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Abstract
We consider linear elliptic equations −∆u+q(x)u = λu+f in bounded Lipschitz

domains D ⊂ RN with mixed boundary conditions ∂u
∂n = σ(x)λu + g on ∂D. The

main feature of this boundary value problem is the appearance of λ both in the
equation and in the boundary condition. In general we make no assumption on
the sign of the coefficient σ(x). We study positivity principles and anti-maximum
principles. One of our main results states that if σ is somewhere negative, q ≥ 0 and∫
D q(x) dx > 0 then there exist two eigenvalues λ−1, λ1 such the positivity principle

holds for λ ∈ (λ−1, λ1) and the anti-maximum principle holds if λ ∈ (λ1, λ1 + δ)
or λ ∈ (λ−1 − ε, λ−1). A similar, but more complicated result holds if q ≡ 0. This
is due to the fact that λ0 = 0 becomes an eigenvalue in this case and that λ1(σ)
as a function of σ connects to λ−1(σ) when the mean value of σ crosses the value
σ0 = −|D|/|∂D|. In dimension N = 1 we determine the optimal λ-interval such
that the anti-maximum principles holds uniformly for all right-hand sides f, g ≥ 0.
Finally, we apply our result to the problem −∆u+q(x)u = αu+f in D, ∂u

∂n = βu+g
on ∂D with constant coefficients α, β ∈ R.

AMS Subject Classification 2000 35J25, 35B50.
Key words. Positivity principle, anti-maximum principle, eigenvalues, Harnack
inequality

1 Introduction

Let D ⊂ RN be a bounded domain with Lipschitz boundary ∂D, and let n denote
its outer unit normal. This paper deals with boundary value problems of the form

−∆u+ q(x)u = λu+ f in D, un = σ(x)λu+ g on ∂D, (1.1)
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where f ∈ L2(D), g ∈ L2(∂D). Here q is a bounded, positive function defined on
D, σ is a continuous function defined on ∂D and λ ∈ R a real parameter. The main
feature of this boundary value problem is the appearance of λ both in the differential
equation and the boundary condition. Moreover, we make no assumption on the
sign of the coefficient σ(x).

According to the classical theory there exists a unique solution for every λ which
does not coincide with an eigenvalue of

−∆ϕ+ q(x)ϕ = λϕ in D, ϕn = σ(x)λϕ on ∂D. (1.2)

The first goal of this paper is to determine the range of λ-values for which positive
f and g imply the positivity of the solution u. If such a property holds we say that
(1.1) satisfies the positivity principle.

The positivity principle depends on the eigenvalue problem (1.2), which was
analyzed in [4] for σ ∈ C(∂D) with σ(x) ≥ 0. Later this was generalized in [2] to
the case where σ ∈ R is an arbitrary real constant and finally in [3] to the case
where σ ∈ C(∂D) has non-vanishing negative part. We briefly summarize the main
results. For v, w ∈ H1(D) let

〈v, w〉 =
∫

D
∇v · ∇w + q(x)vw dx, a(v, w) =

∫
D
vw dx+

∮
∂D

σ(x)vw ds.

There always exist infinitely many positive eigenvalues

0 < λ1 < λ2 ≤ . . . , lim
n→∞

λn = ∞.

If q(x) ≥ 0,
∫
D q dx > 0 then 〈·, ·〉 generates an equivalent norm on H1(D) and the

lowest positive eigenvalue is characterized by the variational principle

λ1 = min
{
〈v, v〉 : v ∈ H1(D), a(v, v) = 1

}
. (1.3)

It is simple and the corresponding eigenfunction ϕ1 is of constant sign in D. Let

σ :=
1

|∂D|

∫
∂D

σ(x)ds, σ0 = − |D|
|∂D|

. (1.4)

If q ≡ 0 then λ0 = 0 is an eigenvalue. If σ > σ0 then λ0 = 0 plays the role of λ1, cf.
Figure 1.

If σ−(x) := max{0,−σ(x)} 6≡ 0 then there exists also a sequence of negative
eigenvalues

0 > λ−1 > λ−2 ≥ . . . .

For space dimensions N ≥ 2, limn→−∞ λn = −∞ whereas in dimension N = 1
there are at most two negative eigenvalues. In the case q(x) ≥ 0,

∫
D q(x) dx > 0 the

largest negative eigenvalue is given by

λ−1 = −min
{
〈v, v〉 : v ∈ H1(D), a(v, v) = −1

}
. (1.5)
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The eigenvalue λ−1 is also simple, the corresponding eigenfunction ϕ−1 has constant
sign and does not vanish in D. If q ≡ 0 and σ < σ0 then the eigenvalue λ0 = 0
plays the role of λ−1 whereas if σ > σ0 then it plays the role of λ1, cf. Figure 1.

Once the λ-region for which the positivity principle holds is understood, the
question arises: what happens near the boundary of the positivity region? It turns
out that there holds an anti-maximum principle, i.e. positive f and g imply that
the solution of (1.1) is negative.

Our main results on the positivity and anti-maximum principle are stated and
proved in Section 2 and Section 3. Here we present them in the following table;
see also Figure 1. At first we have to distinguish between two cases: σ(x) ≥ 0
and σ− 6≡ 0. Then the case σ− 6≡ 0 has to be further subdivided according to the
potential q.

σ− ≡ 0
σ ≥ 0 ∫

D q dx > 0 q ≡ 0

positivity σ̄ < σ0 : 0 < λ < λ1

principle
λ < λ1 λ−1 < λ < λ1 σ̄ > σ0 : λ−1 < λ < 0

−ε < λ < 0
antimax λ−1 − ε < λ < λ−1

σ̄ < σ0: λ1 < λ < λ1 + δ
principle

λ1 < λ < λ1 + δ
λ1 < λ < λ1 + δ λ−1 − ε < λ < λ−1σ̄ > σ0: 0 < λ < δ

At the boundary λ = λ±1 a solution to (1.1) for positive f and g can only exist
if both vanish. In this case u coincides with the eigenfunction ϕ±1. Since both are
of constant sign and can be taken either positive or negative it follows that neither
the positivity nor the anti-maximum principle holds.

An interesting observation is that the positivity region is connected, resp. dis-
connected if

∫
D q dx > 0 or q ≡ 0, cf. Figure 1 for the case where σ ∈ R does not

depend on x ∈ ∂D.

The anti-maximum principle was first studied by Clément and Peletier [5]. More
recent studies on the anti-maximum principle are found in [1], [6], [7], [8], [10], [11],
[14]. In [13] Hess and Kato studied the problem −∆u = λm(x)u in D, u = 0 on
∂D with sign-changing coefficient m(x), which corresponds to our coefficient σ(x).
They found a similar phenomenon of both positive and negative spectrum but the
existence of the unbounded negative spectrum did not depend on the dimension N
of the space as in our case. Positivity and anti-maximum principles for Dirichlet
problems −∆u = λm(x)u + f in D, u = 0 on ∂D with a sign-changing coefficient
m(x) are given in [10], [11] and [13].

It is known already from the work of Clément and Peletier [5] that in dimension
N = 1 one can expect the anti-maximum principle to be uniform in the sense
that δ, ε do not depend on f and g. This is indeed the case, and moreover one
can determine exactly the optimal λ-interval for the validity of the uniform anti-
maximum principle. Such optimal anti-maximum principles are stated and proved
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Figure 1: Positivity, anti-max. principle. Left:
∫

D
q dx > 0; right: q ≡ 0

in Section 4. The boundaries of the optimal λ-intervals are determined through
associated Dirichlet-eigenvalues of (1.2), where one boundary-value is changed from
mixed to Dirichlet. Our results extend and complement those of [1], [10] and [14].

Finally, in Section 5 we apply the previous results to boundary value problems
of the form

−∆u+ q(x)u = αu+ f in D, un = βu+ g on ∂D, (1.6)

where α and β are real parameters. By means of our results on the positivity
principle for (1.1) we determine the exact parameter region for which the positivity
principle holds for (1.6).

In the Appendix we state and prove a Harnack-type inequality which is cen-
tral for our results. For weak H1(D)-solutions the Harnack-type inequality is the
replacement for the strong maximum principle.

2 Positivity principle

Recall from [2], [3] the eigenvalue problem (1.2) has a sequence of positive eigen-
values λk → ∞ for k → ∞. If σ− 6≡ 0 and if the space dimensions N ≥ 2 then
also a sequence of negative eigenvalues exists with λk → −∞ as k → −∞ whereas
in dimension N = 1 there are at most two negative eigenvalues. Here we use the
notation that λk > (<,=)0 if k > (<,=)0.

Our conditions for the positivity principle will be formulated such that the solu-
tions of (1.1) are non-negative. Due to a strong maximum principle/Harnack-type
inequality (see Appendix) this result can be strengthened in the following way: ei-
ther u ≡ 0 or there exists δ = δ(u) > 0 such that u ≥ δ a.e. in D and traceu ≥ δ
a.e. on ∂D.
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In the statements of the following theorems we do not explicitly assume σ− 6≡ 0
because we want to include the case σ(x) ≥ 0. Formally, this is achieved by setting
λ−1 = −∞ if σ(x) ≥ 0. The positivity property in the case σ(x) ≥ 0 may also be
called the maximum principle, which we state next.

A function u ∈ H1(D) is called a weak supersolution of

−∆u+Q(x)u ≥ λu in D, un ≥ Σ(x)λu on ∂D. (2.1)

provided∫
D
∇u∇v +Q(x)uv dx ≥

∫
D
λuv dx+

∮
∂D

λΣ(x)uv ds ∀v ∈ H1(D) with v ≥ 0.

If Σ(x) ≥ 0 then the principle (first) eigenvalue Λprinc is given by

Λprinc = min
{∫

D
|∇v|2 +Q(x)v2 dx : v ∈ H1(D),

∫
D
v2 dx+

∮
∂D

Σ(x)v2 ds = 1
}
.

Note that Λprinc = 0 if Q ≡ 0, which is the reason why we call this eigenvalue Λprinc

(and not Λ1).

Lemma 1 (Maximum principle) Let Σ(x) ≥ 0 and 0 ≤ Q ∈ L∞(D). If λ ∈
(−∞,Λprinc) then every weak supersolution to (2.1) satisfies u ≥ 0 and moreover,
either u ≡ 0 or there exists δ = δ(u) > 0 such that u ≥ δ in D and traceu ≥ δ on
∂D.

