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INTEGRAL MENGER CURVATURE AND RECTIFIABILITY OF
n-DIMENSIONAL BOREL SETS IN EUCLIDEAN N-SPACE

MARTIN MEURER

ABSTRACT. In this work we show that an n-dimensional Borel set in Euclidean N-space with
finite integral Menger curvature is m-rectifiable, meaning that it can be covered by countably
many images of Lipschitz continuous functions up to a null set in the sense of Hausdorff measure.
This generalises Léger’s [19] rectifiability result for one-dimensional sets to arbitrary dimension
and co-dimension. In addition, we characterise possible integrands and discuss examples known
from the literature.

Intermediate results of independent interest include upper bounds of different versions of
P. Jones’s S-numbers in terms of integral Menger curvature without assuming lower Ahlfors
regularity, in contrast to the results of Lerman and Whitehouse [20].

1. INTRODUCTION

For three points z,y, 2 € RV, we denote by c(z,y, z) the inverse of the radius of the circumcircle
determined by these three points. This expression is called Menger curvature of x,y, z. For a Borel
set E C RV, we define by

My (E) ::/E/E/Ecz(m,y,z) dH (z)dH (y)dH (2)

the total Menger curvature of E, where H' denotes the one-dimensional Hausdorff measure. In
1999, J.C. Léger proved the following theorem.

Theorem ([19]). If E C RY is some Borel set with 0 < H(E) < oo and M3(E) < oo, then E
is 1-rectifiable, i.e., there exists a countable family of Lipschitz functions f; : R — RN such that

H(E\U; fi(R) = 0.

This result is an important step in the proof of Vitushkin’s conjecture (for more details see
[35,[6] ), which states that a compact set with finite one-dimensional Hausdorff measure is removable
for bounded analytic functions if and only if it is purely 1-unrectifiable, which means that every
1-rectifiable subset of this set has Hausdorff measure zero. A higher dimensional analogue of
Vitushkin’s conjecture is proven in [24] but without using a higher dimensional version of Léger’s
theorem since in the higher dimensional setting there seems to be no connection between the
n-dimensional Riesz transform and curvature (cf. introduction of [24]).

There exist several generalisations of Léger’s result. Hahlomaa proved in [14] 13}, [12] that if X is
a metric space and Mo (X) < oo, then X is 1-rectifiable. Another version of this theorem dealing
with sets of fractional Hausdorff dimension equal or less than 1 is given by Lin and Mattila in [22].

In the present work, we generalise the result of Léger to arbitrary dimension and co-dimension,
i.e., for n-dimensional subsets of RV where n € N satisfies n» < N. In the case n = N every E C RV
is n-rectifiable. On the one hand, it is quite clear which conclusion we want to obtain, namely that
the set E is n-rectifiable, which means that there exists a countable family of Lipschitz functions
fi : R = RY such that H"(E \ |J, fi(R™)) = 0. On the other hand, it is by no means clear how
to define integral Menger curvature for n-dimensional sets. Léger himself suggested an expression
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2 MARTIN MEURER

which turns out to be improper for our prooﬂ (cf. section [3.2)). We characterise possible integrands
for our result in Definition but for now let us start with an explicit example:

Hn+1(A(l‘0, e ,£n+1))

K Ly yLnt+1) = s
( 1) Mo<icj<ntrd(wi, ;)
where the numerator denotes the (n + 1)-dimensional volume of the simplex (A(zg,...,Zn11))
spanned by the vertices xo,...,Zn41, and d(z;, x;) is the distance between z; and ;. Using the

law of sines, we obtain for n = 1
’H2(A(x0,x17x2)) _ 1
d(xo,z1)d(xo, T2)d(T1,T2) Zc(fo,%,@).

’C(ﬂfo,l’l,lﬂg) =

Hence, K can be regarded as a generalisation of the original Menger curvature for higher dimensions.
We set

(11) M;CQ(E) Z:/E.../EICQ(xo,...,l‘n+1) dHn($0)dHn($n+1)

Now we can state our main theorem for this specific integrand (see Theorem for the general
version).

Theorem 1.1. If E C RY is some Borel set with M (E) < oo, then E is n-rectifiable.

Let us briefly overview a couple of results for the higher dimensional case. There exist well-known
equivalent characterisations of n-rectifiability, for example, in terms of approximating tangent
planes [23, Thm. 15.19], orthogonal projections [23] Thm. 18.1, Besicovitch-Federer projection
theorem], and in terms of densities [23, Thm. 17.6 and Thm. 17.8 (Preiss’s theorem)]. Recently
Tolsa and Azzam proved in [34] and [2] a characterisation of n-rectifiability using the so called
ﬁ—numbersﬂ defined for k > 1,2 € RN, ¢t >0,p > 1 by

. 1 d(y, P)\" ’
ﬁqu,u(l‘v ) PG%I(IN,R) (tn /B(L]gt) ( t /’L(y) ’

where P(N,n) denotes the set of all n-dimensional planes in RY, d(y, P) is the distance of y to
the n-dimensional plane P and pu is a Borel measure on RY. They showed in particular that an
H"-measurable set £ C RY with H"(E) < oo is n-rectifiable if and only if

1
d
(1.2) / ﬁg;l;qu(m,r)Q—r < o0 for H" — a.e.x € E.
0 r

This result is remarkable in relation to our result since the S-numbers and even an expression
similar to play an important role in our proof. Nevertheless at the moment, we do not
see how Tolsa’s result could be used to shorten our proof of Theorem There are further
characterisations of rectifiability by Tolsa and Toro in [37] and [36].

Now we present some of our own intermediate results that finally lead to the proof of Theorem
but that might also be of independent interest itself. There is a connection between those
S-numbers and integral Menger curvature . In section we prove the following theorem
(see Theorem [4.6| for a more general version):

Theorem 1.2. Let ji be some arbitrary Borel measure on R with compact support such that there
is a constant C' > 1 with pu(B) < C(diam B)" for all balls B C RN, where diam B denotes the
diameter of the ball B. Let B(x,t) be a fized ball with p(B(x,t)) > M\™ for some A > 0 and let
k > 2. Then there exist some constants k1 > 1 and C' > 1 such that

C
Bg;k($,t)2 < t”/B( . t).../B( . XD(xO,...,xn)ICz(xo,...,an) dp(zo) ... dp(xnt1),
T,k1 x,Rk1

where D = {(z0, ..., &ny1) € B(w, kit) " ?|d(xi, ;) > i&,0 # j}.

1Hence7 we agree with a remark made by Lerman and Whitehouse at the end of the introduction of [20].
2Introduced by P. W. Jones in [15] and [16].
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A measure p is said to be n-dimensional Ahlfors regular if and only if there exists some constant
C > 1 so that &(diam B)™ < u(B) < C(diam B)" for all balls B with centre on the support of .
We mention that we do not have to assume for this theorem that the measure y is n-dimensional
Ahlfors regular. We only need the upper bound on u(B) for each ball B and the condition
w(B(z,t)) > M™ for one specific ball B(z,t).

Lerman and Whitehouse obtain a comparable result in [20, Thm. 1.1]. The main differences
are that, on the one hand, they have to use an n-dimensional Ahlfors regular measure, but, on the
other hand, they work in a real separable Hilbert space of possibly infinite dimension instead of
RN. The higher dimensional Menger curvatures they used (see [20, introduction and section 6])
are examples of integrands that also fit in our more general settingﬂ This means that all of our
results are valid if one uses their integrands instead of the initial K presented as an example above.

In addition to rectifiability, there is the notion of uniform rectifiability, which implies rectifia-
bility. A set is uniformly rectifiable if it is Ahlfors regulalﬂ and if it fulfils a second condition in
terms of S-numbers (cf. [B, Thm. 1.57, (1.59)]). In [20] and [2I], Lerman and Whitehouse give an
alternative characterisation of uniform rectifiability by proving that for an Ahlfors regular set this
B-number term is comparable to a term expressed with integral Menger curvature. One of the two
inequalities needed is given in in [20, Thm. 1.3], and is similar to our following theorem, which is
a consequence of Theorem in connection with Fubini’s theorem (see Theorem for a more
general version). We emphasise again that in our case the measure p does not have to be Ahlfors
regular.

Theorem 1.3. Let u, A and k be as in the previous theorem. There exists a constant C > 1 such
that

o dt
// ﬁz;k(%t)zl{u(s(x,t))z,\tn}?dﬂ(x) < C M2 ().
0

In the last years, there occurred several papers working with integral Menger curvatures.
Some deal with (one-dimensional) space curves and get higher regularity (C1®) of the arc length
parametrisation if the integral Menger curvature is finite, e.g [28]29]. Others handle higher dimen-
sional objects in [I7), 18, BI] occasionally using versions of integral Menger curvatures similar to

sﬂ Remarkable are the results of Blatt and Kolasinski [4, [3]. They proved among other things
that for p > n(n + 1) and some compact n-dimensional C! manifold

/ /( H T (A(zo, .-y Tnt1)) > dH™(zg) ..., dH" (xp41) < 00

diam(A(zg, ..., Tpy1))" T2

is equivalent to having a local representation of ¢ as the graph of a function belonging to the

Sobolev Slobodeckij space W2 . Finally, we mention that in [30, B2] Menger curvature
energies are recently used as knot energies in geometric knot theory to avoid some of the drawbacks
of self-repulsive potentials like the Mobius energy [25] [10].

Organisation of this work. In section 3, we give the precise formulation of our main result
and discuss some examples of integrands known from several papers working with integral Menger
curvatures. In section[d] we present some results for a Borel measure including the general versions
of Theorems [I.2] and [I.3] namely Theorem [£.6]and [£.7] The following sections [5] to[§] give the proof
of our main result. We remark that all statements in section [6] [7] and [§] except section[7.1] depend
on the construction given in chapter [6]

P

2. PRELIMINARIES

2.1. Basic notation and linear algebra facts. Let n,m, N e Nwith 1 <n < N and 1 <m <
N. If E c RY is some subset of RY, we write E for its closure and E for its interior. We set

3A characterisation of all possible integrands for our result can be found at the beginning of section In
section we discuss one of the integrands of Lerman and Whitehouse.

4A set E is n-dimensional Ahlfors regular if and only if the restricted Hausdorff measure H"LE is n-dimensional
Ahlfors regular.

50ur main result does not work with their integrands, but most of the partial results are valid, cf. section
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d(z,y) = |r — y| where z,y € RY and | - | is the usual Euclidean norm. Furthermore, for z € RV
and Ey, By C RN, we set d(z, E2) = infyecp, d(z,y), d(E1, E2) = inf.cp, d(z, E2) and #FE means
the number of elements of E. By B(x,r) we denote the closed ball in RY with centre z and radius
r, and we define by w,, the n-dimensional volume of the n-dimensional unit ball. Let G(N,m)
be the Grassmannian, the space of all m-dimensional linear subspaces of RY and P(N,m) the set
of all m-dimensional affine subspaces of RY. For P € P(N,m), we define 7p as the orthogonal
projection on P. If P € P(N,m), we have that P—mp(0) € G(N,m), hence P—mp(0) is the linear
subspace parallel to P. Furthermore, we set 75 := 7T1J5_,TP(0) = T(p—np(0))L Where T(p_r (o)) I8

the orthogonal projection on the orthogonal complement of P —mp(0). This implies that 75 = Wj,g

and mp # mp whenever P is parallel but not equal to P.

Furthermore, for A C RY and z € RY, we set A + x := {y € R"|y — v € A}. By span(A), we
denote the linear subspace of RY spanned by the elements of A. If A = {o0y,...,0,,} or A = A;UAj,
we may write span(oy,...,0n,) resp. span(A4;, As) instead of span(A).

Remark 2.1. Let P € P(N,m) and a,z € RY. We have np(a) = mp_,(a — z) + .
Remark 2.2. Let b,a,a; € RY, a; € Rfori = 1,..0, l € N with b = a + 22:1 a;(a; — a)

and P € P(N,m). Then we have np(b) = 7p(a) + Eizl o;[mp(a;) — mp(a)] and d(b, P) <
d(a, P) + iy |l (d(as, P) + d(a, P)).

P
2 PN Ps
Py
. lax—7p,(a1)]  _  |ag—7p,(az)]
FIGURE 1. Hlustration of Lemma |a17ﬂP1:P2(al)| = ‘a27WP1m2P2(a2)‘

Lemma 2.3. Let P, P, € P(N,m) with dim P; = dim P, = m < N and dim(P; N Py) = m — 1.

aj]—T a a2 —T a
For aj,as € Py \ Py, we have lar—mpy(a)l  _ _laz—mry(az)l
la1—7p; APy (a1)] laz—7p; APy (a2)]

Proof. Translate the whole setting so that P;, P, are linear subspaces. Then express a; by an
la1—mp, (a1)]

orthonormal base of P; and compute that ——2—
l[a1—7p AP, (a1)]

is independent of a;. (I

Remark 2.4. Let A, B be affine subspaces of RV with A C B and let a € RY. We have
Ta(mp(a)) = ma(a) = 7p(7a(a)).

2.2. Simplices.

Definition 2.5. Let x; € RY for i = 0,1,...,m. We define A(zo,...,zm) = A{z0,...,7Tm})
as the convex hull of the set {zg,...,z,} and call it simplex or m-simplex if m is the Hausdorff

dimension of A(zg,...,x,,). If the vertices of T = A(xq,...,x,,) are in some set G C RV, i.e.,
Zoy .-, T € G, we write T = A(zg, ..., Tm) € G.

With aff(E) we denote the smallest affine subspace of RV that contains the set £ C RY. If
E = {z¢}, we set aff(E) = {xz¢}.
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Definition 2.6. Let T = A(xo,...,7,) € RV, Fori,5 € {0,1,...,m} we set

fciT = fccrIT = A({$0, o 7xM} \ {xl})7
fci,jT = fcmi,:ro = A({.’E(h cee me} \ {m’hmj})a
;T = bo, T = d(z;, aff({zo, . .., 2 } \ {@i})).

Definition 2.7. Let T' = A(xo, ..., 7,,) be an m-simplex in RV, If h;T > o for alli = 0,1,...,m,
we call T an (m, o)-simplex.

Remark 2.8. Let T = A(zo,..., %) an (m,o)-simplex. For all i € {0,...,m}, we have
d(zz7aﬂ(Al)) >hT >0 for every 0 7é A; C {an s 7xm} \ {xl}

Definition 2.9. Let T = A(zg,...,2,) be an m-simplex in RY. By H™(T) we denote the
volume of T" and we define the normalized volume v(T) := m! H™(T) which is the volume of the
parallelotope spanned by the simplex T' (cf. [27]). We also have a characterisation of v(T") by the
Gram determinant v(T') = \/Gram(z1 — 2, ..., T, — o), where the Gram determinant of vectors
v1,..., 0y, € RN is defined by Gram(vy,...,vy,) :=det ((v1,...,vm) " (v1,...,vm)).

Remark 2.10. Let T = A(xyg,. .., %) be an m-simplex. The volume of the parallelotope, spanned
by T, fulfils o(T) = b;T v(fc,T) which implies H™(T) = Lh,T H™ *(j¢,T) for the volume of a

A m
simplex.

Lemma 2.11. Let T = A(xo, ..., Tn) be an m-simplex. We have h?fich = h?f{T'
o(T) b; (T) o(fe;T) _ 0@ o(fe;T)  __p(T)

hi(T) _
Proof. We have "7 = gy oGy = 5661 5, G6,T) oG, = 5;0aT) vG,T) = b,061)"
0

Lemma 2.12. Let 0 < h < H, 1 <m < N+1 and yo,z; € RN, i =0,1,....,m. If T, =
Az, ..., Tm) is an (m, H)-simplex and d(yo,zo) < h, then T, = A(yo, z1,...,Tm) is an (m, H —
h)-simplez.

Proof. We have hoT, > boT, — d(zo,y0) > H — h. Now, we show that h: Ty, > H —h. If m =1,
we have 1T, = d(yo,z1) = hoTy. So we can assume that m > 2 for the rest of this proof. We set
zp = Waff(fclTy)((Eo), T, := A(zo,21,-..,Tm) and start with some intermediate results:

I. Due to hoT, > H — h > 0, T}, is an m-simplex.

IT. We have d(xo, z0) = d(xo, aff(f¢; T})) < d(zo, yo) < h.

ITI. We have zg = 3 + ro(yo — z2) + Z;n::s rj(x; — x2) for some r; € R, i = 0,3,...,m because
zp € aff(fe; Ty).

IV. With III., Remark and because of Tag(jc,1,) (i) = @; for i = 2,...m we get

HoT= = |20 — Tasi(je, 1) (20)| = |T0Y0 — ToTasi(e,1,) (o) = T0ho(Ty)

and analogously bo(fe;T%) = robo(fe, Ty)-
V. With Remark we get Tafi(je, ,7,)(20) = Tafi(je, , 7,) (€0) and hence we obtain

bo(Fe1T%) = d(Tasi(se, 7,) (Z0), Tafi(fe, , 7o) (20)) = d(Tasi(ie, T,) (T0), Tasi(ie, T,) (Tati(je, , 7.) (20)))
< d($077TaH(fc0Y1Tm)(ZU)) = ho(fe, %)
Now, with Lemma (t=1,j=0,T=1T,), IV and V we deduce

b Ty = bOTzw > (hoTy — d(z0, 20)) bu(foTz)

bO(fclTx) bO(fcsz).

If % > 1 this gives us directly b7y > H — h. In the other case, use Lemma I2.11 and II
to obtain h1T, > b1, — d(xo,20) > H — h. Since, for i = 2,...,m, the points z; fulfil the same
requirements as x1, we are able to prove h;T, > H — h for all i = 1,...,m in the same way. So,

T, is an (m, H — h)-simplex. O
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Lemma 2.13. Let C > 0, 1 < m < N and let G C RY be a finite set so that for all (m + 1)-
simplices S = A(zg,...,Tmt1) € G, there exists some i € {0,...,m + 1} so that fc;(S) is no
(m, C)-simplex.

Then there exists some m-simplex T, = A(zo,...,2m) € G so that for all a € G, there exists
some i € {0,...,m} with d(a, aff(fc;(T,)) < 2C.

Proof. Since G is finite, we are able to choose T, = A(zg,...,2zm) € G so that
(2.3) o(T.) = max o(A(wo,...,wn)).
w wm €G

We can assume that T, is an (m,2C)-simplex, otherwise there would exist some ¢ € {0,...,m}
with bh;(T,) < 2C and so for all @ € G with we would obtain d(a, aff(fc,(T3))) < 2C.

Now, choose an arbitrary yo € G. Set S := A(yo, 20, .-, 2m). The properties of G imply that
one face of S is no (m, C)-simplex. Without loss of generality we assume that T, := fc, (S5) is
not an (m, C')-simplex (but an m-simplex). So there exists some ¢ € {0,...,m} with b;(T,) < C.
If i = 0, we are done. So let i # 0. We set h := Tag(j,1,)(2:) and using Remark we get
Traﬁ(fco,iTy)(h) = ﬂ—aff(fcz‘Ty)[Waﬁ(fco,iTy)(Zi)]‘ This implies

(2.4) d(h, aff(feo ; Ty)) = d(Tasi(je, 1,) (%), TatiGe, 7,) [Tati(ie, 7, (20)]) < bi(FeoTy).-

Now, we use Lemma with a1 = yo, as = h € Py := aff(fe;(T})), P> = aff(fe;(1%)), Pr NPy =
aff(fc ;(7,)) and (2.4) to obtain
d(zi, aff(fe; (T%)))

DollecTy) < 0iTeoTs) g i e, ) — de, )
Now use to get d(yo, aff(fc,(T.))) < d(z;,aff(fe;(T.))) and deduce with d(z;, aff(fc,(71%.))) =
h:T. > 2C and d(z;, h) = b;(T,) < C that bo(fe;T,) < 2b;(fcoT,). Finally, with Lemma [2.11] we

have d(yo, aff(fe(T2))) = ho(T,) = bi(T,) p2de7) < 2C. O

Lemma 2.14. Let H > 0,1 <m < N and D C RN be a bounded set. Assume that every simplex
S =AYo,--.,Ym) € D is not an (m, H)-simplex. Then there exists some l € NU{0}, ] <m —1

and o, ..., 7, € D so that D C Uy(aff(xo, ..., 7)) = {x € RN|d(z, aff(x0,...,2;) < H}.

Proof. We assume #D > 2, otherwise the statement is trivial. Let [ € {0,...,m—1} be the largest
value such that there exists an (I, H)-simplex in D. If [ = 0, we have D C Up (aff(x¢)) = B(xo, H)
for an arbitrary z¢ € D.

Now suppose ! > 1. Since D is bounded, there exists zo,...,z; € D such that the volume
K = v(A(xo,...,7;)) is maximal. For some arbitrary z;.; € D the definition of | and Lemma
imply that A (2o, ..., ;) is not an [ + 1, H-simplex. Hence there exists some [ € {0,...,1+1}
so that b;(T) < H. Furthermore we have v(fc;(7")) < K and v(fe; (7)) = K. With Remark
we obtain h1(T) =< HE. It follows that D C Ug(aff(z, ..., 2;)) because ;11 € D was
arbitrarily chosen. O

Lemma 2.15. Let1 < m < N—1, B be a closed ball in RN and F'C B be a H™-measurable set with
H™(F) = co. There exists a small constant 0 < o = o(F, B) < 428 4nd some (m+1, (m+3)0)-
simplex T = A(zg, ..., Tm41) € B with H™(B(xg,0) N F) = 0o and H™(B(xz;,0) N F) >0 for all
ie{l,...,m+1}.
Proof. We set i :=H™ L F. Since pu(B) = oo there exists some g € B with u(B(zg, h)) = oo for
all h > 0.
There exists some ¢; > 0 with (B \ B(zg,¢1)) > 0. With Lemma there exists some 7 €
B\ B(zo, ¢1) with p(B(x1,h)) > 0 for all A > 0 and the simplex T3 fulfils b1 (71) = d(zo,x1) > c1.
Now we assume that we already have ¢; > 0 and a simplex T; = A(zq,...,2;) € RN with
hi(T;) > ¢ and p(B(x;,h)) > 0 for all ¢ € {0,...,1} and h > 0 where | < m. So there exists
some 0 < ¢j1 < § with p ((F N B (z0, %)) \ ('OJCZ+1(aff(x0, . ,xl))) > 0 and, with Lemma

there exists some x;41 € F C B so that Tj41 := A(xo,...,x41) fulfils b1 (T141) > 41 and
w(B(zi41,h)) > 0 for all A > 0.
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Since h;(T;) > C; > 0 for alli € {1,...,m+ 1} we obtain v(7") > 0 and hence there exists some
constant ¢ > 0 so that T :=T,,41 is an (m + 1, ¢)-simplex.
To conclude the proof set ¢ :=

c
m—+3" |:|

2.3. Angles between affine subspaces.
Definition 2.16. For Gy,G5 € G(N,m), we define <(G1,G2) = ||7g, — 7, ||, where the right

hand side is the usual norm of the linear map ng, — 7g,. For P, P, € P(N,m), we define
<[(P1,P2) =<(P — TP, (0),P2 — 7Tp2(0)).

Remark 2.17. For Pi, Py, P; € P(N,m) and w € RY, we have <(P1, ) = <(P1, P> + w) and
(P, P3) < <(Py, P2) + <((P2, P3). The angle < is a metric on the Grassmannian G(N,m) but
not on P(N,m) because for P € P(N,m), there exists some w € RY so that <(P, P —w) = 0, but
P+#P—uw.

Lemma 2.18. Let U € G(N,m) and v € RY with |v| = |7y (v)|. Then we have v = my(v).

