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A PRIORI BOUNDS FOR SEMILINEAR EQUATIONS
AND A NEW CLASS OF CRITICAL EXPONENTS FOR

LIPSCHITZ DOMAINS

P.J. MCKENNA & W. REICHEL

Abstract. A-priori bounds for positive, very weak solutions of
semilinear elliptic boundary value problems −∆u = f(x, u) on a
bounded domain Ω ⊂ Rn with u = 0 on ∂Ω are studied, where the
nonlinearity 0 ≤ f(x, s) grows at most like sp. If Ω is a Lipschitz
domain we exhibit two exponents p∗ and p∗, which depend on
the boundary behaviour of the Green-function and on the smallest
interior opening angle of ∂Ω. We prove that for 1 < p < p∗ all
positive very weak solutions are a-priori bounded in L∞. For p >
p∗ we construct a nonlinearity f(x, s) = a(x)sp together with a
positive very weak solution which does not belong to L∞. Finally
we exhibit a class of domains for which p∗ = p∗. For such domains
we have found a true critical exponent for very weak solutions. In
the case of smooth domains p∗ = p∗ = n+1

n−1 is an exponent which
is well known from classical work of Brezis-Turner [3] and from
recent work of Quittner-Souplet [12].

1. Introduction

In this paper we study a-priori bounds for positive solutions of the
boundary value problem

(1) −∆u = f(x, u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded Lipschitz domain in Rn. In this context a-priori
bounds are understood as follows: there exists a value M > 0 such that
‖u‖∞ ≤ M for every solution u ≥ 0 of (1). As test cases one should
have in mind f(x, s) = a(x)sp and f(x, s) = C(1 + a(x)sp) for some
p > 1 and with 0 ≤ a ∈ L∞(Ω),

∫
Ω
a dx > 0, C > 0.

A-priori bounds are intimately related to critical exponents, e.g. the
critical Sobolev embedding exponent. This is well known for the clas-
sical example

(2) −∆u = a(x)up in Ω, u = 0 on ∂Ω.
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If p ≥ n+2
n−2

, a ≡ a0 > 0 and Ω is star-shaped Pohožaev [11] showed in

1965 that there are no positive weak H1
0 (Ω) ∩ L∞(Ω) solutions, which

can be understood as the failure of a-priori bounds. In 1977 Brezis and
Turner [3] discovered a-priori bounds for weak H1

0 (Ω)-solutions of (2)
if Ω is smooth, a(x) ≥ a0 > 0 and 1 < p < pBT = n+1

n−1
. For a ≡ a0 > 0

this was improved by Gidas, Spruck [7] in 1981 and DeFigueiredo,
Lions, Nussbaum [5] in 1982 to the range to 1 < p < n+2

n−2
, which is

optimal in view of Pohožaev’s result.

In [12] Quittner and Souplet extended the a-priori bounds of Brezis
and Turner in the same range of exponents 1 < p < pBT to very weak
solutions of (1). The concept of very weak solutions was introduced by
Brezis et al. in [2]. A function u ∈ L1(Ω) is called a very weak solution
of (1) provided f(x, u) · dist(x, ∂Ω) ∈ L1(Ω) and∫

Ω

−u∆φ dx =

∫
Ω

f(x, u)φ dx for all φ ∈ C2(Ω) with φ|∂Ω = 0.

As it turns out positive very weak solutions are very useful in the study
of parabolic blow-up, see Section 4. The main tool of Quittner, Souplet
were sharp estimates of the heat semigroup obtained earlier by Fila,
Souplet and Weissler [6]. Both in [3] and [12] the existence of a-priori
bounds for 1 < p < pBT depends in an essential way on the smoothness
of the domain Ω, i.e., on the fact that a positive copy φ1 of the first
Dirichlet eigenfunction of −∆ on Ω satisfies

(3) K−1 dist(x, ∂Ω) ≤ φ1(x) ≤ K dist(x, ∂Ω).

for a suitable constant K > 0.

Our first contribution in this paper is a study of the naturally aris-
ing question what happens if Ω is a square, a hypercube, a conical
piece or more generally a Lipschitz-domain where (3) fails. As an
answer we can define a generalized Brezis-Turner type exponent pBT

for a class of Lipschitz domains including the above list. Here we
give a brief description of the generalized exponent pBT . Let G(x, x0)
be the Green-function with pole at x0 ∈ Ω. Assume Ω is such that
G(x, x0) ≥ const. dist(x, ∂Ω)γ and suppose that γ is as small as possi-
ble. Then pBT = n+γ

n+γ−2
and 1 < p < pBT guarantees a-priori bounds

for very weak solutions of (1), provided the notion of a very weak
solution is appropriately modified to suit Lipschitz domains. If Ω is
a 2-dimensional square then pBT = 2 as compared to pBT = 3 for
smooth 2-dimensional domains. For n-dimensional hypercubes we find
pBT = n

n−1
as compared to pBT = n+1

n−1
for smooth n-dimensional do-

mains. Apart from the range of exponents our assumptions on the
nonlinearity f(x, s) are essentially the same as in Brezis-Turner and
Quittner-Souplet. On a side note we mention that for the test cases
our results allow coefficients a(x) ≥ 0 vanishing on some part of Ω as
long as

∫
Ω
a dx > 0.



A PRIORI BOUNDS FOR LIPSCHITZ DOMAINS 3

Next we describe a second major development in the study of a-priori
bounds for very weak solutions. Until the very recent paper of Souplet
[14] the following two (related) questions were open:

(i) Is there a genuine difference between weak H1
0 -solutions and

very weak solutions of (1)?
(ii) Is the range of exponents 1 < p < pBT sharp?

The results of Brezis-Turner and Quittner-Souplet show that for 1 <
p < pBT there is no distinction between classical solutions, weakH1

0 (Ω)-
solutions and very weak solutions of (1). However, examples of un-
bounded very weak solutions of −∆u = C(u + 1)p in Ω = B1(0) are
known for p > n

n−2
. They are of the form u(x) = |x|−α − 1 with

α = 2/(p − 1) and C chosen appropriately. This solution is not in
H1

0 (Ω) if p ∈ ( n
n−2

, n+2
n−2

]. Note that pBT < n
n−2

so that until recently
the questions (i) and (ii) remained open for p ∈ (pBT ,

n
n−2

]. Both were
finally resolved in [14], where Souplet showed that for all values of
p > pBT it is possible to construct 0 ≤ a(x) ∈ L∞(Ω),

∫
Ω
a(x) dx > 0

and a very weak solution u of

(4) −∆u = a(x)up, u > 0 in Ω, u = 0 on ∂Ω

which is neither inH1
0 (Ω) nor in L∞(Ω). Souplet’s example is also based

on heat-kernel estimates and fine properties of the heat semigroup. The
work of Brezis-Turner [3], Quittner-Souplet [12] and Souplet [14] can
therefore be summarized as follows: for smooth domains and very weak
solutions of (1) the exponent pBT = n+1

n−1
is a sharp critical exponent.

Our second contribution in this paper is to show that the generalized
Brezis-Turner exponents are also sharp for a class of domains such a
squares, hypercubes and certain Lipschitz cones in the following sense:
if p > pBT then there exists 0 ≤ a(x) ∈ L∞(Ω),

∫
Ω
a(x) dx > 0 and a

very weak solution u of (4), which is neither in L∞(Ω) nor in H1
0 (Ω).

In the course of our investigations we found a self-contained proof of
Souplet’s counter example which does not rely on heat-kernel estimates
but instead uses some simple upper- and lower solution arguments.

This paper is organized as follows. In Section 2 we give the main def-
initions and theorems of this paper. It also contains a generalization of
the notion of a very weak solution suitable for Lipschitz-domains. Sec-
tion 3 contains the proof of the a-priori bound result of Theorem 6 for
1 < p < p∗, where p∗ is defined through the boundary behaviour of the
Green function. The method of proof depends upon regularity results
for very weak solutions and a bootstrap argument. Our approach to
the regularity results is via sharp estimates of the Green function on
Lipschitz domains, and thus complements the previous approach via
heat kernel estimates. Section 4 provides a self-contained proof of the
Souplet-type counter example of Theorem 12 for p > p∗ based on up-
per and lower solutions. Here p∗ is a second exponent defined through
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the notion of a smallest opening angle at the boundary. We do not
know if the two exponents p∗ and p∗ are always equal. Our third main
result of Theorem 13 contains a list of domains for which p∗ = p∗. It
is proved in Section 5. In Section 6 we explain why in the context of
Lipschitz domains we were forced to modify the concept of a very weak
solution. Moreover we give a further W 1,q

0 -regularity result, which in
the case of C1-domains slightly extends the previously known results
(equality-cases). Moreover, it applies to n-dimensional boxes. It is an
interesting open problem if this regularity result, which is proved by
elliptic methods, could be generalized to larger classes of convex do-
mains. We finish this paper with conclusions and open questions in
Section 7.

