (31), by

ρln(f) = E

[
max

{
0, max

1≤`≤N

{
− ln

(
TWRN

` (f)
)}}]

= E

[
max

{
0, max

1≤`≤N

{
−

N∑
n=`

ln
(
1 + T>n f

)}}]
,

for f ∈ Atwr and ρln(f) =∞ for all f /∈ Atwr. Then, ρln is proper convex, ρln ≥ 0 and dom(ρln) =
dom(ulogTWR). If S has no nontrivial risk-free trading strategy, then Bρln,Aβ (r) is bounded for all
r ∈ R and all β > 0.

Proof. The property ρln ≥ 0 is obvious. Since f 7→ − ln (1 + T>n f) is convex and the maximum of
convex functions again is convex, it follows that ρln is convex as well. In addition, ρln(0) = 0 and
therefore 0 ∈ dom(ρln). Hence, ρln is proper convex.

Inserting the known characterizations of ulogTWR and ρln from above and using the properties of
the logarithm yield for f ∈ Atwr that

ulogTWR(f) + ρln(f) = E

[
N∑
n=1

ln
(
1 + T>n f

)
+ max

{
0, max

1≤`≤N

{
−

N∑
n=`

ln
(
1 + T>n f

)}}]

= E

[
max

{
0, max

1≤`≤N

{∑̀
n=1

ln
(
1 + T>n f

)}}]

≤ E

[
N∑
n=1

∣∣T>n f ∣∣
]
<∞,

because Tn ∈ L1(Ω,Fn,P;RM+1). Of course, we directly see from this that we also have ulogTWR(f)+
ρln(f) ≥ 0. Hence, whenever ulogTWR(f) ∈ R it must be ρln(f) ∈ R and vice versa. It directly follows
that dom(ρln) = dom(ulogTWR). As in the proof of Lemma 3 the boundedness of Bρln,Aβ (r) ⊂ Aβ
directly follows from Lemma 1.
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It is worth to note that ρln may not be strictly convex.

Remark 9 (Connection to Maier-Paape and Zhu [13]). Maier-Paape and Zhu [13] proved properties
like convexity for risk functions involving the relative drawdown but for a one-period market model.
The function rcur discussed therein corresponds to ρln from Lemma 4 in the case we have a finite
and discrete market model where the rates of returns are iid.

Assume we want to solve an optimization like (MinR) or (MaxU) using the utility and risk
functions from Lemma 3 and Lemma 4, respectively, and the corresponding trading strategy gener-
ating function vtwr. All requirements for Setting 1 are then fulfilled (note that 0 ∈ dom(ulogTWR) =
dom(ρln) 6= ∅). To be able to apply Theorem 3 or Theorem 4 we need that Bρln,ulogTWR,Aβ (r, µ) is
compact for all r, µ ∈ R. From Lemma 3 we obtain boundedness in case S has no nontrivial trading
strategy. However, in general, it is not clear whether or not the superlevel sets of ulogTWR are closed.
Moreover, we do not know whether dom(ρln) = Atwr holds true. Before we discuss the solutions
of the corresponding optimization problems (MinR) and (MaxU), we firstly need to take care of
these assumptions. We start with a more specific situation where we can ensure the compactness of
Bρln,ulogTWR,Aβ (r, µ).

Remark 10 (ρln and ulogTWR in finite probability space). Assume the probability space is finite,
e.g., with Ω := {ω1, . . . , ωK} for some fixed K ∈ N and pk := P ({ωk}) > 0 for all k = 1, . . . ,K.
Then, Atwr in (42) becomes

Atwr =
{
f ∈ RM+1 : 1 + Tn(ωk)>f > 0 for n = 1, . . . , N and k = 1, . . . ,K

}
, (46)

where Tn(ωk) ∈ RM+1 for each n = 1, . . . , N and k = 1, . . . ,K is a vector fixed for a given market
(see (19)). Clearly 0 ∈ Atwr. Furthermore, ulogTWR in (44) becomes

ulogTWR(f) =

N∑
n=1

[
K∑
k=1

pk ln
(
1 + Tn(ωk)>f

)]
(47)

for f ∈ Atwr. Then we obviously get dom(ulogTWR) = Atwr because by definition ulogTWR

∣∣
Actwr

=
−∞.