Proof. We have |7y (v)|? = [v]? = |7y (v) + 7 (v) |2 = |70 (v) ]2 + |7 (0)]? and so 75 (v) = 0 which
implies v = my (v) + 75 (v) = 7y (v). O

Lemma 2.19. Let P, P, € P(N,m) with <(Py, P2) <1 and z,y € P,. We have

d(m N 5
d(w,y) < “GREIBO) and d(nh (2), 78, (1) < T d(mp, (2), 7P, (1)),

Proof. First assume that P, P, € G(N,m). With z := ﬁ € Py and 75 (2) + mp,(2) = 2 =
mp, (2) we get |75, (2) — 75, (y)| = |2 —yl|75, (2) + 7P, (2) = 7P, (2)| < & —y|<(P1, P2), This implies
d(z,y) < d(mp,(z),7p,(y)) + d(x,y)<<(Py, P2). These two estimates give the assertion in the case
Pi,P, € G(N,m). Now choose t; € Pi, ts € P, such that P; — t1, P, — to € G(N,m) and use

Lemma Remark 2.1] and Remark to get the whole result. O

Corollary 2.20. Let P € P(N,m), G € G(N,m) and <(P,G) < 1. There exists some affine map
a:G — G+ with G(a) = P, where G(a) is the graph of the map a, and a is Lipschitz continuous

with Lipschitz constant %
Proof. Set a(y) = np, ( Tp, ’P1 )) and use Lemmam O

Corollary 2.21. Let G1,G2 € G(N,m) and o1,...,0, be an orthonormal basis of Gy. If
d(0;,G2) <6 < &1 :=10"1(10™ + 1)~ 1, then <(G1,Ga) < 4m(10™ + 1)5.

Proof. Fori=1,...,m, set h; :== wp,(0;) and use Lemma 2.3 from [33]. O
For z,y € RN, we set (x,y) to be the usual scalar product in RY.

Lemma 2.22. Let C,C >1,t> 0 and S = A(yo, . .., ym) an (m, &)-simplex with S C B(z,Ct),
x € RN. There exists an orthonormal basis (01,...,0m) of span(yr — Yo, .-, Ym — Yo) and v, € R
so that for all1 <1 <m and 1 <r <[ we have

e R

= (yr — d .| < @ee) = < (@emce)™—.
01 Zw, (yr = yo) an el < ( )t_(m ) P
Proof. We set z; :=y; —yo for alli =0,...,m, and R := A(zg,...,2m) =S — yo. We obtain for
alli € {1,...,m} (S is an (m, &)-simplex)

X
(2.5) d(zi,aff(z0,. .., 2i-1)) 2 bs(R) = h:(S) > &
Due to h;(R) > & > 0, we have that (z1,...,z,) are linearly independent. So with the Gram-

Schmidt process We are able to define some orthonormal basis of the m-dimensional linear subspace
span(z1, ..., 2m)
l

01 ‘= 71,171, Ol4+1 ‘= Yi+1,l4+1%214+1 — Vi+1,1+1 E <Zl+17 0i>0ia
i=1
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= 1 -1 .
where v; 1 1= B and V41,141 1= G At G Furthermore we define recursively
l
Vi, = = E Vit1,041{21415 0i) Vi
i=r

for r € {1,...,1}. Now we prove by induction that 7;, fulfil the desired properties. We have

o1 = v11(y1 — yo) and (2.5) implies |y11] < % Now let 1 < I < m. We assume that, for all

ie{l,...,1},5€{1,...,i}, we have o, = Zf:l Yirzr and | ;] < (210@)1%. We obtain

l % +1
OLf1 = V41012141 — D D Vi 1a41 (2041, 0)YinZe = D Vg1
i=1r=1 r=1

If r =1+ 1, (2.5 implies [y41,,] < € and if 1 <r <1, we get with |z41] < 2Ct

(2.9) ! C . C ) C
|7H—1,r| < zz:; ?|ZH_1|(QZCC)Z? < (2([ + 1)cvcv)l-t,-17

O

N N —1
Lemma 2.23. Let C,C > 1,t>0,0< 0 < (10(107" + 1)m0(2m00)m) , P,,P, € P(N,m)

and S = A(yo, ... ym) C P1 an (m, %)—simple:c with S C B(x, C’t), x € RN and d(y;, P») < to for
alli € {0,...,m}. It follows that

<(P1, Po) < 4m(10™ + 1) <2m0(2mcé)m) o.

Proof. Use Lemma [2.22] to get some orthonormal basis of span(yi1 — yo, - - -, ¥m — yo) and ;- € R.
We set g := mp,(yo) and we obtain for 1 <1 <m
1
d(or, P> — §o) < Z 7 |(d(yr, P2) + d(yo, P2)) < 2mC(2mCC)™o.
r=1
Setting 6 = 2mC’(2mC’C‘)m0 < m the assertion follows with Corollary (G1 = Py —yo,
Ga = Py — o). U
Lemma 2.24. Let 0 > 0, t > 0, P, P, € P(N,m) with <(Py,P) < o and assume that there
exists p1 € Py, po € Py with d(p1,p2) < to. Then d(w,Py) < o(d(w,p1) +t) holds for every
wE Py.
Proof. For w € Py, set W :=w — p; € P, — p1. We obtain
| W w -
d(w, Pp) < |w| @)~ TPy—po <|w~|>‘ +d(p1,p2) < |0|<(Py — p1, P2 — p2) + to.

3. INTEGRAL MENGER CURVATURE AND RECTIFIABILITY

3.1. Main result. Let n, N € N with 1 <n < N. We start with some definitions.

Definition 3.1 (Proper integrand). Let I : (RN)n+2 — [0,00) and p > 1. We say that K? is a
proper integrand if it fulfils the following four conditions:

o K is (™) *-measurable, where (H")""? denotes the n+ 2-times product measure of H".
e There exists some constants ¢ = ¢(n,KC,p) > 1 and [ = I(n, K, p) > 1 so that, for all ¢ > 0,
C >1,2x€RY and all (n, %)—simplices A(zg,...,xn) C Bz, Ct), we have

(d(w, aff(zo, . .
t

p
7$n))) < Ccltn(n+l)lcp(l'0,...,(En,’IU)

for all w € B(z, Ct).
e For all t > 0, we have t"("* DK (txg,. .., txp1) = K(zo,. .., Tni1).
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e For every b € RN, we have K(zg +b,..., 211 +b) = K(z0,. .., Tpi1)-

Remark 3.2. If instead of the first condition, we have that /C is (,u)"+2—measurable for some Borel
measure ;1 on RY we call KC p-proper.

Definition 3.3. (i) We call a Borel set £ C RN purely n-unrectifiable if for every Lipschitz
continuous function v : R* — RY we have H"(E N~(R™)) = 0.

(ii) A Borel set E C RY is n-rectifiable if there exists some countable family of Lipschitz continuous
functions 7; : R” — RY so that H"(E \ U;=; v (R™)) = 0.

Definition 3.4 (Integral Menger curvature). Let E C R™ be a Borel set and p be a Borel
measure on RY. We define the integral Menger curvature of E and u with integrand KP by

M}Cp (E) = M}CP(HN‘E) and

M}CP(‘LL) = / . ./ICP(IEQ, e ,l’n+1) d,U,(ilfo) . dﬂ($n+1)
Now we can state our main result.

Theorem 3.5. Let E C RY be a borel set with M2(E) < oo, where K2 is some proper integrand.
Then E is n-rectifiable.

3.2. Examples of admissible integrands. We start with flat simplices.
Definition 3.6. We define the (H")"*2-measurable set
X = {(xo, cesTpy1) € (RN)"+2|Gram(x1 — Ly .y Tppl — Tg) = O}

(the Gram determinant is defined in Definition [2.9) which is the set of all simplices with n + 2
vertices in RY which span at most an n-dimensional affine subspace.

The following lemma is helpful to prove that a given integrand fulfils the second condition of a
proper integrand.

Lemma 3.7. Lett >0, C > 1, 2 € RN, w € B(x,Ct) and let S = A(xy,...,x,) C B(z,Ct) be
some (n, %)—simplem. Setting Sy = A(xg, ..., Ty, w), A(Sy) as the surface area of the simplex S,,
and choosing i,j € {0,...,n} with j # i we have the following statements:

% <d(z;,z;) < diam(S,,) < 2Ct,

d(z;, w) < 2Ct,

A < HM(S) < B9,

H™(S) < A(Sy) < [(n+1)2C% + 1]H™(S),

n+1
d(w,aff(zg,...,zp)) = nﬂﬂni((g)q)

Proof. Since S is an (n, %)—simplex, we have

t
(3.1) ° <0, (5) < d(z;,z;) < diam(S,,) = l n{lgmx }{d(xl,xm),d(xl,w)} <2Ct
,me0,...,n
and because of z;, w € B(z, Ct), we get d(x;, w) < 2Ct. Now, with Remark we conclude that
H(S) = & Hl";ol d(xy, aff(z41, . .., 2,)) which implies with Remark

n!
m @I 1 "o . 1 G 20y
G = o L nS) <1 ) < = [ dlarea) < ek
=0

1=0
Using Remark [2.10[ and by, (fe;(Sw)) < d(w, z;) < 2Ct, we obtain

A (e (50) 0 b (50U (s,u(S0) 'S -207i(SYH (e, (5)) 2077 (5),

so that with A(S,) = Y7 H™(f¢;Sw) + H"™(fe,, Sw) and fe,, (Syw) = S, we get
H™(S) < A(Sw) < [(n+ 1)2C2 + 1JH"(S).

n!
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Finally, with Remark and using that S = fc,,(Sw), we deduce

. n n n+1 w
d(w, aff(zo, ..., 2n)) = bu(Sw) = bw(sw)ﬂf(s(f)cw(sw)) B Hﬂn(g ),

O

Now we can state some examples of proper integrands. Use the previous lemma to verify the
second condition. We define all following examples to be 0 on X and will only give an explicit
definition on (RY)"*+2\ X;. We mention that our main result is only valid for all integrands which
are proper for integrability exponent p = 2.

Proper Integrands with exponent 2. We start with the one used in the introduction of this work.
Let 2,...,Znt1 € (RY)"2\ X; and set

H (Ao, ...,
/C1(a:o,...,xn+1) = ( ( 0 .7L+'1))’
Ho<i<j<nt1d(zs, x;)

then K? is proper. The next proper integrand is used by Lerman and Whitehouse in [211, 20],

n+1

1 Vol 1 1(A(zo, -+, Tni1))? 1
K3(zo,...,Tny1) i= — + — ,
n 2 dam (A, 20) D g Ty — il
where Vol,,11 is (n + 1)! times the volume of the simplex A(zg,...,Zn+1), which is equal to the

volume of the parallelotope spanned by this simplex, cf. Definition [2.9] The following proper
integrand, K3, is mentioned among others in [20} section 6]:

H”+1(A($O, e ,l‘nJrl))

; CENCEEN
diam A(zg, ..., ZTpy1) 2

Ks(zo, ..., Tny1) =

Proper Integrands with exponents different from 2. Now we present some integrands for integral
Menger curvature used in several papers, where the scaling behaviour implies that our main result
can not be applied. Nevertheless, most of our partial results are valid also for these integrands.
The first integrand we consider was introduced for n = 2, N = 3 in [31],

V(T)

IC4(x07 o -,zn-‘,-l) = W’

where V(T) is the volume of the simplex T' = A(zg,...,zn+1) and A(T) is the surface area of
T. KY is a proper integrand with p = n(n + 1). The next one, K%, is a proper integrand with
p=mn(n+1) and is used, for example, in [4] [I§],

M A7)
diam(A(zo, . . ., Tpp1))"+2

Ks(zo, ... s @nt1)

Finally, Léger suggested the following integrand in [I9] for a higher dimensional analogue of his
theorem. Unfortunately, we can not confirm his suggestion. This one, KE, is a proper integrand
with p = (n+ 1) where

d(l'n—H; aff(xo, . ,xn))
(anrlv 1'0) s d(xn+17 xn) .

Ke(zo, ... s xnt1) == d

Hence our main result does not apply for n # 1. For n = 1 up to a factor of 2, this integrand gives
the inverse of the circumcircle of the three points xq, z1, 2.
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4. B-NUMBERS

In this chapter, let Cy > 10 and p a Borel measure on RY with compact support F that is
upper Ahlfors regular, i.e.,

(B) for every ball B we have u(B) < Cp(diam B)".
If B = B(z,r) is some ball in RV with centre z and radius r and t € (0,00), then we set
tB := B(z,tr). Distinguish this notation from the case tY = {tz|z € T} where T C RY is some
arbitrary set. Furthermore, in this and the following chapters, we assume that every ball is closed.
We need this to apply Vitali’s and Besicovitch’s covering theorems. By C, we denote a generic
constant with a fixed value which may change from line to line.

4.1. Measure quotient.

Definition 4.1 (Measure quotient). For a ball B = B(z,t) with centre € RV, radius ¢ > 0 and
a p-measurable set T C R, we define the measure quotient
p(B(z,t) N T)
m .
In most instances, we will use the special case Y = RY and write §(B) instead of §(B NRY).

J(BNTY)=68,(BNY):=

This measure quotient compares the amount of the support F' contained in a ball with the size
of this ball. The following lemma states that if we have a lower control on the measure quotient
of some ball, then we can find a not too flat simplex contained in this ball, where at each vertex
we have a small ball with a lower control on its quotient measure.

Lemma 4.2. Let 0 < A < 2™ and Ng = No(N) be the constant from Besicovitch’s covering
theorem [0, 1.5.2, Thm. 2] depending only on the dimension N. There exist constants C1 =

w >3 andCy := # > 1 so that for a given ball B(x,t) and some p-measureable
set T with 6(B(xz,t) N Y) > A, there exists some T = A(xy, . . $n+1) € FNB(z,t)NT so that

fe;(T) is an (n, 10nc%)-simplew and ( (ml, o ) N B(z,t) N T) > & forallie{0,...,n+1}.

Proof. Let B(z,t) be the ball with §(B(z,t) N Y) > A and F := {B(y, cf )y € FNB(z,t)NT}.
Wlth Besicovitch’s covering theorem [7, 1.5.2, Thm. 2] we get No = No(n) families B,, C F,
.., Ng of disjoint balls so that F N B(z,t)NYT C Um 1 Upes,, B- We have

A< o (U U (BnB(,1) mT><Z S wBNB,t)NT)

m=1 BeB,, m=1 BeB,,

and hence there exists a family B, with

(4.1) > wBNB,t)NT) >

BeBn,
We assume that for every S = A(yo, ..., Ynt1) € FNB(x, t)ﬂT there exists some ¢ € {0,...,n+1}
so that either fc;(S) is no (n, 10ncil)—simplex or u(B(y;, & )N B,t)NnT) < é—g We define
G = {B € Bm’u(B NB(z,t)NYT) > é‘%} and mention that G is a finite set since Lemma
implies that #B,,, < (2C7)"™. With Lemma (where we set G as the set of centres of balls
in G and C = 10710%)7 we know that there exists some T, = A(zo,...,2,) so that for every ball
B(y, C%) € G, there exists some i € {0,...,n} so that d(y, aff(fc,(T%))) < QOnC%. We define for
i€{0,...,n}

)\t"

O

T; = aff(fe,(T%)) N B(Tasije, (1)) (), 2t),
Si = {y € R"|d(y, aff(fe,(T%))) < ™, Tasi(re, (1.))(¥) € Ti}

and we know that B € G implies B C S; for some i € {0,...,n}. With Lemma applied
to B(z,r) = T;, s = cilt < 2t = r and m = n — 1, there exists a family £ of disjoint closed
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balls with diam B = C%t for all B € &, T; C Upee 5B and #& < Cf‘l. Let y € S;. We have
d(y, aff(fc;(T,))) < %t and Tag(je,(1.))(y) € T;. So, there exists some B = B(z, C%t) € & with
Tati(je, (1)) (¥) € 5B and we have d(y, z) < ?’g—?t + 5Ci1t < %)—?t. This proves S; C (Jgcg 15nB. We
therefrom derive with (B) (see page

(B) 120n)"¢" tn
(42)  u(S) <Y p(mB) < > Co(15ndiam B)" < #500% < (120n)"Cy—-.
BeE BeE cr €1

We define for i € {1,...,n}
Go:={B eg|BC S}, and G, — {B €G|BCS; and B ¢ U;';}Jgi}

as a partition of G (compare the remark after the definition of S;). Now we have

> uBNB,H)nT) <Y u(S:) " n(120n)"C’gé—n.

Beg i=0 1

Moreover, we have

> wBNB@HnT) < >

BeB,\G BeB,,\G
All in all, we get with (4.1) and the definition of Cy and Cy
1 Cy 1 1 A
A< No— (2m" =L +120"n" " Co—- ) = No (2" - + 120" T Co— | < =
- Ot” < Cy + " 001 0 Cy + " 001 -2’
thus in contradiction to A > 0. This completes the proof of Lemma [£.2} (]

" #Bm<(201)" tn
v < 20, )P .
Oy = (2¢1) Cy

cr

In most instances, we will use a weaker version of Lemma {4.2

Corollary 4.3. Let 0 < A < 2". There exist constants C; = C1(N,n,Cy,A) > 3 and Cy =
C3(N,n,Co, \) > 1 so that for a given ball B(x,t) and some p-measurable set T with §(B(x,t) N
T) > X, there exists some (n, 10ncil)-sz'mplem T = Azg,...,zn) € FN B(x,t) N T so that

7 (B (mh C%) N B(z,t)N T) > é—g for alli €{0,...,n}.
4.2. f-numbers and integral Menger curvature.

Definition 4.4 (B-numbers). Let & > 1 be some fixed constant, x € RN, t > 0, B = B(z,1),
p > 1, P(N,n) the set of all n-dimensional planes in RN and P € P(N,n). We define

1

_ _ _(1 d(y, P)\" ’
£L(B) = B, 1) = Bl (a.1) = (t Lo (%) dﬂ(@/)) ,

Bp;k(B) = ﬁp;k(wvt) = ﬂp;k;u(xat) = Pe%r(lf\f,n) ﬁf;k(x,t).

The pB-numbers measure how well the support of the measure u can be approximated by some
plane. A small S-number of some ball implies either a good approximation of the support by some
plane or a low measure quotient § (cf. Definition . Hence, since we are interested in good
approximations by planes, we will use the S-numbers mainly for balls where we have some lower
control on the measure quotient.

Definition 4.5 (Local version of My»). For k > 1, z € RN, ¢t >0, p > 0, we define
Micr.(z,1) = / . / KP (2o, Tng1)dp(zo) - . . dpp(@nt1),
O, (x,t)
where P is a u-proper integrand (cf. Definition on page |8) and

Op(z,t) := {(mo,...,xn+1) € (B(x,fit))"”‘d(a, b) > %,V a,b € {xo,...,Tnt1},0 # b}.
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Theorem 4.6. Let KP be a symmetric p-proper integrand and let 0 < A < 2™, k > 2, kg > 1.
There exist constants k1 = k1(N,n,Co, k, ko, A\) > 1 and C = C(N,n,K,p,Co, k, ko, \) > 1 such
that if z € RN and t > 0 with §(B(x,t)) > X for every y € B(x, kot), we have

Micri (2,1) - Micoiks ko (4, 1)

tm - tm
Proof. With Lemma for T = RY, there exists some T = A(zg,...,Tn41) € F N B(x,t) so
that fc,(T") is an (n, IOnC%)—simpleX and p (B&i, C%) N B(l‘7t)) > tc—nz for all i € {0,...,n+ 1}
where C1,Cy are the constants from Lemma depending on the present constant A > 0, the

Bp§k(ya t)p < C

constant Cy determined in (B) on page as well as N and n. We set B; := B (xivc%)

k1 :=max(C1, (2+ k + ko)) > 1 and go on with some intermediate results.

I. Let z € B; foralli € {0,...,n+1}, w € Bz, (k + ko)t) \ Ui%' 2B, or w € 2B; for some
1]

fixed j € {0,...,n+1}. Since f¢,(T) is an (n, IOnCil)—SimpleX we obtain (29,...,%j,..., 241, W) €

Oy, (z,t), where (zo,...,%j,..., Znt1, w) denotes the (n+2)-tuple (2o, ..., 2j—1, Zj41, - - - Znt1, W).

II. Let z, € B; = B(x, C%) for all ¢ € {0,...,n + 1}. Then Lemma implies that

fe; (A(20, .-y 2nt1)) Is an (n, (9n — 1)6%)—simplex foralli € {0,...,n+1}.

III. Let z; € B; = B(xi,cil) for all i € {0,...,n+ 1}, w € B(x,(k + ko)t). Since K? is a
p-proper integrand with IL there exists some constant C' = C(N,n, K, p, Co, k, ko, A) so that for
all j € {0,...,n+ 1}, we have

(d(maff(zo, ceyEjeey Zng))
t

P
> S Ctn(n+l)lcp(20, ey 2j7 ey Zn+1,’w).