The proof of u ≥ 0 is standard and consist in using the test-function v = u−

together with the variational characterization of Λprinc. The refined statement u ≡ 0
or u ≥ δ(u) > 0 follows from Lemma 17(ii) in the Appendix. It might be interesting
to note that the (almost) reverse conclusion also holds: if a weak supersolution to
(2.1) satisfies u ≥ 0 then necessarily λ ∈ (−∞,Λprinc]. The proof of this reverse
statement is included in Theorem 2 below.

2.1 The case q(x) ≥ 0,
∫
D q dx > 0

Recall the variational characterization (1.3), (1.5) from the previous section. The
case σ(x) ≥ 0 is consistently covered since in this case the set of admissible functions
in the definition of λ−1 is empty and hence the infimum is +∞.

Theorem 2 Let 0 ≤ q ∈ L∞(D) with
∫
D q dx > 0 and assume 0 ≤ f ∈ L2(D) and

0 ≤ g ∈ L2(D).

(a) If λ ∈ (λ−1, λ1) then the solution u of (1.1) satisfies u ≥ 0.

(b) If u ≥ 0, 6≡ 0 is a supersolution of (1.1) then λ ∈ [λ−1, λ1].

Proof. Part (a): The case σ(x) ≥ 0 follows from the maximum principle of
Lemma 1. Therefore we assume σ− 6≡ 0 in the following. The case λ = 0 is
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covered by the classical maximum principle for the Neumann problem. Hence we
consider the two cases λ ∈ (0, λ1) and λ ∈ (λ−1, 0) separately.
Case 1: Let λ ∈ (0, λ1). Let S = max{‖σ‖∞, 1}. Note that (1.1) is equivalent to

−∆u+
(
q(x) + (S − 1)λ

)
u = Sλu+ f in D,

un +
(
S − σ(x)

)
λu = Sλu+ g on ∂D.

(2.2)

Let Kλ be the operator given by

Kλ :

{
L2(D)× L2(∂D) → H1(D),
(h, k) 7→ v,

where v is the unique solution of

−∆v +
(
q(x) + (S − 1)λ

)
v = h in D, vn +

(
S − σ(x)

)
λv = k on ∂D.

By a straight forward application of the maximum principle, cf. Lemma 1, the oper-
ator Kλ is positive, and possesses a first eigenvalue α > 0 with a first eigenfunction
0 < ϕ ∈ H1(D) which satisfies

−∆ϕ+
(
q(x) + (S − 1)λ

)
ϕ = αϕ in D, ϕn +

(
S − σ(x)

)
λϕ = αϕ on ∂D. (2.3)

After testing (2.3) with ϕ we obtain∫
D
|∇ϕ|2+q(x)ϕ2 dx =

(
α+(1−S)λ

) ∫
D
ϕ2 dx+

∮
∂D

(
α+(σ(x)−S)λ

)
ϕ2 ds. (2.4)

Let us show that Sλ < α. Assume for contradiction that α ≤ Sλ. Then (2.4)
implies ∫

D
|∇ϕ|2 + q(x)ϕ2 dx ≤ λ

( ∫
D
ϕ2 dx+

∮
∂D

σ(x)ϕ2 dx
)
. (2.5)

The variational characterization (1.3) of λ1 implies λ1 ≤ λ which contradicts the
hypothesis on λ. Hence we have proved that Sλ < α. Now we rewrite (2.2) as

u = SλKλ(u, u) +Kλ(f, g).

If we introduce K̃λ : H1(D) → H1(D) by K̃λu = Kλ(u, u), then the previous
equation is equivalent to

(Id−SλK̃λ)u = Kλ(f, g).

Since 0 < Sλ < α the inverse of the operator Id−SλK̃λ is given by the Neumann-
series

∑∞
k=0(SλK̃λ)k and is therefore a positive operator. This implies the claim of

the theorem in case 1.
Case 2: Let λ ∈ (λ−1, 0). Now we rewrite (1.1) as

−∆u+
(
q(x)− (S + 1)λ

)
u = −Sλu+ f in D,

un −
(
S + σ(x)

)
λu = −Sλu+ g on ∂D.

(2.6)
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Let Lλ be the operator given by

Lλ :

{
L2(D)× L2(∂D) → H1(D),
(h, k) 7→ v,

where v is the unique solution of

−∆v +
(
q(x)− (S + 1)λ

)
v = h in D, vn −

(
S + σ(x)

)
λv = k on ∂D.

Due to the maximum principle of Lemma 1 the operator Lλ is positive with first
eigenvalue β > 0 and first eigenfunction 0 < ψ ∈ H1(D) satisfying

−∆ψ +
(
q(x)− (S + 1)λ

)
ψ = βψ in D, ψn −

(
S + σ(x)

)
λψ = βψ on ∂D. (2.7)

After testing (2.7) with ψ and rearranging terms we obtain∫
D
|∇ψ|2+q(x)ψ2 dx =

∫
D

(
β+(S+1)λ)

)
ψ2 dx+

∮
∂D

(
β+(S+σ(x))λ

)
ψ2 ds

)
. (2.8)

This implies that Sλ > −β, since otherwise (2.8) leads to∫
D
|∇ψ|2 + q(x)ψ2 dx ≤ λ

( ∫
D
ψ2 dx+

∮
∂D

σ(x)ψ2 ds
)
. (2.9)

The variational characterization (1.5) of λ−1 implies λ−1 ≥ λ which contradicts the
hypothesis on λ. Hence we have proved that Sλ > −β. Note that (2.6) amounts to

u = −SλLλ(u, u) + Lλ(f, g).

With the abbreviation L̃λ(u) := Lλ(u, u) the previous equation is equivalent to

(Id+SλL̃λ)u = Lλ(f, g).

Since Sλ > −β the inverse of the operator Id+SλL̃λ is given by the Neumann-series∑∞
k=0(−SλL̃λ)k and thus it is positive. This finishes the proof of the claim of part

(a) of the theorem.

Part (b): The following proof is inspired from Godoy et al. [10], where the idea
is attributed to Hess [12]. Suppose (1.1) has a supersolution u ≥ 0, 6≡ 0. Since there
exists δ > 0 such that u ≥ δ in D and traceu ≥ δ on ∂D we may write u = ez with
a function z ∈ H1(D). For v ∈ C∞(D) let us use v2e−z as a test-function for (1.1).
Thus we obtain∫

D
−|v∇z−∇v|2+|∇v|2+q(x)v2 dx ≥

∫
D
λv2+fv2e−z dx+

∮
∂D

σ(x)λv2+gv2e−z ds,

which implies∫
D
|∇v|2 + q(x)v2 dx ≥ λ

( ∫
D
v2 dx+

∮
∂D

σ(x)v2 ds
)

∀v ∈ C∞(D).

The variational characterization of λ−1 and λ1 implies that necessarily λ−1 ≤ λ ≤
λ1. This completes the proof of the theorem. 2
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2.2 The case q(x) ≡ 0

Now we turn to the case q ≡ 0, where λ0 = 0 is an eigenvalue. Therefore the
variational characterization of the principal eigenvalues is different:

λ1 = min
{∫

D
|∇v|2 dx : v ∈ H1(D), a(v, 1) = 0, a(v, v) = 1

}
and

λ−1 = −min
{∫

D
|∇v|2 dx : v ∈ H1(D), a(v, 1) = 0, a(v, v) = −1

}
.

As before σ(x) ≥ 0 implies λ−1 = −∞.

The positivity principle of this section relies on the following result, which was
proved in [3]. Recall the definition (1.4) of σ̄, σ0 from the introduction.

Proposition 3 If σ̄ ∈ (−∞, σ0) then the eigenvalue λ1 is simple and the eigen-
function corresponding to λ1 has constant sign. If σ− 6≡ 0 and σ̄ ∈ (σ0,∞) then
λ−1 is simple and the eigenfunction corresponding to λ−1 has constant sign.

Theorem 4 Let q ≡ 0 and assume 0 ≤ f ∈ L2(D), 0 ≤ g ∈ L2(D).

(i) σ̄ ∈ (−∞, σ0):

(a) If λ ∈ (0, λ1) then the solution u of (1.1) satisfies u ≥ 0.
(b) If u ≥ 0, 6≡ 0 is a supersolution of (1.1) then λ ∈ [0, λ1].

(ii) σ̄ ∈ (σ0,∞):

(a) If λ ∈ (λ−1, 0) then the solution u of (1.1) satisfies u ≥ 0.
(b) If u ≥ 0, 6≡ 0 is a supersolution of (1.1) then λ ∈ [λ−1, 0].

(iii) σ̄ = σ0:

(a) There is no value of λ such that such that (1.1) has a positivity property.
(b) If u ≥ 0, 6≡ 0 is a supersolution of (1.1) then λ = 0.

Proof. The case σ(x) ≥ 0 falls into case (ii) and is covered by the maximum
principle of Lemma 1. Hence we may assume σ− 6≡ 0.

Case (i), part (a): Since the proof is very similar to case 1 in Theorem 2 let us
indicate the differences. One rewrites (1.1) as (2.2) and introduces the same positive
operator Kλ with the first eigenvalue α satisfying (2.3). One needs to show that
Sλ < α. This is where a different argument is needed. Assuming for contradiction
as before that α ≤ Sλ we obtain (2.5). However, ϕ does not satisfy a(ϕ, 1) = 0
and hence cannot be inserted into the variational characterization of λ1. Instead,
we define

ϕ̃ = ϕ− Pϕ, Pϕ =

∫
D ϕdx+

∮
∂D σ(x)ϕds

|D|+ σ̄|∂D|
. (2.10)
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Clearly a(ϕ̃, 1) = 0. Rewriting (2.5) we obtain∫
D
|∇ϕ̃|2 dx ≤ λ

( ∫
D
ϕ̃2 dx+

∮
∂D

σ(x)ϕ̃2 dx
)

+ λ(Pϕ)2(|D|+ σ̄|∂D|) + 2λPϕ
( ∫

D
ϕ̃ dx+

∮
∂D

σ(x)ϕ̃ ds︸ ︷︷ ︸
=0

)
,

and since σ̄ < σ0 this implies by the variational characterization of λ1 the contra-
diction λ1 ≤ λ. The proof continues exactly as in case 1 of Theorem 2.