Now let (fm)m∈N ⊂ Atwr be a sequence such that fm → f∗ ∈ ∂Atwr as m → ∞. Then, there
exist n ∈ {1, . . . , N} and k ∈ {1, . . . ,K} such that 1 + Tn(ωk)>f∗ = 0. In this case we obtain
ulogTWR(fm) → −∞ as m → ∞. From this we can conclude that Atwr is open and non-empty
and, moreover, by (47) ulogTWR

∣∣
Atwr

is continuous. In particular, the superlevel sets of ulogTWR are

closed. Consequently, we also must have that BulogTWR,A(µ) is closed for all closed sets A and all
µ ∈ R.

Analogously, we obtain dom(ρln) = Atwr = dom(ulogTWR) where the sublevel sets of ρln and also
Bρln,A(r) must be closed for all closed sets A and all r ∈ R. Then, Proposition 2 (a), Lemma 3 and
Lemma 4 yield that ulogTWR is closed proper concave and ρln is closed proper convex.

In general, however, when Ω is not finite ulogTWR might not be closed proper concave and ρln might
not be closed proper convex. Since we will assume these properties in the existence and uniqueness
theorem (see Theorem 5 below), we make some more remarks to have a better understanding also
in the general situation.

Remark 11 (Notes on dom(ulogTWR) and Atwr).

(a) Clearly dom(ulogTWR) ⊂ Atwr.
(b) If f ∈ Atwr then, using (20), it follows that Wn(vtwr(f)) = W0

∏n
k=1 (1 + T>k f) > 0 a.s. Of

course, this is trivial and directly follows from the definition of Atwr in (42). In fact, Atwr was
defined as the admissible set of vtwr, see Example 2.
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(c) We have

dom(ulogTWR) =
{
f ∈ RM+1 : E

[
ln
(
1 + T>n f

)]
> −∞ for all n = 1, . . . , N

}
=

{
f ∈ RM+1 :

∫
Ω

ln
(
1 + Tn(ω)>f

)
d P(ω) > −∞ for all n = 1, . . . , N

}
.

Proof: The second equality holds by definition. For the first one, the relation “⊃” is obvious.
Let now f ∈ dom(ulogTWR) ⊂ Atwr be arbitrary. Since ulogTWR(f) <∞ by Lemma 3 we have
ulogTWR(f) ∈ R. In addition E [ln (1 + T>n f)] <∞ holds for n = 1, . . . , N , cf. (45). Hence, it
must be E [ln (1 + T>n f)] > −∞ for n = 1, . . . , N , which shows the relation “⊂” and therefore
the equality.

(d) Define

A∗twr :=
{
f ∈ RM+1 : there exists ε > 0 such that 1 + T>n f ≥ ε a.s. for all n = 1, . . . , N

}
.

Then we obtain A∗twr ⊂ dom(ulogTWR).
Proof: Let f ∈ A∗twr be arbitrary. Then ln (1 + T>n f) ≥ ln(ε) > −∞ a.s. This, of course, gives
E [ln (1 + T>n f)] ≥ ln(ε) > −∞.

Now we can show the result for the optimization problems (MinR) and (MaxU) when using
r := ρln and u := ulogTWR.