IV. There exist some constant C' = C(N,n,K,p,Co, k, ko, \) and 2z; € F N B; N B(x,t), i €
{0,...,n+ 1}, so that for all I € {0,...,n+ 1}, we have

. My ey (2,8
(43) / 1{(z0,...,2l,...,zn+1,w)60k1 (m,t)}Kp(ZOa sy Rly ey Bntls U))dﬂ(ul) <C t(ifllgn)

and with P, 1 := aff(2q,...,2,)

(44) <d(2n+lt7 Pn+1)>p < C MICT’;tknl(xat)

Proof. For E C RN with #E =m +1, E = {eg,...,em}, 0 < m < n, we set

R(E) = /I:‘n—m+l 1{(60a---1€m/7wm+17"'7w"+1)60k1 (:E,t)}
KP(eq, .-y em, Wmat, - Wnt1)dp(Wma) - dpp(wWpt1)-

The integrand K is symmetric, hence the value R(FE) is well-defined because it does not depend on
the numbering of the elements of E. In the following part, we use the convention that {0,...,—1} =
0 and {20,...,2_1} = 0. At first, we show by an inductive construction that, for all m € N with
0 <m < n+ 1, there holds:

For all j € {0,...,m} and i € {j,...,n + 1}, there exist constants CU) > 1, sets Zf C
FNB;NB(z,t) and, for all | € {0,...,m — 1}, there exist 2, € Z} with

tn

(4.5) w(zj) > 210y
and, for all u € {0,...,m}, for all B C {z0,...,24—1} and z € Z*, where r € {u,...,n+ 1}, we
have
P t
(4.6) R(EU{z}) < C(u)w

t#E+D)n
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We start with m = j = 0 and choose the constant C(?) := 2C5, set Y; := F N B; N B(z,t) and
define for every i € {0,...,n+ 1}

(4.7) VARES {z e,

M’Cp;kl (.’E,t)
R((:) < OO

n i) . .
We have u(Z2?) > p(Y;) — u(Y;\ Z29) > ;Tz because u(Y;) > 8—2, and Wltil (7)), Chebyshev’s
inequality and [R({z})du(z) = Mxru, (x,t) we obtain u(T; \ Z?) < &m. Ifu =0, E C
{20,...,2-1} = 0 and z € Z?, where r € {0,...,n + 1}, the definition (4.7)) implies (4.6] in this
case.
Now let m € {0,...,n} and we assume that for all j € {0,...,m} and i € {j,...,n + 1}, there
exist constants CV) > 1, sets Z/ C F N B; N B(x,t) and for all [ € {0,...,m — 1} there exist

Z2 € le with
tn

(4.8) w(zj) > 210y

and for all u € {0,...,m}, for all E C {20,...,24—1} and z € Z* where r € {u,...,n+ 1}, we
have
M}Cp~k (LL’ t)
(u) k1 5

(4.9) R(EU{z}) <C DN

Next we start with the inductive step. From the induction hypothesis, we already have the
constants C) and the sets Z/ for j € {0,...,m} and i € {j,...,n+ 1} as well as z, € Z} for
1€{0,...,m—1}. Since u(Z7) > 0, we can choose z,, € Z". We define C("+1) .= 22m+2C(m),
and, fori € {m+1,...,n+ 1}, we define

(4.10) zmt= N ez

EC{zg, -, zm }
zm EE

R(EU{z}) < Ccm+D

M}Cp;kl (1‘, t)
t#HE+1)n

—.Dm
_.Di,E

We have p(Z"*") > w(Z™) — p (27 \ ZH) > 2372@ foralli € {m+1,...,n+ 1} because if

E c{20,...,2m} with z,, € E, we get, using (4.10]), Chebyshev’s inequality, [ R(EU{z})du(z) =
RU(E\ {zm}) U{zn}) and (4.9) that
cm)

m m m M’Cp;kl (Z‘,t) - n
p(Z"\ Di'g) < (O( H)W RUEN{zm}) U{zm}) = ot

which implies

1
wZrNZrh < YL w(ZM\ D) < gt

Now let u € {0,...,m + 1} and F C {20,...,24—1} and z € Z" where r € {u,...,n+1}. We
have to show that (4.6) is valid. Due to the induction hypothesis and 2 € Z"* C Z? for all
v €{0,...,m+ 1}, we only have to consider the case u = m + 1 and z,, € E. Then the inequality

follows from (4.10)). End of induction.
Now we construct z,41. We set P,yq := aff(2,...,2,), Ct) .— & cn+30, where C is
the constant from III, and define
~ d(Z Pn 1) P A M}Cp~k (LU t)
411 Jntl= e Z"“’ A& Int) ) o Gt 2Rk (T 0 L
( ) n+1 {Z n+1 t = tn

n+1l | =
applied on w =w and j =n + 1, we get

Next we show p (2n+1) > % >0. Let ue Z'T} \ZAgill C Bpy1 C B(xz, (k + ko)t). With III

P
(4.12) (W) < C’t"("+1)ICP(ZO, ey 2, ).
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Now we get with (4.11]), Chebyshev’s inequality and (4.12]) that

1 1 A Micrk (33 t) B
( TZIl Zzil) < C(n-‘rl)# Ctn(n+l) / K:p(th <y 2, u)du(u)
e eiVae

By using I. we see that the integral on the RHS is equal to R({zo,...,2n—1} U{2,}). Hence with

(4.5) and (4.6)) we obtain

p(Zy) = W Zyh) = w(Zy i\ 2 >

and we are able to choose 2,41 € Z"_~_1 C Zﬁ_ﬁ Letl € {0,...,n+1} and E = {z0,..., 2n+1 1 \{2: }
Set z := z, if | = n+1 or z := z,,; otherwise. Now set E' := E\ {z} and use to obtain
R(E) = R(E' U{z}) < Q0D 2y o0

All in all, there exists some constant C' = C(N,n, K, p, Co, k, ko, \) such that

. Mok, (2, 1)
/1{(zo,.4.,21,...,z"+1,w)€(’)k1(I,t)}’Cp(ZOa sy Ry -,zn+1,w)du(w) = R( ) < CT

for all 1 € {0,...,n+ 1}. This ends the proof of IV. O

With IV, there exist some z; € FNB; N B(x,t), i € {0,...,n+ 1} fulfilling (4.3) and (4.4). Let
€ (FNB(x,(k+ko)t)) \ UJ _02B;. Hence we get with III ( w1 = aff(zo,...,2,)), I and (4.3)

d(w, P, P
(413) / (M) du(w) < C’(N,n,lC,p, Co7k,k07>\)MICP;k1 (‘T7t)
B(a,(k+ko)t)\Ujo 2B t
Now we prove this estimate on the ball 2B;, where j € {0,...,n}. We define the plain P; :=
aff({20,...,2n4+1} \ {#;}) and get analogously with III, I and (4.3))

d(w, P)\?
(4.14) L (M52 dutw) < N K. ok b N M (2.0,
Now we have an estimate on the ball 2B; but with plane P; instead of P,y1. If 2,11 € Ppj1, we
have P,;1 = P;j for all j € {0,...,n+ 1} and hence we get estimate (4.14)) for P,;. From now

on, we assume that 2,41 ¢ P,q1. Let w € 2B;, set w' := mp, (w), w' = =7p,,, (w') and deduce by
inserting the point w’ with triangle inequality
(4.15) d(w, Py1)? < d(w,w )P < 2771 (d(w, P;)? + d(w', Pay1)P) .

If d(w', Ppy1) > 0, ie., w' ¢ P,y1, we gain with Lemma (Pp = Pj, P, = Py, a1 = W,
ag = Zn+1) where Pj,n+1 = Pj N Pn+1
d(w', Pjny1)
d(Zn+1a Pj,n+1)
With I € {0,...,n}, 1 # j (k1 is defined on page [13)), we get

d(w', Pjpy1) < d(w, Pjpi1) < d(w,z) + d(z,z;) + d(z1, 1) < kat.

(416) d(w’, Pn+]_> = d(Zn+1, Pn+]_)

With II. we get that fc;(A(zo,...,2n41)) is an (n, (9n — 1) & -)-simplex and we obtain
(4.17) d(w', Poi1)\” d(zpi1, Pug1) kitCy \* M;cp kl z,t)
t t (9n — 1)t
where C' = C(N,n, K, p, Co, k, ko, A). If d(w’, P,,11) = 0, this inequality is trivially true.
(B) n
Finally, applying (4.14), (4.14), (4.17) and u(2B;) < Cy(diam(2B;))" < Cy (é—’i) ((B) from
page , we obtain

p
/ (W) du(w) < C(N,n,K,p, Co, k, ko, \) Mo, (2, 1).
2B;
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Given that B(y, kt) C B(x, (k + ko)t), it follows with (4.13) that

1 d(w, Py ! Micr. L, t
ﬁp, (y) ) - tn / ((t—~_1)> d/,t(’l,U) < C(N7n7K:7p; COak;kO’)Q%().
B(z,(k+ko)t)

To obtain the main result of this theorem, the only thing left to show is Ok, (z,t) C Ok, 4k (¥, 1)
Let (20,...,2n+1) € Ok, (x,t). Tt follows that zp,...,2,41 € B(x,kit) C B(y, (ko + k1)t) and
d(zi,z5) > ktT > ﬁ_‘_ko with ¢ # j and ¢, = 0,...,n. Thus (z0,...,2n+1) € Ok, +ko (Y, 1)- O

Theorem 4.7. Let 0 < A < 2™, k> 2, kg > 1 and KP be some p-proper symmetric integrand (see
Definition , There ezists a constant C = C(N,n,K,p, Co, k, ko, \) such that

b de¢
[ | 8oktat? s, oty G0 < CMs )

where Sy (B, 1) = supye (o or) 5By, 1)).
Proof. At first, we prove some intermediate results.

I. Letz € F,t>0and o, (B(z,t)) > A\. There exists some z € B(z, kot) with 6(B(z,t)) > 3.
Now with Theorem [4.6] there exist some constants k; and C' so that with ks := k1 + ko, we obtain
Bpop (w, )P < O L2800,

II. Let (x,t) € Dg(uo,--- unt1) = {(y,8) € F x (0,00)|(uo,---,Unt1) € Ouly,s)} where
Ug,y - -, Upt1 € F. We have (ug,...,unt1) € Ok(x,t) and so d(uzoi,’;“) <t < kd(ug,uy) as well
as x € B(ug, kt).

III. With Fubini’s theorem [7, 1.4, Thm. 1] and condition (B) from page [11] we get

1 dt kad(uo,u1) q dt )
L[ ooy Gan@ < [0 L tau@) S

7(1;%’;1) B(uo,k2t)

Now we deduce with Fubini’s theorem [7), 1.4, Thm. 1]
dt
// Boin (@, )" L5, (Bo,zay 7 dul® )
KP(ug, - - -, Un dt 11
< c/ / / / 0 ) duuo) - dpr(uns) Edp(r) S CMoen (1),
Ok, (1) " ¢

O

Corollary 4.8. Let 0 < A < 2", k> 2, kg > 1 and KP be some symmelric p-proper integrand (see
Definition . There exists a constant C = C(N,n, K, p, Co, k, ko, \) such that

& dt
//0 Bu(@, 07115, (B@myza} 7 dH(2) < CMie ().

Proof. This is a direct consequence of the previous Theorem and Hélder’s inequality. O

4.3. f-numbers, approximating planes and angles. The following lemma states, that if two
balls are close to each other and if each part of the support of p contained in those balls is well
approximated by some plane, then these planes have a small angle.

Lemma 4.9. Let z,y € F, ¢ > 1, £ > 1 and t,,t, > 0 with ¢~ ¢, < t, < ct,. Furthermore, let
k> 4c and 0 < X < 2" with §(B(z,t,)) > A, §(B(y,ty)) > A and d(z,y) < 2t,. Then there
exist some constants C3 = C3(N,n,Co, \,§,¢) > 1 and €9 = o(N,n, Co, N &, ¢) > 0 so that for all
€ < &g and all planes Py, P, € P(N,n) with ﬂf;}v( ) < & and 61 3 (y,ty) < & we get: For all
w € Py, we have d(w, Py) < Cse(ty +d(w, x)), for allw € Py, we have d(w, P1) < Cse(tz+d(w, x))
and we have <(Py, Py) < Cse.

Proof. Due to §(B(z,t;)) > A and Corollary there exist some constants C; > 3 and Cj
depending on N, n,Cy, A, and some simplex T = A(mo,...,xn) € F N B(z,t;) so that T is an
(n, IOntC—Il)—Simplex and p(B(z;, & &) N B(z,ty)) > C—z for all ¢ € {0,...,n}. For B; := B(z;, é—fl)
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tn

and i € {0,...,n}, we have u(B;) > u(B; N B(z,t,)) > C—’; > Cj%z. Since B; N B(x,t;) # 0 and

k > 4c > 4 we obtain B; C B(z, kt,) and B; C B(y, kt,). Now we see for ¢ € {0,...,n}

ﬁ /Bi d(z, P1) + d(z, P)du(z) = Cgtxﬁﬁ}c(x,tm) + C"Cgtyﬂﬁi(y,ty) < 2" Cowit e
With Chebyshev’s inequality, there exists z; € B; so that
(4.18) d(zi, Pj) < d(zi, Py) + d(2;, P2) < 2c" T Oyt e
fori € {0,...,n} and j = 1,2. We set y; := 7p, (z;) and with
£ <egi= ﬁ min {cl (10007 + )G (2031)")_1}
we deduce

d(yi, zi) < d(yi, zi) + d(zi, ) < d(zi, ) + & <287 Cof by e+ & <28,
so, with Lemma S = A(yo,...,yn) is an (nﬁné—’l)—simplex and S C B(z, % +t,) C
B(x,2t,). Furthermore, with ([4.18)) we have d(y;, P») < d(y;i, 2;) + d(2;, P2) < 2c"T1Coéte. Now,
with Lemma (C = %, C=2,t=t,, 0=2"""C¢e, m = n) we obtain
C cr\"
<Py, Py) < 4n(10™ + 1)2€1 <231> 2" Cy¢e = C(N,n, Co, A, €, 0)e.

Moreover, we have d(yo, 7p,(20)) < d(20, P1) +d(20, P2) < 2¢"T1Co€t,¢, so finally, with Lemma
224 (0 = Ce, t =ty, p1 = yo. p2 = 7p,(20)), we get for w € Py that d(w, P,) < C(d(w, yo)+1tz)e <
C(d(w,z) + ty)e and for w € P» we obtain d(w, Py) < C(d(w,7p,(20)) + tz) < Cld(w,z) + t5)e,
where C'= C(N,n, Co, \, &, ). O

The next lemma describes the distance from a plane to a ball if the plain approximates the
support of p contained in the ball.

Lemma 4.10. Let 0 > 0, z € RV, ¢t > 0 and X\ > 0 with 6(B(z,t)) > \. If P € P(N,n) with
Bly(x,t) < o, there exists some y € B(x,t) N F so that d(y, P) < £o. If additionally o < X, we
have B(z,2t) N P # (.

Proof. With the requirements, we get p(B(x,t)) > t"A, and so

1 / t1 d(z, P) t p t
—_— d(z, P)du(z) < f—/ ——du(z) = =B, (z,t) < —o.
w(B(x,1)) J Bz A" @ty t P A
With Chebyshev’s inequality, we get some y € B(z,t) N F with d(y, P) < %O’. If o < A, it follows
that B(x,2t) NP # (. O

5. PROOF OF THE MAIN RESULT

At the end of this section (page 7 we will give a proof of our main result Theorem under
the assumption that the forthcoming Theorem is correct. We start with a few lemmas helpful
for this proof.

5.1. Reduction to a symmetric integrand.

Lemma 5.1. Let KP be some proper integrand (see Definition . There exists some proper
integrand KCP, which is symmetric in all components and fulfils My»(E) = Mg, (E) for all Borel
sets E.

Proof. We set KP(xo,...,Tp41) = #%M 2 opes,.s KP(@(20, ..., ny1)), where Spip is the sym-

metric group of all permutations of n + 2 symbols. Due to K? < #5512 KP, the integrand
KP fulfils the conditions of a proper integrand. Now Fubini’s theorem [7, 1.4, Thm. 1] implies
Mg, (E) = Mi» (E). O
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5.2. Reduction to finite, compact and more regular sets with small curvature.

Lemma 5.2. Let E be a Borel set with My»(E) < 0o, where KP is some proper integrand. Then
we have H"(E N B) < 0o for every ball B.

Proof. Let B be some ball and set F' := F N B. We prove the contraposition so we assume that
H"(F) = co. With Lemma [2.15] there exists some constant C' > 0 and some (n + 1, (n + 3)C)-
simplex T' = A(zo,...,Zny1) € B with H*(B(xo,C) N F) = co and H"(B(z;,C) N F) > 0 for
all i € {1,...,n+ 1}. With Lemma we conclude that S = A(yo,...,Ynt1) is an (n+ 1,C)-
simplex for all y; € B(z;,C), i€ {0,...,n+1}. For t = Cq/% +1land C = ,/% +1, we

get S € B(x,tC), where z is the centre of the ball B, and S is an (n + 1, %)—Simplex. Hence we
are in the right setting for using the second condition of a proper integrand. We obtain

Mir(E) > / / K2 (Yo, - -+ s Ynt1)dH (yo) - . . AH" (Yn41) = 00.
B(xn+1,C)ﬁF B(d?(],C)ﬂF
O
Lemma 5.3. In this lemma, the integrand K of My» only needs to be an (H™)"*2-integrable

function. Let p >0, n < N and E C RN be a Borel set with 0 < H"(E) < oo and Mx»(E) < co.
For all ¢ > 0, there exists some compact E* C E with
() Hr(E7) > (el e
(ii) Yz € E*,Vt > 0, H"(E* N B(z,1)) < 2w,t",
(ili) Mxr(E*) < (¢ (diam E*)™,
where w, = H"(B(0,1)) is the n-dimensional volume of the n-dimensional unit ball.

Proof. Due to 0 < H"(FE) < oo and [7, 2.3, Thm. 2], for H"-almost all z € E we have

1 "(ENB(x,t
(5.1) — < limsuprﬂ(m—(m’)) < 1.
2n t—0+ wnt™
For [ € N, we define the H™-measurable set
1
(5.2) E,, = {x cE ‘ Vt € (0, ) JHY(EN Bz, b)) < 2wnt"} :
m

Due to E; C Ejq1, [7, 1.1.1, Thm. 1, (iii)] and (5.1)) we get that

Tim 7 () = 1 (U7, ) = HO(E)
Hence there exists some m € N with H"(E,,) > $H"(E) and Myr(Ep,) < Myr(E) < co. Define
for >0

(5.3) I(r):= /A( ) KP(xoy ..y Tpp1)dH (x0) - . . dH" (xp11),

where A(7) = {(xo, cey Tpt1) € E:,EL"’Q‘d(xo,a:i) <tforallie{l,...,n+ 1}} Using (5.2) we

obtain (H™)"*? (A(1)) — 0 for 7 — 0. With My (E,,) < 0o, we conclude lim,_,o Z(7) = 0, and
so we are able to pick some 0 < 79 < ﬁ with

CH" (Em)
(5.4) I(m) < 5ol

We set

7wy,
V= {B(Q?,T)}Qi €E,0<T <719, H"(Ery N B(x,7)) > S } .

Since 0 < H™(E,,) < oo, we get (b.1) with F,, instead of E, [7, 2.3, Thm. 2]. This implies
inf {7|B(x,7) € V} = 0 for H"-almost every = € Ey,. According to [8, 1.3], V is a Vitali class. For
every countable, disjoint subfamily {B;}; of V, we have ), (diam B;)" < %H”(Em) < 0.
Applying Vitali’s Covering Theorem [8, 1.3, Thm. 1.10], we get a countable subfamily of V with
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disjoint balls B; = B(z;,7;) fulfilling H" (E \Usen B ) = 0. Therefore, using (5.2]), we have
H' (Em) < D en HY(Em N Bg) <370 cn 2wa ], so that

(5.5) > o 7).

€N
Furthermore, with (B; N E,,)" "2 C A(279) N B2, we obtain

2 100m) & 0 En)

(5.6) > M (Bin Ep) % onta”

€N
We define
Iy = {i € N[ Mo (B(ai, 7) N F) > Coter |

and so

ZMICP(B(l‘i,Ti> ﬂEm) > CM

2n+2
icly

"(Bm) o . .
We have >, LT < H 45) =) gince assuming the converse would imply

> Micr(B(wi, i) N Ey, )- Lien, TV < > Mie(B(ai ) N Ep).

2n+2
ieN =
Using (5.5]), we obtain I, # N. Now we choose some i € N\ I, and the regularity of the Hausdorff
measure [8, 1.2, Thm. 1.6] implies the existence of some compact set F* C B(z;,7;) N E,, with

(i) H(E*) > LHM(B(ws, 75) N Byy) > Gty > (dam B e,

(ii) Yo € E*,Vt > 0, we have H"(E* N B(x,t)) < H™(B(zi,7) N By N B(x,t)) < 2wpt™
since if t < L (5.2) implies H"(E N B(x,t)) < 2w,t™ and if ; < = < ¢ (5.2) implies
,Hn(B(.Ti,Ti) N Em) < 2w, t".

(iii) Mxr(E*) < Coz < ((diam E*)" since i ¢ I, and for some ball B with E* C B and

n (D) n (ii)
diam B = 2diam E* we have 22’42 < HUE'OB) < (diam E*)™.

2wp,

O

Next, we present the crucial theorem of this work.

Theorem 5.4. Let K : (RN)n+2 — [0,00). There exists some k > 2 such that for every Cy > 10,

there exists some 1 = n(N,n,K,Co, k) € (0,w,2~ 2] so0 that if u is a Borel measure on RN
with compact support F such that K? is a symmetric p-proper integrand (cf. Definition and
w fulfils

(A) u(B(0,5)) > 1, u(RV\ B(0,5)) = 0,

(B) u(B) < Cy (diam B)" for every ball B,

(C) Mica(u) <1,

(D) o 3:(0,5) < for some plane Py € P(N,n) with 0 € Py,

then there exists some Lipschitz function A : Py — Pi- C RN so that the graph G(A) c RN
fulfils W(G(A)) > 5u(RN). (Pg- = {z € R¥|z-v = 0 for allv € Py} denotes the orthogonal
complement of Py.)

At first, we show that, under the assumption that the previous theorem is correct, we can prove
Theorem The remaining proof of Theorem is then given by the following chapters [6] [7]
and |8l We will use the notation sE := {z € R¥|s"!lz € E} for s > 0 and some set E C RV.
Distinguish this notation from sB(z,t) = B(x, st), where the centre stays unaffected and only the
radius is scaled.
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Proof of Theorem [3.5] Let K? be some proper integrand (see Definition , E c RY some Borel
set with M2 (E) < oo and let Cy = 22"*+2. Furthermore, let £ > 2 and 0 < 7 < w,2~?7*2) be
the constants given by Theorem [5.4] Using Lemma we can assume that K is symmetric.

We start with a countable covering of RY with balls B; so that RY C UieN B;. We will show
that for all ¢ € N the sets E'N B; are n-rectifiable, which implicates that E is n-rectifiable.

Let i € N with #"(E N B;) > 0. With Lemma [5.2] we conclude that H"(E N B;) < co. Then,
using [9, Thm. 3.3.13], we can decompose E N B; = E! U E! into two disjoint subsets, where E?
is n-rectifiable and E! is purely n-unrectifiable.

Now we assume that E N B; is not n-rectifiable, so H"(E.) > 0. The set E! is a Borel
set and fulfils 0 < H"(E)) < HN(E N B;) < oo and My=2(E!) < Mk2(E) < oo. Now we
apply Lemma with ¢ = n% where the constants C' and C are given in this passage and
get some compact set E* C E! which fulfils condition (i),(ii) and (iii) from Lemma We set
a = (diam E*)~' and i = H" L aE*. Let B be a ball with aE* C B and diam B = 2. Using (i),
we get 5;1(3) > sz So, Theorem (p=2z=y=centreof B, t =1, A = ST, ko = 1)

implies Bk (B)? < C My (i) < n?, for some constant C' = C(N,n, K, Co, k) > 1. Using Holder’s

inequality there exists some n-dimensional plane P, € P(N,n) with 653’“ ﬂ(B) < 7. Now we define
92n+1 ~(

a measure u by p(:) := + 75, (b)), where b is the centre of B. This is also a Borel

measure with compact support and Lemma (0 =0, B(xz,t) =B, A\ = 55741 ) implies that the
support fulfils F':= aE* — 7 (b) C B(0,2). This measure fulfils condition (D) from Theorem [5.4
(Po=Py—m 5, (b)) and (i) implies condition (A). To get condition (B) for some arbitrary ball, cover
it by some ball with centre on F, double diameter and apply (ii). Use My (1) = C(n)a”™ M2 (E*)
and (iii) to obtain (C). Finally we mention that K? is u-proper, since u is an adapted version of
‘H™. Hence we can apply Theorem and after some scaling and translation we obtain some
Lipschitz function which covers a part of positive Hausdorff measure of EY which is in contrast to
E! being purely n-unrectifiable. Hence E N B; is n-rectifiable. ([

6. CONSTRUCTION OF THE LIPSCHITZ GRAPH

6.1. Partition of the support of the measure u. Now we start with the proof of Theorem
Let K : (RN)n+2 — [0,00) and let Cy > 10 be some fixed constant. There is one step in the
proof which only works for integrability exponent p = 2. (p = 2 is used in Lemma so that the
results of Theorem [7.3| and Theorem fit together.) Since most of the proof can be given with
less constraints to p, we start with p € (1,00) and restrict to p = 2 only if needed. Furthermore,
let k>2,0<n<w,2?*2) Py € P(N,n) with 0 € Py and z be a Borel measure on RY with
compact support F' such that P is a symmetric py-proper integrand (cf. Definition (3.1 and

(A) u(B(0,5)) > 1, u(R™\ B(0,5)) = 0,

(B) u(B) < Cp (diam B)" for every ball B,

(C) Myr(p) <,

(D) B4, (0,5) <.

In this chapter, we will prove that if k is large and 7 is small enough, we can construct some
function A : Py — Ps- which covers some part of the support F of . For this purpose, we will give
a partition of the support of x4 in four parts, supp(p) = ZUF;UF,UF3, and construct the function
A so that the graph of A covers Z, i.e., Z C G(A).