Case (ii), part (a): The proof resembles the one of case 2 in Theorem 2 using the
operator Lλ. One only needs to prove Sλ > −β. Assume the contrary. With the
help of the projection ψ̃ = ψ−Pψ one can rewrite (2.9) as above, use the variational
characterization of λ−1 and get a contradiction. The proof is then completed as in
case 2 of Theorem 2.

Case (i) and (ii), part (b): As in the proof of Theorem 2 the existence of a non-
negative solution u of (1.1) leads to∫

D
|∇v|2 dx ≥ λ

( ∫
D
v2 dx+

∮
∂D

σ(x)v2 ds
)

∀v ∈ C∞(D), (2.11)

in particular for those v with a(v, 1) = 0. This implies that

λ−1 ≤ λ ≤ λ1. (2.12)

However, more precise information on the location of λ is needed. Note that in the
case σ̄ < σ0 one has

0 = λ0 = min
{∫

D
|∇v|2 dx : a(v, v) = −1

}
with v = const. as a minimizer. Hence (2.11) implies that besides (2.12) also λ ≥ 0
has to hold. In the case σ0 < σ̄ notice that

0 = λ0 = min
{∫

D
|∇v|2 dx : a(v, v) = 1

}
.

Thus next to (2.12) also λ ≤ 0 has to hold.

Case (iii): Part (a) follows once part (b) is shown, since then the only value
of λ for which a positivity property could hold is λ = 0. But even for λ = 0 the
positivity property cannot hold due to the possibility to subtract arbitrary constants
from solutions. So it remains to show part (b): as before we obtain inequality (2.11).
We will show that in this case the following two characterizations of λ0 = 0 hold
simultaneously

0 = inf
{∫

D
|∇v|2 dx : a(v, v) = −1

}
(2.13)

= inf
{∫

D
|∇v|2 dx : a(v, v) = 1

}
, (2.14)
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where neither of the two minimization problems has a minimizer. Together with
(2.11) this implies that necessarily λ = 0. So let us show (2.13) and (2.14). Let w
be a solution of

−∆w = 1 in D, wn = σ(x) on ∂Ω,

which exists only in the case σ̄ = σ0. Next define vt = 1 + tw for t ∈ R. Then∫
D |∇vt|2 dx =

∫
D t

2|∇w|2 dx and

a(vt, vt) = a(1, 1) + 2ta(w, 1) + t2a(w,w) = t

∫
D
|∇w|2 + t2a(w,w).

Let ṽt = vt/
√
|a(vt, vt)|. Then

lim
t→0

∫
D
|∇ṽt|2 dx = lim

t→0

∫
D |∇vt|2 dx
|a(vt, vt)|

= 0

and a(ṽt, ṽt) = +1 or = −1 if t > 0 or t < 0. Hence if t→ 0 then ṽt is a minimizing
family for (2.13) if t > 0 and for (2.14) if t < 0. This finishes the proof of the claim.

2

3 Anti–maximum principles

In this section we consider (1.1) with f, g ≥ 0 and λ lying outside the region where
the positivity principle holds. One expects by the results of [5] a so called “anti-
maximum principle”: if q ≥ 0,

∫
D q dx > 0 and λ is a little larger than λ1 or a little

smaller than λ−1 then the solution of (1.1) is negative. The situation for q ≡ 0 is
again more complicated. As before we treat the case σ(x) ≥ 0 by setting λ−1 = −∞.

3.1 The case q(x) ≥ 0,
∫
D q dx > 0

Theorem 5 Let 0 ≤ q ∈ L∞(D),
∫
D q dx > 0. Suppose that 0 ≤ f ∈ Lp1(D) with

p1 > N/2, p1 ≥ 2 and 0 ≤ g ∈ Lp2(∂D) with p2 > N − 1, p2 ≥ 2 and assume
additionally that f 6≡ 0 or g 6≡ 0. Then there exists δ = δ(f, g, σ) > 0, ε =
ε(f, g, σ) > 0 such that if λ ∈ (λ−1 − ε, λ−1) ∪ (λ1, λ1 + δ) then the solution u of
(1.1) satisfies u < 0 in D.

Proof. Case 1: Let λ1 < λ and assume moreover that λ < λ2 − γ for some
fixed small γ > 0. Then (1.1) has a unique solution u ∈ H1(D). Recall from the
Hilbert-space theory of [2], [3] that H1(D) = span[ϕ1] ⊕ V , where span[ϕ1] and V
are orthogonal both with respect to the bilinear form a(·, ·) and the inner-product
〈·, ·〉. We assume the normalization a(ϕ1, ϕ1) = 1. From [2], [3] we also know that
ϕ1 has constant sign and that there is κ > 0 such that ϕ1 ≥ κ in D. Using the
splitting of the space the solution u of (1.1) is decomposed as u = αϕ1 +v. A direct
computation yields

α =

∫
D fϕ1 dx+

∮
∂D gϕ1 ds

λ1 − λ
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and
−∆v + q(x)v = λv + f` in D, vn = σ(x)λv + g` on ∂D, (3.1)

where∗

f` := f−
( ∫

D
fϕ1 dx+

∮
∂D

gϕ1 ds
)
ϕ1, g` := g−σ(x)

( ∫
D
fϕ1 dx+

∮
∂D

gϕ1 ds
)
ϕ1.

Note that f`, g` lie in the same Lp-spaces as f, g since ϕ1 ∈ L∞(D) and traceϕ1 ∈
L∞(∂D). Let us introduce the compact operator K : L2(D) × L2(∂D) → H1(D)
defined by K(h, k) = z with −∆z + q(x)z = h in D and zn = k on ∂D. One finds
easily that K(f`, g`) ∈ V = span[ϕ1]⊥. Moreover the operator K̃v = K(v, σv)
mapping V → V is well-defined. Therefore (3.1) amounts to

(Id−λK̃)v = K(f`, g`) (3.2)

and the solution v of (3.2) can be found by inverting (Id−λK̃) on the space V .
Since the values of λ satisfy λ ∈ (λ1, λ2 − γ) there exists a constant C independent
of λ such that

‖v‖H1(D) ≤ C(‖f‖L2(D) + ‖g‖L2(∂D)).

Lemma 17 in the Appendix applied to (3.1) implies that

‖v‖L∞(D) ≤ C̄(‖v‖L2(D) + ‖f‖Lp1 (D) + ‖g‖Lp2 (∂D))

uniformly in λ ∈ (λ1, λ2 − γ). With p̃1 = max{2, p1}, p̃2 = max{2, p2} we can
combine the two estimates into

‖v‖L∞(D) ≤ C̄(‖f‖Lp̃1 (D) + ‖g‖Lp̃2 (∂D)).

With the help of the decomposition u = αϕ1 +v and the estimate ϕ1 ≥ κ we obtain

u ≤ κ

∫
D fϕ1 dx+

∮
∂D gϕ1 ds

λ1 − λ
+ C̄(‖f‖Lp̃1 (D) + ‖g‖Lp̃2 (∂D)) in D,

which can be made uniformly negative in D provided λ ∈ (λ1, λ1 + δ(f, g)) with a
positive but sufficiently small value of δ(f, g).

Case 2: Let λ < λ−1 and assume further that λ > λ−2 + γ for some fixed small
γ > 0. The unique solution u ∈ H1(D) of (1.1) has the orthogonal decomposition
u = αϕ−1 + v. If we use the normalization a(ϕ−1, ϕ−1) = −1 then α is given by

α =

∫
D fϕ−1 dx+

∮
∂D gϕ−1 ds

λ− λ−1
.

The function ϕ−1 has constant sign and is bounded below by a positive constant
κ > 0. As in case 1 one shows that v is bounded in L∞(D) uniformly for λ ∈
(λ−2 + γ, λ−1). Hence, if λ is sufficiently close to λ−1 the function αϕ−1 in the
decomposition of u is sufficiently negative to make u uniformly negative in D. 2

∗The definition of f`, g` implies that b(f`, g`, ϕ1) = 0 with b(f, g, v) :=
∫

D
fv dx+

∮
∂D

gv ds, see also
the proof of Theorem 6.
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3.2 The case q(x) ≡ 0

Theorem 6 Let q ≡ 0 and define σ̄ = 1
|∂D|

∫
∂D σ(x) ds. Suppose that 0 ≤ f ∈

Lp1(D) with p1 > N/2, p1 ≥ 2 and 0 ≤ g ∈ Lp2(D) with p2 > N − 1, p2 ≥ 2 and
assume additionally that f 6≡ 0 or g 6≡ 0. Then there exists δ = δ(f, g, σ) > 0 and
ε = ε(f, g, σ) > 0 such that the solution u of (1.1) satisfies u < 0 in D provided

(i) σ̄ ∈ (−∞, σ0) and λ ∈ (−ε, 0) ∪ (λ1, λ1 + δ),

(ii) σ̄ ∈ (σ0,∞) and λ ∈ (λ−1 − ε, λ−1) ∪ (0, δ),

(iii) σ̄ = σ0 and λ ∈ (−ε, 0) ∪ (0, δ).

Proof. Case (i) and (ii): The proofs are similar to the proof of Theorem 5. We
illustrate only case (i). For σ̄ < σ0 we know from [2], [3] that λ1 is simple with an
eigenfunction ϕ1 ≥ κ > 0 in D. Assume the normalization a(ϕ1, ϕ1) = 1. We use
the splitting

H1(D) = span[ϕ1]⊕ span[1]⊕ V

into three orthogonal parts, i.e, the unique solution u ∈ H1(D) of (1.1) is decom-
posed into u = αϕ1 + β + v. The values of α and β are given by

α =

∫
D fϕ1 dx+

∮
∂D gϕ1 ds

λ1 − λ
, β = −

∫
D f dx+

∮
∂D g ds

λ(|D|+
∫
∂D σ(x) ds)

(3.3)

and v solves

−∆v = λv + λβ + f` in D, vn = σ(x)λv + σ(x)λβ + g` on ∂D (3.4)

with f`, g` as in the proof of Theorem 5. On the space W = {(h, k) ∈ L2(D) ×
L2(∂D) :

∫
D h dx+

∮
∂D k ds = 0 =

∫
D hϕ1 dx+

∮
∂D kϕ1 ds} we define the operator

K : W → V by K(h, k) = z with −∆z = h in D, zn = k on ∂D. Moreover
K̃ : V → V is defined by K̃v = K(v, σv). If we note (by a standard computation)
that (λβ + f`, σλβ + g`) ∈ W then (3.4) is equivalent to

(Id−λK̃)v = K(λβ + f`, σλβ + g`).