Theorem 5 (Existence and uniqueness for ulogTWR and ρln). Assume the multi-period market model
S has no nontrivial risk-free trading strategy and Tn ∈ L1(Ω,Fn,P;RM+1) for n = 1, . . . , N , where
Tn is from (19) in Example 2. Let the trading strategy generating function be given by vtwr (constant
weights) from Example 2, with admissible set Atwr as in (42). Assume that ρln and ulogTWR restricted
to some convex and non-empty set A ⊂ dom(ulogTWR)∩Aβ are closed proper convex and closed proper
concave, respectively. The minimum log drawdown optimization problem for fixed µ ∈ R we
define by

min
f∈A

ρln(f) subject to ulogTWR(f) ≥ µ, S>0 (vtwr)1(f) = β. (MinDD)

The maximum log TWR optimization problem for fixed r ∈ R we define by

max
f∈A

ulogTWR(f) subject to ρln(f) ≤ r, S>0 (vtwr)1(f) = β. (MaxTWR)

The following holds true:

(a) (Growth optimal trading strategy) The problem (MaxTWR) without risk restriction, i.e.,

max
f∈A

ulogTWR(f) subject to S>0 (vtwr)1(f) = β (48)

has a unique solution f∗max ∈ A. Moreover, we have µmax = ulogTWR(f∗max) ∈ R and rmax =
ρln(f∗max) ∈ R≥0, where µmax and rmax represent the suprema of Geff(r, u;A) from Definition 13
for r = ρln and u = ulogTWR.

(b) (Risk minimal trading strategy) The problem (MinDD) without utility restriction, i.e.,

min
f∈A

ρln(f) subject to S>0 (vtwr)1(f) = β, (49)

has a finite minimum risk value rmin ∈ R≥0. Furthermore, among all f ∈ A which solve
(49), there is a unique element f∗min ∈ A with maximal ulogTWR value. In particular, rmin =
ρln(f∗min) ∈ R≥0, but moreover µmin = ulogTWR(f∗min) ∈ R hold true, where rmin and µmin

represent the infima of Geff(r, u;A) from Definition 13 for r = ρln and u = ulogTWR.
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(c) For each µ ∈ J = [µmin, µmax] 6= ∅ there is exactly one efficient element f∗µ ∈ A with
ulogTWR(f∗µ) = µ, which is also the unique solution of (MinDD). The mapping γ̃ : J →
A, µ 7→ f∗µ is continuous.

(d) For each r ∈ I = [rmin, rmax] 6= ∅ there is exactly one efficient element f̃∗r ∈ A with ρln(f̃∗r ) = r,
which is also the unique solution of (MaxTWR). The mapping ν̃ : I → A, µ 7→ f̃∗µ is
continuous.

Proof. By assumption ulogTWR and ρln both restricted to A are closed proper concave and closed
proper convex, respectively. Using Lemma 3 we in addition obtain that ulogTWR is strictly concave
in the set A ⊂ dom(ulogTWR) ∩ Aβ . Moreover, BulogTWR,A(µ) = BulogTWR,Aβ (µ) ∩ A is compact for
all µ ∈ R because of Lemma 3 and Proposition 2 (a). Analogously, Bρln,A(r) is compact for all
r ∈ R because of Lemma 4 and Proposition 2 (a). Consequently, Proposition 2 (b) yields that
Bρln,ulogTWR,A(r, µ) is compact for all r, µ ∈ R. Theorem 4 can then be applied which proofs (c) and
(d), if we can show that I = [rmin, rmax], J = [µmin, µmax]. This is shown in the proofs of (a) and (b).

Proof of (a): Since ulogTWR is closed proper concave on A we know that ulogTWR must be upper
semi-continuous, cf. [18, Theorem 7.1]. In addition, BulogTWR,A(µ) is compact and non-empty for
some µ ∈ R. Hence, there must be a solution of (48), see [1, Theorem 2.8]. Uniqueness follows
from strict concavity of ulogTWR restricted to A ⊂ dom(ulogTWR). Furthermore, Lemma 2 yields
that µmax = ulogTWR(f∗max) ∈ R and, since dom(ulogTWR) = dom(ρln) by Lemma 4, that rmax =
ρln(f∗max) ∈ [0,∞) (also by Lemma 2, note that BulogTWR,A(µmax) contains only f∗max).