2. Definitions and main results

Let Ω ⊂ Rn be a bounded Lipschitz domain. We denote by δ(x) the
distance function to ∂Ω, i.e.,

δ(x) = min{|x− y|, y ∈ ∂Ω}.

For a given function 0 ≤ a ∈ L∞(Ω) with
∫

Ω
a(x) dx > 0 we denote by

λ1,a the first Dirichlet eigenvalue of

−∆u = λa(x)u in Ω, u = 0 on ∂Ω

and by φ1,a(x) > 0 the first eigenfunction. For a ≡ 1 we use the
standard notation λ1 and φ1.

Definition 1. On a given bounded Lipschitz domain Ω, fix a positive
harmonic function h with h = 0 on ∂Ω and h = +∞ at P ∈ Ω and
define the superharmonic function H(x) = min{h(x), 1}. Let

γ∗ = inf{γ > 0 such that ∃K = K(γ) > 0 with H(x) ≥ Kδ(x)γ}.

Then define the exponent p∗ = n+γ∗
n+γ∗−2

.

Remark. The above definition does not depend on the choice of the
point P ∈ Ω. Note also that up to a multiple, h coincides with the
Dirichlet Green function G(x, P ) with pole at P ∈ Ω. Furthermore,
H(x) ≤ const. φ1,a(x) whenever φ1,a is a first Dirichlet eigenfunction of
−∆ with weight a as above.

At this stage it is not clear for which Lipschitz domains such a mini-
mal value γ∗ is attained. We note that for smooth domains γ∗ = 1
and that in general γ∗ ≥ 1. Hence 1 < p∗ ≤ n+1

n−1
with equality for

smooth domains. The simplest cases for which the value of γ∗ is known
explicitly are 2-dimensional rectangles with γ∗ = 2, n-dimensional hy-
percubes with γ∗ = n and Lipschitz cones, cf. Lemma 8. In Theorem 13
we will describe a class of Lipschitz domains for which we can explicitly
determine the value of γ∗.
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Definition 2. For a given bounded Lipschitz domain Ω let m ∈ C(Ω) be
positive in Ω and 1 ≤ p < ∞. Let Lp

m(Ω) = {v : Ω → R measurable :∫
Ω
|v|pmdx <∞} with the norm ‖v‖p,m =

( ∫
Ω
|v|pmdx

)1/p

.

Note that limp→∞ ‖v‖p,m = ‖v‖∞. Next we define the concept of
a very weak solution, which goes back to Brezis et al. [2]. Here we
need to modify the definition from [2] because we work on Lipschitz
domains rather than smooth domains. More details on the original
definition and why it needs to be modified are given in Section 6. For
simplicity we begin with the definition of a very weak solution for a
linear problem.

Definition 3. Let Ω be a bounded Lipschitz domain with first Dirichlet
eigenfunction φ1. A function u ∈ L1

φ1
(Ω) is called a very weak solution

of −∆u = g in Ω, u = 0 on ∂Ω if g ∈ L1
φ1

(Ω) and∫
Ω

uη dx =

∫
Ω

g (−∆)−1η dx

for all measurable functions η : Ω → R with ‖η/φ1‖∞ < ∞. Here
(−∆)−1 : L2(Ω) → W 1,2

0 (Ω).

Remark. Note that |η| ≤ const. φ1 implies that |(−∆)−1η| ≤ const. φ1

by the maximum principle. Hence
∫

Ω
g (−∆)−1η dx is well defined for

g ∈ L1
φ1

(Ω). Note also that a weak H1
0 (Ω) solution with g ∈ L1(Ω) is

also a very weak solution.

Proposition 4 (Existence and uniqueness). Let Ω be a bounded Lips-
chitz domain and let g ∈ L1

φ1
(Ω). Then −∆u = g in Ω with u = 0 on

∂Ω has a unique very weak solution u ∈ L1
φ1

(Ω).

Proof. By splitting g = g+ − g−, g+(x) = max{g(x), 0}, g−(x) =
−min{g(x), 0} it suffices to prove the proposition in the case g ≥ 0.
Let gk(x) = min{g(x), k} for some k ∈ N. Then gk → g in L1

φ1
(Ω). Let

uk ∈ W 1,2
0 (Ω) be the weak solution of −∆uk = gk in Ω with uk = 0 on

∂Ω. Thus

(5)

∫
Ω

ukη dx =

∫
Ω

∇uk · ∇
(
(−∆)−1η

)
dx =

∫
Ω

gk (−∆)−1η dx

for all measurable η with η/φ1 ∈ L∞(Ω). Moreover uk is monotone
increasing in k. Choosing η = λ1φ1 we obtain from (5)∫

Ω

λ1(uk − ul)φ1 dx =

∫
Ω

(gk − gl)φ1 dx.

For k > l we have uk ≥ ul and gk ≥ gl. The sequence (uk)k∈N is a
Cauchy-sequence in L1

φ1
(Ω) because (gk)k∈N converges in L1

φ1
(Ω). Hence

uk → u in L1
φ1

(Ω). Since η/φ1 ∈ L∞(Ω) implies (−∆)−1η/φ1 ∈ L∞(Ω)
we can take the limit k → ∞ in (5) and find that u is a very weak
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solution in the sense of Definition 3. Suppose u, ū are two very weak
solutions. Then

∫
Ω

(u−ū)η dx = 0 for all measurable η with ‖η/φ1‖∞ <
∞. This implies uniqueness u = ū a.e. in Ω.

Next we give the obvious generalization of Definition 3 to very weak
solutions of a nonlinear boundary value problem.

Definition 5. Let Ω be a bounded Lipschitz domain with first Dirichlet
eigenfunction φ1. A function u ∈ L1

φ1
(Ω) is called a very weak solution

of (1) if f(·, u(·)) ∈ L1
φ1

(Ω) and∫
Ω

uη dx =

∫
Ω

f(x, u) (−∆)−1η dx

for all measurable functions η : Ω → R with ‖η/φ1‖∞ < ∞. Here
(−∆)−1 : L2(Ω) → W 1,2

0 (Ω).

Theorem 6. Assume Ω is a bounded Lipschitz domain with exponent
p∗ as in Definition 1. Let f : Ω × [0,∞) → [0,∞) be continuous and
assume that there exists a function 0 ≤ a ∈ L∞(Ω) with

∫
Ω
a(x) dx > 0

such that the following holds:

(i) ∃C1 > 0 and p ∈ (1, p∗) such that 0 ≤ f(x, s) ≤ C1(1 + sp) for
all (x, s) ∈ Ω× [0,∞),

(ii) ∃C2 > 0 and λ > λ1,a such that f(x, s) ≥ −C2 + λa(x)s for all
(x, s) ∈ Ω× [0,∞).

Then there exists a value M > 0 such that every non-negative very
weak solution u of (1) satisfies ‖u‖∞ ≤ M . Here M depends only
Ω, p, a(x), C1, C2, λ.

Consider the following examples

(6) −∆u = λu+ a(x)up in Ω, u = 0 on ∂Ω

and

(7) −∆u = λ(1 + a(x)up) in Ω, u = 0 on ∂Ω

with p and a as in Theorem 6. Then Theorem 6 applies to (6): for any
finite Λ > 0 there exists a constant M = M(p, a(x),Λ,Ω) such that
‖u‖∞ ≤ M for every non-negative very weak solution u of (6) with
λ ∈ [−Λ, λ1]. Similarly, Theorem 6 applies to (7): for any two values
0 < Λ1 < Λ2 < ∞ there exists a constant M = M(p, a(x),Λ1,Λ2,Ω)
such that ‖u‖∞ ≤ M for every non-negative very weak solution u of
(7) with λ ∈ [Λ1,Λ2].