As long as λ is bounded away from λ−1 and λ2 we get the estimates

‖v‖H1(D) ≤ C(‖f‖L2(D) + ‖g‖L2(∂D)).

and
‖v‖L∞(D) ≤ C̄(‖u‖L2(D) + ‖f‖Lp1 (D) + ‖g‖Lp2 (∂D))

uniformly for λ ∈ [λ−1 + γ, λ2 − γ]. Recalling that |D|+
∫
∂D σ(x) ds < 0 if σ̄ < σ0

we see from (3.3) that u will be negative if either λ is in a small right-neighborhood
of λ1 or if λ is in a small left-neighborhood of 0.

Case (iii): In this case, cf. [2], [3], the space H1(D) has the decomposition

H1(D) = span[1]⊕ span[w]⊕ Vw,
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where w solves −∆w = 1 in D, wn = σ(x) on ∂D and Vw = {v ∈ H1(D) :
a(v, 1) = a(v, w) = 0}. Note however that span[1] and span[w] are not orthogonal.
To facilitate notation let

b :

{
L2(D)× L2(∂D)×H1(D) → R,

(f, g, v) 7→
∫
D fv dx+

∮
∂D gv ds.

The solution of (1.1) can accordingly be split in three parts, i.e., u = α + βw + v,
where

α = − b(f, g, 1)
λ2a(w, 1)

− b(f, g, w)
λa(w, 1)

+
b(f, g, 1)a(w,w)

λa(w, 1)2
, β = −b(f, g, 1)

λa(w, 1)
.

Note that a(w, 1) =
∫
D |∇w|

2 dx > 0. The remaining equation for v is

−∆v = −b(f, g, w)
a(w, 1)

+
b(f, g, 1)a(w,w)

a(w, 1)2
+ λv + f − b(f, g, 1)

a(w, 1)
w in D, (3.5)

vn = −σb(f, g, w)
a(w, 1)

+ σ
b(f, g, 1)a(w,w)

a(w, 1)2
+ σλv + g − σ

b(f, g, 1)
a(w, 1)

w on ∂D. (3.6)

Define the space Ww = {(h, k) ∈ L2(D) × L2(∂D) :
∫
D h dx +

∮
∂D k ds = 0 =∫

D hw dx+
∮
∂D kw ds}. On Ww the operator K : Ww → Vw is given by K(h, k) := z,

where z ∈ Vw is the unique solution of −∆z = h in D, zn = k on ∂D, cf. [2], [3].
Likewise, let K̃ : Vw → Vw be defined by K̃v = K(v, σv). Thus (3.5)-(3.6) equals

(Id−λK̃)v = K
(
− b(f, g, w)

a(w, 1)
+
b(f, g, 1)a(w,w)

a(w, 1)2
+ f − b(f, g, 1)

a(w, 1)
w,

− σ
b(f, g, w)
a(w, 1)

+ σ
b(f, g, 1)a(w,w)

a(w, 1)2
+ g − σ

b(f, g, 1)
a(w, 1)

w
)
,

if one verifies by a standard computation that the argument of K on the right-hand
side belongs to Ww. Now the L2 and L∞-bounds on v follow as before provided
λ is bounded away from λ−1 and λ1. Likewise ‖βw‖∞ ≤ const. |λ−1|(‖f‖L2(D) +
‖g‖L2(∂D)). Thus, negativity of u it a consequence of the 1

λ2 -term in α provided λ
is sufficiently small but non-zero. 2

4 Uniform anti–maximum principles

If the dimension N = 1 and D = (0, L) then (1.1) becomes

−u′′ + q(x)u = λu+ f in (0, L), (4.1)
−u′(0) = σ1λu(0) + g1, u′(L) = σ2λu(L) + g2. (4.2)

It is known already from the work of Clément and Peletier [5] that in dimension
N = 1 one can expect the anti-maximum principle to be uniform in the sense that
δ, ε in Theorem 5 and Theorem 6 do not depend on f and g. This is indeed the case,
and moreover one can determine exactly the optimal λ-interval for the validity of
the uniform anti-maximum principle.
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Previously, such optimal λ-intervals were determined variationally by Arias et al.
[1] and Godoy et al. [10] through the values λ, λ, cf. Lemma 8. Another approach
was given by Reichel [14] through the associated eigenvalue-problems (DL), (D0)
below. Due to a new observations we can now bring together these two approaches,
cf. Lemma 9, and thus get explicit formulas for the optimal λ-interval.

To formulate our results we need the following associated boundary value prob-
lems introduced in [14]. Note that one boundary value is changed from mixed to
Dirichlet.

(DL)


−u′′ + q(x)u = λu in (0, L),

−u′(0) = σ1λu(0),
u(L) = 0,

(D0)


−u′′ + q(x)u = λu in (0, L),

u(0) = 0,
u′(L) = σ2λu(L).

Both problems have a sequence of positive eigenvalues λL
k , λ

0
k tending to +∞ as

k → ∞. Negative eigenvalues may not always exists. This is explained at the
beginning of the following two sections.

4.1 The case q(x) ≥ 0,
∫ L

0 q dx > 0

We recall from Bandle, Reichel [3] that negative eigenvalues exist:

conditions on σ negative eigenvalues
for (4.1)-(4.2) for (DL) for (D0)

σ1, σ2 < 0 λ−2 < λ−1 λL
−1 λ0

−1

σ1 < 0 ≤ σ2 λ−1 λL
−1 no neg. ev

0 ≤ σ1, σ2 no neg. ev no neg. ev no neg. ev

We define the missing negative eigenvalues as −∞. For simplicity we do not consider
the case σ2 < 0 ≤ σ1 since it is essentially the same as σ1 < 0 ≤ σ2.

Theorem 7 Let 0 ≤ q ∈ L∞(0, L),
∫ L
0 q dx > 0 and let

λ ∈ [max{λL
−1, λ

0
−1}, λ−1) ∪ (λ1,min{λL

1 , λ
0
1}].

Suppose that 0 ≤ f ∈ L1(0, L) and g1, g2 ≥ 0 and assume additionally f 6≡ 0 or
g1 + g2 > 0. Then the solution u of (4.1)-(4.2) satisfies u < 0 in [0, L]. Moreover,
the above λ-interval is optimal for the uniform anti-maximum principle.

The proof will be done with the help of the following two lemmas.

Lemma 8 Let 0 ≤ q ∈ L∞(0, L),
∫ L
0 q dx > 0 and define

λ = inf
{∫ L

0
v′

2 + q(x)v2 dx : v ∈ H1(0, L) has a zero and a(v, v) = 1
}
,

λ = − inf
{∫ L

0
v′

2 + q(x)v2 dx : v ∈ H1(0, L) has a zero and a(v, v) = −1
}
,

where a(v, w) =
∫ L
0 vw dx + σ1v(0)w(0) + σ2v(L)w(L). Then λ is attained and

λ1 < λ < λ2. If either σ1 or σ2 is negative the λ is attained and λ−2 < λ < λ−1.
The extremal functions for both extremal values have exactly one zero in [0, L].
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Proof. The value λ is always finite. The value λ is finite if at least one of σ1, σ2

is negative. Otherwise λ = −∞. Provided the extremal values λ, λ are finite the
existence of extremal functions is standard since H1(0, L) embeds compactly into
C([0, L]). Let u, u be such extremal functions. Then u(x0) = u(y0) = 0 for some
x0, y0 ∈ [0, L]. For a given point z0 ∈ [0, L] define the space Vz0 = {v ∈ H1(0, L) :
v(z0) = 0}, i.e, u ∈ Vx0 and u ∈ Vy0 . Moreover, u, u are extremal functions for

λ
∗ = inf

{∫ L

0
v′

2 + q(x)v2 dx : v ∈ Vx0 and a(v, v) = 1
}
,

λ∗ = − inf
{∫ L

0
v′

2 + q(x)v2 dx : v ∈ Vy0 and a(v, v) = −1
}
.

Clearly λ = λ
∗, λ = λ∗. Hence the following Euler-equations hold

〈u, φ〉 = λa(u, φ) for all φ ∈ Vx0 , 〈u, ψ〉 = λa(u, ψ) for all ψ ∈ Vy0 ,

and standard regularity implies that u satisfies

−u′′ + q(x)u = λu in (0, x0) ∪ (x0, L),

−u′(0) = σ1λu(0), u(x0) = 0, u′(L) = σ2λu(L),

and u satisfies

−u′′ + q(x)u = λu in (0, y0) ∪ (y0, L),
−u′(0) = σ1λu(0), u(y0) = 0, u′(L) = σ2λu(L).

Note that in the case x0 ∈ {0, L} or y0 ∈ {0, L} the Dirichlet boundary condition
replaces the mixed boundary condition. Let us show that u has exactly one zero.
The proof for u is the same. So assume u ∈ Vx0∩Vx1 for x0, x1 ∈ [0, L] with x0 6= x1.
Then

〈u, φ〉 = λa(u, φ) for all φ ∈ Vx0 ⊕ Vx1 .

But Vx0 ⊕ Vx1 = H1(0, L), i.e., u is a classical solution on the entire interval [0, L]
of the eigenvalue problem

−u′′ + q(x)u = λu in (0, L),

−u′(0) = σ1λu(0), u′(L) = σ2λu(L).

The same is true for |u|, which is also a minimizer for λ. Hence u(x0) = u′(x0) = 0
and the same holds at x1. Thus u ≡ 0, which is impossible. Hence we have shown
that every extremal function for λ has exactly one zero in [0, L]. The same holds
for minimizers of λ.