The following chapters [7| and [§| will give a proof of u(F; U Fp U F3) < 1L, hence with (A) we
will obtain p(G(A)) > 2% u(RY), which is the statement of Theorem

From now on, we will only work with the fixed measure u, so we can simplify the expressions
by setting 1, := Bi;k;u and 0(-) := 0,,(-). Furthermore, we fix the constant

10°10 2
1 d:=min{ ———, —
(6.1) i { 600" N, 507 } ’
where Ny = Ny(N) is the constant from Besicovitch’s Covering Theorem [7, 1.5.2, Thm. 2].
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Definition 6.1. Let a, e > 0. We define the set
()  8(Blx,t) > Lo
(@)  Puk(w,t) <2
Pw t
Stotar = 4 (x,1) € F x (0,50) e (@, t) < 26
(¢i7) 3 Pgy € P(N,n) s.t. and
APy, Po) <

Having in mind that the definition of S}/, depends on the choice of ¢ and «, we will normally
skip these and write Siotq; instead. In the same manner, we will handle the following definitions
of H,h and S. For x € F we define
t t
H(z) = {t e (0,50) \ JyeF, Irwith L <7<, dlay) < % and (y,7) ¢ swml},
h(z) := sup(H (z) U {0}) and S = {(z,t) € Stotar | t > h(2)}.

Sometimes, we identify a ball B = B(x,t) with the tuple (z,t) and write to simplify matters B € S
instead of (z,¢) € S. In the same manner we use the notation f1.;(B).

Lemma 6.2. Let o, > 0. If n < 2¢, we have that Siotar # 0 and
(i) F x [40,50) C {(x,t) € F x (0,50)|t > h(x)} =S5
(ii) If (z,t) € S and t <t < 50, we have (x,t) € S.

Proof. (i) Ifx € F C B(0,5) and 10 < t < 50, we have I' C B(x,t). Using (A),(D) and P, ) := Py
we get (x,t) € Siotar, which implies that F' x [10,50) C Stota;. Now if € F and t € [40,50) we
deduce for arbitrary y € F and 7 € [£, L] that (y,7) € Siotar, which implies that H(z) C (0,40),
h(z) < 40 and hence the first inclusion. For the equality it is enough to prove that the central set
is contained in S. Let x € F and t € (0,50) with h(z) < ¢t < 50. Assume that (z,t) ¢ S. Due
to h(xz) < t, we obtain (z,t) ¢ Stotar, which implies that ¢ < 10. Hence with y = 2 and 7 =t we
get 3t € H(x). This implies h(x) > 3t > ¢ and hence a contradiction to ¢ > h(z). So, we obtain
(x,t) € S.

(ii) We have 2 € F and h(z) <t <t < 50 so with (i) we conclude that (z,t) € S . O

Remember that the function h depends on the set Siotq;, which depends on the choice of € and
a. Hence the sets defined in the following definition depend on « and € as well.

Definition 6.3 (Partition of F'). Let a,e > 0. We define
Z:={x€F|h(zx)=0},
Iy e F,3rc [h(x) h(;)}, with d(z,y) < % }
3

Fi={2ze€F\Z| .ud
8(B(y,7)) <0

Iy e F,3Irc [@7 h(;)} , with d(z,y) <
F2 = JIEF\(ZUFl) and s
ﬁl;k(yaT) > €
e F3re [”(;), hg")} , with d(z,y) < %

Fy:=qz€F\(ZUF UF)| and for all planes P € P(N,n) With
By, 7) <& we have <(P, Py) > S

In this chapter, we prove that Z is rectifiable by constructing a function A such that the graph
of A will cover Z. This is done by inverting the orthogonal projection 7|z : Z — Py. After that,
to complete the proof, it remains to show that Z constitutes the major part of F'. Right now, we
can prove that pu(Fy) < 1076 (cf. section Fj is small) where the control of the other sets need
some more preparations.

Lemma 6.4. Let a,e > 0. Definition[6.3 gives a partition of F, i.e. F =2 U Fy U Fy U F3.
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Proof. From the definition we see that the sets are disjoint. We show F'\ Z C F; U Fy U F3. Let
x € F\ Z, so we have h(z) > 0. There exist some sequences (y;)ien € FN, (t;)1en and (77)1en S0
that for all I € N, we have 0 < t; < h(x), t; — h(x), % <7< %7 d(z,y) < % and (y1,7) ¢ Stotal-
Due to 17 < %l < @ < 5—30, we have for every [ € N either 6(B(y;, 7)) = % < %5 or
§(B(yi,m)) = 36 and By, 71) = 2¢ or §(B(y;, 7)) > 30 and Bie(y, ) < 2¢, and for every
plane P € P(N,n) with ﬂﬁk(ylvn) < 2¢, we have <(P, Py) > a.

Choose [ so large that %(x) < t;. We obtain @ < %l <7 < %l < Furthermore,
we have y; € F and d(z,y) < % < F. Since (y;,7) fulfils one of this tree cases, it follows

S Fl U FQ U Fg. |:|
The following lemma is for later use (cf. Lemma and Lemma [8.11)).

h(z)

Lemma 6.5. Let o > 0. There exists some constant € = E(N,n,Co, ) so that if n < 2 and
k > 2000, there holds for all € € [%,8): If x € F3 and h(z) < t < min{100h(z),49}, we get
Py, Po) > %a, where P, 1) is the plane granted since (x,t) € Siotar (cf. Definition .
Proof. Let a > 0 and k > 400. We set & := min{eo, £, «(5C3) "'}, where €, &f), C3 and C’é depend
only on N,n and Cy will be chosen during this proof. Furthermore, let n < 2e < 2¢.

Since x € F3 and x ¢ (Fy N Fy), there exists some y € F, T € [@, @] and P € P(N,n) with

d(z,y) < 7, ﬂfk(y,T) < e and <(P, Ry) > %a. Furthermore h(z) < ¢ implies (x,t) € S C Siotal
and hence 6(B(z,t)) > %6 and Bi(,:’” (x,t) < 2e. Now with Lemma (c =500, &£ =2, t, =t,
ty =7, A= g), there exist some constants C5 = C3(N,n,Cy) > 1 and g9 = £o(N,n,Cp) > 0 so
that <(P, P, ) < Cse. Due to <(P, Py) > 3avand € < 10, this gives <(Py,), Po) > 1o O

6.2. The distance to a well approximable ball. We recall that the set S depends on the choice
of o and €. Hence the functions d and D defined in the next definition depend on a and ¢ as well.
We introduce 7 := 7p, : RN — Py , the orthogonal projection on P.

Definition 6.6 (The functions d and D). Let a,e > 0. If < 2e, we get with Lemma [6.2] (i) that
S # (). We define d : RNV — [0,00) and D : Py — [0, 00) with

d(z):= inf (d(X t D(y) == inf d(z).
(@) (Xl,?)es( (X,2) +1) ) ze)rgl(y) (@)

Let us call a ball B(X,t) with (X,¢) € S a good ball. Then the function d measures the
distance from the given point x to the nearest good ball, using the furthermost point in the ball.
This implies that a ball B(z, d(x)) always contains some good ball. The function D does something
similar. Consider the projection of all good balls to the plane Py. Then D measures the distance
to the nearest projected good ball in the same sense as above (cf. next lemma).

Lemma 6.7. Let a,e > 0. If n <2 and y € Py we have D(y) = inf x 4)es(d(m(X),y) +1).

Proof. Due to d(X,z) > d(n(X),n(z)) we have D(y) > inf(x es(d(n(X),y) +t). Assume that
limg oo (d(7(X7),y) + 1) > inf(x pes(d(n(X),y) +t) for some sequence (Xi,t;) € S. Now there
exists some [ € N so that

D(y) > d(ﬂ'(Xl) + X; — F(Xl),y + X; — W(Xl)) +t > einﬁ( )d(Xl,x) +t > D(y)
zer—(y

which is a contradiction. O

Lemma 6.8. The functions d and D are Lipschitz functions with Lipschitz constant 1.

Proof. Let z,y € RV. We get with the triangle inequality d(z) < d(y) + d(z,y) and d(y) <
d(x) + d(z,y). This implies |d(x) — d(y)| < d(z,y). Using the previous lemma, we can use the
same argument for the function D. O

Lemma 6.9. We have {z € RN’d(J?) <1} € B(0,6) and d(x) < 60 for all x € B(0,5).
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Proof. Let € RY with infy es(d(X,z) + t) = d(x) < 1. Hence there exists some X € F C
B(0,5) with d(0,z) < d(0,X) +d(X,z) < 6. If z € B(0,5), we have d(z) < 10 + 50. O

Lemma 6.10. Let a,e > 0. If n < 2¢e, we have d(z) < h(z) for all z € F and
Z={zeFldx)=0}, =(2)={yeh|D(y) =0}

Furthermore, both sets Z and w(Z) are closed. We recall that w denotes the orthogonal projection
on the plane Py.

Proof. Let x € F. With Lemmal6.2] (i), we have (2, h(z)) € S and hence d(z) < h(z). This implies
Z C {z € F|d(z) =0}.

Now let x € F with h(x) > 0. We prove d(z) > 0. There exist some sequences t; — h(z)
and some sequence (X;,s;) € S with d(X;,x) + s; — d(x). If on the one hand there exists some
subsequence with X; — x we obtain for another subsequence s; > h(X;) > t; > 0 for sufficiently
large ¢ and hence d(z) > 0. If on the other hand d(X;,z) has an positive lower bond, we conclude
d(z) > lim_y0o d(Xy, 2) > 0

Now we prove the second equality. If y € m(Z), there exists some zg € Z with 7(xp) = y and
d(zg) = 0. Now we get 0 < D(y) < d(xg) =0.

If y € Py with D(y) = 0, since d is continuous, we get with Lemma that there exists some
a € 771 (y) with d(a) = 0. This implies a € F and hence a € Z. Thus y € 7(2).

According to Lemma[6.8] d and D are continuous and hence these sets are closed. O

Lemma 6.11. Let 0 < a < i. There exists some £ = &(N,n,Cy) so that if n < 2 and k > 4 for
all € € [3,€), there holds: For all x,y € I we have

d(z,y) < 6(d(x) + d(y)) + 2d(n(z), 7(y)),
d(m(2), 7 (y)) < 6(d(x) + d(y)) + 20d(r(z), 7 (y)).

Proof. Let 0 < o < i and k > 4. During this proof, there occur several smallness conditions on €.
The minimum of those will give us the constant . Let n < 2e < 2¢.

The first estimate is an immediate consequence of the second estimate. So we focus on this one.
Due to F' C B(0,5) the LHS is always less than 10. Hence we can assume that d(z) + d(y) < 2
We choose some arbitrary r, € (d(x),d(x) + 1) C (0,3). There exists some (X,t) € S with
d(z) < d(X,z) 4+t < ry. According to Lemma (ii), it follows that (X,r,;) € S. Analogously,
for all 7, € (d(y),d(y) + 1), we can choose some Y € F with d(Y,y) < r, and (Y,r,) € S.
Now it is enough to prove d(7*(z), 7t (y)) < 6(ry + ry) + 2ad(n(z), 7 (y)) since r, > d(z) and
ry > d(y) were arbitrarily chosen. We can assume d(X,Y) > 2(r, + ) since otherwise d(z,y) <
d(z, X) +d(X,Y) + d(Y,y) immediately implies the desired estimate.

We define By := B(X, 1d(X,Y)) and B, := B(Y,1d(X,Y)). With Lemma [6.2] (i) we obtain
B1,By; € S. Let Py and P, be the associated planes to By and By (see Definition . With
Lemma (=X, y=Y,c=1,(=2t, =t, = %d(X,Y), A= %5) there exist some constants
C3 = C3(N,n,Cy) > 1 and g9 = €9(N,n,Cy) > 0 so that if e < gg for w € P;, we obtain

(6.2) d(w, Py) < C3(N,n,Cy,0)e (3d(X,Y) + d(w, X)) .
Let By := B(X, e#d(X,Y) + r;) and By := B(Y, 1e2d(X,Y) +r,). Lemmal6.2] (i) implies
that these balls are in S. Now we conclude using 6(B;) > % B; C kB;, and ﬁf:"k(Bi) < 2¢ for

i € {1,2} that

1 d(X', P / 1 1 d(X', P) , g
25 o TV ) S Sy ) o T 10 < 50

With Chebyshev s inequality, we deduce that there exists some X = B; and some Y € Bé so that
d(X',P) < 652d(X Y) and d(Y', Py) < 552d(X, Y).

Now let X := 7p, (X') be the orthogonal projection of X on Pj, Y, := mp,(Y") the orthogonal
projection of Y on Py, and X}, := mp, (X)) the orthogonal projection of X; on Py. If ¢ is small

M\»—A
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enough, we have with o € {m, 71}

d(o(X),o(X)) <d(X,X') < §emd(X,Y) + 14,
d(e(Y),0(Y")) < d(Y,Y) < 3e3d(X,Y) + 1,

Ao(X),0(X}) < d(X, X)) = d(X', Pr) < ZeHd(X,Y),
dlo(v'),0(¥y) < d(Y',¥) =d(Y' Py) < ZHd(X,Y),

!’ ’ ’ ! ’
A(0(X}). o(X1) < d(X]. X13) = d(X;. Py) 22 2Cea(x.¥).
According to Definition we have <(P2, Py) < « and we get with Lemma (X5, Y, € P)
using a < %
1

l1—«
«

d(m(X 1), m(Vy)) < 2d(n(Xy5), 7(Yy)),
(6.4) Al (X1), 7)) < 10— d(w(X1a), 7(¥3)) < Sod(x(X1),w(¥y)).

Inserting the intermediate points X ,, X 1, Xiz, YQI, Yy’ using triangle inequality twice and using
the previous inequalities, there exists some constant C' so that

d(X,Y) < Cemd(X,Y) + 1y + 1y + 2d(m(X},), 7(Y3))
< C%gﬁ d(X,Y) 4 3(ry +ry) + 2d(n(X),7(Y))

(6.3) d(X19,Yy) <

11—«

and hence if ¢ fulfils C %5ﬁ < %, we get
(6.5) d(X,Y) <6(ry +1ry) +4d(m(X), 7(Y)).
As for d(X,Y), we estimate d (7TJ‘ (X), WL(Y)) by repeated use of the triangle inequality and .
With 7 we deduce
d(?TL(X),ﬂ'l(Y))
< 056% d(X,Y) +3(ry + 1) + 2ad(n(X),n(Y))

< Cere[6(ry + 1y) +4d(m(X), m(Y))] + 3(ry + 1) + ad(n(X), m(Y))
< A(ry +1y) + 20d(n(X), 7(Y)).
This implies using d(7*(z), 71 (X)) < d(z, X) <7, and d(7-(Y), 7t (y)) < d(Y,y) < r, that
d(r* (2), 7 (y)) < 5(ro +1y) + 2ad(7(X), 7(Y)) < 6(ry + 1) + 20d(m(2), 7(y))-
O

6.3. A Whitney-type decomposition of Py \ m(Z). In this part, we show that Py \ 7(Z) can
be decomposed as a union of disjoint cubes R;, where the diameter of R; is proportional to D(x)
for all z € R;. This result is a variant of the Whitney decomposition for open sets in R™, cf. [IT
Appendix J].

Definition 6.12 (Dyadic primitive cells). 1. We set D to be the set of all dyadic primitive cells
on Py. We recall that the plane Py is an n-dimensional linear subspace of R™V.

2. Let 7 € (0,00) and @ be some cube in RY. By rQ, we denote the cube with the same centre
and orientation as () but r-times the diameter.

We mention that the function D depends on the choice of o and € because D depends on the
set S C S;%;. Hence the family of cubes given by the following lemma depends on the choice of
« and € as well.

Lemma 6.13. Let a,e > 0. If n < 2e, then there exists a countable family of cubes {R;}icr C D
such that
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(i) 10diam R; < D(x) < 50diam R; for all x € 10R;,

(ii) Po\7(2) = U;e; Ri = U;er 2R and cubes R; have disjoint interior,
(iit) for everyi,j € I with 10R; N10R; # 0, we have %diam R; < diam R; < 5diam R;,
(iv) for every i € I, there are at most 180™ cells R; with 10R; N 10R; # 0.

Proof. For z € Py, D(z) > 0, we define @, € D as the largest dyadic primitive cell that contains z
and fulfils diam Q, < 2% inf,eq, D(u). For such a given z the cell ), exists because the function
D is continuous and D(z) > 0 Hence if we choose a small enough dyadic primitive cell @ that
contains z, we get diam Q < == 1nfu€Q D(u). Due to the dyadic structure, there can only be one
largest dyadic primitive cell that contains z and fulfils the upper condition. We choose R; € D
such that {R;|i € I} ={Q. € D|z € Py, D(z) > 0} and R; = R; is equivalent to i = j.

(i) Let z € 10R; and u € R;. We get 20diam R; < D(u) < D(x) + 10diam R;, and hence
10diam R; < D(z). Let J; € D be the smallest cell in D with R; C J; and choose u € J; so that
D(u) < 20 diam Ji = 40diam R;. This is possible because otherwise I; is not maximal relating to
diam R; < 55 infyer, D(v). We obtain D(z) < D(u) + d(u, ) < 50 diam R;.

(ii) If the 1nter10r of some cells R; and R; were not disjoint, because of the dyadic structure, one
cell would be contained in the other. But then one of those would not be the maximal cell. Hence
the R;’s have disjoint interior. For all « € 2R;, we obtain using (i) and Lemma[6.10| that = ¢ 7(Z).
Now let = € Py \7(Z). With Lemma we get D(x) > 0. So there exists the cube @, € D with
r € Q. and hence x € | J;c; R;

(iii) If 10R; N10R; # 0 we can apply (i) for some z € 10R; N 10R; and obtain the assertion. (iv)
Let i € I and R; With 10R; N10R; # 0. We conclude with (iii) that d(R;, R;) < 30diam R; and so
R; C (14 30+ 5)R;. Furthermore, we have diam R; > 1 diam R;. Since the cells R; are disjoint,

there exist at most % < (180)™ cells R; with 10R; N 10R; # 0. O

Now we set Us := B(0,12) N Py and I3 := {i € [|[R; N U2 # 0} .

Lemma 6.14. Let a,e > 0. If n < 2¢, for every i € I o, there exists some ball B; = B(X;,t;)
with (X;,t;) € S, diam R; < diam B; < 200diam R; and d(w(B;), R;) < 100diam R;.

Proof. Let i € I and z € R;. Use Lemma Lemma and Lemma (i), (ii) to get
some (X,t) € S with d(n(X),z) +t < 2D(z) < 100diam R;. Choose B; := B(X,,t;) := B(X,r)
with r = max{t, %} < 100 diam R;. Now we have d(7(B;), R;) < 100diam R; and diam R; <
diam B; < 200diam R;. You can show that r < 50 and hence with Lemma (ii), we get

(X,r)es. O
6.4. Construction of the function A. We recall that 7= := 7p, : RN — Py is the orthogonal
projection on Py and introduce 7t := ﬂ'f.so : RN — Pg-, the orthogonal projection on Py, where

Pi- .= {z € RN|z-v =0 for all v € Py} is the orthogonal complement of Py. To define the function
A, we want to invert the projection 7|z on Z.

Lemma 6.15. Let 0 < o < ;. There exists some € = &(N,n,Cy) so that if n < 2 and k > 4 for
all € € [3,€), the orthogonal projection m|z : Z — Py is injective.

Proof. The assertion follows directly from Lemma and Lemma [6.11 0

Since 7|z : Z — Py is injective, we are able to define the desired Lipschitz function A on 7(Z)
by
Ala) == (7|3 (a))

where a € 7(Z).

Lemma 6.16. Under the conditions of the previous lemma, the map A‘ﬂ 2) is 2a-Lipschitz.

Proof. Due to Lemma [6.15] for a,b €
m(Y)=b. WehaveA() Tt (X )A()
(b

So, with Lemma [6.11] we get d(A(a), A

(Z), there exist dlbtlDCt X,Y € Z with n(X)

= a and
7+(Y) and Lemma implies that d(X) = d(Y) = 0.
)) < 2ad(a, b). O
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Now we have a Lipschitz function A defined on 7 (Z). By using Kirszbraun’s theorem [9, Thm
2.10.43], we would obtain a Lipschitz extension of A defined on Py with the same Lipschitz constant
2a, where the graph of the extension covers Z. But until now, we do not know that Z is a major
part of F. We cannot even be sure that Z is not a null set. So we do not use Kirszbraun’s theorem
here, but we will extend A by an explicit construction. This will help us to show that the other
parts of F', in particular Fy, Fy, F3, are quite small.

Definition 6.17. Let a,e > 0. If < 2¢, for all i € I12, we set P; := P(x, ;,), Where P(x, 4,) is the
n-dimensional plane, which is, in the sense of Definition associated to the ball B(X;,t;) = B;
given by Lemma

Lemma 6.18. Let 0 < a < % and ¢ > 0. If n < 2e, then for all i € 115, there exists some affine
map A; : Py — Py~ with graph G(A;) = P; and A; is 2a-Lipschitz.

Proof. Use <(P;, Py) < o < 3 (cf. definition of Syoza) and apply Corollary O

In the following, we use differentiable functions defined on subsets of Py. For the definition of
the derivative see section [B] on page [53]

Lemma 6.19. Let a,e > 0. If n < 2¢, then there exists some partition of unity ¢; € C*(U12,R),
1 € g, with 0 < ¢; <1 on Uya, ¢; = 0 on the exterior of 3R; and ZiEIg @i(a) =1 for all a € Uys.
Furthermore there exists some constant C = C(n) with |0%¢;(a)| < @#}?)\WI where w is some
multi-index with 1 < |w| < 2.

Proof. For every i € I3, we choose some functlon qﬁl € C*(Py,R) with 0 < (;gl <1 qgl =1on
2R;, (j)l = 0 on the exterior of 3R;, |0¥ ¢Z| < W for all multi-indices w with |w|] = 1 and

87| < m for all multi-indices x with |x| = 2. Now on V := 2R;, we can define the

i€112

partition of unity ¢;(a) := % For all a € V, there exists some i € I15 with a € 2R; and
j€I 2 ¥

hence Zjelu ng (a) > 1. Moreover, due to Lemma (iv), there are only finitely many j € I

such that ¢~)j(a) # 0. Due to the control we have on the derivatives of ¢;, we obtain with Lemma
6.13| (iv) the desired estimates of the derivatives of ¢;. O

Definition 6.20 (Definition of A on Ujs). Let a,e > 0. If n < 2¢ and k > 4, we extend the
function A : 7(Z) — Py~ C RY, a — 7+ (7|3'(a)) (see page to the whole set Uy by setting
for a € Uya

(73" (a)) ,a € m(2)

> ¢i(a)Ai(a) a€UanUy, 2R:.

i€l

With Z2 C F C B(0,5), we get 7(Z) C U2 and, with Lemma (ii), we obtain
Uier,, 2Ri N7(Z) = 0, hence we have defined A on the whole set

Uiz = (U2 NUsey,, 2Ri) U m(2).

6.5. A is Lipschitz continuous. In this section, we show that A is Lipschitz continuous. We
start with some useful estimates.

A(a) :=

Lemma 6.21. Let 0 < o < %. There exists some k > 4 and some & = &(N,n,Cy) so that if k > k
and n < 2¢ for all € € [1,&), there exist some constants C > 1 and C = C_'(N,n,Co) > 1 so that
for all i, j € Io with i # j and 10R; N 10R; # 0, we get
(i) d(B;, B ) < Cdiam R;,
(ii) d(A;i(q), A;(q)) < Cediam R; for all g € 100R;;,
(iil) the szschztz constant of the map (A; — Aj) : Py — Py~ fulfils Lipy,_a, < Ce,
)

(iv) d(A(u), A;(u)) < Cediam R; for all u € 2R; N Uya.
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Proof. Let 0 < o < i. We set € = min{g,é’,eo}, where 6 = §(N,n) is defined on page g is
the upper bound for € given by Lemma and gq is the constant from Lemma Let n < 2¢
and choose € such that n < 2e < 2é.