Our next goal is twofold: to show by examples that for certain do-
mains a-priori bounds fail to exist when p exceeds a second critical
value p∗ and to give a class of Lipschitz domains for which p∗ = p∗.
This requires that we restrict our attention to Lipschitz domains which
possess a ”smallest corner”. It is exactly this smallest corner which de-
termines the second critical value p∗ and which allows to show for some
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classes of domains that p∗ = p∗. Since the idea of a “smallest corner” is
based on the notion of a cone we first define cones and conical pieces.

Definition 7 (Cones, conical pieces). For x ∈ Rn let (r, θ) ∈ [0,∞)×
Sn−1 be the spherical-coordinates of x abbreviated by x = (r, θ). If
ω ⊂ Sn−1 is open then

Cω =
⋃
r>0

rω = {x = (r, θ) : r > 0, θ ∈ ω}

is a cone with cross-section ω. The set

CR
ω = Cω ∩BR(0)

is called a conical piece with cross-section ω and radius R.

ω ω

Cω
RCω

Figure 1. Cone, conical piece

Lemma 8. Let Cω, CR
ω be a cone, conical piece with cross-section ω ⊂

Sn−1 and let (λ̃1, ψ̃1) be the first Dirichlet-eigenvalue, eigenfunction of

the Laplace-Beltrami −∆B on ω. Moreover let β =
√

(n−2
2

)2 + λ̃1 and

γ = 2−n
2

+ β.

(i) If z is harmonic in Cω with z = 0 on ∂Cω and bounded near
z = 0 then

z(x) = const. |x|γψ̃1(θ).

(ii) If φ1 is the first eigenfunction of −∆ on CR
ω with Dirichlet

boundary values then

φ1(x) = const. Jβ(
√
λ1|x|)|x|

2−n
2 ψ̃1(θ),

where Jβ is the regular Bessel function with index β, λ1 = µ/R2

and
√
µ is the first zero of Jβ on the half-line [0,∞).
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Proof. The proof is a direct computation. Statement (i) follows from
fact that there are two different harmonics on the cone Cω given by
z(x) = |x|cψ̃1(θ), where c is one of the two roots of c(c + n − 2) =

λ̃1. The value γ must be the positive root since we required z to
be bounded near x = 0. The second statement (ii) follows from the

usual ansatz φ1(x) = r
2−n

2 α(r)ψ̃1(θ) with r = |x|. It turns out that

α(r) = Jβ(
√
µr/R) with β =

√
(n−2

2
)2 + λ̃1.

Definition 9 (Opening angle). Let Ω ⊂ Rn be a bounded Lipschitz
domain and P ∈ ∂Ω. An open Lipschitz domain ω ⊂ Sn−1 is called
the opening angle at P if the following holds: there exists sequences
σk, τk ⊂ Sn−1 of smooth open domains and a sequence of radii rk > 0
such that

(i) σ1 ⊂ σ2 ⊂ . . . ⊂ σk ⊂ ω ⊂ ω ⊂ τk ⊂ . . . ⊂ τ2 ⊂ τ1,
(ii)

⋃∞
k=1 σk = ω, ω =

⋂∞
k=1 τ k,

(iii) P + Crk
σk
⊂ Ω ∩Brk

(P ) ⊂ P + Crk
τk

.

Definition 10 (Smallest opening angle). Let Ω ⊂ Rn be a bounded
Lipschitz domain such that every point P ∈ Ω has an opening angle
ωP . Suppose supP∈∂Ω λ̃1(ωP ) = λ̃1(ωP0), i.e., the first eigenvalue of the
Laplace-Beltrami on the opening angle ωP is maximized at the point P0.
Then the opening angle ωP0 is called the smallest opening angle of Ω.

For smooth domains the smallest opening angle is the half sphere
Sn−1

+ . For planar polygons this definition of an opening angle coincides
with the standard notion. The same is true for the following class of
domains:

Definition 11. Let Ω be a bounded Lipschitz domain such that ∂Ω \
{P1, . . . , PK} is smooth and there exists ρ > 0 such that for every i =
1, . . . , K the set Ω∩Bρ(Pi) is a conical piece with smooth cross-section
ωi. Then Ω is called a domain with finitely many conical corners.

Based on the definition of a smallest opening angle we can now state
the next two results, which will be stated and proved in detail in Sec-
tion 4 and Section 5.

Theorem 12. Let Ω is a bounded Lipschitz domain with smallest open-
ing angle ωP0 and let

γ∗ =
2− n

2
+

√(n− 2

2

)2

+ λ̃1,

where λ̃1 is the first Dirichlet eigenvalue of the Laplace-Beltrami on
ωP0. If p > p∗ := n+γ∗

n+γ∗−2
then there exists a function 0 ≤ a ∈ L∞(Ω)

with
∫

Ω
a dx > 0 and a positive very weak solution u of

−∆u = a(x)up in Ω, u = 0 in ∂Ω
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with u 6∈ L∞(Ω), u 6∈ W 1,2
0 (Ω). If moreover n+2

n−2
> p > p∗ then there

exists a second positive solution ū ∈ W 1,2
0 (Ω).

Theorem 13. Let Ω ⊂ Rn be a bounded Lipschitz domain with smallest
opening angle. The following list of domains has the property that the
two values γ∗ of Definition 1 and γ∗ of Theorem 12 and consequently
the two critical exponents p∗ and p∗ coincide:

(i) smooth domains,
(ii) n-dimensional boxes Ω = (a1, b1)× · · · × (an, bn),

(iii) domains with finitely many conical corners.

All planar polygonal domains are covered by (iii).

3. Proof of Theorem 6

The proof of Theorem 6 is inspired by the recent work of Quittner,
Souplet [12] and Dall’Acqua, Sweers [4]. It is based on the following
estimate for the Green-function on a bounded Lipschitz domain Ω,
which follows from a fundamental result of Bogdan [1]. We note that
the results of [1] are stated for n ≥ 3, but it is clear from the proofs
that for n = 2 only the nature of the fundamental singularity changes.

Lemma 14. Let Ω be a bounded Lipschitz domain with Green-function
G(x, y). Let h(x) = G(x, P ) for some P ∈ Ω and H = min{h, 1}.
Suppose H(x) ≥ const. δ(x)γ and 1 ≤ p ≤ q ≤ ∞. Then there exists a
constant C such that

G(x, y) ≤C|x− y|2−n−γ( 1
p
− 1

q
)H(x)−

1
qH(y)

1
p n ≥ 3,(8)

G(x, y) ≤C log
(
2 +

1

|x− y|
)
|x− y|−γ( 1

p
− 1

q
)H(x)−

1
qH(y)

1
p n = 2(9)

for all x, y ∈ Ω.

Proof. One part of the result of Bogdan [1] states the following: sup-
pose for every Z ∈ ∂Ω there exist a local boundary parameterization
in Br0(Z) with maximal Lipschitz constant L and let κ = 1/2

√
1 + L2.

Let furthermore be P as in the lemma and Q ∈ Ω such that |Q−P | =
r0/4. Then there exists a constant C such that

G(x, y) ≤C|x− y|2−n min
{

1,
H(x)H(y)

H(A)2

}
, n ≥ 3,(10)

G(x, y) ≤C log
(
2 +

1

|x− y|
)

min
{

1,
H(x)H(y)

H(A)2

}
, n = 2(11)

for all x, y ∈ Ω, where A depends on x, y and can be any point with
the following properties:

(i) if r = max{δ(x), δ(y), |x − y|} ≤ r0/32 then δ(A) ≥ κr, |x −
A|, |y − A| ≤ (3− κ)r

(ii) if r > r0/32 then A = Q.
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It is shown in [1] that such points A exist. For our purposes we only
need the following properties of A: there exists c, C > 0 such that

(12) dist(A, ∂Ω) ≥ c|x− y|, H(x)

H(A)
,
H(y)

H(A)
≤ C

for any x, y ∈ Ω. The first inequality follows from (i) with c = κ if r ≤
r0/32. If r > r0/32 then by (ii) we have δ(A) ≥ c0r0 ≥ c1 diam(Ω) ≥
c2|x − y|. The second inequality in (12) is shown in the proof of the
3G-theorem, cf. p.334 in [1]. Next we use the following inequality: if
0 ≤ s, t ≤ K, σ ∈ [−1, 1], β ∈ [0, 1] then

min{1, st} ≤ K2β(st)1−β
( t
s

)βσ

.

