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Abstract

In this article we show that position sizing according to a fractional trading ansatz introduced by
Ralph Vince has a unique solution. This holds true for the original optimal f method as well as for the
leverage space trading model with uses an additional drawdown constraint.

1 Introduction

In [4] and [5] Vince introduced the fractional trading ansatz for position sizing of portfolios. His idea

was, to always invest a fixed fraction of the at the time of the investment available wealth. To determine

the optimal fraction, called optimal f , he assumed that a historic series of N trading returns of a certain

profitable investment strategy

t1, t2, . . . , tN ∈ R (1)

is available. Here ti, i = 1, . . . , N , is the profit or loss of the i–th trade. Assuming there is at least one

loosing trade, we set t̂ := max
{
|ti| : ti < 0

}
> 0, to be the amount of the biggest loss of that series.

HPRi(f) := 1 + f · ti
t̂

≥ 0 , f ∈ [0, 1] (2)

TWR(f) :=

N∏

i=1

HPRi(f) (3)

are then well defined. The so called terminal wealth relative (TWR) is the ratio of the wealth obtained after

these N trades when always betting with a fixed fraction f ∈ [0, 1] of the available wealth. Notice that in

case ti0 = −t̂ < 0 is a realization of the biggest loss, then the holding period return (HPR) of that trade

is HPRi0(f) = 1 + f
ti0
t̂

= 1− f , yielding as worst case loss a fraction f of the available wealth.

According to Vince, the optimal fraction is that f = f opt which maximizes the terminal wealth relative, i.e.

TWR(f)
!
= max , f ∈ [0, 1] . (4)
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In all his examples it appeared that TWR(f) had a unique maximum, which he found “by looping through

all values for f between .01 and 1, we can find that value for f which results in the highest TWR”

(cf.[4], p. 31). Clearly that isn’t a very convincing method. Our first result in section 2 therefore will show

that (4) always has a unique solution f opt ∈ (0, 1), if (1) is a profitable historic series, i.e. if
∑N

i=1 ti > 0.

Usually the optimal f strategy of Vince results in tremendous drawdowns of the portfolio, even though the

long term wealth growth is maximized. Therefore experts on position sizing rarely recommend this method

(cf. e.g. van Tharp [7], Chap. 15, Model 31). In order to overcome the drawdown problem, Vince in [6]

introduced a constrained optimization problem

TWR(f)
!
= max , f ∈ [0, 1] ,

s.t. RR(f, c) ≤ d ,
(5)

where c, d ∈ (0, 1) are given parameters and RR(f, c) is the probability to exceed a drawdown of c, when

investing with a fixed fraction of f . Here RR stands for risk of ruin. We will give the exact definition of

RR(f, c) in section 3 and furthermore show that (4) also has a unique solution. Although the new drawdown

controlling ansatz (5) seems to overcome the original problems of that method, recently in [3] we showed

that it is possible to extremely reduce the drawdown by using diversification of the portfolio, i.e. by parallel

stochastic independent investments, where each of these investments was traded with the original optimal

f fraction of its available partial wealth.

2 Optimal f lemma

In this section we will show that the original optimal f problem of Vince (4) has a unique solution, in case

of a positive expectation of the historic trading series, or equivalent, if
N∑

i=1
ti > 0 . To simplify notation, we

set ai := ti
/
t̂ , i = 1, . . . , N . Also, we may assume w.l.o.g. that ai 6= 0 for all i, because elimination of that

factor would not change the TWR.

Lemma 2.1 (optimal f Lemma)

Let h(x) =
N∏

i=1

(
1+ aix

)
, x ∈ [0, 1], be a polynomial of degree N ≥ 2 with ai ∈ [−1,∞) \ {0} , ai0 = −1 for

some i0 ∈ {1, . . . , N} and µ :=
N∑

i=1
ai > 0. Then:

(a) h(0) = 1 , h′(0) > 0 , h(1) = 0 , and h(x) > 0 in [0, 1).

(b) h has exactly one extremum x0 in [0, 1). In fact x0 is a maximum, x0 ∈ (0, 1) and h(x0) > 1 holds.