(i) Let B; = B(X;,t;) and B; = B(X,t;). Lemma[6.13|and Lemmal[6.14]imply d(7(X;), 7(X;)) <
Cdiam R;, and, using (X;,#;) € S we have d(X;) < 500diam R; for [ € {i,j}. Now Lemma [6.11]
implies the assertion.

(ii) At first, we show for ¢ € 100R; that d(A;(q) + ¢, X;) < Cdiam R;. Since (X;,t;) € S C Stotal,
e < g, and Lemma (0 =2¢,2=X,,t=t;, A= 306, P=P) we get B(X;,2t;)NP; # 0. Thus
there existb some a € Py with Ai(a )+ a € B(X;,2t;)NP; and a € 7(2B;). Since A; is 2a-Lipschitz
and « < , using Lemma and we obtain by inserting A;(a) + a with triangle inequality

(6.6) d(Al( )—|—q, i) < \A( ) — Ai(a)] + d(g, a) + diam B; < C'diam R);.

With Lemma and |6 . there exists some constant C' > 2 so that ét <t; < Ct;. Moreover,
we have (Xl,t) (Xj,t;) € S C Siotar With k& > k=202 > 4C, Lemma (x = X], y = Xi,

c=C,6=2,t, =tj, t, =1t A= f) implies that there exists some ¢y > 0 and some constant

C3 = C3(N,n,Cpy) > 1 so that, for e < & < gg with the already shown (i), and Lemma
we get

(6.7) d(A;(q) + ¢, P;) < Cse (t; +d(Ai(q) + ¢, X;)) < Cediam R;.
Furthermore, there exists some o € Py so that A;(o) + o0 = mp,(Ai(q) + q). Now, since A is 2a-

Lipschitz, we have d(A;(0) + 0,4;(¢q) + q) < 2d(o,q) < 2d(Ai(q) + g, A;(0) + 0) and hence with
Lemma [6.13] and Lemma we obtain for some C' = C(N,n,Cp)

.
d(Ai(q) + ¢, 4;(q) +q) < d(Ai(q) + ¢, Pj) + d(Aj(0) +0,A(q) +q) < Cediam R;.
(i) Without loss of generality, we assume diam R; < diam R;. We have B(y,2diam R;) N Py C
20R; N 20R; for some y € 10R; N 10R; # (. We choose arbitrary a,b € B(y,2diam R;) N Py with
d(a,b) > diam R;. Now, with (ii), we get
[(A; — Aj)(a) — (A; — A;)(b)| < Cediam R; < C(N,n, Co)ed(a,b).

Since A; — Aj; is an affine map, this implies Lip,, 4, < C(N,n,Cy)e.
(iv) We get the estimate using Definition > ier,, ¢1(u) =1, Lemma (iv) and (ii) of the

current Lemma. 0

Lemma 6.22. Let 0 < a < %. There exists some k > 4 and some & = &(N,n,Cy,a) < a so that
if k >k and n < 2¢ for all € € [5,€), the function A is Lipschitz continuous on 2R; N Uiy for all
j € I1o with Lipschitz constant 3a.

Proof. Let 0 < a < %. We set £ := min {é’, % , where &’ is the upper bound for ¢ given by Lemma

and C’(Nm, Cy) is some constant presented at the end of this proof. Let n < 2& and choose
€ > 0 such that n < 2¢ < 2¢. Let a,b € 2R; N U2. We obtain

@) - AB) < 3 6w B+ 3 16:(a) — )| Aib) — A;(0)].
i€l 1€l
If ¢;(a) — ¢;(b) # 0, we get 3R; N2R; # () and so we can apply Lemma (iii), (iv) and Lemma
6.21 (ii). Since e < & < 2, we obtain with Lemma and Lemma that A is 3« Lipschitz. O

Lemma 6.23. Under the conditions of the previous lemma for a,b € Uys \ 7(2) with [a,b] C
U2 \ 7(2), we have that d(A(a), A(b)) < 3ad(a,b).

Proof. Lemma (ii) implies that for all v € [a, ], there exists some j € I1o with v € R; and,
with Lemma i), we get D(v) > 0. Assume that the set Ijp := {i € I13|R; N[a,b] # 0} is
infinite. The cubes R; have disjoint interior, so there exists some sequence (R;,)ieN, i1 € I5 with
diam R;, — 0. Hence there exists some sequence (v;)ien with v; € R;, N[a, b] and, with Lemmal[6.13]
(i), we obtain D(v;) < 50diam R;, — 0. Let T € [a, b] be an accumulation point of (v;);en. Since
D is continuous (Lemma , we deduce D(¥) = 0, which is according to Lemma equivalent
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to T € 7(Z). This is in contradiction to [a,b] C Py \ 7(Z) and so the set I;5 has to be finite. With
Lemma and [a,b] C Uy, Ri, we get d(A(a), A(D)) < 3ad(a,b). O

Now we show that A is Lipschitz continuous on U;o with some large Lipschitz constant. After
that, using the continuity of A, we are able to prove that A is Lipschitz continuous with Lipschitz
constant 3a.

Lemma 6.24. Let 0 < a < %. There exists some k > 4 and some & = &(N,n,Cy,a) < a so that
if k> k and n < 2¢ for all e € [2,8), A is Lipschitz continuous on Uys.

Proof. Let 0 < a < %, k > k > 4, where k is the constant from Lemma m and let £ =
E(N,n,Co,a) < % be so small that we can apply Lemma M @I, M and Lemma M Fur-
thermore, let € > 0 such that n < 2¢ < 2&. Let a,b € Uz with a € n(Z) and b € 2R, for some
j € Iia. We estimate d(A(a), A(b)) < d(A(a) + a, X;) + d(X;, A(b) + b) where X is the centre of
the ball B; = B(X;,t;) (see Lemma [6.14).

At first, we consider d(A(a)+a, X;). Since A(a) +a € Z, Lemma[6.10]implies d(A(a) +a) = 0.
Moreover, with Lemma[6.14) and (X;,t;) € S, we deduce d(X;) < 100 diam R; and

d(m(A(a) + a),7(X;)) < d(a,b) + d(b,7(X;)) < d(a,b) + C diam R;.

Using those estimates, Lemma implies d(A(a) + a, X;) < 2d(a,b) + C diam R;.

Now we consider d(X;, A(b) + b). We have (X;,t;) € S C Siotar and hence, with Lemma [£.10]
using € < & < 9, there exists some y € B(X,2t;) N P;, where P; is the associated plane to B; (see
Definition [6.17)). Since <((P;, Py) < a < i, we deduce with Lemma Lemma and Lemma
[6-21] (iv) that

d(X;, A(b) +b) < d(Xj,y) +d(y, Aj(b) +b) +d(A;(b) + b, A(b) + b) < C(diam R; + d(a,b)).
With Lemma|6.13] Lemma and using that D is 1-Lipschitz (Lemma|6.8) we obtain diam R; <
D(b) — D(a) < d(a,b) and hence d(A(a), A(b)) < Cd(a,b). Due to Lemma and Lemma it

remains to handle the case were a,b ¢ 7(Z) and [a,b] N 7(Z) # 0. This follows immediately from
the just proven case and triangle inequality. (Il

Lemma 6.25. Under the conditions of Lemma for some a € m(Z), i € I12 and b € 2R;, we
get d(A(a), A(b)) < 3ad(a,b).

Proof. We set ¢ := infcpq pjnn(2) d(2,b). Due to Lemma there exists some v € [a,b] N7(Z)
with d(v,b) = c. Furthermore, there exists some sequence (v;); C [v,b] with v; — v where [ — co.
With Lemma we deduce ([v,0]\ {v}) C U,er,, 2R;. For every | € N we obtain with Lemma
d(A(v), A(b)) < d(A(v), A(v1)) + 3ad(v,b). and, since A is continuous (Lemma we
conclude with [ — oo that d(A(v), A(b)) < 3ad(v,b). The assertion follows since we already know
that A is 2a-Lipschitz on 7(Z2). O

Lemma 6.26. Under the conditions of Lemma we have d(A(a), A(b)) < 3ad(a,b) for a,b e
Uthz 2Rj NU;s.

Proof. This is an immediate consequence of Lemma Lemma and Lemma [6.25 O

Lemma 6.27. Under the conditions of Lemma the function A is Lipschitz continuous on
Uio with Lipschitz constant 3.

Proof. This follows directly from the previous Lemma and Lemma [6.16 O

The following estimate is for later use.

Lemma 6.28. Let0 < a < i, There exists some k > 4 and some & = E(N,n,Cy) so that if k > k
and 1 < 2¢ for all € € [2,€), there exists some constant C = C(N,n,Cy) so that for all j € I,
a € 2R; and for all multi-indices k with || = 2 we have " A(a)| < <=

diam R; °
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Proof. Choose k and ¢ as in Lemma Let k be some multi-index with |k| = 2. For i € I,

the function A; is an affine map and hence for some suitable ly,l5 € {1,...,n} we have
(6.8) 9" A = 3H( Z ¢iAz‘> = Z (0%¢i) Ai + Z (O, i01, Ai + 01,001, As) -
i€l i€l i€l

Let j € I12 and a € 2R;. Lemma implies that there exist at most 180™ cells R; so that
0"¢i(a) # 0 or 0“¢;(a) # 0, where w is a multi-index with |w| = 1. So only finite sums occur in
the following estimates. We have ., 0“¢; = 0% ;¢ = 0% 1 =0 so that we get

. .
0°A] <Y 10l A — A+ D 1016l 10, (A — Al + D 101,64l |01, (As — Aj).
i€l12 i€li2 1€z
To estimate these sums, we only have to consider the case when a is in the support of ¢; for some
i € I1. This implies 3R; N 2R; # (. Now use Lemma (if), (iii), Lemma and Lemma
6.13| (iii), (iv) to obtain the assertion. O

7. 7-FUNCTIONS

In this chapter, we introduce the 7-function of some function g : Py — Pg-. This function
measures how well g can be approximated in some ball by some affine function. The main results
of this chapter are Theorem on page and Theorem |7.17] on page We will use these
statements in section to prove that u(F3) is small.

Definition 7.1. Let U C Py, ¢ € U and t > 0 so that B(g,t) N Py € U. Furthermore, let
A = A(Py, Pi") be the set of all affine functions a : Py — P;- and let g : U — P;- be some
function. We define
1 d
Yg(g,t) := inf — Md%"(u).
acAt B(q,t)NPy
Lemma 7.2. Let U C Py, g € U and t > 0 so that B(q,t) N Py C U. Furthermore, let
g : U — Pg- be a Lipschitz continuous function such that the Lipschitz constant fulfils 60n(10™ +

n+1
1) (Snw;’l) < Lipg_l, where wy, denotes the n-dimensional volume of the n-dimensional unit
ball. Then we have

N U+g( ), P)
Yo(q,t) <3 4(q,t) := inf —/ — P A"
9(q,1) 9(q,1) PGPNn i, (u),

where P(N,n) is the set of all n-dimensional affine planes in RN .

Proof. Let g be a Lipschitz continuous function with an appropriate Lipschitz constant. By using
a:u— g(q) € Aas aconstant map and by using that g is 1-Lipschitz, we deduce v4(g,t) < Lip, wi,.
It follows, since for every a € A the graph G(a) of a is in P(N,n), that 3,(q,t) < v4(q,t) < Lip, w.-
Let 0 < ¢ < Lip, wy, and choose some P € P(N,n) so that

(7.1) f/ - +9( et 9 P) gyimi) < 5 (a, ) + € < 2Lip, wn.

We set Dy := {v € B(q,t) N Pyld(v + g(v), P) < 4Lip, t}, Dy := (B(g,t) N Py) \ Dy and obtain
using Chebyshev’s inequality and (7.1
(7.2) H™(Dy) > wat™ — H™(Dy) > %t”
Assume that every simplex A(ug,...,u,) € Dy is not an (n, H)-simplex, where H = &:"ﬁt.
With Lemma m (m = n, D = D), there exists some plane Pe P(N,n — 1) such that Dy C
Un(P) N B(gq,t) N Py. We get

Wn,

H" (Dl) < Hn(UH( )ﬂB(q, )ﬁ Po) < 2Hwn_1t"_1 = 71‘,”.
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This is in contradiction to (7.2), so there exists some (n, H)-simplex A(ug,...,u,) € D;. We
set Py := Py + g(ug), yi := u; + g(ug) € Py for all i € {0,...,n} and S := A(yo,...,yn) C
PonNB(g+g(up),t). We recall that P is the plane satisfying (7.1). We obtain for all ¢ € {0,...,n}

d(yi, P) < d(u; + g(uo), u; + g(ui)) + d(u; + g(u;), P) < Lip, d(uo,u;) + 4 Lip, ¢t < 6 Lip, t.
WithLemmam C = 4“’:—;1 > 1E|, C=1m=n, o= 6Lip,, P, = Py, P, = P and
x=q+ g(ug), we get <(Pp, P) = <i(}50, P) < %, and, with Corollary , there exists some affine

a

map a : Py — Pg- with graph G(a) = P. Now we obtain with Lemm (P =P, P, =P),
u,v € Py and <(Py, P) < 3 that
(7.3) d(v +a(v),u+a(u) < 2d(mp, (v + a(v)), 7p, (u+ g(w)))-

That yields for u € B(q,t) N Py and some suitable v € Py with v 4+ a(v) = 7p(u + g(u))
d(g(u),a(u)) < d(u+g(u), P) +d(mp(u+g(u),u+alu))

i
< d(u+ g(u), P) + 2d(mp, (v + a(v)),mp, (u+ g(u))) = 3d(u+ g(u), P).

Finally, using a € A and the last estimate, we get v,(¢,t) < 3(34(¢q,t) + &), and 0 < & < aw,
was arbitrarily chosen. ([

7.1. v-functions and affine approximation of Lipschitz functions. In this and the following
subsections, we use the notation U, := B(0,1) N P, for I € {6, 8, 10}.

Theorem 7.3. Let 1 < p < oo and let g : Py — Ps- be a Lipschitz continuous function with

Lipschitz constant Lip, and compact support. For all 0 > 0, there exists some set Hy C Us and
some constants C' = C(n,p) and C = é(n, N) with

H"(U\H)<L/ / w022 )
6o = g+ Lip? Jyr, , et v

so that, for ally € Py, there exists some affine map ay : Py — Pg- so that if r < 0 and B(y,r)NHy #
0, we have

lg = ayll L= (B(y,rnpy,pry < Cr0 Lipy,

where || - || () denotes the essential supremum on E C Py with respect to the H™-measure.

To prove this theorem, we need the following lemma. If v is some map, we use the notation
v(z) = v (%).
Lemma 7.4. There exists some radial function v € C§°(Py,R) with
(1) supp(v) € B(0,1) N Py and 7(0) =0,
(2) for allx € Py\ {0} and i € {1,...,n}, we have

(7.4) /|mm%24 and o</|@ﬁ@ﬁ%<w
0 0

(3) for all i € {1,...,n}, the function d;v has mean value zero and, for all a € A(Py, P3")
(affine functions), the function av has mean value zero as well.

Proof. Let v; : Py — R be some non harmonic (Avy # 0), radial C°° function with support in
B(0,1) N Py. We set vy := Ay € C>(Py) NC§(B(0,1) N Fy) and 0 < ¢y := [ | (te) >4, where
e is some normed vector in Py. With Lemma [B:8] we get 1 is radial as well. Using Lemma [B7]
we obtain | (te)| = 4722|071 (te)| and hence

%) R dt 00 R
O<q:/|www7:m#/‘ﬂmWW&<m
0 0

6As the volume of the unit sphere is strictly monotonously decreasing when the dimension n > 5 increases, we
get % > 1 for all n > 6. With the factor 4 we have that 4% > 1 for all n € N.
n n
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because v is in the Schwarz space and therefore 7y as well [I1], 2.2.15, 2.2.11 (11)]. The previous
equality also implies 75(0) = 0. Now we set v := , /%ug, which is a radial C§°(FPp, R) function that

fulfils 1. We have for all x € Py \ {0} (use substitution with ¢ = r‘%‘ and the fact that U is radial)

IS o(ta) 28t = [7F [0(re)|*4 = 1. In a similar way, we deduce for i € {1,...,n} with Lemma
(using |(¢~1(tx))"| < |¢p~L(tx)| = |tz| where k is some multi-index with |k| = 1)

o _— dt o0 dt o0 2
/ @) Y < |2m|2/ itaf? [p(tz) 2 & :47r2/ . ﬁ(rm>
0 t 0 3 0 |z

dr < oo,
where we use that the Fourier transform of a Schwartz function is a Schwartz function as well [I1]
2.2.15]. The left hand side of the previous inequality can not be zero, because this would implicate
that d;v(xz) = 0 for all x € Py, which is in contradiction to 0 # v € C§°(Py,R). Hence v fulfils 2.
Using partial integration and Aa = 0 for all a € A(Py, P;-) implies that 0;v and av have mean
value zero. O

For some function f : Py — P;- and z € Py, we define the convolution of v, and f by

(ve * f)() = / vz — ) f(y)dH" (y).

Py
Lemma 7.5 (Calderén’s identity). Let v be the function given by Lemma[7.4) and let u € Py \ {0}

and f € L*(Py, Pg-) or let f € . (Py) be a tempered distribution and u € . (Py) (Schwartz space)
with w(0) = 0. Then we have
dt

(75) f) = [T

Léger calls this identity “Calderdn’s formula” [19, p. 862, 5. Calderén’s formula and the size of
F3). Grafakos presents a similar version called “Calderdn reproducing formula” [I1], p.371, Exercise
5.2.2].

Proof. At first, let f € L?(Py, Pi-) and u € Py\{0}. We have with Lemmathat (v)(u) = U(tu)
and, with Fubini’s theorem and Lemma [B:6] we obtain

([ vonsnw) = [T wowmmwin g @ fw.

The Fourier inversion holds on L?(Py, Ps-) [T} 2.2.4 The Fourier Transform on L' + L?], which
gives the statement. Use the same idea to get this result for tempered distributions. (I

Proof of Theorem[7.3, Let g € Cg’l(Po, P4-) and let v be the function given by Lemma We
define

0o 2
nw) = [ ornsg@F+ [ s Qa0 )G,
) = [ s (o (rx))0 G

and the previous lemma implies that g = g1 + g2. We recall the notation U; = B(0,1) N Py for
I € {6,8,10} and continue the proof of Theorem with several lemmas.

Lemma 7.6. g1 € C™(Ug) and there exists some constant C = C'(v) so that for all multi-indices
K with |k| < 2 we have [|0%g1| Loy, pry < C Lip,.
g2 is Lipschitz continuous on Ug with Lipschitz constant C(v) Lip,.
Proof. For x € Py we set
dt

(@)= [

2
dt
- o) = [ @ A (16 9)@F
0
so that g1 = g11 + g12 and we set p(z) := fzoo(ut * I/t)(:v)%.
At first, we look at some intermediate results:
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L. gi2(x) = 0 for all x € Ug, due to the support of vy and 1p)\y,, - (vt * g).

II. For every multi-index s, there exists some constant C' = C(n, v, ) such that |0"p| < C,
where 0%¢p(y) = [, 0" (1 * Vt)(y)dtt. This is given by Bﬁ(ut(y ) = i L(8%v)i(y), and
0% (e x ve) ()] < ]l o (po R O™Vl  Lov (P R) 7FRT -

ITI. For every multi-index s, the function 9*¢ has bounded support in B(0,4) N Py.

Proof. Let 0 <t <2 and z € Py \ B(0,4). We have (v * 14)(x) = 0 which implies that

f02(ut * v;)(x)9 = 0. Now we consider ¢ as a tempered distribution. The convolution

with &g, the Dirac mass at the origin, is an identity, hence we get with Calderén’s identity
(Lemma [7.5) for all n € .%(Py) with 5(0) =0

et =t ool = ([T ) o= ([T )

- (/()ff) ().

Since this holds for arbitrary n € .(P) with supp(n) C Py \ B(0,4), we conclude that for
such n we have

/Poso<>< 2)AH" (@ /P/ vor ) (@) Tule) M (@) = 0

and hence supp(yp) C B(0,4) N Py. For the same kind of 7, we get using Fubini’s theorem
and partial integration

0% () AH" () = HI/ / v ) @) () AH (1) =
Po PO
since 0"n € . (P,) with supp(9”n) C Py \ B(0,4). O
IV. ¢ € CF(Py)

Proof. With II. and III. we conclude for every multi-index x that 9%¢ € L*(Py,R). With
Fubini’s theorem and partial integration, we see that 0" is the weak derivative of ¢ hence
we have ¢ € WHI(Py) for every I € N. The Sobolev imbedding theorem [I, Thm 4.12]
gives us ¢ € C*°(Py) and, with IIIL., we obtain ¢ € C5°(Fp). O

Now we have for all © € Ug with Fubini’s theorem [7, 1.4, Thm. 1] g11(x) = (¢ * g)(z). We know,
that ¢ € C5°(Py) and g € Co''(Py, Pi). Hence we have g1 € C5°(By), g € W>°(P,) and for
i,j € {1,...,n} we have 0;911 = ¢ * 0;g and 0;0;911 = 0;p * 0;g. With the Minkowski inequality
[1T, Thm. 1.2.10] and IV., we obtain for ¢,5 € {1,...,n}

10:91| Lo~ (Us,R) = = |0, 911l ws,r) < 10igllL s r)llPllLr(py) < C(v) Lip,,
[10; ag!JlHLOC(Ug,R) 10:9;911 || Lo (Us,R) < 10:glLo vs,R) 1050l L1 (Pyy < C(v) Lip,, .

Now it is easy to see that go is C'Lip,-Lipschitz on Us because we have go = g — g1 and g as well
as g1 are C Lip-Lipschitz on Us. O

Remark 7.7. Under the assumption that

[ ([t o<

the next lemmas will prove that g, € VVO1 "P(Py, Pi-). We show for this purpose in Lemma that

Drgale / 3 * (Luy (e # ) () 2

t
is in LP(Py, Py-). Using Fubini’s theorem [7, 1.4, Thm. 1] and partial integration it turns out that
0; g2 fulfils the condition of a weak derivative.
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Lemma 7.8. We have supp(g2) C B(0,12) N Py and supp(9;g2) C B(0,12) N Py for all i €
{1,...,n}.

Proof. If 0 < t < 2 and = € Py, we have supp(v(z — +)) C B(z,2) N Py and supp(ly,, (vt *
g)) € B(0,10) N Py. This implies supp(v: * (1y,, (vt * g))) C B(0,12) N Py and hence we obtain
supp(g2) C B(0,12) and supp(d;g2) C B(0,12) N Fy. O

Lemma 7.9. Let x € Ujp and 0 < t < 2. We have %

< Wllzoe (po.Ry v (2, 1)

Proof. If a : Py — P4 is an affine function, we get using Lemma 3. that (1 *x a)(z) = 0 and
hence, with Lemma 1.

(exg)(@)| _ |(ve*(g—a))(x) 1 9W) —a®)| 11m
= <[l (pyr)y s dH"(y).
t 3 1" JpynB(z,t) 3
Since a was an arbitrary affine function, this implies the assertion. (I

We have p € (1,00) and, for the proof of Theorem we can assume that

/Um (/02 ’Yg(l‘,t)zit) : dH™(z) < oo.

Lemma 7.10. We have gy € Wy?(Py, Pi-) and there exists some constant C = C(n,p,v), so that

forallie{l,...,n}
p < ? th n
||aigz||Lp(P0,P0J_) < C . 0 ’Vg(iU t) ; dH (.’E)»

where 9iga(w) = [ (v % (Luyy (v * 9))) ().

Proof. We recall that 0;g2 is the weak derivative of go (cf. Remark [7.7] . Due to [I, Cor 6.31,
An Equivalent Norm for Wj™"(Q2)] and Lemma |7.§ . we only have to consider ||0;gal|zr(p,) for all

i €{0,...,n} to get go € Wy P(Py, Pi-). For z € Py, we have d;v () = d;t ™" v (L) =t (0w)(x)
and hence

Dign( / 0y % (L 00+ )0 7 = [ (0w (10, (222))) @ 2.