Applying this to (10) with s = H(x)
H(A)

, t = H(y)
H(A)

and using (12) we obtain

for n ≥ 3

G(x, y) ≤C|x− y|2−n 1

H(A)2(1−β)
H(x)1−β(1+σ)H(y)1−β(1−σ)

≤C|x− y|2−n−2γ(1−β)H(x)1−β(1+σ)H(y)1−β(1−σ).

Finally, with

β = 1− 1

2

(1

p
− 1

q

)
, βσ =

1

2

(1

p
+

1

q

)
we obtain the result. In this case 0 ≤ β, σ ≤ 1 since 1 ≤ p ≤ q. For
n = 2 we get from (11)

G(x, y) ≤C log
(
2 +

1

|x− y|
) 1

H(A)2(1−β)
H(x)1−β(1+σ)H(y)1−β(1−σ)

≤C log
(
2 +

1

|x− y|
)
|x− y|−2γ(1−β)H(x)1−β(1+σ)H(y)1−β(1−σ).

The same choice of β and σ as above yields the result.

This Green-function estimate allows the following regularity result
for very weak solutions.

Lemma 15. Let Ω be a bounded Lipschitz domain with Green-function
G(x, y). Let h(x) = G(x, P ) for some P ∈ Ω and H = min{h, 1}.
Suppose H(x) ≥ const. δ(x)γ. Let g ∈ Lp

H(Ω)∩L1
φ1

(Ω) for some p ≥ 1.
Then the very weak solution u of

−∆u = g in Ω, u = 0 on ∂Ω

has the following properties:

(i) u ∈ Lq
H(Ω) for all q ∈ [p,∞] such that

1

p
− 1

q
<

2

n+ γ

and there exists a constant C such that ‖u‖Lq
H
≤ C‖g‖Lp

H
.
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(ii) u ∈ Lq(Ω) for all q ∈ [p,∞] such that

1

p
− n

(n+ γ)q
<

2

n+ γ

and there exists a constant C such that ‖u‖Lq ≤ C‖g‖Lp
H

.

Remark. For some cases equality is admissible in (ii). Suppose ∂Ω ∈
C1 or Ω is a hypercube and let p > n+γ

n+1
. For smooth domains this just

means p > 1. Then (ii) holds with equality except for p = n+γ
n

. This

follows from Proposition 24 below because in this case u ∈ W 1,s
0 (Ω)

with s = np
n+γ−p

and equality in (ii) follows from the Sobolev-embedding

theorem.

Proof. For g ∈ Lp
H(Ω) let G(g)(x) :=

∫
Ω
G(x, y)g(y) dy be the Green

operator. We will show the mapping properties of G corresponding to
(i) and (ii) and the norm estimate for G. Once we have established
that G is a bounded linear operator from Lp

H(Ω) to Lq
H(Ω), Lq(Ω) with

the above restrictions on p, q then the regularity results for u follow if
we know that the very weak solution u of −∆u = g can be represented
by convolution of g with the Green-function. This can be seen by
the following argument: take w.l.o.g g ≥ 0, gk = min{g, k}. Then
uk = (−∆)−1gk can be represented by the Green-operator and taking
limits k →∞ one has gk → g, uk → u in L1

φ1
(Ω) and hence in L1

H(Ω).

Moreover Ggk → Gg in L1
H(Ω) and thus Gg = u.

The proof of the mapping properties of G uses the following well
known potential estimate, cf. Gilbarg-Trudinger [8]: for α ∈ [2− n, 2)
consider the Riesz-potential operator

(V g)(x) :=

∫
Ω

|x− y|2−n−αg(y) dy.

Then V is continuous from Lp(Ω) into Lq(Ω) provided 1
p
− 1

q
< 2−α

n
.

Let us first consider the case n ≥ 3. By the estimate in Lemma 14 we
get

(13) |G(g)(x)|H(x)1/q ≤ C

∫
Ω

|x− y|2−n−γ( 1
p
− 1

q
)|g(y)|H(y)1/p dy.

Using the mapping properties of the Riesz-potential operator we find

‖Gg‖Lq
H
≤ C‖g‖Lp

H

provided 1
p
− 1

q
<

2−γ( 1
p
− 1

q
)

n
. This amounts to (i). For (ii) we use (13)

with q = ∞ and obtain

‖Gg‖Lq ≤ C‖g‖Lp
H

provided 1
p
− 1

q
<

2− γ
p

n
. This amounts to (ii). In the case n = 2 we

use the fact that for every ε ∈ (0, 1] there exists C = C(ε, diam Ω) > 0
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such that log(2 + 1/|x− y|) ≤ C|x− y|−ε. With this estimate the proof
works as before.

With this regularity result we can argue like in [12].

Proof of Theorem 6: Recall that the first eigenfunction φ1,a satisfies
−∆φ1,a = λ1,aa(x)φ1,a in Ω with φ1,a = 0 on ∂Ω. For simplicity we write
φ instead of φ1,a and assume

∫
Ω
φ dx = 1. Note that φ ≥ const. h in

Ω\Bε(P ) by the maximum principle, where h is the harmonic function
of Definition 1 with pole at P . Now let γ > γ∗ and choose a constant
K = K(γ) such that H(x) ≥ Kδ(x)γ. Using η = λ1,aa(x)φ in the
definition of a very weak solution and using the hypothesis (ii) we get

λ1,a

∫
Ω

a(x)uφ dx =

∫
Ω

f(x, u)φ dx ≥ −C2 + λ

∫
Ω

a(x)uφ dx.

Since λ > λ1,a we obtain

(14)

∫
Ω

a(x)uφ dx ≤ C and

∫
Ω

f(x, u)φ dx ≤ C

where the bound C is uniform for all non-negative solutions u of (1).
Now we can use Lemma 15 with g(x) = f(x, u) ∈ L1

φ(Ω) ⊂ L1
H(Ω) and

obtain

‖u‖Lk
H
≤ C for all k ∈

[
1,

n+ γ

n+ γ − 2

)
.

Notice that we can choose γ so close to γ∗ that we may assume p <
k < n+γ

n+γ−2
. Choosing k close to n+γ

n+γ−2
we obtain (p − 1) 1

k
< 2

n+γ
and

in fact

(p− 1

σ
)
1

k
<

2

n+ γ

for some fixed σ = σ(p, k, n, γ) > 1. Next we use a bootstrap argument.
Assume that

(15) ‖u‖Ll
H
≤ C for some l ≥ k

and set l̃ = lσ. Note that p
l
− 1

l̃
= (p− 1

σ
)1

l
≤ (p− 1

σ
) 1

k
< 2

n+γ
. Moreover

‖f(x, u)‖
L

l/p
H
≤ C(1 + ‖u‖p

Ll
H

) ≤ C

by (15) and thus by Lemma 15 we obtain ‖u‖
Ll̃

H
≤ C, i.e., we have im-

proved (15) from l to l̃. After finitely many iterations we have achieved
‖u‖Lr

H
≤ C with r > n+γ

2
. Hence we may apply Lemma 15 one more

time with q = ∞. This finishes the proof of Theorem 6.

4. Proof of Theorem 12

The proof of Theorem 12 consists in constructing a particular exam-
ple of a very weak solution of

(16) −∆u = a(x)up in Ω, u = 0 on ∂Ω,

where 0 ≤ a ∈ L∞(Ω) and u 6∈ L∞(Ω).
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Proof of Theorem 12. Let ω = ωP0 ⊂ Sn−1 be the smallest opening
angle of Ω and suppose it is attained at P0 = 0 ∈ ∂Ω. Let α ∈
(n− 2, n− 2 +γ∗) be fixed such that α+ 2 ≤ αp, which requires p > p∗

as assumed.
By the definition of the smallest opening angle there exists a smooth

cross-section σ ⊂ ω and a radius R > 0 such that the conical piece
C := CR

σ is contained in Ω. Associated to this cross-section σ are the

values γ̄ = 2−n
2

+
√

(n+2
2

)2 + λ̃σ
1 and p̄ := n+γ̄

n+γ̄−2
. For any prescribed

value ε > 0 we may choose the cross-section σ such that λ̃ω
1 < λ̃σ

1 <

λ̃ω
1 + ε where ε > 0. In turn ε is assumed to small that

p > p̄ > p∗ and α ∈ (n− 2, n− 2 + γ̄).