Proof of (b): The function ρln is closed proper convex on A by assumption and, hence, it is lower
semi-continuous, cf. [18, Theorem 7.1]. In addition, Bρln,A(r) is compact and non-empty for some
r ∈ R. Then, there must be a solution of (49), see [1, Theorem 2.8]. Maximizing ulogTWR over
all those solutions then, similar as in the proof of (a), gives a unique solution denoted by f∗min. As
above, Lemma 2 yields that rmin = ρln(f∗min) ∈ [0,∞). Since dom(ulogTWR) = dom(ρln), we get
µmin = ulogTWR(f∗min) ∈ R. Altogether, we obtain that I = [rmin, rmax] and J = [µmin, µmax] which
completes the proof.

Note that Aβ ∩ dom(ulogTWR) 6= ∅ because obviously (β, 0, . . . , 0)> ∈ Aβ ∩ dom(ulogTWR). Hence,
there exists such a subset A ⊂ Aβ with the above required properties, e.g., A = Aβ ∩dom(ulogTWR).
Furthermore, the “local” (closed) proper convexity of ρln on A and the “local” (closed) proper
concavity of ulogTWR on A, which are relevant according to Setting 1 (because of the domain of
definition of both functions) and Theorem 5, can be provided for instance as follows by “global”
assumptions.

Lemma 5. In the situation of Lemma 3 and Lemma 4 assume that ρln is closed proper convex and
ulogTWR is closed proper concave. For Aβ from (43) with fixed β > 0 let A′ ⊂ Aβ be closed and
convex such that A := A′ ∩ dom(ulogTWR) is non-empty. Then A ⊂ dom(ulogTWR) ∩ Aβ is convex
and non-empty. Furthermore, ρln restricted to A is closed proper convex and ulogTWR restricted to
A is closed proper concave.

Proof. First note that ulogTWR is closed proper concave and ρln is closed proper convex but by
definition both on RM+1. Of course, ulogTWR is proper concave and ρln is proper convex on
A as well. Since BulogTWR,A(µ) = {f ∈ A : ulogTWR(f) ≥ µ} ⊂ dom(ulogTWR) we can also write
BulogTWR,A(µ) = {f ∈ RM+1 : ulogTWR(f) ≥ µ} ∩ A′. Hence, BulogTWR,A(µ) must be closed because
{f ∈ RM+1 : ulogTWR(f) ≥ µ} is closed (cf. Proposition 2 (a) when replacing A by RM+1 therein)
and A′ is closed by assumption. Proposition 2 (a) then tells us that ulogTWR restricted to A is closed
proper concave. A similar argumentation yields that ρln restricted to A is closed proper convex.

We have seen in Theorem 5 and Lemma 5 that one of the main ingredients to the existence and
uniqueness theory for trading off risk and reward with ρln and ulogTWR is that ρln is closed proper
convex and that ulogTWR is closed proper concave. While for finite probability space Ω this was
already derived in Remark 10, in general this is not obvious. Lemma 4 and Lemma 3 just yield
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proper convex and proper concave, respectively. The following discussion closes this gap under
reasonable conditions.

Lemma 6. For n ∈ {1, . . . , N} fixed let Tn ∈ L1(Ω,Fn,P;RM+1). Define

hn(f) :=

{
E [ln (1 + T>n f)], f ∈ Dn,

−∞, f /∈ Dn,

where Dn := dom(hn) = {f ∈ RM+1 : E [ln (1 + T>n f)] > −∞}. Assume that 0 ∈ int(Dn), where
int(Dn) is the interior of Dn. Then, hn is closed proper concave.

Proof. Note that according to Lemma 3 the function hn : RM+1 → R∪{−∞} is proper concave and
thus Dn is convex. Therefore, hn is continuous in the interior of Dn (cf. [18, Theorem 10.4]).