Proof: ad (a) Everything is clear besides h′(0) > 0. For all x ∈ R with h(x) > 0
(
i.e. in particular all

x ∈ [0, 1)
)
, we have

h(x) = exp
(

log h(x)
)

= exp

(
N∑

i=1

log
(
1 + aix

)

)

.
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Therefore

h′(x) = h(x) ·
N∑

i=1

ai
1 + aix

(6)

and h′(0) = h(0) ·
N∑

i=1

ai = µ > 0.

ad (b) We set bi := 1
/
ai ∈ (−∞,−1] ∪ (0,∞) and renumber such that

b1 ≤ b2 ≤ . . . ≤ bN and bj0 = − 1 , bj0+1 > 0 .

According to (6) we have for all x ∈ R with h(x) > 0

h′(x) = h(x) ·
N∑

i=1

1

bi + x
︸ ︷︷ ︸

=: g(x)

Since h is positive in [0, 1) we get

(

h′(x) = 0 ⇐⇒ g(x) = 0
)

for all x ∈ [0, 1) .

Therefore the discussion of extrema of h in [0, 1) reduces to a discussion of zeros of g in [0, 1). Using (a), h

has at least one extremum x0 ∈ (0, 1) and therefore (b) follows, once we can show that this is the only one.

Hence it remains to show:

Claim: g has at most one zero in (0, 1) . (7)

Case 1: bi are pairwise disjoint

In this case we can sketch the graph of g in R (cf. Fig. 1)

and clearly g has at least one zero between −bi+1 and −bi for i = 1, . . . , N − 1, yielding at least N − 1 zeros

of g in R. On the other hand

g(x) =

∏

i6=1

(
bi + x

)
+
∏

i6=2

(
bi + x

)
+ · · ·+ ∏

i6=N

(
bi + x

)

N∏

i=1

(
bi + x

)

with a numerator of degree N − 1, that has at most N − 1 zeros. As a consequence g has exactly N − 1

zeros with exactly one in
(
− bj0+1, 1

)
⊃ (0, 1) yielding (7). In order to argue that g has exactly one zero
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PSfrag replacements −bN −bj0+1 −bj0
=1 −b1

g(x)

x

x0

Figure 1: Zeros of g in Case 1, i.e. all bi are pairwise disjoint

between −bi+1 and −bi, we could alternatively use that g is strictly monotonically decreasing (wherever it

is defined) since all summands of g are monotonically decreasing (wherever they are defined).

Case 2: In case not all bi are pairwise disjoint, we replace the bi by b̃k , k = 1, . . . , Ñ < N pairwise disjoint

such that b̃k0 = bj0 = −1 , b̃k0+1 > 0 and

g(x) =
Ñ∑

k=1

αk

b̃k + x
, αk ∈ N with

Ñ∑

k=1

αk = N .

Here a similar argument as in Case 1 applies and we get that g has exactly one zero in
(
− b̃k0+1, 1

)
.
2

Thus we have shown:

Corollary 2.2 (optimal f existence)

Let t1, . . . , tN ∈ R be a historic trading series, with
N∑

i=1
ti > 0, and t̂ = max

{∣
∣ti
∣
∣ : ti < 0

}

> 0 well defined.

Then (4) has a unique solution f = f opt ∈ (0, 1).
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3 The drawdown constrained model

In this section we want to discuss the leverage trading model of Vince [6]. Since the notation in [6] is quite

unusual, we will introduce the model in our own words. The goal here is to discuss possible drawdowns if we

assume that the N historical trades form (1) contribute to a return distribution. We may assume that the

trades ti, i = 1, . . . , N , all have the same probability 1/N (Laplace assumption), but that is not necessary.

By drawing randomly M ∈ N samples of the return distribution we obtain a probability space

Ω =
{
1, . . . , N

}M

and each random choice ω =
(
ω1, . . . , ωM

)
∈ Ω results in a terminal wealth relative

TWR(f, ω) :=

M∏

j=1

HPRωj
(f) ≥ 0 , for f ∈ [0, 1] , (8)

of these M trades. Accordingly

TWRm
` (f, ω) :=

m∏

j=`

HPRωj
(f) ≥ 0 , 1 ≤ ` ≤ m ≤ M , (9)

is the relative wealth growth that is obtained using just the m − ` + 1 trades tω`
, . . . , tωm . In case

TWRm
` (f, ω) < 1 this trade series resulted in a loss and the worst loos that occurs during these M trades

given by ω =
(
ω1, . . . , ωM

)
is obtained for

min
1≤ `≤m≤M

min {TWRm
` (f, ω) , 1} =: 1 − DD(f, ω) ,

where DD stands for (maximal) drawdown. Thus DD(f, ω) ∈ [0, 1]. DD(f, ω) = 0 stands for no loss at

all and the larger the drawdown, the larger is the loss. Depending on the individual risk aversion of the

investor, one can choose a parameter c ∈ (0, 1) and whenever a maximal drawdown larger then c occurs,

this is considered as ruin. We define the risk of ruin (RR) as the probability that such a maximal drawdown

DD(f, ω) > c occurs, i.e.