Let u be the very weak solution of

(17) −∆u =
1

|x|α+2
· 1C in Ω, u = 0 on ∂Ω,

which exists because 1
|x|α+2 ∈ L1

φ1
(Ω) as shown in Lemma 16. In

Lemma 20 (with the help of Lemma 18 and Lemma 19) we will prove
that

(18) u ≥ const.
1

|x|α
· 1C.

Once this is accomplished define

a(x) :=
1C

|x|α+2u(x)p

and observe that a(x) ≤ |x|pα−α−2 · 1C, i.e., 0 ≤ a ∈ L∞(Ω) due to the
choice of α. Moreover u is a very weak solution of −∆u = a(x)up in Ω
with u = 0 on ∂Ω and clearly u 6∈ L∞(Ω) and also u 6∈ W 1,2

0 (Ω).

The remaining parts of this section consist of five elementary lemmas,
which lead towards the key estimate (18).

Lemma 16. Let Ω is a bounded Lipschitz domain with smallest opening
angle ω attained at 0 ∈ ∂Ω and let γ∗ be as in Theorem 12. Then
1/|x|α+2 ∈ L1

φ1
(Ω) for all α < n− 2 + γ∗.

Proof. By the definition of the smallest opening angle there is a
smooth cross-section τ ⊂ Sn−1 with τ ⊃ ω and a radius R̃ > 0 such
that the conical piece C := CR̃

τ contains Ω ∩ BR̃(0). Associated to

the cross-section τ is the value γ̂ = 2−n
2

+
√

(n+2
2

)2 + λ̃τ
1. We may

choose τ so close to ω that α < n − 2 + γ̂. Moreover, by shorten-
ing R̃ we may suppose that λ1(C) > λ1(Ω). Hence, by the maxi-
mum principle there is a constant t > 0 such that tφ1(C) ≥ φ1(Ω) in

Ω∩BR̃/2(0). Since φ1(C) = const. |x|γ̂ψ̃τ
1 (θ)(1 + o(|x|)) by Lemma 8 we

find φ1(Ω) ≤ const. |x|γ̂ and hence 1/|x|α+2 ∈ L1
φ1

(Ω).
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Lemma 17. Let S = CR′

σ′ be a conical piece with a smooth cross-section
σ′ ⊂ Rn−1. Let φ1 be the first eigenfunction of −∆ on S with Dirichlet
boundary values. For given η : S → R with η ≥ 0 and ‖η/φ1‖∞ < ∞
let ψ ∈ W 1,2

0 (S) be the weak solution of −∆ψ = η in S with ψ = 0 on
∂S. Then there exists a constant c0 such that the following relations
hold as r = |x| → 0 uniformly for θ ∈ σ′

ψ(x) = c0|x|γ̂ψ̃1(θ)(1 + o(|x|)),
∂rψ(x) = c0γ̂|x|γ̂−1ψ̃1(θ)(1 + o(|x|))

with γ̂ = 2−n
2

+
√

(n−2
2

)2 + λ̃1 and (λ̃1, ψ̃1) the first Dirichlet eigenvalue,

eigenfunction of the Laplace-Beltrami −∆B on σ′.

Proof. Suppose φ1 is normalized by φ1(x) = |x|γ̂ψ̃1(θ)(1 + o(|x|)) as
x → 0. Let c0 = ‖η/φ1‖∞ and take a sequence of points {xk}k∈N ⊂ S
such that limk→∞ η(xk)/φ1(xk) → c0. Note that both η and ψ satisfy
0 ≤ η, ψ ≤ Cφ1 in S. Let ψλ(y) = λγ̂ψ(y/λ) and ηλ(y) = λγ̂−2η(y/λ)
for y ∈ λS. Then −∆ψλ = ηλ in λS. Note that λS exhausts the
cone Cσ′ as λ → ∞. Due to 0 ≤ η, ψ ≤ Cφ1 and Lemma 8 (ii) we
find on compact subsets of Cσ′ that ηλ → 0 uniformly as λ → ∞ and
that ψλ is uniformly bounded. Using the W 2,p-estimates on compact
smooth subsets of Cσ′ , cf. Gilbarg-Trudinger [8] Theorem 9.13, we find
that ψλ → z as λ → ∞ in C1,α on compact smooth subsets of Cσ′

where z is a non-negative harmonic function with 0 boundary data on
∂Cσ′ \{0} which is bounded near y = 0. Thus by Lemma 8 (i) we know

that z(y) = c0|y|γ̂ψ̃1(θ) with c0 as above. Choosing a compact smooth
subset of Cσ′ containing the cross section σ′ we find for y = (1, θ)

λγ̂ψ(y/λ) → c0|y|γ̂ψ̃1(θ), λγ̂−1(∂rψ)(y/λ) → γ̂c0|y|γ̂−1ψ̃1(θ)

for λ → 0 uniformly for θ ∈ ω. Setting λ = 1/|x| and y = x/|x| this
implies the claim.

Lemma 18 (Comparison principle). Let Ω be a bounded Lipschitz do-
main and let g ∈ L1

φ1
(Ω). Suppose w,w ∈ L1

φ1
(Ω) satisfy∫

Ω

wη dx ≤
∫

Ω

g (−∆)−1η dx,

∫
Ω

wη dx ≥
∫

Ω

g (−∆)−1η dx,

for all measurable non-negative functions η : Ω → R with ‖η/φ1‖∞ <
∞. Then w ≤ w a.e. in Ω.

Remark. The functions w,w are called very weak sub-, supersolution
to the problem −∆u = g in Ω, u = 0 on ∂Ω.

Proof. The conclusion follows from
∫

Ω
(w − w)η dx ≥ 0 for all non-

negative η with η/φ1 ∈ L∞(Ω). Hence w − w ≥ 0 a.e. in Ω.

Lemma 19. Let C = CR
σ be a conical piece with smooth cross-section

σ ⊂ Sn−1 and let γ̄ = 2−n
2

+
√(

n−2
2

)2
+ λ̃1(σ). Moreover, let α ∈
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(n−2, n+ γ̄−2). Then there exists a second conical piece S = CR′

σ′ ⊃ C
and a very weak subsolution z : S → R satisfying

(19) −∆z ≤ 1

|x|α+2
· 1C in S, z = 0 on ∂S,

such that z(x) ≥ c|x|−α · 1C in S for some positive constant c > 0.

C

σ

σ’

S

R’
R

Figure 2. Construction of S, C

Proof. Choose a cross-section σ′ ⊂ Sn−1 such that σ ⊂⊂ σ′ and

α ∈ (n − 2, n + γ̂), where γ̂ = 2−n
2

+
√(

n−2
2

)2
+ λ̃1(σ′). Define the

C2-function z(r, θ) = (|x|−α−R′−α)tζ(θ) where 0 < t ≤ 1 and ζ : σ′ →
(0,∞) is the first eigenfunction of the following problem

−∆Bζ = µ1 · 1σζ in σ′, ζ = 0 on ∂σ′.

A computation shows

(20) ∆z =
(
α(α + 2− n)− (1−R′−α|x|α)1σµ1

)
|x|−α−2tζ in S.

We claim that the right hand side of (20) is larger than −1C|x|−α−2.
This is equivalent to the claim that

(21)
(
α(α + 2− n)− (1−R′−α|x|α)1σµ1

)
tζ ≥ −1C in S.

Clearly (21) is true for x = (r, θ) if θ 6∈ σ. If θ ∈ σ and R < r < R′

then we may choose the radius R′ so close to R that
(
1−(R′/R)α

)
µ1 <

α(α + 2 − n) and (21) is true also in this case. The remaining case is
x ∈ C. In this case we can obtain the bound in (21) be choosing the
multiple t sufficiently small.

In this way obtain a classical (but not yet very weak) subsolution z to
(19) on Sε := S\Bε(0) for every ε > 0. Also z satisfies z(x) ≥ c|x|−α ·1C
for a suitable constant c > 0. It remains to verify that z is a very weak
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subsolution to (19) on S. Next we use the fact that z is a classical and
hence weak subsolution, i.e., for every 0 ≤ ψ ∈ W 1

0 (S)∫
Sε

∇z · ∇ψ dx+

∮
εσ′
ψ∂rz ds ≤

∫
Sε

1

|x|α+2
· 1Cψ dx.