It remains to show the estimates λ1 < λ < λ2 and λ−2 < λ < λ−1, provided λ
is finite. Let us show the inequalities for λ. The inequalities for λ follow similarly.
First, it is clear that λ1 ≤ λ. Since every minimizer for λ has a zero, whereas the
minimizers for λ1 have no zero, it follows that λ1 < λ. Likewise, since the second
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eigenfunction ϕ2 has a zero we get immediately that λ ≤ λ2. Let us suppose for
contradiction that λ = λ2. Testing the equation for ϕ2 with ϕ+

2 we obtain∫ L

0
(ϕ+

2
′)2 + q(x)(ϕ+

2 )2 dx = λ2a(ϕ+
2 , ϕ

+
2 )

and since λ = λ2 and ϕ+
2 has at least one (in fact infinitely many) zeroes in [0, L]

we obtain that ϕ+
2 is a minimizer for λ. But ϕ+

2 has a continuum of zeroes, i.e. no
unique zero. Thus a contradiction is reached and the proof of the lemma is finished.

2

Lemma 9 Let 0 ≤ q ∈ L∞(0, L),
∫ L
0 q dx > 0. Then λ = min{λL

1 , λ
0
1} and λ =

max{λL
−1, λ

0
−1}.

Proof. The claim follows if we show that minimizers u, u for λ, λ have no zero in
the open interval (0, L). Let us show this property for u. Suppose for contradiction
that u(y0) = 0 for some y0 ∈ (0, L). Then u is a piecewise W 2,∞-solution of

−u′′ + q(x)u = λu in (0, y0) ∪ (y0, L),

−u′(0) = σ1λu(0), u(y0) = 0, u′(L) = σ2λu(L).

By rescaling u on [0, y0] appropriately we can achieve that the rescaled function
u is a C1-function on the entire interval [0, L]. Due to the differential equation
this implies that in fact u is a W 2,∞-function on [0, L] solving the above equation
pointwise a.e. on (0, L). Hence u must be an eigenfunction, but this is impossible
since λ−2 < λ < λ−1. 2

Proof of Theorem 7. Case 1: Let u be a solution of (4.1)-(4.2) with λ ∈ (λ1, λ]
and 0 ≤ f ∈ L1(0, L) and g1, g2 ≥ 0. By Theorem 2(b) the solution u cannot be
≥ 0, i.e., u− 6≡ 0. Testing (4.1)-(4.2) with u− one obtains∫ L

0
(u−′)2 + q(x)(u−)2 dx = λa(u−, u−)−

∫ L

0
u−f dx− u−(0)g1 − u−(L)g2.

By the assumptions on f, g1, g2 this implies
∫ L
0 (u−′)2 + q(x)(u−)2 dx ≤ λa(u−, u−).

Assume for contradiction that u− has a zero in [0, L]. Then u− would be admissible
in the variational characterization of λ and λ ≤ λ would follow. By the assumption
on λ this is only possible for λ = λ. Then u− is a minimizer for λ and thus u− has
exactly one zero. Moreover,

0 =
∫ L

0
u−f dx+ u−(0)g1 + u−(L)g2.

However, since either f 6≡ 0 or g1+g2 > 0 the last relation is impossible for a function
with only one zero. Thus we have reached a contradiction to the assumption that
u− has a zero. As a consequence we have u < 0 in [0, L].

It remains to show that the uniform anti-maximum principle does not hold for
any λ > λ. Assume for contradiction that it holds for such a λ. Let u ≥ 0 be a
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minimizer for λ and define wε = (u − ε)+ for ε > 0. Then wε → u in H1(0, L) as
ε→ 0. We may choose ε so small that

λ <

∫ L
0 w′ε

2 + q(x)w2
ε dx

a(wε, wε)
< λ (4.3)

and a(wε, wε) → 1 as ε→ 0. Next we define 0 ≤ f ∈ L1(0, L) and g1, g2 ≥ 0 in the
following way: let supp f ∩ suppwε = ∅. If 0 ∈ suppwε then let g1 = 0 and g2 > 0.
If L ∈ suppwε then let g2 = 0 and g1 > 0. Note that since u has a unique zero
either at 0 or L the support of wε cannot contain both 0 and L. Assume now that
for the given choice of f and g there is a solution u of (4.1)-(4.2) such that u < 0
in [0, L]. In this case u can be written as u = −e−v with a function v ∈ H1(0, L).
Taking evw2

ε as a test function for (4.1)-(4.2) we obtain∫ L

0
(v′wε + w′ε)

2 dx−
∫ L

0
(w′ε)

2 + q(x)w2
ε dx

= −λ a(wε, wε)︸ ︷︷ ︸
>0

+
∫ L

0
fw2

ε e
v dx+ g1e

vw2
ε

∣∣∣
x=0

+ g2e
vw2

ε

∣∣∣
x=L

.

By the assumption on f, g1, g2 and wε the expression involving the product of f, g1, g2
with w2

ε vanish. Thus

λ ≤
∫ L
0 (w′ε)

2 + q(x)w2
ε dx

a(wε, wε)

which contradicts (4.3).

Case 2: For λ ∈ [λ, λ−1) the argument is analogous. Since u cannot be ≥ 0 testing
with u− leads to

∫ L
0 (u−′)2 + q(x)(u−)2 dx ≤ λa(u−, u−). The assumption that u−

has a zero leads to the implication that λ ≥ λ, which is only possible for λ = λ.
This is excluded as above. The optimality proof for the interval [λ, λ−1) follows the
same lines as in case 1. 2

4.2 The case q(x) ≡ 0

Again we recall from Bandle, Reichel [3] the picture of the existence of negative
eigenvalues:

conditions on σ negative eigenvalues
for (4.1)-(4.2) for (DL) for (D0)

σ̄ > σ0: λ−2 < λ−1σ1, σ2 < 0
σ̄ ≤ σ0: λ−1

λL
−1 λ0

−1

σ̄ > σ0: λ−1σ1 < 0 ≤ σ2 σ̄ ≤ σ0: no neg. ev
λL
−1 no neg. ev

0 ≤ σ1, σ2 no neg. ev no neg. ev no neg. ev

As before the missing negative eigenvalues are defined as −∞.

Theorem 10 Let q ≡ 0. For λ we assume the following:
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(i) if σ̄ ∈ (−∞, σ0) then let λ ∈ [max{λL
−1, λ

0
−1}, 0) ∪ (λ1,min{λL

1 , λ
0
1}],

(ii) if σ̄ ∈ (σ0,∞) then let λ ∈ [max{λL
−1, λ

0
−1}, λ−1) ∪ (0,min{λL

1 , λ
0
1}],

(iii) if σ̄ = σ0 then let λ ∈ [max{λL
−1, λ

0
−1}, 0) ∪ (0,min{λL

1 , λ
0
1}].

If 0 ≤ f ∈ L1(0, L) and g1, g2 ≥ 0 and additionally f 6≡ 0 or g1 + g2 > 0 then the
solution u of (4.1)-(4.2) satisfies u < 0 in [0, L]. Moreover, the above λ-intervals
are optimal for the uniform anti-maximum principle.

Proof. The proof is similar to the proof of Theorem 7. Let us sketch where the
differences occur. First, the values λ and λ are defined exactly as in Lemma 8.
The value λ is always finite and λ is finite if at least one of the two values σ1, σ2

is negative. Both values are attained if they are finite, since in the space of H1-
functions with at least one zero in [0, L] the expression (

∫ L
0 v′2 dx)1/2 is an equivalent

norm. Next, one needs to show the following estimates for λ, λ:

Case (i): σ̄ ∈ (−∞, σ0) ⇒ λ−1 < λ < 0, λ1 < λ < λ2,

Case (ii): σ̄ ∈ (σ0,∞) ⇒ λ−2 < λ < λ−1, 0 < λ < λ1,

Case (iii): σ̄ = σ0 ⇒ λ−1 < λ < 0, 0 < λ < λ1.

With theses estimates at hand the proof of the remaining statements of Lemma 8,
Lemma 9 and Theorem 10 are exactly the same as before. The variational char-
acterization of λ1, λ−1 (cf. beginning of subsection 2.2) takes place in the space of
H1(0, L) functions with a(v, 1) = 0 whereas the characterization of λ, λ takes place
in H1(0, L) only. Thus, for v ∈ H1(0, L) let us define

w = v − Pv = v −
∫ L
0 v dx+ σ1v(0) + σ2v(L)

L+ 2σ̄
.

Thus a(w, 1) = 0 and clearly
∫ L
0 v′2 dx =

∫ L
0 w′2 dx. Moreover

a(w,w) =
∫ L

0
w2 dx+ σ1w(0)2 + σ2w(L)2

=
∫ L

0
v2 dx+ σ1v(0)2 + σ2v(L)2 − (Pv)2(L+ 2σ̄)

= a(v, v)− (Pv)2(L+ 2σ̄).

Let us start with the estimates in case (i). In this case a(w,w) ≥ a(v, v). Hence
λ ≤ λ−1. The estimate λ ≥ λ−2 follows from the fact that ϕ−2 changes sign and
can be inserted into the variational characterization of λ. Moreover it follows as
in Lemma 8 that λ cannot be equal to either of the two endpoints. The estimate
0 < λ < λ1 is immediate (ϕ1 is sign-changing and can be inserted into the variational
characterization for λ).

In case (ii) we find that a(w,w) ≤ a(v, v). This is the basis for the estimate
λ ≤ λ1. The rest of the estimates in this case it similar to case (i).

In the remaining case (iii) we find a(w,w) = a(v, v). Since ϕ−1 and ϕ1 are sign-
changing we obtain immediately λ−1 ≤ λ and λ ≤ λ1, where equality is excluded
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as before. The remaining parts of the estimate consists in showing that λ, λ 6= 0,
which follows from the fact that λ = 0 or λ = 0 would imply that minimizers are
constants, but this is incompatible with having a zero. This completes the proof of
the theorem. 2

4.3 Examples for constant q

In the case where σ1 = σ2 = σ and q ≥ 0 is a constant one can determine the regions
of the positivity principle and the anti-maximum principle (almost) explicitly. The
solution to the differential equation −ϕ′′ + qϕ = λϕ in (0, L) is

ϕ(x) =


A cos(

√
λ− qx) +B sin(

√
λ− qx), if λ > q,

A cosh(
√
q − λx) +B sinh(

√
q − λx) if λ < q,

Ax+B if λ = q.

The case q > 0 : The eigenvalues λ−1, λ1 are given as the intersection of transcen-
dental functions as follows, cf. [2]. Let λ∗ be the negative root of σ2λ2 + λ− q.