RR(f, c) :=
∑

ω∈Ω
DD(f,ω)>c

P(ω) , (10)

which in case of a Laplace assumption
(
P(ω) = 1

NM

)
simplifies to

RR(f, c) =
1

NM
· ]
{

ω ∈ Ω: DD(f, ω) > c
}

. (11)

The leverage space trading model of Vince [6] now maximizes the terminal wealth growth TWR(f) only

among those fractions f that guarantee a risk of ruin probability RR(f, c) ≤ d ∈ (0, 1), where d is again an

individual risk aversion parameter of the investor. Typically c and d are small, e.g. c = 20% and d = 1%
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means that the investor has the restriction that on a trade series of q trades a drawdown that is larger than

20% should occur only with a probability of at most 1%. The resulting optimization problem for c, d ∈ (0, 1)

fixed is

TWR(f) =
N∏

i=1
HPRi(f)

!
= max , f ∈ [0, 1] ,

s.t. RR(f, c) ≤ d .

(12)

Remark 3.1 For a large number N of trades and a reasonable M (e.g. M = 100) the evaluation of the

formula in (10) or (11) is extremely time consuming due to the huge number of elements of Ω. However,

replacing Ω by a sufficiently large subset Ω̃ ⊂ Ω that may be determined by random samples gives good

approximations of RR(f, c) (cf. [6], pp. 117ff).

In the remaining we will show that (12) also has a unique solution f = f opt

RR ∈ [0, 1]. To see that, we first

need a lemma.

Lemma 3.2 For fixed ω ∈ Ω and 1 ≤ M the function

DD(f, ω) = 1 − min
1≤ `≤m≤M

min {TWRm
` (f, ω) , 1} (13)

is continuous and monotonically increasing in f ∈ [0, 1].

Proof: We begin discussing the term min
{

TWRm
` (f, ω) , 1

}

.

Case 1: All trades ti, ` ≤ i ≤ m are positive or non negative.

Then min
{

TWRm
` (f, ω), 1

}

= 1 is monotonically decreasing in f ∈ [0, 1].

Case 2: There is some k0 ∈
{
`, . . . ,m

}
such that ωk0 = i0, i.e. tωk0

= −t̂.

In this case TWRm
` (1, ω) = 0 and TWRm

` (f, ω) has for f ∈ (0, 1)

(A1) exactly one extremum in (0, 1) (a maximum with value larger than 1) in case
m∑

j=`

twj
> 0,

(A2) no extremum in (0, 1) in case
m∑

j=`

twj
≤ 0.

W.l.o.g., m > `, because otherwise m = ` and only (A2) with tω`
< 0 has to be discussed. But with

TWR`
`(f, ω) = HPRω`

(f) = 1− f this is obvious.

(A1) now follows immediately from the optimal f lemma, and for (A2) obvious adaptions of the proof of

this lemma apply (the proof of the claim (7) remains unchanged); see Figure 2.

Case 3: There is no k0 ∈
{
`, . . . ,m

}
such that twk0

= −t̂, but some `0 ∈
{
`, . . . ,m

}
with tω`0

< 0, and

tω`0
≤ tωj

, j = `, . . . ,m

In this case even for f = 1 we get that TWRm
`

(
f = 1, ω

)
is positive. In fact TWRm

`

(
f, ω

)
> 0 for all
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TWRm
` (f, ω)TWRm

` (f, ω)

1

1

1

1

Case (A1) Case (A2)

ff

Figure 2: Cases (A1) and (A2)

PSfrag replacements

TWRm
` (f, ω)TWRm

` (f, ω)

1

1

1

1

Case (B1) Case (B2)

ff t∗t∗

Figure 3: Cases (B1) and (B2) with t∗ := −t̂
/
tω`0

> 1

f ∈
[
0,−t̂

/
tω`0

)
. A simple adaption of the arguments from above gives similar situations (B1) and (B2)

which are sketched in Figure 3.