For 0 ≤ η with η/φ1 ∈ L∞(S) let ψ := (−∆)−1η, i.e. ψ ∈ W 1,2
0 (S)

solves −∆ψ = η in S. Moreover, since ψ ∈ C2(Sε) we obtain

(22)

∫
Sε

zη dx+

∮
εσ′

(ψ∂rz − z∂rψ) ds ≤
∫
Sε

1

|x|α+2
· 1Cψ dx.

By the explicit form of z and the fact that 0 ≤ ψ ≤ const. φ1 the first
boundary integral

∮
εσ′
ψ∂rz dx can be estimated by const. εn+γ̂−2−α → 0

as ε→ 0. The second boundary integral
∮

εσ′
z∂rψ dx can be estimated

similarly by using the explicit form of z and Lemma 17. If we note that
|x|−α−2 ∈ L1

φ1
(S) and also z ∈ L1

φ1
(S) we can take the limit ε → 0 in

the remaining integrals in (22) by the monotone convergence theorem.
This implies the claim.

Lemma 20. The very weak solution u of (17) is a very weak superso-
lution to (19) and hence u ≥ z ≥ const. 1

|x|α · 1C, where z is the very

weak subsolution from Lemma 19.

Proof. The very weak solution u of (17) may be restricted to S.
We claim that this restriction is a very weak supersolution to (19).
To see this let f := 1

|x|α+2 · 1C be the right hand side of (17) and let

fk := min{f, k} for k ∈ N. Let uk be the weak W 1,2
0 (Ω)-solution of

(23) −∆uk = fk in Ω, uk = 0 on ∂Ω.

Let η : S → R be a non-negative function such that η/φS1 ∈ L∞(S). If
ψ is the weak W 1,2

0 (S)-solution of −∆ψ = η in S, ψ = 0 on ∂S let us
assume that ψ is extended by zero outside S. Thus ψ may be used as
a test function for (23) which results in∫

S
∇uk · ∇ψ dx =

∫
S
fkψ dx.

Integration by parts and using the existence of ∂νψ ≤ 0 a.e. on ∂S we
obtain

(24)

∫
S

ukη dx+

∮
∂S
uk ∂νψ︸︷︷︸

≤0

ds =

∫
S
fkψ dx.

Dropping the negative boundary integral and passing to the limit k →
∞ in (24) we deduce that u is a very weak supersolution to (19) on S.
The comparison principle of Lemma 18 shows that u ≥ z.
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5. Proof of Theorem 13

Proof of Theorem 13: For smooth domains γ∗ = 1 and likewise

γ∗ = 2−n
2

+
√

(n−2
2

)2 + λ̃1 = 1 since the smallest opening angle is the

half-sphere Sn−1
+ and λ̃1(Sn−1

+ ) = n− 1 with eigenfunction ψ̃1(x) = xn.

Let Ω be a domain with finitely many conical corners Q1, . . . , QK

and let h be a positive harmonic function with singularity at P ∈ Ω
which vanishes on ∂Ω. Let us pick a point Q = Qi (we drop the index
i for simplicity) with interior angle ω = ωi and let x = (r, θ) be polar
coordinates w.r.t. Q. Since ω is smooth we have that ∂νh < 0 for
|x−Q| = ρ, x ∈ ∂Ω due to the Hopf-maximum principle. Hence there

exist values t1, t2 > 0 such that t1ρ
γ∗ψ̃1(θ) ≤ h(x) ≤ t2ρ

γ∗ψ̃1(θ) for all

x = (ρ, θ) ∈ Ω, where γ∗ = 2−n
2

+
√

(n−2
2

)2 + λ̃ω
1 and as usual (ψ̃1, λ̃1)

are the first eigenfunction, eigenvalue of −∆B on ω. The maximum
principle implies that

(25) t1|x−Q|γ∗ψ̃1(θ) ≤ h(x) ≤ t2|x−Q|γ∗ψ̃1(θ) in Ω ∩Bρ(Q)

since the upper and lower bounds on h are also harmonic functions by
Lemma 17. Locally near Q one has dist(x, ∂Ω) = |x − Q| dist(θ, ∂ω)

and due the smoothness of the cross section dist(θ, ∂ω) ≈ ψ̃1(θ). Hence
it follows from (25) that locally near Q the best lower bound for h is
given by

h(x) ≥ const. |x−Q|γ∗ψ̃1(θ)

≥ const.
(
|x−Q|ψ̃1(θ)

)γ∗

≥ const. dist(x, ∂Ω)γ∗

and the power γ∗ cannot be decreased. The optimal lower bound
for h in all of Ω is found by maximizing γ∗ over all conical corners
Q1, . . . , QK . This shows that γ∗ from Definition 1 coincides with γ∗

from Theorem 12.

For n-dimensional boxes the cross-section is at every corner point
isometric to Sn−1 ∩ {xi > 0 : i = 1, . . . , n} and the eigenfunction is

ψ̃1(x) = x1 · · ·xn with eigenvalue λ̃1 = 2n(n − 1) which implies that
γ∗ = n. It remains to compute γ∗. The reasoning for the previous
domain class is not available since it is based on the smoothness of
the cross-section at the corner point and the Hopf maximum principle.
However, the following lemma states that positive harmonic functions
near a conical point Q satisfy

h(x) = const. |x−Q|γ∗ψ̃1(θ)
(
1 + o(|x−Q|)

)
as x→ Q.

With this replacement of (25) the rest of the proof is the same as for
the previous domain class.
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Lemma 21. Let CR
ω be a conical piece with cross-section ω ⊂ Sn−1 and

let h : CR
ω → [0,∞) be a bounded harmonic function with h(r, θ) = 0 for

all θ ∈ ∂ω. Let g(θ) := h(R, θ) and assume g ∈ L2(ω). Furthermore let

(ψ̃i)i∈N be an L2(ω)-complete orthonormal set of eigenfunctions of −∆B

on ω with corresponding eigenvalues λ̃i. Then the series-expansion

(26) h(x) =
∞∑
i=1

(|x|/R)γi(g, ψ̃i)L2ψ̃i(θ)

with γi = 2−n
2

+
√

(n−2
2

)2 + λ̃i converges uniformly for |x| < R and

hence h(x) = (g, ψ̃1)L2(|x|/R)γ1ψ̃1(θ)(1 + o(|x|)).

Proof. It is obvious that (26) is the correct L2-convergent expan-

sion of h. Standard regularity (Moser iteration) implies that ‖ψ̃i‖∞ ≤
Cλ̃i‖ψi‖H1(ω) = Cλ̃

3/2
i ‖ψi‖L2(ω) = Cλ̃

3/2
i . Hence the series in (26) is

dominated by ‖g‖L2(ω)

∑∞
i=1(|x|/R)

√
λ̃iλ̃

3/2
i , which converges uniformly

for |x| < R just as
∑∞

k=1(|x|/R)kk3.

6. Further properties of very weak solutions

In this section we give more details on the definition of very weak so-
lutions and of the regularity consequences. Consider the linear bound-
ary value problem

(27) −∆u = g(x) in Ω, u = 0 on ∂Ω.

Brezis et al. [2] have given the following definition for very weak
solutions on smooth domains.

Definition 22. Let Ω be a bounded C2,α-domain and let g ∈ L1
φ1

(Ω).

A function u ∈ L1(Ω) is called a very weak solution of (27) if

(28) −
∫

Ω

u∆ψ dx =

∫
Ω

gψ dx ∀ψ ∈ C2(Ω) with ψ|∂Ω = 0.

The authors of [2] prove existence and uniqueness of very weak so-
lutions on bounded C2,α-domains. Moreover, their definition was mo-
tivated by the study of parabolic blow-up. Indeed assume that u is
a positive very weak solution of −∆u = f(x, u) in Ω with u = 0 on
∂Ω. If 0 ≤ v0 ≤ u then the solution v(x, t) of the parabolic prob-
lem vt − ∆v = f(x, v) in Ω × (0, T ), v(x, t) = 0 on ∂Ω × (0, T ) with
v(x, 0) = v0 does not blow up in finite time, cf. Brezis et al. [2].