λ−1 : tanh(
√
q − λL/2) = σλ√

q−λ
, λ ∈ (λ∗, 0)

λ1 :


tan(

√
λ− qL/2) = − σλ√

λ−q
, σ < 0

q, σ = 0

tanh(
√
q − λL/2) = σλ√

q−λ
, σ > 0

Likewise the eigenvalues λL
−1 = λ0

−1 and λL
1 = λ0

1 are given by

λ0
−1 = λL

−1 : coth(
√
q − λL) = σλ√

q−λ
,

λ0
1 = λL

1 :


cot(

√
λ− qL) = λσ√

λ−q
, σ < 1/(Lq)

q, σ = 1/(Lq)

coth(
√
q − λL) = λσ√

q−λ
, σ > 1/(Lq).

The results produced by MAPLE are plotted in Figure 2.
The case q = 0 : Although the complete eigenvalue picture is more complicated,
the determination is much simpler because according to Theorem 10 we only need
to find λ−1 for σ ≥ σ0 and λ1 for σ ≤ σ0.

λ−1 : tanh(
√
−λL/2) = −σ

√
−λ, λ ∈ (λ∗, 0) if σ ≥ σ0,

λ1 : tan(
√
λL/2) = −σ

√
λ if σ ≤ σ0.

Likewise the eigenvalues λL
−1 = λ0

−1 and λL
1 = λ0

1 are given by

λ0
−1 = λL

−1 : coth(
√
−λL) = −σ

√
−λ,

λ0
1 = λL

1 : cot(
√
λL) = σ

√
λ

The results are plotted in Figure 3.
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5 Positivity regions for parameter dependent

inhomogeneous boundary value problems

In this section we consider the boundary value problem

−4u+ q(x)u = αu+ f in D, un = βu+ g on ∂D, α, β ∈ R. (5.1)

We shall use the previous results on the λ-dependent boundary value problem (1.1)
to determine the parameter region for (α, β) ∈ R2 for which the positivity prin-
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ciple holds. For this purpose we start with some auxiliary results concerning the
σ-dependence of the smallest positive eigenvalue λ1(σ) and the largest negative
eigenvalue λ−1(σ) of (1.2).

Without loss of generality (by shifting α if necessary) we may assume that q(x) ≥
q0 > 0. Then

‖v‖ =
( ∫

D
(|∇v|2 + q(x)v2) dx

)1/2

generates a norm in H1(D) which is equivalent to the standard norm. Denote by
λD

1 the smallest Dirichlet eigenvalue of

−∆ϕ+ q(x)ϕ = λϕ in D, ϕ = 0 on ∂D (5.2)

and by λSt
1 the smallest Stekloff eigenvalue of the problem

−∆ϕ+ q(x)ϕ = 0 in D, ϕn = λϕ on ∂D. (5.3)

Lemma 11 (i) The function σ 7→ λ1(σ) is continuous and strictly decreasing for
σ ∈ R. Moreover

lim
σ→−∞

λ1(σ) = λD
1 , lim

σ→∞
λ1(σ) = 0.

(ii) Similarly the function σ 7→ λ−1(σ) is continuous and strictly decreasing for
σ ∈ (−∞, 0) and

lim
σ→−∞

λ−1(σ) = 0, lim
σ→0−

λ−1(σ) = −∞.

Proof. Let Jσ[v] =
∫
D v

2 dx+ σ
∮
∂D v

2 ds for v ∈ H1(D). We have the variational
characterizations

1
λ1(σ)

= sup{Jσ[v] where ‖v‖ = 1}, 1
λ−1(σ)

= inf{Jσ[v] where ‖v‖ = 1}. (5.4)

Let ϕσ be the eigenfunction corresponding to λ1(σ). We shall assume that ‖ϕσ‖ = 1.
Moreover, there exists a positive constant c independent of σ such that

0 <
∮

∂D
ϕ2

σ ds ≤ c‖ϕσ‖2 = c, (5.5)

where the second inequality follows from the trace inequality and the first is a
property of eigenfunctions of one sign, cf. [2], [3]. The variational characterization
of λ1(σ) implies

1
λ1(τ)

+ (σ − τ)
∮

∂D
ϕ2

σ ds ≥ Jτ [ϕσ] + (σ − τ)
∮

∂D
ϕ2

σ ds =
1

λ1(σ)

≥ Jσ[ϕτ ] = Jτ [ϕτ ] + (σ − τ)
∮

∂D
ϕ2

τ ds (5.6)

=
1

λ1(τ)
+ (σ − τ)

∮
∂D

ϕ2
τ ds
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Letting σ → τ in (5.6) and using the boundedness of the traces from (5.5) we obtain
limσ→τ λ1(σ) = λ1(τ). For σ > τ the strict monotonicity also follows from (5.6)
and from the strict positivity of the boundary integrals as stated in (5.5).

By introducing the eigenfunction corresponding to λD
1 as a test function in (5.4)

we obtain λ1(σ) ≤ λD
1 and consequently

lim
σ→−∞

λ1(σ) = α ≤ λD
1 .

For σ < 0 one gets

1 = λ1(σ)
( ∫

D
ϕ2

σ dx+ σ

∮
∂D

ϕ2
σ ds

)
≤ λD

1

∫
D
ϕ2

σ dx. (5.7)

Since ‖ϕσ‖ = 1 there exists a subsequence {ϕσk
}∞k=1, σk → −∞ which converges to

ϕ̃ weakly in H1(D), strongly in L2(D) and in L2(∂D). Due to (5.7) the function
ϕ̃ 6= 0. In the weak form of the eigenvalue problem (1.2)∫

D
∇ϕσk

· ∇h+ q(x)ϕσk
h dx = λ1(σk)

( ∫
D
ϕσk

h dx+ σk

∮
∂D

ϕσk
h ds

)
(5.8)

for all h ∈ H1(D) we can let k tend to ∞. Since the left-hand side and the first
term on the right-hand side are bounded we get∮

∂D
ϕ̃h ds = lim

k→∞

∮
∂D

ϕσk
h ds = 0 for all h ∈ L2(∂D).

Hence trace ϕ̃ = 0. By taking h ∈ H1
0 (D) in (5.8) we see that ϕ̃ is a nontrivial

Dirichlet-eigenfunction with one sign and with eigenvalue α. Hence α = λD
1 . The

last assertion of (i) follows immediately from (5.6).
The continuity and monotonicity proof of second part (ii) is very similar and

will therefore be omitted. To find the limit of λ−1(σ) for σ → −∞ take the

function v = 1/
√∫

D q(x) dx as a test function in (5.4). It shows that Jσ[v] =

(|D| + σ|∂D|)/
∫
D q(x) dx → −∞ as σ → −∞. Therefore limσ→−∞ λ−1(σ) = 0.

For the limit σ → 0− one assumes for contradiction limσ→0− λ−1(σ) = β for some
finite β < 0. Taking convergent subsequences ϕσk

→ ϕ̃ of the eigenfunctions cor-
responding to λ−1(σk) one finds 0 > 1/β = limk→∞ Jσk

[ϕσk
] =

∫
D ϕ̃

2 dx ≥ 0. This
contradiction shows that limσ→0− λ−1(σ) = −∞. 2

Lemma 12 The functions σ 7→ σλ1(σ), σ ∈ R and σ 7→ σλ−1(σ), σ ∈ R− are
continuous and strictly increasing. In addition we have

lim
σ→−∞

σλ1(σ) = −∞, lim
σ→∞

σλ1(σ) = λSt
1 (5.9)

and

lim
σ→−∞

σλ−1(σ) = λSt
1 , lim

σ→0−
σλ−1(σ) = ∞. (5.10)
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Proof. Let σ1 < σ2 and let φ and ψ be the corresponding positive eigenfunctions.
Then

λ1(σ1)
( ∫

D
φψ dx+ σ1

∮
∂D

φψ ds
)

= λ1(σ2)
( ∫

D
φψ dx+ σ2

∮
∂D

φψ ds
)
.

Rearranging terms and using the monotonicity of Lemma 11 one finds

(λ1(σ1)− λ1(σ2))
∫

D
φψ dx︸ ︷︷ ︸

>0

= (λ1(σ2)σ2 − λ1(σ1)σ1)
∮

∂D
φψ ds︸ ︷︷ ︸
>0

.

The monotonicity of σλ1(σ) now follows. The same argument applies to σλ−1(σ).
The first statement of (5.9) is obvious. Because of the monotonicity the limit

limσ→∞ σλ1(σ) exists and = γ ∈ (0,∞]. The test-function v = 1/
√∫

D q(x) dx

yields the estimate λ1(σ) ≤
∫
D q(x) dx/(|D|+σ|∂D|). Hence γ = limσ→∞ σλ1(σ) ≤∫

q(x) dx/|∂D|, i.e., γ is finite. As usual we can consider convergent subsequences
of eigenfunctions ϕσk

→ ϕ̃ with σk →∞ as k →∞. If we let k tend to ∞ in (5.8)
and keep in mind that limk→∞ λ1(σk) = 0 we see that the limit function ϕ̃ solves∫

D
∇ϕ̃ · ∇h+ q(x)ϕ̃h dx = γ

∮
∂D

ϕ̃h ds for all h ∈ H1(D), 1 = γ

∮
∂D

ϕ̃2 ds.