Using duality (cf. [1, The Normed Dual of LP(2)]) it suffice to consider the following. Let %—i—ﬁ =

and f € LP (P,) with £l (p,y = 1. We get with Fubini’s theorem [7, 1.4, Thm. 1] and Hélder’s
inequality

[ 1) 0galo) a0
/P/ (@) N | (10w (*2)) ) <L 4w (y)
< [ ([ 1cow = )(/ (20 (“29)) ] f);dmy)
([ 10w s dt>% (/P ([ 1 (52 it>gd””(y)>p
Lr (o) 0

There exists some constant C' = C(n,v) with |0;v(z)| + |[VO;v(z)] < C(1 + |z])™ ! because v is
a Schwartz function. Together with Lemma all the requirements of Lemma with ¢ = 9;v

<
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and g = p are fulfilled, which implies, since || f||z»(p,) = 1, that the first factor of the RHS of the
last estimate is some constant C'(n, p, v) independent of f. All in all, we obtain

ot < o) ([ ([ (ae (22)) ] iy o)

and with Lemma the assertion holds. O

Definition 7.11. Let B be a ball with centre in Py and f : Py — P;- be some map. We define
the average of f on B and some maximal function for x € P,

1 n ._ 1 _
A;’g(f) = M/Bnpo fAdH", N(f)(z):= tE(O’SogI’)yGPO {2t§:§) <|f ?(;’%(fﬂ) } .

with d(y,z)<t

Moreover we define the oscillation of f on B by oscp(f) := sup,cpnp, |f(z) — Ave(f)].
B

Lemma 7.12. We have |N(g2)||lLe(ro,r) < CllDg2l Lo (py,pty, where C = C(n, p).

Proof. We recall that go € VVO1 P(Py, Py") (cf. Lemma | and conclude with Poincaré’s inequality
that Avgp(lg2 — Avgg(g2)]) = C(n)diam B Avgp(|Dgsl), (if f is a Matrix, we denote by |f| a
matrix norm) and hence we get for x € P

N(g2)(z) < C(n) ,Sup ék(vg)(ngzD = C(n)M(Dgz)(x),
t€(0,00),y€ Py y7t
with d(y,z)<t

where M (Dgs) is the uncentred Hardy-Littlewood maximal function. Now, using [I1, Thm. 2.1.6],
we get the assertion. O

Definition 7.13. Let # > 0. We define Hy := {z € Us|N(g2)(z) < 6"*! Lip, }.

Lemma 7.14. Let 6 > 0. There exists some constant C = C(n,p,v) so that

H”(U\H><#/ / w2
OATO= grti D Lipt [\ g T o

Proof. With Lemma Lemma [7.10] and HDg?Hip(PO,POi) < Py H&iggHip(Po_’P(#), there
exists some constant C' = C(n,p,v) with

2 5
||N(92)Hip(PO’POL) S Csumizlnﬁigg”ip(ljmpoi) S C u (/O ’Yg(l",t)Qt) dH (.T)
10
Hence, using Chebyshev’s inequality, we get the assertion. O

Lemma 7.15. Let B be a ball with centre in Py. If (BN Py) C Us, then there exists some constant
C = C(N,n,v) with

1
oscp(g2) < Cdiam B (diamBA;gng - Agg(gg)o) Lipg ™ .

Proof. Let (BN Py) C Ug and A := oscp(g2). The function go is Lipschitz continuous on Us

with Lip,, = C(v)Lip, (see Lemma [7.6] on page and BN P, is closed. Hence there exists

some y € BN Py with A = |g2(y) — Avgp go| and we get for x € B with d(z,y) < ﬁ using
g2

triangle inequality |g2(z) — Avg(g2)| > % Furthermore, using that gs is continuous on Uy for all
B
l €{1,...,N}, there exists some 2z, € BN Py, with g(2;) = Avg(gh) (where gb(2;) € R means the
B
I-th component of gz(z) € RN). With g(y) — Avg(gh) < Lip,, d(y,z) for all I € {1,...,N} we
p .
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2 . . 2 . . . A . . e o
get A? < N (Lip,, diam B)”, which implies i < diam B. Since y € B, there exists some ball

Bc BNB (y, ﬁ) with diam B > ﬁ and hence with [g2(z) — Avgg(g2)| > 4 we obtain
g2

n A
diam B)" A A >w (—2 ) 2
(i 5)" A (o) — Avelo)] > o (7 )
Using Lip,, = C(v) Lip,, this implies the assertion. O

Lemma 7.16. Let 6 > 0 and y € Py. There exists some constant C = C(N,n,v) and some affine
map ay : Py — Pg- so that if r < 0 and B(y,r) N Hy # 0, we have
lg = ayll < (B(y,ry)npo. Pty < Cr6 Lip,.

Proof. Let y € Py. If 6 > 1, we can choose a,(y’) := g(y) as a constant and get the desired
result directly from the Lipschitz condition. Now let 0 < 8 < 1 and 3y’ € B(y,r) N Py. We set
ay(y') = g(y) + Dg1(y)¢~ ' (y' —y). We have d(y',Us) < d(y', He) < d(y',y) +d(y, Hy) < 2. So
we get v,y € Ug. Using Taylor’s theorem and Lemma we obtain

91) = [ W) + D )¢ @ =]l < D 10%g1ll Loy’ — y* < C(n,v) Lip,
|k|=2
Since r < 0 < 1, B(y,r) N Hy # 0 and Hy C Ug, we obtain B(y,r) N Py C Ug and we can apply
Lemma [7.15] Together with the definition of Hy this leads to

08CR(y,r) 92 + Lip, r?2 < C(N,n,v)ré Lip, .
Now by using g = g1 + g2 and |g2(y’) — g2(y)| < 208cp(y. g2 We get for every y' € B(y,r) N Py

l9(y") — [9(y) + Dgr1(y)o~ ' (v — y)]| < C(N,n,v)r6 Lip,, .
O

Lemma [7.14 and Lemma [7.16] complete the proof of Theorem [7.3] O

7.2. The ~-function of A and integral Menger curvature. In this section, we prove the
following Theorem It states that we get a similar control on the ~-functions applied to our
function A as we get in Corollary [.§ on the S-numbers.

For a,e > 0, n < 2¢ and k > 4, we defined A on Uiy (cf. Deﬁnition on page . Since in
this section we only apply the v-functions to A, we set (g, t) := va(g,t) and we recall the notation
Uyg := B(O, 10) N k.

Theorem 7.17. There exists some k > 4 and some & = a(n) > 0 so that, for alla with0 < o < &,
there exists some € = €(N,n,Cy,a) so that, if k > k and n < &, we have for all ¢ € [77%,5} that
there ezists some constant C = C(N,n,K,p,Co, k) so that

2 dt
[ [ atatrtant < e+ cmen ) < o
Uig YO

Proof. Let k > 4 be the maximum of all thresholds for k given in chapter |§| and let & = a(n) < %

be the upper bound for the Lipschitz constant given by Lemma We set k := max{k,C +1, C }
where the constants C' and C are fixed constants which will be set during this sectio Let
0 <a<a Leté=¢e(N,nCya)<abe the minimum of all thresholds for e given in chapter
@ We set & := min{¢, (20'C1)~!} < 18 and assume that k > k and n < 7. Now let ¢ > 0 with
n < eP < éP. For the rest of this section, we fix the parameters k,n, o, ¢ and mention that they
meet all requirements of the lemmas in Chapter [6]

We start the proof of Theorem [7.17] with several lemmas. At first, we prove

“Cis given in Lemma , Cis given in Lemma [7.24] V
8 C,,Cl are given in Lemma
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Lemma 7.18. There exists some constant C = C'(N,n,p,Cy) so that

diam R;

2 dt
> / / (@ P Larr () < cer.
R;NU1o t

i€l12

Proof. Let i € I1s, q € R;, 0 < t < 92285 and 4 € B(g,t) N Py C 2R;. The function A is in
C>(2R;, P3") (see definition of A on page [26) . Taylor’s theorem implies
O(N n Oo)
f d(A < tZ%
inf d(A(w),a(w) < =GR

since the infimum over all affine functions cancels out the linear part and the second order deriva-
tives of the remainder can be estimated using Lemma [6.28) Now we have

n N7 )
e t) < sup inf d(A(w), a(u)) < tm.
U weB(q,t)nP, A€EA diam R;
Hence, Lemma (ii) implies the statement. O

The previous lemma implies that, due to Lemma (ii), it remains to handle the two terms in

the following sum to prove Theorem If g1 € R;, we get with Lemma|6.13|that Dl((%) < diam R,
and, if g2 € 7(Z), we obtain with Lemma D(g2) = 0. Hence we conclude using Lemma

(ii)
/ / v(q,t) dth" / / v(q,t) dth"( )
i€l Y RiNU1o d‘amR m(Z)NU10

(7.6) /U ) / dH”( ).
D(q)

In the following, we prove some estimate for v(q,t) where ¢ € Ujg and 555 < t < 2. To get
this estimate, we need the next lemma.

Lemma 7.19. For all g € Uig and for all t with 1(()0) <t <2, there exists some X = X(q) € F
and some T =T (t) > 0 with

(7.7) (X,T) € S, d(r(X),q) <T and 20t < T < 200t.

Proof. We have D(q) = inf(x ses(d(m(X),q) + s), and hence there exists some (X,5) € S with
d(m(X),q) + 5 < D(q) + 100t < 200t. We set T := min{40,200t} which fulfils 20t < T' < 200t as
t < 2. Using Lemma 2| (i), (ii) and 200t > §, we obtain (X,T)eS.

With d(7(X), q) < d(m(X),0) +d(0,q) <5+ 10 we get d(r(X),q) < T. O

Now let ¢,¢, X and T as in Len}ma Furthermore, let X € B(X,ZOOt) N F. We choose
some n-dimensional plane named P = P(q,t, X) with
(7.8) BL(X, 1) < 261.(X, 1)
and define
I(q,t) = {Z S I12|Rl' N B(q,t) #* @} .
With Lemma [6.13) we have (B(q,t) N Py) C Ui C 7(2) U Uiel12 R;. We set

d(u+ A(u), P d(u+ A(u), P
Ky := / %d%"(u), K; = / %d?—l"(u)
(g:)Nm(2) t B(a.)NR t
and get with Lemma [7.2] that
i€Z(q,t)

At first, we consider K.
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Lemma 7.20. There exists some constant C > 1 so that

/ d(u + A(u), P)dH™(u) < / d(z, P)dH"™(z).

B(g,t)nm(Z) B(X,Ct)NZ

Proof. Let g : 7(Z) = Z,u+~ u+ A(u). This function is bijective, continuous (A is 2a-Lipschitz
on (7)) and g~! = 7|z is Lipschitz continuous with Lipschitz constant 1. With f(z) = d(x, P)
and s = n, we apply [26, Lem. A.1] and get

/ d(u+ Au), P)AH" (u) < / d(z, PYAH" ().

B(q,t)Nw(Z) 9(B(gq;t)N7(2))

Now it remains to show that there exists some constant C' so that g(B(q,t)N7(2)) C B(X,Ct)NZ.
Let = € g(B(q,t) Nm(Z)). This implies # € Z and so, using Lemma [6.10} we get d(z) = 0. With
(77), we conclude d(X) < d(X,X) + T < 200t, and we obtain with d(m(z), m(X)) < 201t.
So, with Lemma we have d(z, X) < 1602t. We deduce with C' = 1802 that d(z, X) <
d(z, X) +d(X,X) < Ct and so g(B(q,t) N7(2)) C B(X,Ct)N 2. 0

Lemma 7.21. There ezists some constant C = C(N,n,Cy) > 1 so that
/ d(z, PYAH" (z) < C d(z, P)dp(x).
B(X,Ct)nZ B(X,(C+1)t)
Proof. At first, we prove for an arbitrary ball B with centre in Z
(7.10) H"(ZN B) < C(N,n,Co)u(B).

With [7, Dfn. 2.1], we get H"(Z N B) = lim,_,o H*(Z N B). Let 0 < 79 < min {4228 50} We
define F := {B(z,s)|lx € 2N B,s < 19}. With Besicovitch’s covering theorem [7, 1.5.2, Thm. 2],
there exist Ny = No(IN) countable families F; C F, j = 1, ..., Ny, of disjoint balls where the union
of all those balls covers Z N B. For every ball B = B(z,s) € F;, we have = € Z and hence, using
the definition of Z (see page [21)), we deduce h(z) = 0. With h(z) = 0 < s < 50 and Lemma

(i), we get (z,8) € S C Stotar and so % < 2“(;3). The centre of B is also in Z and hence,
analogously, we conclude (W)n < 2@. With (B) from page we get u(2B) < 4"CoZp(B).

Since z € B and s < 1 < 928 "we obtain B = B(x,s) C 2B. Now, by definition of % [7, Dfn.
2.1] and because § = §(N,n) (see (6.1)) on page [20), we deduce

No 5 No
H(ZNB) < 2;_1 BE}— Wn 5 < 27 jg_l w(2B) < C(N,n,Co)u(B).
=1 ger, =

So, with 79 — 0, the inequality (7.10)) is proven.
Let C be the constant from Lemma, For an arbitrary 0 < o < ¢, we define

G, = {B(w,s)’x € ZNB(X,Ct),s < 0}.

With Besicovitch’s covering theorem [7, 1.5.2, Thm. 2], there exist Ny = No(V) families G, ; C G,
of disjoint balls, where j = 1,.., Ny and those balls cover Z N B(X,Ct). We denote by pp the
centre of the ball B and conclude

/ d(z, PYdH" (z)
ZNB(X,Ct)

No
<> 2 [ i P )

j=1Be€gG, ;

C(N,n,Co)ioz > /B(” A(ps, P)) du(x)

j=1BeEG,
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< C(N,n,Co) (u(B(X, (C +1)t)20 + /B e d(x,P)de)).

With ¢ — 0, the assertion holds. [l

With Lemma and Lemma we get for K using that k& > k>C+ 1, where k is defined
on page [39]
P
(711) KO < C(N, n, C()) 61;k(X7 t) ~ C(N, n, Co) ﬁl;k(X, t)
To estimate K;, we need the following lemma.

Lemma 7.22. There exists some constant Cy = Cy(N,n,Co) > 1 so that, for all i € I3 and
u € R;, we have d(mp,(u+ A(u)), B;) < Cydiam R;. We recall that P; is the n-dimensional plane,
which is, in the sense of Deﬁnition associated to the ball B(X;,t;) = B; given by Lemma
(cf. Definition .

Proof. For every i € I;5 C I, we have with Lemma that B; = B(X;,t;) and (X;,t;) € S C
Stota;- Hence we can use Lemma, (0 =2, 2=X;,t =1, = g, P = P,) to get some
y € 2B; N P;, where P; = P(x, 4,). We obtain with Lemma (Ph=P;, B,=PF),a<a< % (&
is defined on page and Lemma

1
-+ i), ) < 7w, 7(y)) < 20l 7(X0)) + d(r(X0), 7)) < C diam Ry
Moreover, with Lemma (iv) and e < £ < 1 (£ is defined on page 35)), we get
d(mp,(u+ A(u)),u+ A;(u)) < d(u+ A(u),u + A;(u)) < Cdiam R;
for some C = C(N,n,Cy). Using these estimates, u + A;(u) = 7p,(u + A;(u)) and triangle

inequality, we obtain the assertion. ([l
Now, with Lemma - and K; from (7.9), we obtain for i € Z(q,t) C I12
A
B(q,t)NR; 13
1 , A

+ 2 sup { dirp, (v +t (). P) (v € B(g,t) N RZ} H™(B(g,t) N R;)
L.Z22 1 A(u
" Jp@nnr t

(7.12) + wy, (dlaI:Rl) sup { d(wt, ) ‘w € P, d(w, B;) < Cydiam RZ} .

Since P; is the graph of A;, we get for any u € B(q,t) N R; with Lemma [6.21] (iv) that there exists
some C' = C(N,n,Cp) with

d(u+ A(u), P) < d(u+ A(u),u + A;(u)) = d(A(u), Ai(u)) < Cediam R;,
and so, using Lemma [A74]

(7.13) 1 dut AW P) jain() < e C(N.n, Cy) (
" JB(g,0)nR: t

diam R; )

Lemma 7.23. There ezists some constant C = C(N,n,Cy) so that for all i € Z(q,t)

p{d(wgp)‘w € P, d(w, B;) < Cydiam R; }
du

diam R; 1 1 1
< JE 3
s Ce t 05 ((dlamR ) / d(z,

o)
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Proof. Let i € Z(q,t). Due to the construction of B; = B(X;,t;) (see Lemma , we have
(Xi,t;) € S C Siotar and so §(X;,t;) > 2. With Corollary 4.3| (A = g B(z,t) = B(Xi,ti), T =
RY), there exist constants C; = C; (N, n, C'O) >3, Cy = CQ(N, n,Cp) > 1 and some (n, 10né—il)—
simplex T' = A(xo,...,z,) € FN B; with

(7.14) M(B (xmc—) mB) 4 and B (x,ggf) C 2B; C kB; = B(X,, kt;).

forall K =0,...,n and we used that C; >3 and k > k > 2 (l~c is defined on page ., we have We
set O = 40005, B.:=B (a:m é—l) and define for all Kk =0,...,n

(7.15) 7, = {z € By NF|d(zP) < C/ediamRi} .

We have (X;,t;) € Stotar and hence ﬁffk(Xi, t;) < 2e. Using this and Lemma we obtain with
Chebyshev’s inequality

. o ¢+ 100 t
B\ Zy) < i B (Xivts) < - ——2e = 2.
H(Br\ Zx) < C'ediam R; Bl’k( ) C'et; c 2C5
Using Lemma [6.14] again, we get
- €D 4 tn diam R
7.16 7)) > uB.)— (B \Z) S oo oo damdy
M0 a2 B MBAZ) It g > e, >

For all k € {0,...,n}, let z, € Z, C B, and set y,, := 7p,(25). Since e < & <

< 2C o (& was chosen
on page , we deduce

t; -
A(Yr, Tr) < d(Y, 2x) + (20, x) < d(2, P;) + = C'ediam R; + — < 2—
4 C’ o
Due to Lemma the simplex S = A(yo, ..., Yn) is an (n, ti ) simplex and, using the triangle
inequality, we obtain S C 2B;. Now, with Lemma 2.22L (C = gﬁ, C=21=t,m=n,
x = X;) there exists some orthonormal basis (01, ...,0p) of P; —yo and there exists v, € R with
o= (yr — o) and |y,| < (2" 4 -
Now let w € P; with d(w, B;) < Cy dlamR'. We obtain

n

(717) W—?JO:Z<7~U—Z/07OH> H_Zw y070m Z’Yﬁr Yr — Ui
k=1

k=1
and so, with Remark (b=w, P=P) and |w —yo| < d(w, B;) + diam B; + d(B;, y0) < Ct;, we
get

dtw, P) 2 ne C"“Z( Urszr) + d(z, P))

(7. 15) L L n .
(7.18) < n’COTH'Clediam Ry + nCCPH Y " d(z, P)
r=0
The previous results are valid for arbitrary z, € Z,, hence we get
d(w, P) — nzCC{LHC/e diam R;

1
3

7i8 M,/Z / (nCC?+1Zd(3r,p)> dM(z”)"'dM(ZO)

r=0
< nCCn ! 7/ d(z, P 3 dp(z
1 (;MZT) [ e, P} duten
{T1e) (7-14) on+1(y . 3
n+1 2 P)3
noert (S [ haue))
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where we used that the sets Z,. are disjoint. Since w € P; was arbitrarily chosen with d(w, B;) <
Cydiam R;, we get the statement. O

Lemma 7.24. There ezists some constant C = C(n,Cy) so that
3

2 (diaTRiyi ((dmiRi)" /23 d(zvpﬁdu(Z)) < CBun(X, ).

i€Z(q,t)

Proof. Let i € Z(q,t) (Z(q,t) is defined on page and x € 2B;. We define

J(i) :== {j € Z(q,t)| diam B; < diam B;,2B; N 2B; # 0}, and Z;(z) := Z Xos, (2)-
jed (@)
At first, we prove some intermediate results:
I. For all ¢ € Z(q,t), we have IQBi, Ei(z)du(z) < C(n,Cy)(diam R;)™. This implies that Z;(z) < oo
for u-almost all x € 2B,;.

Proof. Let i € I(q,t) and j € J(i). With Lemma applied to j and the definition of J (i), we
deduce diam R; < 200diam R;. Using Lemma and j € J(i), we get d(R;, R;) < C'diam R;.

This implies for some large enough constant C' > 1 that B; C CR;. Since the cubes ]D%j are disjoint
(see Lemma (ii)), we get with Lemma [A.4]

> (diam R)" = > (Vn)"H"(R;) < (vVn)"H"(CR;) = C(n)(diam R;)".
JEJ (i) JEJ (i)
In the following, we apply Fatou’s Lemma [7, 1.3, Thm.1] to interchange the integration with the
summation. With (B) from page [20[ and Lemma we obtain

/213- Ei(x)dp(z) < Z w(2B;) (2) C(n,Ch) Z (diam R;)" < C(n, Cp)(diam R;)".

JEJ (%) JEJI(3)

II. Let 2 € RY and m € N. There exists some C = C(n) > 1 with Y icza.) X, (z) < C.
;i (z)=m ¢

Proof. Let l,0 € Z(q,t) with € 2B, N 2B, and Z;(z) = m = E,(x). Without loss of generality,
we have diam B; < diam B,,.

Assume that diam B; < diam B,. We define J(I,z) := {t € J(I)|x € 2B,}. Let j € J(I, ).
By definition of J(I), we get diam B; < diam B; < diam B, and = € 2B;. Since & € 2B,, it
follows 2B, N2B; # () and, because diam B; < diam B, we get j € J(o, ). Furthermore, we have
o € J(o,x), but o ¢ J(l,z) because by our assumption we have diam B; < diam B,. So we get
J(l,x) € J(o,x). Now we obtain a contradiction

m= El(x) = Z Xap, (:l?) = Z X2p, (:E) < Z Xap, (CL‘) = EO(‘T) =m.
JeI(l) jed(l,z) j€J(o,z)
Hence there exists some A = A(z,m) € (0,00) so that, for | € Z(q,t) with x € 2B; and
Zi(x) = m, we have diam B; = A, and, we obtain with Lemma that A < 200diam R; <
200\ and d(R;,7(B;)) < 100\. Using d(R;,m(x)) < d(R;,m(B;)) + 2diam B; < 102\, we get
R; C B(w(z),103\) N Py. With Lemma we have H"(R;) > (v/n) " (55M)™ and, according to
Lemma (ii) the cubes R; have disjoint interior. This implies that there exists some constant
C(n) so that there are at most C'(n) indices | € Z(g,t) with E;(z) = m and = € 2B;. This implies
the assertion. ]

1. We have i € J(i) and so Z;(z) # 0 for all z € 2B;. Hence, with z € RY | the term

Ei(l')_Q if x € 2B;

0 otherwise

X2, ('r)Ei(m)_2 = {
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is well-defined. Now there exists some constant C(n) so that, for all z € RN we get

Z XQB Z Z XQB —_ O(n) °

i€Z(q,t) m=1 i€Z(q,t)

=;(z)=m

IV. Let ¢ € Z(q,t). Since i € J(i), we have E;(z) # 0 for € 2B;. We obtain with Holder’s
inequality

. IE.(2) T2 3 °
((dlamRi)" 2B, d(z, P)3Zi(2) % Ei(2) d,u(z)>
é C(”, 0) 1 d(Z,P)ErL(Z)_Qd/.L(Z)

V. We have )
t"ﬁ/ d(z, P)du(z) < 281.4(X,1),
U

i€Z(q,t) 2B

where X € B(X(q),200t) (cf. page .