Recall from our Definition 5 of very weak solutions on Lipschitz
domains that (28) is replaced by∫

Ω

uη dx =

∫
Ω

g (−∆)−1η dx
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for all measurable functions η : Ω → R with ‖η/φ1‖∞ < ∞, where
(−∆)−1 : L2(Ω) → W 1,2

0 (Ω). This may seem unnatural, in particular in
view of the fact that for g ∈ L1

φ1
(Ω) we prove in Proposition 4 existence

of u ∈ L1
φ1

(Ω) instead of L1(Ω) as in [2]. However, there are several
reasons why there is no other choice than to modify the definition of
[2]. For once, as the next results shows, there are examples of Lipschitz
domains where the right-hand side is in L1

φ1
(Ω) but the solution fails to

be in L1(Ω). Yet another reason is the following: for smooth domains
a natural test function ψ for (28) is given by −∆ψ = 1 in Ω, ψ = 0
on ∂Ω. It is exactly this test-function which establishes that the very
weak solution is in fact an L1-function. But for Lipschitz domains with
small opening angle this function ψ fails to be in C2(Ω).

Proposition 23. Let Ω be a bounded Lipschitz domain with Green-
function G(x, y). Let h(x) = G(x, P ) for some P ∈ Ω and H =
min{h, 1}. Suppose H(x) ≥ const. δ(x)γ. Let g ∈ L1

φ1
(Ω).

(i) The very weak solution u of (27) in the sense of Definition 5
belongs to L1(Ω) if γ < 2.

(ii) For γ > 2 there are examples of domains Ω and g ∈ L1
φ1

(Ω)

such that u 6∈ L1(Ω).
(iii) If ∂Ω is C2,α then u is in L1(Ω) and it is a very weak solution

in the sense of Definition 22.

Proof. (i) follows from the regularity result of Lemma 15, part (ii):
p = 1 and q = 1 only work for γ < 2. (ii) Let Ω be a domain with
one conical corner with smooth opening angle ω such that γ = 2−n

2
+√

(n−2
2

)2 + λ̃1(ω). Consider the example constructed in the proof of

Theorem 12: u is the solution of

−∆u =
1

|x|α+2
· 1C in Ω, u = 0 on ∂Ω,

and α < n − 2 + γ but as close to n − 2 + γ as we wish. Then
u(x) ≥ const. |x|−α. Therefore, if α > n then u 6∈ L1(Ω). Such an α
can be chosen provided γ > 2. (iii) If ∂Ω is C2,α then γ = 1 and (i)
implies u ∈ L1(Ω). Since both Definition 22 and Definition 5 produce
a unique solution, the two concepts coincide in this case.

We conclude this section with a further regularity result for very
weak solutions on certain Lipschitz domains. Let Ω be a Lipschitz
domain. Let s > 1 and 1/s + 1/s′ = 1. We say that Ω has property
P (s), cf. Simader, Sohr [13], if for every u ∈ W 1,s

0 (Ω) the functional

L :

{
W 1,s′

0 (Ω) → R
ψ 7→

∫
Ω
∇u · ∇ψ dx
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satisfies

C‖u‖W 1,s
0
≤ ‖L‖ = sup

{∫
Ω

∇u · ∇ψ : ψ ∈ W 1,s′

0 (Ω), ‖ψ‖
W 1,s′

0
= 1

}
for a constant C = C(s,Ω). If Ω is a C1-domain, this property is shown
to hold for all s > 1 in Simader, Sohr [13], Chapter II, Theorem 1.1. If
property P (s) holds for every s > 1 then an immediate consequence is
the solvability in W 1,p

0 (Ω) of −∆u = g in Ω, u = 0 on ∂Ω if g ∈ Lp(Ω).
This shows that for a non-convex conical piece, i.e. with cross section
ω ⊃ Sn

+, property P (s) cannot hold for every s > 1. Take for example
the first eigenfunction which is in L∞(Ω), but certainly not in high
W 1,p

0 -spaces, cf. Lemma 8(ii). It seems an open problem to determine
those convex domains which have property P (s) for all s > 1.

If Ω is a n-dimensional box then property P (s) is true for every
s > 1. We briefly explain why this is the case: Simader, Sohr [13]
prove property P (s) essentially by two different inequalities: one for
functions with support near the boundary and one for functions with
support in the interior of Ω. For the first inequality they localize near
a boundary point and establish an inequality for a half-space, which
models the localized situation provided ∂Ω is C1. In the case of an
n-dimensional box, one can treat the neighbourhood of a corner point
like a neighbourhood of an interior point by odd reflections across those
faces of the box, which border the corner point.

Finally, let us mention that

‖L‖ = inf{‖∇u− z‖Ls : z ∈ Ls(Ω), div z = 0},

where div z = 0 is understood in the sense that
∫

Ω
z · ∇φ dx = 0 for

all φ ∈ W 1,s′

0 (Ω). The infimum in the above characterization of ‖L‖
is attained. We do not know if this characterization of ‖L‖ could be
useful.

In the case of a smooth domain (γ = 1) the following result is due
to [6] and [14]. We can slightly sharpen their result in the sense that
with the exception of p = n+1

n
we can allow equality in the relation

1
p
− n

(n+1)q
≤ 1

n+1
.

Proposition 24. Let Ω be a bounded Lipschitz domain with Green-
function G(x, y) and suppose Ω has property P (s) for all s > 1. Let
h(x) = G(x, P ) for some P ∈ Ω and H = min{h, 1}. Suppose H(x) ≥
const. δ(x)γ. Let g ∈ Lp

H(Ω) ∩ L1
φ1

(Ω) for some p ≥ 1. Then the very
weak solution u of

−∆u = g in Ω, u = 0 on ∂Ω.

satisfies u ∈ W 1,q
0 (Ω) for all q > 1 such that 1

p
− n

(n+γ)q
≤ 1

n+γ
with

the exception of p = n+γ
n

, where strict inequality, i.e. 1 < q < n
n−1
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is required. Moreover the inequality ‖u‖W 1,q
0

≤ C‖g‖Lp
H

holds with a

constant C independent of g and u .

Remark. In order to get u ∈ W 1,1+ε
0 (Ω) one needs p > n+γ

n+1
. In

this case the solution u has a trace and fulfills the boundary condition
pointwise almost everywhere and it fulfills the equation in the sense∫

Ω
∇u∇ψ dx =

∫
Ω
gψ dx for all ψ ∈ C∞

0 (Ω). The solution constructed

in Theorem 12 belongs to W 1,1+ε
0 (Ω) only for γ = 1.

The proof of Proposition 24 needs the following two lemmas and
the Hardy-Sobolev inequality. Recall Hardy’s inequality on bounded
Lipschitz domains, cf. Opic, Kufner [10]:∫

Ω

|u(x)|τ

δ(x)τ
dx ≤ 1

CH

∫
Ω

|∇u|τ dx for all u ∈ W 1,τ
0 (Ω)

with CH = CH(Ω) and the Hardy-Sobolev inequality∫
Ω

|u(x)|α

δ(x)β
dx ≤ CHS(α, β)

( ∫
Ω

|∇u|τ dx
)α/τ

for all u ∈ W 1,τ
0 (Ω)

with β ≤ α ≤ τ
n−τ

(n − β), 0 ≤ β < τ if n > τ and β ≤ α < ∞, 0 ≤
β < τ if n ≤ τ . For self-containment of this paper let us give a quick
proof of the Hardy-Sobolev inequality. First, by Hölder’s inequality∫

Ω

|u|α

δβ
dx =

∫
Ω

|u|β

δβ
|u|α−β dx ≤

( ∫
Ω

|u|τ

δτ
dx

)β/τ( ∫
Ω

|u|
τ(α−β)

τ−β dx
) τ−β

τ
.

The first integral can be estimated by Hardy’s inequality and the second

by the Sobolev-inequality provided α ≥ β, τ > β and α ≤ τ(n−β)
n−τ

if
τ < n and α <∞ if τ ≥ n.

Lemma 25. Let Ω be a bounded Lipschitz domain with Green-function
G(x, y). Let h(x) = G(x, P ) for some P ∈ Ω and H = min{h, 1}.
Suppose H(x) ≥ const. δ(x)γ. For p ≥ 1 let g ∈ Lp

H(Ω) and let

q′ ≥

{
np

(n+1)p−n−γ
if p < n+ γ,

1 if p ≥ n+ γ,

with the exception of p = n+γ
n

where we require q′ > n. Then the
functional

l :

{
W 1,q′

0 (Ω) → R
ψ 7→

∫
Ω
gψ dx

is a bounded linear functional with ‖l‖ ≤ C‖g‖Lp
H

.