By assumption, f0 := 0 ∈ int(Dn) and hn(f0) = ln(1) = 0. Using [18, Theorem 7.5], the closure
of hn is of the form

h̄n(f) = lim
λ↗1

hn((1− λ)f0 + λf) = lim
λ↗1

hn(λf), f ∈ RM+1. (50)

The function h̄n is known to be closed proper concave (see [18, Theorem 7.5.1]) with h̄n ≥ hn and
moreover h̄n coincides with hn everywhere except possibly on ∂Dn (see [18, Theorem 7.4]).

If we can show that h̄n(f∗) = hn(f∗) for all f∗ ∈ ∂Dn, then h̄n = hn on RM+1 and thus hn is
closed proper concave as well. To see that, we fix f∗ ∈ ∂Dn and set λm := 1−1/m↗ 1 (as m→∞).
Since the limit in (50) is independent of the sequence realizing λ↗ 1, we have

h̄n(f∗) = lim
m→∞

hn(λmf
∗) ∈ R ∪ {−∞}.

Define the random variables Z+
m := max {0, ln (1 + T>n f

∗λm)} and Z−m := min {0, ln (1 + T>n f
∗λm)}.

By assumption Tn ∈ L1(Ω,Fn,P;RM+1) and hence, as in (45),

Z+
m = max

{
0, ln

(
1 + T>n f

∗λm
)}
≤ max

{
0, T>n f

∗λm
}
≤ max

{
0, T>n f

∗}.
Therefore, 0 ≤ E [Z+

m] ≤ E [max {0, T>n f∗}] =: Mn <∞ which gives

h̄n(f∗) = lim
m→∞

E
[
ln
(
1 + T>n f

∗λm
)]

= lim
m→∞

E
[
Z−m
]

+ lim
m→∞

E
[
Z+
m

]
.

Since ln is increasing, Z−m is monotonically decreasing in m (i.e. Z−m+1 ≤ Z−m ≤ 0 a.s.) and Z+
m

is monotonically increasing in m (i.e. 0 ≤ Z+
m ≤ Z+

m+1 a.s.). Hence, the monotone convergence
theorem, see [7, Section 8.2, Theorem 6], implies

h̄n(f∗) = E
[

lim
m→∞

Z−m

]
+ E

[
lim
m→∞

Z+
m

]
= E

[
ln
(
1 + T>n f

∗)] = hn(f∗), (51)

which completes the proof.

Note that in (51) the limit might be finite (i.e. f∗ ∈ ∂Dn ∩ Dn) or −∞ (i.e. f∗ ∈ ∂Dn ∩ Dc
n,

where Dc
n = RM+1 \Dn). In the latter case the transition of hn from Dn to Dc

n at the point f∗ is
smooth, whereas in the first case hn jumps at f∗ (but still maintains upper semi-continuity). Both
cases indeed occur as we will see in Example 3 below.

Corollary 3. Let S be a multi-period market model such that Tn ∈ L1(Ω,Fn,P;RM+1) for n =
1, . . . , N , where Tn is from (19) in Example 2. Assume that 0 ∈ int (dom(ulogTWR)). Then ρln

defined in Lemma 4 is closed proper convex and ulogTWR from Lemma 3 is closed proper concave.

Proof. Using Lemma 6, hn for n = 1, . . . , N are closed proper concave and thus, in particular, upper
semi-continuous (see [18, Theorem 7.1]). Hence ulogTWR(f) =

∑N
n=1 hn(f), f ∈ RM+1, inherits

these properties. The proof for ρln is similar.
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We close this section with the already mentioned example.

Example 3 (dom(ulogTWR), Atwr and A∗twr). With Remark 11 (a) and (d) we already know that
A∗twr ⊂ dom(ulogTWR) ⊂ Atwr. We want to show at specific examples that A∗twr $ dom(ulogTWR) as
well as dom(ulogTWR) $ Atwr is possible. In all examples below we use ω = t ∈ (0, 1) =: Ω with
P = λ(0,1) and M = N = 1 and, for simplicity, we ignore the risk-free asset.