(5.11)

Hence ϕ̃ is non-trivial and (5.11) is the weak form of (5.3). Since ϕ̃ is of constant
sign, γ is the lowest Stekloff eigenvalue, i.e., γ = λSt

1 .
The same argument yields limσ→−∞ σλ−1(σ) = λSt

1 . In order to establish the
limit σ → 0− in (5.10) consider a sequence {σk}∞k=1 such that σk → 0− with
eigenfunctions ϕσk

corresponding to λ−1(σk). This time let us assume the different
normalization

∮
∂D ϕ

2
σk
ds = 1. We have either

lim
σ→0−

σλ−1(σ) = β <∞ or lim
σ→0−

σλ−1(σ) = ∞. (5.12)

Suppose for contradiction that the first case holds. Since λ−1(σk) → −∞ we find
from the weak form of the eigenvalue equation (5.8) that∫

D
|∇ϕσk

|2 dx ≤
∫

D
|∇ϕσk

|2 + (q(x)− λ−1(σk))ϕ2
σk
dx

= λ−1(σk)σk

∮
∂D

ϕ2
σk
ds ≤ β. (5.13)

Note that |||v||| := (
∫
D v

2 dx +
∮
∂D v

2 ds)1/2 is an equivalent norm in H1(D) and
|||ϕσk

||| ≤ 1+β. Hence there exists a subsequence, say {ϕσk
}∞k=1, such that ϕσk

⇀ ϕ̃
in H1(D), ϕσk

→ ϕ̃ in L2(D) and in L2(∂D) as k → ∞. In particular ϕ̃ 6= 0 since∮
∂D ϕ̃

2 ds = limk→∞
∮
∂D ϕ

2
σk
ds = 1. Since λ−1(σk) → −∞ as k → ∞ we see that

limk→∞
∫
D ϕ

2
σk
dx =

∫
D ϕ̃

2 dx = 0 since otherwise we get a contradiction in (5.13).
However, we have already seen that ϕ̃ 6= 0. This contradiction shows that the second
alternative in (5.12) must hold. This completes the proof. 2
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For the one-dimensional case with q = 1, D = (0, 1) the functions λ1(σ), λ−1(σ)
as well as the functions σλ1(σ), σλ−1(σ) are plotted in Figure 4. Note that in this
case λD

1 = π2 + 1 ≈ 10.8696 and λSt
1 is given as the smaller of the two roots of

λ2 − 2λ/ tanh 1 + 1 = 0, λSt
1 ≈ 0.4621. Both values are depicted as horizontal lines.
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Figure 4: q = 1, L = 1

Lemma 13 The function B : (−∞, λD
1 ) → R defined by

B(α) =


αλ−1

1 (α) if 0 < α < α0,

λSt
1 if α = 0,
αλ−1

−1(α) if α < 0.

is a continuous, strictly decreasing and satisfies

lim
α→−∞

B(α) = ∞, lim
α→λD

1

B(α) = −∞.

Proof. For α > 0 we express B(α) in terms of σ, uniquely determined by α = λ1(σ).
Then B(α) = σλ1(σ). By Lemma 12, σλ1(σ) increases as σ increases and α is
monotone decreasing in σ. Therefore B decreases as a function of α. By Lemma 11,
α→ λD

1 implies σ → −∞ and consequently

lim
α→λD

1

B(α) = lim
σ→−∞

σλ1(σ) = −∞.

The relation B(0+) = λSt
1 follows from the fact that σ → ∞ as α → 0 together

with (5.9). Similarly if α is negative we set α = λ−1(σ) . The assertions then follow
as before from the Lemmas 11 and 12. In particular we have B(0−) = λSt

1 which
shows that B(α) is continuous on the entire interval (−∞, λD

1 ). 2

Theorem 14 Let 0 ≤ f ∈ L2(D) and 0 ≤ g ∈ L2(∂D) not both identically zero.
Then a solution of (5.1) is positive if and only if (α, β) satisfies α < λD

1 and
β < B(α).
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Proof. Suppose (5.1) has a solution u > 0 in D. Then necessarily α < λD
1 , which

can be seen as follows. Let ϕD
1 be a positive copy of the first Dirichlet eigenfunction.

We claim that∫
D
∇ϕD

1 · ∇ψ + q(x)ϕD
1 ψ dx ≤

∫
D
λD

1 ϕ
D
1 ψ dx ∀ψ ∈ H1(D) with ψ ≥ 0 in D.

(5.14)
This inequality amounts to the weak form of ∂ϕD

1 /∂n ≤ 0 on ∂D. The proof may
be folklore or not – we give a short proof in Lemma 18 of the Appendix. Taking
ψ = u in (5.14) and using ϕD

1 as a test-function in the weak form of (5.1) we find∫
D
αuϕD

1 + fϕD
1 dx =

∫
D
∇u · ∇ϕD

1 + q(x)uϕD
1 dx ≤

∫
D
λD

1 ϕ
D
1 u dx.

Hence α ≤ λD
1 and if f ≥ 0, 6≡ 0 then we obtain α < λD

1 . It remains to show that
it is impossible to have α = λD

1 , f ≡ 0 and g ≥ 0, 6≡ 0. In this case we take the
test-function ψ = (u− ϕD

1 )− ∈ H1
0 (D) both in (5.14) and in the weak form of (5.1)

and subtract:∫
D
|∇(u− ϕD

1 )−|2 + q(x)(u− ϕD
1 )−

2
dx ≥ λD

1

∫
D

(u− ϕD
1 )−

2
dx.

By the variational characterization of λD
1 we get (u − ϕD

1 )− = tφD
1 for some t ≥ 0,

i.e, u = sϕD
1 for some s > 0. But this is impossible since u > 0 in D. Thus we know

that α < λD
1 . Next we consider the cases 0 < α < λD

1 , α < 0 and α = 0 separately.

(i) 0 < α < λD
1 : let α = λ1(σ) for some σ ∈ R and β = τα for some τ ∈ R. Note
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that

β < B(α) ⇔ τα < B(α) = λ−1
1 (α)α = σα

⇔ τ < σ

⇔ λ1(τ) > α.

From Theorem 2 and the assumption that either f or g are non-trivial we know
that the latter condition is a sharp condition for the existence of positive solutions
u of (5.1) with β = τα.

(ii) α < 0: we set α = λ−1(σ) and β = τα. The argument of (i) can be repeated:

β < B(α) ⇔ τα < B(α) = λ−1
−1(α)α = σα

⇔ τ > σ

⇔ λ−1(τ) < α,

and the latter condition is again sharp by Theorem 2.
(iii) α = 0: in this case the necessity/sufficiency of the condition β < λSt

1 = B(α)
for the existence of positive solutions is well known from the theory of Stekloff
problems. 2

Appendix

Lemma 15 Suppose D ⊂ RN is a bounded Lipschitz domain. There exists a con-
stant C̃ = C̃(D) such that for every ε ∈ (0, 1) we have∮

∂D
z2 ds ≤ C̃

ε

∫
D
z2 dx+ C̃ε

∫
D
|∇z|2 dx for every z ∈ H1(D).

Proof. Let ξ be a smooth vectorfield in a neighbourhood ofD such that ξ·n ≥ c0 > 0
a.e. on ∂D. For the existence of ξ, cf. Lemma 30 in [2]. The inequality∮

∂D
c0z

2 ds ≤
∫

D
(div ξ)z2 + 2zξ · ∇z dx ≤

∫
D
C(z2 +

1
ε
z2 + ε|∇z|2) dx

is equivalent to the claim. 2

Lemma 16 Suppose D ⊂ RN is a bounded Lipschitz domain. Let 0 ≤ A ∈ Lp1(D),
0 ≤ B ∈ Lp2(∂D) with p1 > N/2 and p2 > N − 1. For z ∈ H1(D) and t > 0 the
following inequalities hold∫

D
A(x)z2 dx ≤ t1−2p1/N‖A‖2p1/N

Lp1 (D)

∫
D
|∇z|2 dx+ t

∫
x∈D:A(x)≤t

z2 dx,∮
∂D

B(x)z2 ds ≤ t1−p2/(N+1)‖B‖p2/(N−1)
Lp2 (∂D)

∫
D
|∇z|2 dx+ t

∮
x∈∂D:B(x)≤t

z2 ds.
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Proof. We give the proof of the first inequality and write p = p1 for simplicity.
The proof of the second is analogous. Let Dt = {x ∈ D : A(x) ≥ t}. The inequality

tN/2 meas(Dt) ≤
∫

Dt

A(x)N/2 dx ≤ ‖A‖N/2
Lp(D) meas(Dt)1−N/(2p)

implies

meas(Dt) ≤ ‖A‖p
Lp(D)t

−p,

∫
Dt

A(x)N/2 dx ≤ ‖A‖p
Lp(D)t

N/2−p.

Hence ∫
D
A(x)z2 dx ≤

∫
Dt

A(x)z2 dx+ t

∫
D\Dt

z2 dx

≤
( ∫

Dt

A(x)N/2 dx
)2/N

‖z‖2

L
2N

N−2 (D)
+ t

∫
D\Dt

z2 dx

≤ ‖A‖2p/N
Lp(D)t

1−2p/N‖∇z‖2
L2(D) + t

∫
D\Dt

z2 dx

which implies the claim. 2

Lemma 17 Suppose D ⊂ RN is a bounded Lipschitz domain and let a ∈ L∞(D),
b ∈ L∞(∂D).

(i) Let f ∈ Lp1(D), g ∈ Lp2(∂D) with p1 > N/2 and p2 > N − 1. There exists
a constant C = C(‖a‖∞, ‖b‖∞, D,N, p1, p2) such that every weak solution v ∈
H1(D) of

−∆v = a(x)v + f(x) in D, vn = b(x)v + g(x) on ∂D (5.15)

satisfies ‖v‖L∞(D) ≤ C(‖v‖L2(D) + ‖f‖Lp1 (D) + ‖g‖Lp2 (D)).

(ii) For any p ∈ [1, n
n−2) there exists a constant C = C(‖a‖∞, ‖b‖∞, D,N, p) such

that every weak solution 0 ≤ v ∈ H1(D) of

−∆v ≥ a(x)v in D, vn ≥ b(x)v on ∂D (5.16)

satisfies infD v(x) ≥ C‖v‖Lp(D). In particular, either v ≡ 0 or there exists
δ > 0 such that v ≥ δ > 0 a.e. in D and trace v ≥ δ > 0 a.e. on ∂D.

Proof. The proof is based on Moser’s iteration method, cf. Gilbarg, Trudinger [9].
(i) Let k = ‖f‖Lp1 (D) +‖g‖Lp2 (∂D) and define v̄ = v+ +k. For fixed L > 0, s > 0

let
ϕ = v̄min{v̄2s, L2s} − k2s+1, w = v̄min{v̄s, Ls}.

Then

∇ϕ = ∇v+
(
min{v̄2s, L2s}+2sv̄2sχ{v̄≤L}

)
, ∇w = ∇v+

(
min{v̄s, Ls}+sv̄sχ{v̄≤L}

)
,
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and hence |∇w|2 ≤ (s+1)∇v ·∇ϕ. Taking ϕ as a test function in (5.15) and noting
that ϕ = 0 whenever v ≤ 0 we obtain

1
s+ 1

∫
D
|∇w|2 dx

≤
∫

D
(|a|v+ + |f |)ϕdx+

∮
D

(|b|v+ + |g|)ϕds

≤
∫

D
(|a|v+ + |f |)v̄min{v̄2s, L2s} dx+

∮
∂D

(|b|v+ + |g|)v̄min{v̄2s, L2s} ds.