Remark. Note that the restrictions on q′ are precisely the restrictions
on q in Proposition 24.

Proof. We distinguish two cases: 1 ≤ p < n+γ
n

and p > n+γ
n

. The

exceptional case p = n+γ
n

is treated by g ∈ Lp̃
H(Ω) for any p̃ < p.
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Assume 1 ≤ p < n+γ
n

. Then the value q′ from the statement of the

lemma is larger than n. Hence we have the embedding W 1,q′

0 (Ω) →
C

1−n/q′

0 (Ω) and thus |ψ(x)| ≤ C‖ψ‖
W 1,q′

0
δ(x)1−n/q′ . Next we estimate∫

Ω

|gψ| dx =

∫
Ω

|g|H1/p|ψ|H−1/p dx

≤ ‖g‖Lp
H

( ∫
Ω

|ψ|p/(p−1)H−1/(p−1) dx
)(p−1)/p

≤ C‖g‖Lp
H

( ∫
Ω

|ψ|p/(p−1)−q′|ψ|q′δ−γ/(p−1) dx
)(p−1)/p

≤ C‖g‖Lp
H
‖ψ‖

1− q′
p

(p−1)

W 1,q′
0

( ∫
Ω

|ψ|q′δs dx
)(p−1)/p

,

where we have used |ψ(x)| ≤ C‖ψ‖
W 1,q′

0
δ(x)1−n/q′ and where

s = (1− n

q′
)(

p

p− 1
− q′)− γ/(p− 1),

and a short computation shows that s ≥ −q′. Hence Hardy’s inequality
may be applied to the last integral in the above chain of inequalities.
This leads to

∫
Ω
|gψ| dx ≤ C‖g‖Lp

H
‖ψ‖

W 1,q′
0

which shows the bounded-

ness of the functional l.
Now assume p > n+γ

n
, i.e, q′ < n. As before we find∫

Ω

|gψ| dx ≤ C‖g‖Lp
H

( ∫
Ω

|ψ|p/(p−1)δ−γ/(p−1) dx
)(p−1)/p

and now we need to show that the last integral can be estimated by
the Hardy-Sobolev inequality. With τ = q′, α = p/(p − 1) and β =
γ/(p−1) we check the three conditions: first, we are in the case τ < n.
Second, β = γ/(p − 1) is less than np

(n+1)p−n−γ
≤ q′ since the former

is decreasing in p, the latter increasing in p and they meet at p =
(n + γ)/n. Hence β < τ . Finally one needs to check the inequality

α ≤ τ(n−β)
n−τ

. This is equivalent to q′ ≥ np
(n+1)p−n−γ

. Hence, as before∫
Ω
|gψ| dx ≤ C‖g‖Lp

H
‖ψ‖

W 1,q′
0

, i.e. the functional l is bounded.

Proof of Proposition 24: The proof follows the ideas of Chapter II
in Simader, Sohr [13]. The functional l defined in Lemma 25 is a

bounded linear functional on W 1,q′

0 (Ω). The claim follows if we can
show that there exists u ∈ W 1,q

0 (Ω) such that l(ψ) =
∫

Ω
∇u · ∇ψ dx

for all ψ ∈ W 1,q′

0 (Ω). For this purpose define the continuous linear
operator

Z :

{
W 1,q

0 (Ω) →
(
W 1,q′

0 (Ω)
)∗
,

u 7→ Zu where Zu(ψ) =
∫

Ω
∇u · ∇ψ dx.
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The proof is done if Z is onto. We claim that the image Z(W 1,q
0 (Ω))

is closed. Suppose Zuk
→ L ∈ (W 1,q′

0 (Ω))∗ as k → ∞. By property
P (q) we know that uk is a Cauchy-sequence and hence converges to
u ∈ W 1,q

0 (Ω). The continuity of Z implies that L = Z(u), i.e., the
image space is closed. Suppose for contradiction that Z is not onto.

By the Hahn-Banach theorem there exists F ∈ (W 1,q′

0 (Ω))∗∗ such that
‖F‖ = 1 and F (Zu) = 0 for all u ∈ W 1,q

0 (Ω). By reflexivity, there is f ∈
W 1,q′

0 (Ω), ‖f‖
W 1,q′

0
= 1 such that 0 = F (Zu) = Zu(f) =

∫
Ω
∇u · ∇f dx

for all u ∈ W 1,q
0 (Ω). By property P (q′) we obtain C(q′,Ω)‖f‖

W 1,q′
0

≤
sup{

∫
Ω
∇u · ∇f dx : ‖u‖W 1,q

0
= 1} = 0, which is a contradiction.

7. Conclusions and open questions

We finish our paper with a set of comments and questions, which we
could not resolve so far.

Problem 1. For which class of domains is p∗ = p∗?

In Theorem 13 a list of domains is given for which this it true.

Problem 2. Let G(x, P ) be the Green-function of Ω with pole at P ∈
Ω. What is the most general class of domains for which H(x) =
min{G(x, P ), 1} and φ1(x) are comparable?

Recall that on one hand very weak solutions are defined by belonging
to L1

φ1
(Ω) but on the other hand the regularity gain in Lemma 15

happens in Lq
H(Ω) and not in Lq

φ1
(Ω). In the case of smooth domains

this distinction does not occur.

Problem 3. Let p > p∗ and 0 ≤ a ∈ L∞(Ω) with
∫

Ω
a(x) dx > 0.

Is there always a positive, unbounded, very weak solution of −∆u =
a(x)up in Ω with u = 0 on ∂Ω?

Note that in Theorem 12 only one such example was constructed.
The case a(x) ≡ 1 alone is very interesting and open to the best of
our knowledge. Since p∗ < n+2

n−2
one can ask for a(x) ≡ 1 the further

question whether on star-shaped domains there are Pohožaev-type ob-
structions for the existence of unbounded very weak solutions.

Problem 4. If Ω is symmetric and if unbounded positive very weak
solutions of −∆u = f(u) in Ω, u = 0 on ∂Ω exists, are they symmetric,
i.e., is there a Gidas-Ni-Nirenberg result for very weak solutions?

This symmetry problem naturally leads to another set of open prob-
lems. In a recent paper [9] we considered the question of symmetry of
positive solutions of

(29) −∆hu = f(u) in Ωh, u = 0 on ∂Ωh,
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where

∆hu(x) =
n∑

j=1

u(x+ hjej)− 2u(x) + u(x− hjej)

h2
j

is the discretization of the Laplace operator on a n-dimensional hyper-
cube Ω = (−a1, a1)×. . .×(−an, an), {e1, . . . , en} is the standard-basis of
Rn and h = (h1, . . . , hn) is the mesh-size vector. The following answer
to the symmetry question was given: for a certain class of nonlineari-
ties solutions are asymptotically symmetric provided ‖uh‖∞ ≤M uni-
formly for all solutions uh of (29), where the a-priori bound is assumed
to be uniform in the mesh-size vector h. Also explicit estimates on the
defect of symmetry depending on M , f and h were given. Thus the
symmetry problem for solutions of nonlinear finite difference boundary
value problems leads immediately to the following open problem.

Problem 5. Can one prove a-priori bounds for positive solutions of
the discretized problem (29) in the same range of exponents as for the
continuous case?

Finally we pose the slightly provocative question:

How important are very weak solutions, which are not
in L∞(Ω) and not in H1

0 (Ω)?

Obviously numerical approximations to solutions of −∆u = f(x, u) in
Ω with u = 0 on ∂Ω are important. If very weak solutions of such
equations exists then they will show up when one tries to numerically
solve such problems. Standard methods for finding solutions of dis-
cretized equations such as constrained optimization or mountain-pass
algorithms are usually assumed to produce approximations of weak
H1

0 (Ω)-solutions rather than approximations of unbounded very weak
solutions. However, such an algorithm might accidently come close
to such a very weak solution and stop. Thus, the following questions
naturally arise:

Problem 6. How can one calculate discrete approximations to very
weak solutions, which are not in H1

0 (Ω) and not in L∞(Ω)?

Problem 7. How can one distinguish between discrete approximations
to H1

0 (Ω)-solutions and to unbounded very weak solutions?

Problem 8. At each discretization level a finite discrete solution uh of
(29) has a well defined Morse-index. If uh converges to an unbounded
very weak solution as h → 0 will its Morse-index be bounded or un-
bounded?
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