(a) Let T1(t) := exp(−1/t)− 1 ∈ (−1, 0) for t ∈ (0, 1). Then

ulogTWR(f) = h1(f) =

∫ 1

0

ln (1 + T1(t)f) dt, f ∈ dom(h1) = dom(ulogTWR).

For f ∈ (−∞, 1) there exists some M > 0 such that 1 + T1(t)f ≥M > 0 for all t ∈ (0, 1), but
for f ∈ (1,∞) we have 1 + T1(t)f < 0 for t with positive measure. Hence A∗twr = (−∞, 1) and
Atwr = (−∞, 1]. Calculating

h1(1) =

∫ 1

0

ln(1 + T1(t)) dt =

∫ 1

0

−1

t
dt = −∞,

we find f∗ := 1 /∈ dom(h1) = dom(ulogTWR) = (−∞, 1). In this example we thus have
dom(ulogTWR) $ Atwr. Moreover, since 0 ∈ int (dom(ulogTWR)), by Corollary 3 we obtain that
ulogTWR is closed proper concave.

(b) Let T̃1(t) := exp(−1/
√
t) − 1 ∈ (−1, 0) for t ∈ (0, 1). Reasoning as in (a) we again get

Ã∗twr = (−∞, 1) and Ãtwr = (−∞, 1]. But this time

h̃1(1) =

∫ 1

0

ln(1 + T̃1(t)) dt =

∫ 1

0

− 1√
t

dt = −2.

Hence f∗ := 1 ∈ dom(h̃1) = dom(ulogTWR) = (−∞, 1] and therefore Ã∗twr $ dom(ulogTWR).
Again ulogTWR is closed proper concave by Corollary 3.

5 Conclusions

In this part III of our series of papers on a general framework on the portfolio theory, we extend
the results from part I [12] for the one-period financial market to a multi-period market model. We
do so by using a modular approach that separates the framework into the four related modules: (a)
multi-period market model, (b) trading strategy, (c) risk and utility function, and (d) optimization
problem. This work provides an in itself complete general framework for handling trade-off between
competing performance criteria on reward and risk for trading strategies. This framework provides
a foundation for implementation which is an interesting direction for further exploration.

Building block (a) gives a lot of freedom for the market model. The most important assumption
on the model should be that there is no nontrivial risk-free trading strategy. Block (b) gives the
liberty for choosing a trading strategy. Even more complex trading strategies (besides the buy and
hold strategy in Example 1 and fixed fraction strategy in Example 2) are possible, for instance the
turtle trading strategy. This allows a more direct link between the portfolio theory and the real
implementation of the optimal portfolios / trading strategies. Since (a) allows multi-period market
models, the definition of the risk function (and also the utility function) in (c) can be path-dependent.
This is essential for drawdown risk functions. Although so far we added lots of freedom, Block (d),
i.e., the optimization block, is at least formally still very much in the spirit of Markowitz [14, 15].
As such, this block is fixed in this work. However, also different optimization problems might be
possible.



PART III: MULTI-PERIOD MARKETS AND MODULAR APPROACH 29

References

[1] V. Barbu and T. Precupanu. Convexity and Optimization in Banach Spaces. Springer Mono-
graphs in Mathematics. Springer, Heidelberg, 2012.

[2] P. Carr and Q. J. Zhu. Convex Duality and Financial Mathematics. SpringerBriefs in Mathe-
matics. Springer, Heidelberg, 2018.

[3] A. Chekhlov, S. Uryasev, and M. Zabarankin. Portfolio optimization with drawdown con-
straints. In B. Scherer, editor, Asset and Liability Management Tools, pages 263–278. Risk
Books, London, 2003.

[4] A. Chekhlov, S. Uryasev, and M. Zabarankin. Drawdown measure in portfolio optimiza-
tion. International Journal of Theoretical and Applied Finance, 8(1):13–58, 2005. DOI:
10.1142/S0219024905002767.
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