By the inequalities (|a|v+ + |f |) ≤ (|a| + |f |/k)v̄, (|b|v+ + |g|) ≤ (|b| + |g|/k)v̄ we
obtain

1
s+ 1

∫
D
|∇w|2 dx ≤

∫
D
A(x)w2 dx+

∮
∂D

B(x)w2 ds, (5.17)

where A(x) = |a(x)| + |f(x)|/k and B(x) = |b(x)| + |g(x)|/k. This choice of
A,B implies in particular ‖A‖Lp1 (D), ‖B‖Lp2 (∂D) ≤ C(‖a‖∞, ‖b‖∞). Here and in
the following the same symbol C denotes different constants depending only on
‖a‖∞, ‖b‖∞, D,N, p1, p2. Next we apply Lemma 16 to (5.17) for the volume-integral
with t = (2s+2)1/(

2p1
N
−1)‖A‖γ1

Lp1 (D), γ1 = p1/(p1−N/2) and for the surface integral

with t = (2s+ 2)1/(
p2

N+1
−1)‖B‖γ2

Lp2 (∂D), γ2 = p2/(p2 −N + 1). Thus we obtain∫
D
|∇w|2 dx ≤ C(2s+ 2)

p1
p1−N/2

∫
D
w2 dx+ C(2s+ 2)

p2
p2−(N+1)

∮
∂D

w2 ds. (5.18)

Next we use the interpolation inequality (15) with ε = 1
2C̃C

(2s + 2)
−p2

p2−(N+1) and
deduce from (5.18)∫

D
|∇w|2 dx ≤ 2

(
C(2s+ 2)

p1
p1−N/2 + 2CC̃2(2s+ 2)

p2
p2−(N+1)

) ∫
D
w2 dx

and by adding the square of the L2-norm of w on both sides and using the Sobolev-
inequality we find

‖w‖ 2n
n−2

≤ C(s+ 1)γ‖w‖2, γ = max
{ p1

p1 −N/2
+,

p2

p2 − (N + 1)

}
. (5.19)

Provided w ∈ L2(s+1)(D) we can let L tend to infinity in (5.19) and obtain v̄ ∈
L

(s+1)2n
n−2 (D) and

‖v̄‖(s+1) 2n
n−2

≤
(
C(s+ 1)

) γ
s+1 ‖v̄‖2(s+1). (5.20)

Hence, if s0 = 0 and sk+1 + 1 = (sk + 1) n
n−2 then

‖v̄‖2(sk+1+1) ≤
(
C(sk + 1)

) γ
sk+1 ‖v̄‖2(sk+1).
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Since sk + 1 = ( n
n−2)k, k ∈ N0 it follows that

‖v̄‖∞ = lim
k→∞

‖v̄‖2(sk+1+1) ≤
∞∏

k=0

(
C(sk + 1)

) γ
sk+1 ‖v̄‖2

= exp
( ∞∑

k=0

γ lnC(sk + 1)
sk + 1

)
‖v̄‖2

≤ C exp
( ∞∑

k=0

γk
(n− 2

n

)k
)
‖v̄‖2,

where the last sum converges. Recalling the definition of v̄ = v+ + ‖f‖Lp1 (D) +
‖g‖Lp2 (∂D) we have obtained the upper estimate in statement (i) of the lemma for
v+. The estimate for v− follows from v− = (−v)+.

(ii) Now we turn to the lower estimate of the lemma. Let ϕ = v̄s with s < 0
where v̄ = v + L with L > 0. Then ∇v · ∇ϕ = sv̄s−1|∇v̄|2 and taking ϕ as a test
function in (5.16), we find

s

∫
D
v̄s−1|∇v̄|2 dx ≥

∫
D
a−(x)v̄s+1 dx+

∮
∂D

b−(x)v̄s+1 ds

≥ −C
( ∫

D
v̄s+1 dx+

∮
∂D

v̄s+1 ds
)
. (5.21)

If s 6= −1 we set V = v̄
s+1
2 and obtain |∇V |2 =

(
s+1
2

)2|∇v̄|2v̄s−1. If s = −1 then
we set V = log v̄ and obtain |∇V |2 = v̄−2|∇v̄|2. Together with (5.21) this implies

∫
D
|∇V |2 dx ≤

{
C|s+ 1|

( ∫
D V

2 dx+
∮
∂D V

2 ds
)

if s 6= −1,

C if s = −1,
(5.22)

with C = C(‖a‖∞, ‖b‖∞). Using the interpolation inequality (15) with ε = 1
2CC̃|s+1|

this implies ∫
D
|∇V |2 dx ≤ C|s+ 1|2

∫
D
V 2 dx,

provided |s + 1| ≥ |s0 + 1| > 0. Adding the square of the L2-norm of V on both
sides and using the Sobolev-inequality we get

‖V ‖ 2n
n−2

≤ C|s+ 1|‖V ‖2. (5.23)

For any p ∈ R let

Φ(p) =
( ∫

D
v̄p dx

)1/p
.

Then (5.23) implies Φ
(
(s+ 1) n

n−2

) s+1
2 ≤ C|s+ 1|Φ(s+ 1)

s+1
2 , i.e.,

Φ
(
(s+ 1) n

n−2

)≥
≤

(C|s+ 1|)
−2
|s+1|Φ(s+ 1) if

{
s < −1

−1 < s < 0
. (5.24)
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This estimate will be iterated. Set sk+1 + 1 = (sk + 1) n
n−2 . Then sk + 1 = (s1 +

1)( n
n−2)k−1 and if s1 < −1 then

Φ
(
sk+1 + 1) ≥ (C|sk + 1|)

−2
|sk+1|Φ(sk + 1).

Solving this difference inequality it follows that

inf
D
v̄ ≥ lim

k→∞
Φ(sk+1 + 1) ≥

∞∏
k=1

(C|sk + 1|)
−2

|sk+1|Φ(s1 + 1)

= exp
( ∞∑

k=1

−2 lnC|sk + 1|
|sk + 1|

)
Φ(s1 + 1)

≥ C

exp
( ∑∞

k=1(k − 1)
(

n−2
n

)k−1)Φ(s1 + 1),

and since the last sum converges we have obtained that

inf
D
v̄ ≥ CΦ(s1 + 1) (5.25)

for some initial number s1 < −1, which we can still choose. Similarly, if we choose
s1 ∈ (−1, 0) we can iterate (5.24) as long as sk ∈ (−1, 0) and obtain Φ( n

n−2(sk+1)) ≤
CΦ(sk + 1) ≤ CΦ(s1 + 1). In other words we have

Φ(p) ≤ CΦ(p0) whenever 0 < p0 < p <
n

n− 2
. (5.26)

It remains to give a lower bound for Φ(s) for some s < 0. For this purpose recall the
John-Nirenberg inequality, cf. Gilbarg, Trudinger [9]: suppose V ∈W 1,1(D) is such
that there exists C > 0 with

∫
Br
|∇V | dx ≤ CrN−1 for every ball Br ⊂ D. Then

there exists a number p0 > 0 such that
∫
D e

p0|V−Ṽ | dx < C where Ṽ = 1
|D|

∫
D V dx.

We apply this for V = log v̄. Then the second inequality of (5.22) shows that
V ∈ W 1,2(D) and hence

∫
Br
|∇V | dx ≤ CrN/2(

∫
Br
|∇V |2 dx)1/2 ≤ CrN−1‖∇V ‖2,

where we use the scaling property of
∫
Br
|∇V |2 dx with respect to r. Thus, the

John-Nirenberg inequality applies and together with the trivial estimate ±(V −Ṽ ) ≤
|V − Ṽ | we obtain∫

D
ep0V dx ≤ Cep0Ṽ ,

∫
D
e−p0V dx ≤ Ce−p0Ṽ , i.e.,

∫
D
ep0V dx

∫
D
e−p0V dx ≤ C2.

Recalling the definition of V = log v̄ this shows that
∫
D v̄

p0 dx
∫
D v̄

−p0 dx ≤ C2 and
hence ( ∫

D
v̄p0 dx

)1/p0

≤ C2/p0

( ∫
D
v̄−p0 dx

)−1/p0

.

Together with (5.25) this shows that

inf
D
v̄ ≥ CΦ(−p0) ≥ C ′Φ(p0) ≥ C ′′Φ(p),

where p ∈ [1, n
n−2). The last part of this inequality follows either from Hölder’s-

inequality if p0 ≥ n
n−2 or from (5.26) if p0 ∈ (0, n

n−2). Letting L→ 0 we obtain the
claim of statement (ii) of the lemma. 2
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Lemma 18 Let D be a bounded Lipschitz domain, 0 ≤ q ∈ L∞(D), 0 ≤ h ∈ L2(D)
and 0 ≤ v ∈ H1

0 (D) a weak solution of

−∆v + q(x)v = h in D, v = 0 on ∂D. (5.27)

Then ∫
D
∇v · ∇ψ + q(x)vψ dx ≤

∫
D
hψ dx ∀ψ ∈ H1(D) with ψ ≥ 0. (5.28)

Proof. Let us first prove the result for h ∈ C∞(D) and q ∈ C∞(D). Then v ∈
C∞(D) and (5.27) holds pointwise in D. By Sard’s Lemma for almost every 0 <
s < ‖v‖∞ the super-level set Ds = {x ∈ D : v(x) > s} has a smooth boundary.
Thus we obtain for almost every s ∈ (0, ‖v‖∞) and every ψ ∈ H1(D) with ψ ≥ 0∫

Ds

∇v · ∇ψ + q(x)vψ dx =
∫

Ds

hψ ds+
∮

∂Ds

ψ ∂nv︸︷︷︸
≤0

ds ≤
∫

Ds

hψ ds.

Choosing an appropriate sequence s→ 0 we obtain (5.28). For the general case we
can approximate h ∈ L2(D), q ∈ L∞(D) by sequences hk, qk ∈ C∞(D) with hk → h
and qk → q in L2(D). Let vk ∈ H1

0 (D) ∩ C∞(D) be the corresponding solution.
Then (5.28) holds for vk, qk, hk and every test function ψ ∈ C∞(D) with ψ ≥ 0.
Letting k →∞ we retrieve the result for v, q, h. 2
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