Proof. At first, we prove that there exists some constant C > 1 so that for i € Z(g,t) we have
2B; C B(X,Ct). Let i € I(q,t). By definition of Z(g,t) (see page , we obtain R; N B(q,t) # 0.
Let @ € R; N B(q,t). Since I(Q) < t (see page , we get, using the triangle inequality, D(u) <
D(q) + d(q, @) < 101¢. It follows with Lemma (i) that

(7.19) diam R; < 1T)D(a) < 11t.
With Lemma and (7.7) from page [36, we get (X € B(X,200t), see page

d(n(Bi),n(X)) < d(n(Bi), )+ d(,q) + d(g, 7(X)) + d(m(X), 7(X))

<
(7.20) ? ) 4 diam R; + t + 200t + d(X, X) ! Ct.

Now let z € 2B; = B(X;,2t;). Since (Xi,ti) € S, using Lemma [6.14) and (7.19)), we get d(x) <
4400¢. Due to X € B(X,200t) N F and (7.7), we deduce d(X) < 400t. With Lemma M and
estimates and -7 we obtain with triangle 1nequahty d(m(z), m(X )) < Ct. Now there
exists some constant C' > 1 so that, we get with Lemma [6.11| d(z, X) < Ct. All in all we have
proven that, for all i € Z(q,t), we have 2B; C B(X, Ct). Slnce k>k>C (see page , we get
the assertion with condition from page O

Now, Lemmal[7.24] can be proven by applying IV, III, and V and using the monotone convergence
theorem [7), 1.3, Thm. 2] to interchange the summation and the integration O

Now we can give some estimate for (g, t), where ¢ € Uyg and 2 100 < t < 2. Using the 1nequaht1es

(79, (7-13), (7-12), (7-13), Lemmanand Lemma[7.24] we get using T < 200¢ (cf. Lemmal7.19)

for every X € B(X T)NF C B(X,200¢) N F

d' f n+1
7(g:1) < C(N,n,Co) Bra(X,t) + C(N,n, Co) & ( lamR)

1€Z(q,t)
With Lemma we get (X T) € S C Siotar and 20t < T < 200t. Using this, the previous
estimate, the definition of 6 = §(n) on page [20|and (B) from page we get

2
Wat? < 5o [ atpaa)
B(X,T)

<ol Bre(X, )Pdu(X) + Ce? | (

n ~
" JB(%,200t) Tt

diam RZ ) ntl
t
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where C' = C(N,n,p,Cy). We recall that for every ¢ € Uy there exists some X = X(q) (cf.
Lemma [7.19)) such that the previous inequality is valid. This implies

2
(7.21) / / y y(q,t)p%dyn(q) < C(N,n,p,Co) a+ C(N,n,p,Co) ¥ b,
Uio ?0%

where

21 at
wm [ fow o s )
Uro /2@ 1" ) B(%(q),200t) t

. A\ ntl
b _/ / (dlamRZ) dtd’H"( )
Uno J 2@ t

To estimate a and b, we need the following lemma.

i1€Z(q,t)

emma et ¢ € Uy, <t<2an € t) N F, where X(q 18 given by
L 7.25. L Uro, 200 2 and X € B(X(q),200t) N F, where X b

Lemman on page . Then d(m(X),q) < 400t and there exists some X = A(N,n,Cq) > 0 so
that, with ko = 401, we have o, (B(X,t)) = SUPy e B(X, kot) M > X, where 6y, (B(X,t)) was

defined on page . Furthermore, there holds for all i € Z(q,t) that

(7.22) d(q, R;) <, diam R; < 11t,
and there exists some constant C' = C(n) with
diam R; \ "' , N
(7.23) | > ( ; ) <C, Z (diam R;)" < C.
1€Z(q,t) i€112

Proof. Let q € Uy, 29 < ¢ < 2 and X € B(X(g),200t) N F. We have d(X, X(q)) < 200t

and, with (7.7), we get d(r (X( )),q) < 200t. This implies d(7(X),q) < 400¢ by using trian-

gle inequality. With ., we obtain (X(q),T) € S C Siotar and, by definition of Sjyiq, We
conclude 6(B(X (q),T)) > g. We have B(X(q),T) C B(X, 400t) and hence with (7.7) we get
d(B(X,400t)) > 555w 20". Applying Corollary( i) with A = W on B(X,400t), we get constants

Cy = C1(N,n,Cy), Cy = C3(N,n,Cy) and in particular one ball B(x,s) with s = %?t and

400t)™
(7.24) pu(B(w, s) N B(X,400t)) > 490~

We have 6 < 50n (cf. on page , and Lemma ” gives us C; > 400. That yields s < t.
From (7.24)), we get B(x s) N B(X,400t) # 0 which implies d(z, X) < 401t and with ( we get
SUPyeB(X,401t) 0(B(y,t)) > 4002 =: . Let i € Z(q,t). Due to the definition of Z(g, t) (see page,
we have d(q, R;) <t and we can choose some @ € R; N B(g,t). With Lemma (i), we obtain
10diam R; < (D(q) + d(q,@)) < 11t. The intervals R; have disjoint interior (see Lemma [6.13] (ii))
and, from R; N B(q,t) # 0 for all i € Z(q,t), we get R; C B(g,12t). With Lemma[A-4] this implies

diam R; \"™" @2 11 _ L 11 .
) ( t ) &2 Y @Ry = S (VA)H(R) = C(n).
i€Z(q,t) i€Z(q,t) i€Z(q,t)
Now let i € I15. We have R; N B(0,12) # 0. If (Y,r) € S C Stotar, we get Y € F C B(0,5) (cf.
(A) on page and hence we obtain d(7(Y),0) < 5 as well as r < 50. With © € R; N B(0,12) and
Lemma [6.13[ (i), we get
1

1
diam B; < —D(5) = — inf
fam R; < 75D(0) = 75 inf

(d(7(Y), ) +7) < —(5+ 12+ 50) < 7.

B

10
Hence, for all i € 15, we have R; C B(0,19) and the cubes R; have disjoint interior (cf. Lemma
(ii)). With Lemma we deduce ), (diam R;)" = C(n). O
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To control the terms a and b we will use Fubini’s Theorem [7, 1.4, Thm. 1], in the following
abbreviated by (F). Now, using Lemma |7 H and Corollary 4.8| (A = A, kg = 401), we conclude

(?//21/1 aH"(q) 1 Bty Lap(x)
“= /. o " Jo. {d(n(X),q) <400t} 9 51, (B(X 1) >N} PLik n(X

< C(N,n,lC,p, C(], k) M}CP (M)

Now we consider the integral b. We get using Fatou’s Lemma [7, 1.3, Thm.1] to interchange the
summation with the integration

diam R\ " at
TR0 [ g 3 Hommn e (UF) G0

100 1€l
(F) N dt 2
< o Xmryt [ / Lo <o dH (@)t < Clnp)
i€l12
Due to Lemma (ii) the proof of Theorem is completed by applying Lemma (7.6)
(©)
and with (C) from page [20| because Mx» (1) < n < €P (see page [20| and page . |

8. Z Is NOT TOO SMALL

Our aim is to prove Theorem In Definition we defined a partition of the support F
of our measure p in four parts, namely Z, Fy, F5, F3. Then, in section we constructed some
function A, the graph T' of which covers the set Z. To get our main result, we need to know that
we covered a major part of F. In this last part of the proof of Theorem [5.4] we show that the
p-measure of Fy, Fy, F3 is quite small. In particular, we deduce p(Fy U Fy U F3) < 100 As stated
at the beginning of section on page this completes the proof of Theorem [5.4]

8.1. Most of F is close to the graph of A. With K :=2(104-10-6 + 214), we define the set
G by

{x e F\ Z | Vi€ I; with n(z) € 3R;, we have x ¢ KB;}U{zx € F\ Z | n(z) € n(2)}.
At first, we show that the p-measure of G is small.

Lemma 8.1. Let 0 < a < 280 There ezist some € = E(N,n,Co,a) so that, if n < 2¢ and k > 4,
there exists some constant C = C(N,n,KC,p,Co) so that, for all € € [,£), we have

()
w(G) < CMir () < Cn,
where the condition (C) was given on page [20

Proof. Let 0 < a < 515 and & := min{&, &} where £ is given by Lemma and C' = C(N,n, Cp)
is a fixed constant defined in this proof on page Furthermore let n < 2, k > 4 and n < 2e < 2¢.

Letx € G. Ifz € G\ 7 }(n(Z2)) C F C B(0,5), with Lemma (i), there exists some i € I2
with w(x) € R; C 2R;. Let X; be the centre of B; (cf. Lemma [6.14]). We set

X(z) = {Xi ifz e G\ ml(n(2))
7(z) + A(r(z)) ifxe GNnrl(x(2)).

Claim 1: For all x € G and X = X (z) defined as above, we have
81)  d(z,X)<7d(z), d(r(z),x(X) <D A < gx g, (X M) €s.

10 ° » 710
Proof of Claim 1.

1. Case: z € G\ 7 1 (n(2)).
Due to the definition of G and w(x) € 2R; C 3R;, we have x ¢ KB;. By adding some ¢ €
R; with triangle inequality and using Lemma we get d(m(z),m(X;)) < 104diam B;. With
Lemma% we know (Xi, %) € S and hence we get d(X;) < diam B;. Using z ¢ KB; and

Lemma 6.11}, we get K - 4mBi « g(z X;) < 6d(x) + 214 diam B; which yields by definition of
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K (cf. the beginning of this subsection) 104 diam B; < %. From the previous two estimates,

we get d(z, X;) < 7d(z), i.e., the first inequality holds in this case. Furthermore, we have the

second one since d(n(z),n(X;)) < 104diam B; < %. We have (X;, 42m5:) € S 5o we get

d(z) < d(X;,x) + dia’;‘ Bi < d(X;,z) + d(x , and hence the third inequality holds in this case.
Due to Lemma we have dl‘“; Bi < M < 89 < 50 so that with Lemma (ii) we deduce

10 10
(X, %)) e 3.
2. Case: z € GNrn~Y(m(2)).
We have 7(z) € n(Z) and hence X = n(z) + A(n(z)) € Z (cf. Definition [6.20). By definition
of Z and Lemma (i), we obtain (X,0) € S for all ¢ € (0,50) and hence @ <dX,z)+o
which establishes the third estimate. Moreover, we have d(7(X),n(z)) = d(n(z),n(z)) = 0.
Using Lemma [6.10} we obtain d(X) = 0 and hence we get with Lemma d(z, X) < 6d(z).
Furthermore, we have with Lemma that 4&) < 6 < 50 so that by definition of Z, we get

10
(X, %) € S. End of Proof of Claim 1.

Let P, := P(X o)) be the plane associated to B(X, —) (cf. Definition ) We define the

10

set

(8.2) Y= {u eB (X, %)) ‘d(u,Px) < gd(%} .

10
Due to Definition we have 652 (X , %) < 2¢ and hence we get using Chebyshev’s inequality
d(z) 5 (d@)\" 5P, d@)) 6 (d=))"
N(B (X’ 10 ) \T) < & (%) Bk (X’ 10 ) <1 (Tg)

Since Y C B (X7 %) and 6(B(X, #g))) > 20 (cf. Deﬁnitionof Stotal), We obtain

N(B(dei?)mf)EM(B(X’%”)))*H(B(X’ WNT) 24 ()
4,
Ao

With Corollary (A= there exist constants C; = C1(N,n,Cy), C2 = Co(N,n, Cph)

and an (n 10n%> sunple ., Tn) € FNB (X, %f))) NY so that for all j € {0,...,n}

(8.3) u(B (a;], dz) ) NB(x,4)nT) > (42)" 4.

Let y; € B (xj, 1‘10%)) N7Y for all j € {0,...,n}. By applying Lemma [2.12| (n 4+ 1) times, we find

that A(yo,...,yn) is an (n, 8n 1(1()((:3)1 )—simplex.

Claim 2: For all € G, we have d(z, aff(yo,...,yn)) > @.
Proof of Claim 2. Let P, := aff(yo,...,yn) be the plane through yo,...,y,. Applying Lemma

M(Cz%,é—lt—d%),a—éa P =P, PQ P., S =Ayo,--Yn), x =X, m =n)

yields <t(Py, P;) < «, where we use that ¢ < & < & and C is given by Lemma - So, with
Definition we obtain <(Py, Py) < 2a. Let P € P(N n) be the n-dimensional plane parallel

to Py with X € Py, and Py € P(N,n) be the plane parallel to Py with X € Py. We have a < 550
and hence

d(mp, (), 7p, () = |mp _x (2= X) = 7p _x(x—X)| <dz,X) <(P,, By) %.

Furthermore, with (8.1)), we get d(mp (z), X) = d(7(x), (X)) < d(m) Using triangle inequality,

the previous two estimates imply d(ﬂpy (2),X) < d(:c) + d(x . Slnce Yo €T C B(X M) we have

710
d(Py, P,)) = d(X, P,) < d(X,y0) < %) and hence

@ 1' d(z, Py) + d(Py,Py) + d(wpy (z),X) < d(z, P,) + d(z)
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and gain d(z, Py) > d(f) End of Proof of Claim 2.

With (B.1) and d(y],X) < d(y;,x)+d(z;, X) < 2 +48) we obtain yo, ...y, v € B(X, Td(x))

which is a subset of B(X, ﬁ %) where we used the explicit characterisation of C given in Lemma
Due to the second property of a p-proper integrand (see Definition [3.1)), there exists some
C = C(N,n,K,p,Cy) > 1 so that we get with Claim 2

p n(n+1)
L d(a,aff(yo, .- ya) | _ a1 (10 )"
ICP(yO7,,.,y7“x) Z P n(n+l) ( d(x) > C % .
(%) ¢ E

This estimate holds for all y; € B(a:l, 1‘10(2)) N Y. By restricting the integration to the balls

B(a:z, 1do(c) ) and using the previous estimate as well as estimate ({8.3)), we get

/ . /ICP(?JO7 oo Un, 2)dp(yo) - - - dp(yn) > é«—lcg(n+1).

We have proven the previous inequality for all © € G, so finally we deduce with (C) from page
that there exists some constant C' = C(N,n, K, p,Cp) so that
(C)

4(C) yw// /mmwmemw<umwws0n
(I

Lemma 8.2. Let a,e > 0. If n < 2¢, we have (20K)~'d(z) < D(n(x)) < d(x) for allx € F \ G,
where K is the constant defined on page[{3 at the beginning of this subsection.

Proof. Let x € F\G. We have D(7(z)) = infycr—1(r(e)) d(y) < d(z). Ifz € Z, Lemmaimplies
d(xz) = 0, so the statement is trivial. Now we assume = ¢ Z. Since x ¢ G U Z, by definition of G,
there exists some ¢ € I1o with 7(z) € 3R; and z € K B;. We have B; = B(X;,t;) where (X;,t;) € S
(see Lemmal6.14) and K > 1 (see page [43)) so we obtain d(z) < d(X;,z) +t; << K diam B;. Now,
with LemmaM (i) andM we deduce D(7(z)) > s3d(x). O

Lemma 8.3. Let 0 < a < %. There exists some & = £(N,n,Cy) and some k > 4 so that, if

n<2andk > k, for all € € [3,&) we have that the following is true. There exists some constant

C = C(n) so that, for all x € F with t > %65), we have

/ d(u, m(u) + A(m(u)))dp(u) < Cet™t
B(z,)\G

Proof. Let 0 < a < i. We choose some ¢ with n < 2¢ < 2¢ and some k > k= max{l}, C’}, where
¢ and k are given by Lemma and C is a fixed constant introduced in step VI of this proof.
Let x € Fand t > %. We define

I(z,t) = {i € L2|(3R; x Py") N B(z,t) N (F\ G) # 0}

where 3R; x Py~ := {z € R¥|r(z) € 3R;}. At first, we prove some intermediate results:

L. Due to the definition of G we have (B(z,t) N F)\ (G U Z) C Uj;er(pr (3R % P)NKB,.

II. Let u € 3R; x Pi-. Using Lemma (iv) implies that 37, ;  ¢;(7m(u)) is a finite sum.

III. Let i € I(x,t) and j € I;2. We define ¢;; to be 0 if 3R, and 3R, are disjoint and 1 if
they are not disjoint. We have ¢;(m(u)) < 1 = ¢;; for all u € (3R; x P;t) N KB, since if
¢j(m(u)) # 0 the definition of ¢; (see page [26) gives us 7(u) € 3R; and, because 7(u) € 3R;, we
deduce 3R; N3R; # 0.

IV. If ¢;; # 0, we can apply Lemma (iii) and Lemma (i). Hence, using Lemma
the size of B; as well as the distance of B; to B; are comparable to the size of B;. Consequently,
there exists some constant C' so that KB; C C’Bj C kB;.

V. If u € kBj, we have |7t (u) — A;(7(u))| < 2d(u, P;). We recall that P; is the graph of the affine

map A; (cf. Definition and Lemma [6.18)).
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Proof. We set Py := Py + Aj(n(u)) and v := 7(u) + A;(n(u)) = mp, (). Remarkﬁ implies
7, () = 0] = [, o — v) — 7y (= )| < Ju— o] (P, Po).

Using this and <(P;, Py) < o < 5 (cf. Definition[6.17) we obtain |u — v| < d(u, P;) + 3|u — v| and
hence |7+ (u) — A;(7(u))| = |u —v| < 2d(u, P}). O

If w € Z, the definition of A (see page yields d(u, 7(u) + A(7(u))) = 0. Using Lemma
and Definition we get

d(u, m(u) + A(m(u)))dp(u) < (W) |t (u) — Ay (r(w))| dp(u
Ll + ANdn < [ S ) () — Ayl )

j€I12

Using I to V we obtain

1 d (u, Pj)
d A i TL+1 7‘7(1 '
/B(x’t)\a (u, m(u) + A(m(u)))dp(u) <2 Z Z Gi 5t; ? b nen

i€l(z,t) j€L12

Now we get the statement by using the following five results.

VI. Lemma and the definition of S;u¢q imply ijk(Bj) < 2e.

VIL. Let i € I(z,t) and j € I12. If ¢, j # 0, we conclude that 3R; N 3R; # (). Hence, with Lemma
m (iii) and Lemma we deduce 2t; = diam B; < 1000 diam R;.

VIII. For i € I(x,t), we have with Lemma (iv) that > ¢, , ¢ij < (180)".

IX. For i € I(x,t), there exists some y € B(x,t) N (F\ G) with 7(y) € 3R;. We obtain with
Lemmam Lemma [8.2{ and our assumption ¢t > % that 10 diam R; < d(z) + d(z,y) < 11¢.

X. Let i € I(x,t). With XI we obtain diam R; < 2t and, because (3R; x P-) N\ B(x,t) # 0, we get
R; C B(w(x),t+diam3R;)N Py C B(w(x),7t)N Py. Moreover, with Lemma (ii), the primitive
cells R; have disjoint interior and hence we get with Lemma (we recall that w,, denotes the
volume of the n-dimensional unit sphere)

> (diam R)" < Vn"H"(B(r(x), 7t) N Py) = v/n" wn (7)™

i€l (x,t)
O
Definition 8.4. We define F := {z e F\G | d(z,7(z) + A(r(z))) < E%d(x)}.
Theorem 8.5. Let 0 < o < %. There exists some € = £(N,n,Cy) < 7 and some k >4 so that, if

n < 2¢ and k > k, there exists some constant Cs = C5(N,n, K, p, Co) so that, for all € € [3,€), we
have u(F \ F) < Csez.

Proof. Let 0 < a < i. We choose some € with n < 2¢ < 2¢ := min{2¢, 2¢, %} and some k > k
where € is given by Lemma and £ and k are given by Lemma

At first, we prove some intermediate results:
I. We have Z C F because for z € Z the definition of A on Z (see Definition implies that
d(z,m(x) + A(r(x))) = d(z,z) = 0.
IL If z € F\ (FUG), we conclude with I that 2 ¢ Z and, with Lemma we deduce d(z) # 0.

So G = {B (x, #g)) ’z € F\(FuU G)} is a set of nondegenerate balls. For x € F C B(0,5), we

have d(z) < 60 (see Lemma so that we can apply the Besicovitch’s covering theorem [7), 1.5.2,
Thm. 2] to G and get Ny = No(NN) families B,,, C G,m = 1, ..., Ny of disjoint balls with

F\(FUG) UUB

m=1 BeB,,

I1I. Since d is 1-Lipschitz (Lemma , for all u € B(z M) d(z) —d(u) < d(z,u) < A=) and

' 10
10 _1 2
hence 7y < Sty < @ty
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IV. Let 1 <m < Ng and let B, = B ( x, 1—3)) and B, = B (y, dl(g ) be two balls in B,,. Then we

either have

a) 7 (g Ba) N7 (195 By) =0 or

b) if 2d(x) > d(y), we have B, C 200B, and diam B, > (40K)~! diam B,,,
where K is the constant from page

Proof. Let 7 (;52Bz) N7 (595 By) # 0 and 2d(z) > d(y). We deduce with Lemma d(z,y)
19d(x), which implies B, C B(z,19d(z) + “%) = 200B,. With Lemma [8.2} we get 25;;3 <
D(m(y)) + d(m(x), n(y)) < d(y) + Zéa;y and hence d(y) > (40K)~'d(x). All in all, we have proven

that either case a) or case b) is true. ]

V. There exists some constant C' = C(n) so that > p 5 (diam B)" < C for all 1 <m < Np.

Proof. Let 1 < m < Ny. We recursively construct for every m some sequence of numbers, some
sequence of balls and some sequence of sets. At first, we define the initial elements. Let dl, :=
supgep, diam B. We have dl, < oo because, for all z € F C B(0,5), we have with Lemma

that d(z) < 60. Now we choose B}, € B, with diam B}, > Tm and define

Bl = {B € Bu|r (e Bl) N7 (e B) 40}
We continue this sequences recursively We set dit! = sup B eB,\Ui_, B diam B/7 choose BiHl e
m j=1~m

B \ U;  BY, with diam B4 > %’ and define

Bitl .= {BeBm\UB ‘ (sa B N (LleB);zé(Z)}.
j=1

If there exists some [ € N so that eventually B,, \ U§:1 Bl =0, we set for all i > 1 B!, := 0, and
interrupt the sequences (d%,) and (B},). We have the following results:

(i) For all I € N and B!, = B(a!,, d(fé"')), we have with Lemma and z!, € F C B(0,5) that
d(m ) < 6. Hence we get B., C B(0,11).

(11) For all 1 < m < Ny, we have ;= B, = Bn.

Proof. If there exist only finitely many dﬁn, the construction implies B,,, C U;; BJ

Now we assume that there exist infinitely many d',,. Since B,, is a family of disjoint balls, the
set {BL,|l € N} is also a family of disjoint balls. Due to (i), all of those balls are contained in
B(0,11). If there exists some ¢ > 0 with diam B!, > ¢ for all [ € N, there can not be infinitely
many of such balls. Hence we deduce diam B!, — 0 if [ — co. Let B € B,,. If B ¢ J;2, B

obtain 2diam B!, > d!, > diam B for all [ € N where we used the definition of d!,. This is in
contradiction to diam B!, — 0. So we get B € |J;=, Bi,. Allin all, we have proven | J;=, B, D Byy,.
The inverse inclusion follows by definition of Bi,. O

(iii) Let 1 < m < Np, [ € N and B, :B( v, 13)) e B, _B( m,“fén)) € B',. We have

7 (g BL) N7 (32 By) # 0 and 2d(2%,) = 10diam B., > 10% > 109228 — 4(y). Hence IV
implies B, C 200B!, and diam B, > (40K)*1 diam Bl The balls in Bl are disjoint, so, with

Lemma [A.1] (s = 2m B 200d‘amB ), we deduce #B!, < (200 - 80K)Y.
(iv) {0 B }ien is a family of dlSJOlnt balls and with (i) we get 7 (o5 Bh,) C 7(B(0,11)) for all

I € N. Hence we obtain _;°; (diam7 (40KBfn))” < an’H” (m (B(0,11))) = 22™.