For all of the above cases we get

min
{

TWRm
` (f, ω), 1

}

is monotonically decreasing in

f ∈ [0, 1] and even strictly monotonically decreasing,

where TWRm
` (f, ω) < 1 .

Hence for all fixed ω ∈ Ω

min
1≤ `≤m≤M

min {TWRm
` (f, ω) , 1}

is monotonically decreasing in f ∈ [0, 1], yielding that DD(f, ω) is monotonically increasing. The continuity

of DD(f, ω) is obvious.
2

The immediate consequence of this lemma is that the risk of ruin in (10) is monotonically increasing in f

for fixed constant c ∈ (0, 1). Moreover, due to the discreteness of Ω, the risk of ruin RR(f, c) is piecewise

constant and right continuous in f .
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Corollary 3.3 (optimal f existence with drawdown constraint)

For fixed c, d ∈ (0, 1) the optimization problem (12) has a unique solution f = f opt

RR ∈ (0, 1).

Proof: In case RR(f, c) ≤ d for all f ∈ [0, 1] the optimal solution is the one of the optimal f lemma, i.e.

f opt

RR = f opt. Otherwise there exists a unique f ∗ with

RR(f, c) ≤ d for all 0 ≤ f ≤ f ∗

RR(f, c) > d for all f∗ < f ≤ 1 .

In this case the unique solution is f opt

RR := min
{
f∗, f opt

}
.

2

To finish we will give an application.

Example 3.4 (Kelly betting with CRR 2:1)

A trader has a trading system with a chance–risk–ratio of 2 : 1, where the probability to win 2 is p = 0.4

and the probability to loose −1 is q = 1 − p = 0.6. What is his optimal f if he restricts his position sizing

to a maximal drawdown of c = 10% on M = 3 trades with a risk of ruin probability of at most d = 25%?

Answer: Here we have only two trades t1 = −1 and t2 = 2. With only two outcomes the optimal f ansatz

equals the well known Kelly betting system ([2], [1]).

In this case f opt = p − q/2 = 10% without any constraint (cf. [5], p. 30). For M = 3 trades we have eight

possible outcomes ω ∈ Ω =
{(

ω1, ω2, ω3

)
: ωi ∈

{
1, 2
}}

. In Table 1 we list the maximal drawdowns.

ω P(ω) DD(f, ω)

(1, 1, 1)
(
0.6
)3

1−
(
1− f

)3
=: h3(f)

(2, 1, 1) or (1, 1, 2)
(
0.6
)2 · 0.4 1−

(
1− f

)2
=: h2(f)

(1, 2, 1)
(
0.6
)2 · 0.4 h1(f) :=







1− (1− f) = f for 0 ≤ f ≤ 1
2

1− (1− f)2 (1 + 2f) = 3f2 − 2f3 for 1
2 < f ≤ 1

(1, 2, 2), (2, 1, 2) or (2, 2, 1) 0.6 ·
(
0.4
)2

f

(2,2,2)
(
0.4
)3

0

Table 1: Maximal drawdowns
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For c ∈ (0, 1) let f c
i ∈ (0, 1) be the unique point with hi

(
f c
i

)
= c. Then 0 < f c

3 < f c
2 < f c

1 ≤ c < 1 and the

risk of ruin is

RR(f, c) =
∑

ω ∈Ω
DD(f,ω)>c

P(ω) =







0 , for 0 ≤ f ≤ f c
3

(
0.6
)3

= 0.216 , for f c
3 < f ≤ f c

2

(
0.6
)2 ·

(
0.6 + 2 · 0.4

)
= 0.504 , for f c

2 < f ≤ f c
1

(
0.6
)2 ·

(
0.6 + 3 · 0.4

)
= 0.648 , for f c

1 < f ≤ c

1 −
(
0.4
)3

= 0.936 , for c < f ≤ 1

In our example a risk of ruin of d = 25% should not be exceeded. For a maximal drawdown of c = 10%, we

get f∗ = f c
2 = 1−3

√
10
/
10 = 5.1%. Thus the optimal f for our constraint is f opt

RR = min
{

f∗, f opt

}

= 5.1%.

2
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