Now we are able to prove V by using (ii),(iii) and (iv):

> (damB)" <Y > (d,)" =C(n) > (diam 7 (37 BL,))" < C(n).

BeB., I=1 BeBl, I=1

m —
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Finally, we can finish the proof of Theorem 8.5 Let pp denote the centre of some ball B. Using
the definition of F' and Lemma there exists some constant C' = C(n) so that we obtain

d(u, 7(u) + A(m(u)))
F\(FUG) d(u) du(w)

11 d(u, m(u) + A(m(u)))
£y T du(w)

=1 BeB,, ? B\(FUG)
111 2 diam B\ "™
Y 5 e ()

C(N,n)e.

IN<

This leads to u(F \ (FUG)) < C(N,n)ez. With < 2¢ < £* and Lemma the assertion
holds. O

8.2. F is small. Now we are able to estimate p(F;). We recall that n and k are fixed constants
(cf. the first lines of section[6.1]), and that F; depends on the choice of o, e > 0 (cf. Definition [6.3).

Theorem 8.6. Let 0 < a < %, There exist some e* = £*(N,n,Cy) and some k>4 so that, if
n<2* and k >k, foralle € [2,e%), we have pu(Fy) < 1076,

Proof. Let 0 < a < i and let &, C5 and k be the constants given by Theorem We set

€* := min {é, 106;14} and choose some k > k and some & € [3,€*). At first, we prove some
intermediate results:
I. Let G = {B(m, %) ‘x c 1N F} This is a set of nondegenerate balls because ZNF; = () and,

by definition of h(-) (see page [21)), we get h(z) < 50 for all z € F. With Besicovitch’s covering
theorem [7, 1.5.2, Thm. 2], there exist Ny = No(N) families B,, C G, m = 1, ..., Ny, containing
countably many disjoint balls with

No
mnnFcl U B
m=1 BeB,,
II. Let 1 <m < Ny and B = B(sc, %) where x € F; N F. Due to the definition of F1, there exists

some y € F' and some T € [@, @} with d(z,y) < Z and §(B(y,7)) < . For any z € B, we get

d(z,y) < %g’) + & < 7. Hence we obtain B C B(y,7) and conclude u(B) < 67" < 3"§(diam B)".

III. For all 1 <m < No, we have ) pcp (diam B)" < 192".

Proof. We define the function A : Ujy — RN u +— u 4 A(u), where Uy = B(0,12) N Py. A is
Lipschitz continuous with Lipschitz constant less than 2 because A is defined on Ujs (see page

, 3a-Lipschitz continuous (see Lemma [6.27) and o < i. Let B =B (x, hl(g)) € B,,. We

have F C B(0,5) (see (A) on page and so w(F) C Py N B(0,5) because 7 is the orthogonal
au

projection on Py and 0 € Py. With the definition of F, Lemma [6.10| and £7 < %7 we obtain
d(x,x0) < %g) where zq := A(n(x)). Let z € 7 (B (:c(h hig))) C Ujz2. Using triangle inequality
with the point A(m(zo)) = zo and A is 2-Lipschitz, we get d(A(z),z) < hfg). This implies

A(m(B(xo, hig)))) C BN A(Uyy), and hence we gain 7 (B (zo, hi?)) cr (B N A(Uu)). Now we
have with [7, 2.4.1, Thm. 1]

(8.4) % (diam B)" = wh, (ﬁ;?)" = 1" (7 (B (w0, M2))) < H"(B 0 AUL).
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P

W(B(a: h(“L )ﬁA(U12)>

FICURE 2. 7 (B (x07 ig)» cm (B (x, %g)) N A(Uu))

The balls in B, are disjoint, so we conclude using [7, 2.4.1, Thm. 1] for the last estimate

n
Z (diam B)" - 8"

Wn,
BeB., BeBm,

Z Hn BN A(Ulg)) < 77‘[”( (U12)) < 192".

wﬂ

O

Now we have p(Fy N F) < Z 12 BeB,, M(B) < 5N0 576™. Since § < 600" o ~ (see on
page and €2 < C—;, we deduce together with Theorem that p(Fy) < 10~ 6. O

8.3. F, is small. We recall that 0 < n < 2=(n+1) and k > 1 are fixed constants (cf. the first lines
of section and that F, depends on the choice of a,& > 0 (cf. Definition [6.3)).

Theorem 8.7. Let a,e > 0. There exists some constant C = C(N,n,K,p,Co, k) so that, if
n < %10*6, we have u(Fy) < 107°.

Proof. Let z € Fy and t € (h(z),2h(z)). It follows that z ¢ F; U Z and hence, for all y € F

and for all T € [@, M] with d(z,y) < 7, we obtain §(B(y,7)) > 6. So, in particular, we get

§(B(x, ™)) > 6 for 2 = y and 7 = ") If ko = 1, this implies Oy, (B(z,t)) > §(B(x,t)) > L,
where we used (”;) <t < 2h(z). Let (y,7) as in the definition of Fy. Then We have d(z,y) + 7 <
21 < h(z) < t and hence B(y, ) C B(z,t). We conclude By (z,t) > (% ) 51 kY, T) > fgerr-
Now, with Corollary 4.8| (A = 4,” ko = 1), there exists some constant C = C(N,n, K, p, Co, k) so
that

dt
Micr (1) > /FZ/ Bk, t) 1{&« (Bt)> %}?du(z)

2h(w)
> / / ° )’ @d (@)
C 10""‘1 t

C <W) (F2) In(2).

\/

Y
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Finally, using the previous inequality, condition (C) from page and n < %EP 1075, we get

the assertion. O

8.4. F; is small. We mention for review that F is defined on page [46| and set

Fo= {x eF ’ w(F N B(x,t)) > —u(F N B(x,t)) for all t (0,2)}.

100

Lemma 8.8. Let 0 < a < i, There exists some € = (N, n, Cp) < i and some k > 4 so that, if
n <2 and k > k, there exists some constant C = C(N,n,K,p,Cy) so that, for all e € [1,€), we

have p(F\ ﬁa) < Ces.

Proof. Let 0 < a < i and choose ¢, k to be the constants given by Theorem and let k& > k‘

7 < 2e < 2€. Due to Theorem., we only have to consider u(F\ F) For all z € F\ F using the
definition of F, there exists some t, € (0,2) with u(FﬁB(a: te)) < 99u((F\ F)NB(x,ty)). Hence

F\ F is covered by balls B(z,t,) with centre in F'\ F. So with Besicovitch’s covering theorem [7,
1.5.2, Thm. 2] there exist Ny = No(V) families B,,, m = 1, .., Ny, of disjoint balls B(z,t,) so that

w(F\F) < Z > uw(FnB) <992 > u((F\F)nB) < 99Ny u(F\ F),

m=1 BEB,, m=1 BEB,,
and with Theorem [85 the assertion holds. O
Lemma 8.9. Let 0, > 0. There exist some constant C = C(N,n,Cyp,0) > 1 and some constant

g0 = €0(N,n, Co,0) > 0 so that, if n < 2o and k > 4, we have for all € € [4,e0) that the following
is true. If (z,t) € S and 100t > 0, then we have <I(P(w,t),P0) < Ce.

Proof. Let 0,a > 0, k > 4 and 5 < 2¢ < 2¢g where the constant ¢ is given by Lemma@
Let t > % and (z,t) € S. We get with (A) and (D) (see page ﬂﬁ%(m,t) < (ogO)n+ 2¢.
Furthermore, we have with Definition that 3. Pa.) (z,t) < 2¢ and with (z,t) € S C Stotar We

obtain 6(B(z,t)) > %. Now, with Lemma (y=z,c=1,£=2 (%)nﬂ, ty=1t,=t, A= %),
there exists some constant C3 = C3(N,n, Cp,0) so that <(P, ), Po) < Cse. O
Lemma 8.10. Let 6, > 0. If k > 400, there exists some constant e* = €*(N,n,Cy, a,0) so that,
if 1 < 2%, we have for all € € [1,*) that for all x € F3 we have h(x) < 1%,

Proof. Let 6, > 0 and k > 400. We set €* := min{Z, ¢, 55} where £ is given by Lemma
and €p as well as C' are given by Lemma [8.9] Let n < 2¢ < 2¢* and = € F3. With Lemma
(i), we have (z,h(x)) € S and, with Lemma we get <U(P(y n(x)), Po) > 3. Hence we obtain

h(z) < with Lemma O

ﬁ

Lemma 8.11. Let p = 2. There exists some k > 400, some & = a&(n) > 0 and some =
O(N,n,Co) € (0,1) so that for all o € (0,a] and 0 € (0,0] there exists some € = E(N,n, Cy, o, 0)
so that, if k > k and n < €2, we have for all € € [V/1,€) that there exists some set Hg C Us and

some constant C = C(N,n, K, Cy, k) with H"(Us \ Hp) < C (ﬁ)Q and, for all x € F3N ﬁj, we
have d(m(x), Hg) > h(x).

Proof. Let k and a(n) be the thresholds given by Theorem [7.17 and let ¢ = C(N,n) be the
constant given by Theorem [7.3] Moreover, let C; = Cl(N n, C’o) and Cy = Cy(N,n,Cy) be
the constants given by Corollary E applied with A = , and 6 = §(N,n) is the value fixed
-1 .
on page We set 6 := 5 [18n(10"+1)( )n+ C’] and choose § € (0,60]. Let a €
(0,5[] and let g1 = é‘(N n, 00, ), gy = 5(N n, Co, ), g = é(N,n,Co,()é), o — 60(N,n,00,9),
e* = ¢*(N,n,Cy, a,0) be the thresholds given by Lemma 6.24] Theorem [7.17, Lemma
and Lemma [8.10| respectively. Finally, let C' be the constant from Lemma We set € :=
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min {51,5275, g0, €%, (Cha)?, 105 [471(10” +1) ( )nH
max{k, 400} and 1 < £2. Now let £ > 0 with 7 < 2 < &2

Until now, we defined the map A only on Uj;s = B(0,12) N Py (see page . Furthermore,
we have shown that A is Lipschitz continuous with Lipschitz constant 3o (see Lemma on
page . With Lemma |A.5| ﬂ an application of Kirszbraun’s Theorem, there exists an extensmn
A: Py — RN of A with compact support, the same Lipschitz constant 3a and A = A on Uy,. If
one wants to omit Zorn’s lemma, used for the proof of Lemma [A.5 one can get the same result
with a slightly larger Lipschitz constant (see the remark after Lemma for details). We denote
this extension of A also by A.

Using Theorem with ¢ = A, p = 2 and Theorem [7.17} there exist some set Hy C Us

and some constant C' = C(N,n, K, Co, k) with H"(Us \ Hy) < %Cs Furthermore, we
get for all y € Py some affine map ay : Py — P4t so that, if » < 6 and B(y,r) N Hy 75 0, we

have ||A — ay||Loo(B(y PP, PL) S CroLip,. We recall that Lip, = 3a (cf. Lemma . For

x € F3N Fc F3 N F, we have with the previous lemma that h(z) < < & Let t € [h(z ), ). I
2’ € B(z,2t) N F, we obtain with Lemma and the definition of F d(a', w(2') + A(n(z'))) <
e3 (d(z) + d(z,2")) < 3¢3t. Let Py, denote the n-dimensional plane, which is the graph of the
affine map ar(,). Now we assume, contrary to the statement of this lemma, that d(m(z), Hg) <
h(z). This implies m(B(z,2t)) N Hy # (0, and so we have d(m(z') + A(n(z')), Pr(z)) < [|A —
()| Loo (B(n(2),20nP0, L) < 6Coat for all 2/ € B(x,2t) N F. We combine those estimates and
obtain using 3e3 < 3CHa
(8.5) (2, Pr(ay) < d(@,m(2") + A(m(2))) + d(n(z") + A(n(z")), Pr(ay) < 9CHa.
Since h(z) < t, we get (z,t) € S C Siotar With Lemma (i) so that we have §(B(z,t)) > 3. If
x € F, this estimate and the definition of F' implies §(F N B(x,t)) > 30.

Now we apply Corollary (Y = F, A = g), and so there exist constants Cy(N,n,Cy),
C3(N,n,Cy) and an (n, 10nci)—simplex T = A(zo, ..., x,) € FN B(z,t) N F so that u(B;) > tL
for all i € {0,...,n} where B; := B (x &~ ) A B(z,t) N F. With (2,t) € S C Shotar, we get for all

i€{0,...,n}

1 A
202} 71000‘0} and assume that k > k :=

L

1(B;)
This implies for all i € {0,...,n} the existence of y; € B; with d(Yi, Pzy)) < 2Cste. With
Lemma , we deduce that S := A(yo,...,yn) C B(z,t) is an (n, Sné)—simplex. Next, we apply
Lemrrla (m = n, C = 8n,C’ =10 = 2C25) and get <U(P(z.t), Pyo,....yn) A§ 105- We rlave
yi € B; C B(z,2t) N F and hence we get with and Lemma (C = %, C=1,0=9C0x)
UPyy,....yn» Prz)) < 155 We combine those two angel estimates and conclude <((P(; 1), Pr(z)) <

which is true for all x € FgﬁF with d(w(x), Hp) < h(z) and all t € [h( )

[ e Pauta) < Catslle w.) < 26t
B;

, 100] Now we use this

200°
result for ¢ = h(x) and for ¢t = % and obtain <(Pg p(x)) P(m,%)) < 105+ Together with Lemma
we get <I(P(m’h(x)), Py) < &. This is in contradiction to Lemmam 5[ hence our assumption that

d(n(z), Hp) < h(z) is invalid for allz € Fy N E. O
Theorem 8.12. Let p = 2. There exists some constants k > 4, 0 < & = a(n) <

1
1 v 5
O(N,n,Cy) so that, for all o € (0, ] and all § € (0,0], there exists some 0 < & = E(N,n,Cy, a,0) <
% so that, if k >k and n < 2%, we obtain for all € € [\/7],%)

((F3) <107

Proof. Let k be the maximum and & < % be the minimum of all thresholds for k£ and « given by

Lemma [6.27} 8.10| and [8.11] Furthermore, we set 0 := 6, where 6 = (N, n,Cy) is given by
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Lemma Let 0 < o < @and 0 < 6 < 6. We define & = (N, n, Cy, o, 8) as the minimum
of %, a small constant depending on N, n, IC, Cy, «, 8 given by the last lines of this proof, and of
all upper bounds for e stated in Lemma |6'.27L |8.10| and |8.11l Let k > k and n < €2 < &2
We have pu(Fs) < p(F3 N EF) + pu(Fs \~F) With Lemma (p = 2), there exists some constant
C = C(N,n,K,Cy) so that p(Fs\ F) < p(F \ F) < Ce2. Hence we only have to consider
w(F3 N F). We set G := {B(x, 2h(z))|z € F5N F)} This is a set of nondegenerate balls because
z € F3 C F\ Z. Furthermore, we have h(z) < 50 for all z € F (see Definition of h on page [21)).
With Besicovitch’s covering theorem [7) 1.5.2, Thm. 2] there exist Ny families B; C G, 1 =1, ..., Ny,
of disjoint balls such that we conclude with property (B) from page

N() NO
= = (B)
p(FsNF) <> ) u(BNF) < Co Y > (diam B)™.

I=1 BeB I=1 BeB
Let 1 <1< Ng and let By = B(x1,2h(x1)), Bo = B(xs,2h(x2)) € By with By # Bs. Since the~balls
in B; are disjoint, we deduce 2h(x1) + 2h(z2) < d(x1,z2) and, because of the definition of F' and
Lemma we get d(z;, m(x;) + A(m(2;))) < e2d(x;) < e2h(a;) for i = 1,2. Since ez < a<i
and A is 3a Lipschitz continuous, the former two estimates imply h(z1) +h(z2) < d(m(21), 7(22)).
Thus 7(4Bj) and 7($B;) are disjoint. We have z; € (FﬂFg) C F C B(0,5) for i = 1,2. With
Lemma [8.10] we conclude that h(z;) < 1% < 1. This implies 7(1B;) C Us. Using Lemma
there exists some set Hy C Us and some constant C' = C(N,n, K, Co, k) with H"(Us \ Hy) <
C (ﬁ)2 so that d(m(z), Hg) > h(z) for all z € F3 N F, in particular for # = z;. We conclude
that m(3B;) N Hy = 0, and hence

d
d

Z (diam B)" = 4 Z (3diam7 (£B))" =4 Z w—n"H (r(3B)) < uTnH (Us \ Hp).
BeB; BeB; BeB;
Now we obtain
= 4m n € 2
u(Fs N F) < CoNo—H"(Us \ Ho) < C (i) -

and we have already shown that u(Fs \ 15;) < Cez. Using € < &, we finally get pu(F3) <1076, O

APPENDIX A. MEASURETHEORETICAL STATEMENTS

Lemma A.1. Let £ be a set of disjoint balls (open or closed) in RY with radius equal or larger
then s € (0,00) and B C B(z,r) for all B € £. Then £ is a finite set with #&€ < (g)N

Proof. Choose [ different balls B; € £ and let wy be the volume of the N-dimensional unit sphere.
We have IsNVwy < 2221 LN (B;) < LN(B(x,7)) = wn(r)N. This implies [ < (g)N and hence
N

pe< ()" 0
Lemma A.2. Let s > 0 and B(z,r) be an open or closed ball in R™ with s < r. There exists
some family € of disjoint closed balls with diam B = 2s for all B € £, B(z,r) C Uges 5B and
#E < (%)™

Proof. Set F = {B(y, s)|ly € B(x,r)}. With Vitali’s covering theorem [7, 1.5.1, Thm 1] there exists
a countable family £ of disjoint balls in F such that B(z,r) C (Jgeg 5B. Due to s < r, we get
B C B(z,2r) for all B € £ and hence Lemma implies #& < (zf)m O

Lemma A.3. Let A C RN be a closed set with v(A) > 0, where v is some outer measure on R™.
There exists some x € A so that v(B(x,h)) > 0 for all h > 0.

Proof. For every h > 0, there exists some y € A with v(B(y,h)) > 0 because otherwise we would
obtain v(A) = 0. Now, we find a sequence z; € A with lim; ,oc 2; = 2 and v(B(z;, 1)) > 0. Let
h > 0. With ¢ small enough, we obtain v(B(z,h)) > v(B(z;, 1)) > 0. O
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Lemma A.4. Let R be an n-dimensional cube in RN . Then (diam R)" = (v/n)"H"(R).
Proof. Let H"(R) = a™. Then diam R = v/na implies the assertion. O

Lemma A.5. Let K C R™ be a bounded set and f : K — RN be a Lipschitz function. Then f has
a Lipschitz extension g : R™ — RN with compact support and the same Lipschitz constant.

Instead of Kirszbraun’s Theorem [9, Thm 2.10.43], we can use some simpler theorem for the proof
[T, 3.1.1, Thm 1] and get the same result but with the larger Lipschitz constant Lip, = \/NLipf.

Proof. Let Lip; be the Lipschitz constant of f and let B(z,t) be some ball with K C B(z,t). We
define T :=t + ﬁlpf max,cr |f(z)] and set f:= f on K and f = 0 on R™\ B(z,T). Now it is easy
to see that f : (R™\ B(z,T)) UK — R¥ is Lipschitz continuous with the same Lipschitz constant

as f. By applying Kirszbraun’s Theorem [, Thm 2.10.43] on f, we obtain a Lipschitz extension
g : R™ — RY with compact support and the Lipschitz constant Lip Iz ([

APPENDIX B. DIFFERENTIATION AND FOURIER TRANSFORM ON A LINEAR SUBSPACE

Let Py € G(N,n) be an n-dimensional linear subspace of RY and f : Py — R be some function,
where R € {R,RV}. In this section, we explain what we mean by differentiating this function and
formulating Taylor’s theorem in this setting. Furthermore, we define the Fourier transform of f
and give some basic properties.

Let ¢ : R® — Py be a fixed isometric isomorphism. We set f : R* — R, f(x) = f(o(x)) =
(f o )(x).

Definition B.1. Let I € NU{0}. We say f € C'(Py, R) iff f € C'(R", R) (I-times continuously
differentiable). If [ > 1 for all i € {1,...,n}, we set &;f := D;f o ' = Dy(f o ¢) 0 ¢7 1,
Af =30, 0;0;f, Df := (01f,...,0nf), and, if k = (K1, K2,...,k,) is a multi-index, we set
0" f = 071052 ... 0% f. Furthermore for z,y, z € R™ and some multi-index &, we use the following
notations x = (z1,...,%y,), " =af* - x5? - - xhin gl = Kgylrg! oo knly |kl =K1+ -+ Ky and
[y, 2] == {y + t(z = y)|t € [0, 1]}.

The following Lemmas transfer classical results to our setting and are stated without proof.

Lemma B.2. Let k = (k1,K2,...,kn) be some multi-index with || =1>1 and f € CY(Py,RY).
We have 0" f = D" f o ¢l = [D"(fod)]o =1, where

Drf = (D1)"(Da)2...(Dy)"n f.

Lemma B.3 (Taylor’s theorem). Let f € C**1(Py,RN) and [yo,y] C Py. We have f(y) =
Ps(y) + Rs(y — yo), where ps(y) == 301, 1< 710" (0) (67 (y — y0))" and

1
1
Ry =)= [+ 0=0°( Y 500+ tly - 1) (6 - w0))")
0 .
|k|=s+1
Lemma B.4 (Partial integration). Let I € N, f € CY(Py,RN), ¢ € C(Py,R). Then for all
multi-indices r with || =1 we have [, f(y)0"p(y)dH"(y) = (—1)lsl I, @ F()e(y)dH" ().

Now we define the Fourier transform for some function f € . (Fy), where .7 (P) is the Schwartz
space of rapidly decreasing functions f : Py — C, cf. [11] 2.2.1 The Class of Schwartz Functions].
We will get the same results as for some function f € #(R™).

Definition B.5 (Fourier transform). Let y € Py and f € .7 (FPy). We set
fw) = (Fod)o™ ) = | Jo(z)e e 02dLn(z).

If f: Py — CN with f; € .7(P,), i.e., every component of f is a Schwartz function, then we
write f € .#(Py,C"). We define the Fourier transform of some function f € .#(P,,C") by

f:: (fla"'7fN)'
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Lemma B.6 (Fourier transform and convolution). Let f,g € (Py) and let the convolution
of f and g be defined by (g x f)(w) = fPo glw —v)f(v)dH™(v) . Then for w € Py we have

o — ~

(g% f)(w) = g(w)f(w).
Lemma B.7. Let f € S (P)), y € Py, t € R and set fi(y) = & f(¥). We have @(y) =

tn

—

(2mio =} ()" f(y) and (fi)(y) = F(ty).
Lemma B.8. Let f € .(P,) be radial. Then f and Af are radial as well.

APPENDIX C. LITTLEWOOD PALEY THEOREM
Lemma C.1 (Continuous version of the Littlewood Paley theorem). Let ¢ be an integrable
CL(R™;R) function with mean value zero fulfilling |¢(x)| + |Vo(z)| < C(1 + |z|)™ ! and 0 <
IS (@) (@) |29t < oo, where ¢y(x) = H@(%). For all ¢ € (1,00), there ewists some constant
C = C(n,q, @) such that, for all f € L4(R™;RYN), we have

o0 Ldt\ ?
|pe * f T < Ol fllpageryy-
0 La(R™R)
Proof. The proof is completely analogue to the proof of the Littlewood-Paley theorem [IT, Thm,
5.1.2). O
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