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Abstract

The Paneitz operator is a fourth order differential operator which arises in conformal geometry
and satisfies a certain covariance property. Associated to it is a fourth order curvatur®— the
curvature.

We prove the existence of a continuum of conformal radially symmetric complete metrics in
hyperbolic spacél™, n > 4, all having the same consta@tcurvature.

Moreover, similar results can be shown also for suitable non-constant pres@ribed/ature
functions.

1 Introduction

The fourth order Paneitz operator arises naturally in conformal geometry, when one looks for higher
order elliptic operators enjoying some covariance property. We shall be concerned with a correspond
ing semilinear equation, which comes up when searching conformal metrics with a certain prescribec
fourth order curvature invariant — the so call@ecurvature.
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Let (M™, g) be a Riemannian manifold of dimensien The objective of conformal geometry is
the following: can one change the original mefgiconformally into a new metrié with prescribed
properties? This means that one searches for some positive fupctioch thath = pg and the
conformal factop has to satisfy an elliptic boundary value problem.

E.g, forn > 2let L, := —c,A, + R, be the conformal Laplacian, wherg, is the Laplace
Beltrami operatorg, = 4(n — 1)/(n — 2) and R, is the scalar curvature. If one sets the conformal

factorp = uﬁ, u > 0 then it is well known thatf. has the following conformal covariance property:

n+2

Vo e C*(M) : Ly(up) = un=2Ly(p).

If one prescribes the scalar curvatuRe for the metrich then« has to satisfy the second-order

equation
n+

Ly(u) = un2 (1) = Ryur—s. 1)

In the caseR;, = const. this is the so called Yamabe problem. In the cRgés a prescribed function
it is called the Nirenberg problem.

It turns out that there are many operators beside the conformal Laplagian general Rie-
mannian manifolds of dimension greater than two which enjoy a conformal covariance property. A
particularly interesting one is the fourth order operatron n-manifolds discovered by Paneitz in
1983, which can be written fotr > 4 as:

n—4

—an

Py = A + divg(a, Ry 1d —b, Ricy) V, + 5

wherea,, = 2((:%))(21:42) b, = —-%5. HereRic : TM — TM is the(1, 1)-tensor given byRic] =
¢’% Ricy;, the operatoR/, produces the gradient vector-field of a function aid, the divergence of

a vector-field. Further, th@-curvature is given by

n’ —4n® +16n-16 , 1
S — 12 —27 9 2(n—1)

2 .
Qg = —m| Ric, |* +

with | Ric |? := Ric;; Ricge g ¢7“. In weak form the Paneitz operator may be written

AR

-4
/ (Pyu)p dv, = / Agulgp — a, Ry(Vu, V), — by Ricy(Vu, Vo) + nTngp dv,
M M

for all p € C5°(M). In the caser > 4, the conformal factor is usually chosen in the fopm=
u* (=49 4, > 0 and the conformal covariance property of the Paneitz operator reads as follows:

n+4

Vo e C®(M) : Py(up) = un=1Ppy(yp).

If one prescribes th@-curvature for the metrié by a function@), this leads to the equation

nt4 n—4 ntd
(u) = ui Py(1) = == Quuir, 2)

which is a fourth-order analogue of (1).

Natural generalizations of problems from second order conformal geometry like the Yamabe prob-
lem, the Nirenberg problem or also existence, uniqueness and regularity for equations involving the
Paneitz operator or biharmonic mappings are obvious and interesting questions to be studied. W
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refer to the survey articles of Chang [C1] and Chang, Yang [CY3] and on the lecture notes [C2] for
more background information on the Paneitz operator

In the present paper the manifold/™, g) is the hyperbolic spacE"™ with its standard metric.
We focus on finding a complete metric= Uﬁg on H" such thath has prescribed)-curvature.
We give conditions or) (which include the cas& = const.) such that an entire continuum of
mutually distinct complete radially symmetric conformal metrics exist all having the same prescribed
@-curvature. In the case whe(g = %n(n2 — 4) this family contains in its “center” the explicitly
known standard hyperbolic Poinéametric, and at least a sub-continuum of these metrics has negative
scalar curvature.

We point out that it is surprising to find such highly non-unique solutions. In previous work on
the second order Yamabe problem, uniqueness of metrics with constant scalar curvature was foun
in the case ofl™ by Loewner-Nirenberg [LN]. In the case 6f uniqueness (up to isometries) was
proved by Obata [O] and later by Caffarelli, Gidas, Spruck [CGS] and Chen, Li [CL]. In the fourth
order Paneitz problem, uniqueness (up to isometries) of metrics with cofstanature orb™ was
found by Chang, Yang [CY2] for = 4, by Wei, Xu [WX2] and C.-S. Lin [L] forn > 4 and by Choi,

Xu [CX] in the exceptional case = 3.

In our setting we chosé)/, g) to be a non-compact manifold. In contrast to this non-compact
case, the literature for the existence of solutions of the prescéibedrvature problem on compact
manifolds is considerably bigger. We only give a brief survey on results concerning fourth order
Paneitz operators. In Chang, Yang [CY1], Wei, Xu [WX1] and Gursky [G] existence results for the
constant))-curvature problem in compadtmanifolds are given. Recent work of Djadli, Malchiodi
[DM] provides further extensions and completions of these works.

On compact manifolds of dimension greater thaxistence results were given for Einstein mani-
folds by Djadli, Hebey, Ledoux [DHL] and in the case of invariance of both the manifold(and
curvature function under a group of isometries by Robert [R]. On the sfstiese refer to results of
Djadli, Malchiodi, Ould Ahmedou [DMO1], [DMO2] and Felli [FE].

The main results

As a model for hyperbolic spadé” we use the Poincérball, i.e. H" is represented by the unit-
ball B = B;(0) C R"™ with standard co-ordinates, ..., z,, and the Poincé& metricg;; = 4/(1 —
|2|?)?6;;. SinceH" is conformally flat we may seek the mettiof the formh,; = Uﬁgzj =y 0ij
and the corresponding differential equation (2)daeduces to
2 n—4 (n+4)/(n—4) :

Au:TQu , u>0 inB, u|0B = . (3)
The conditionu|0B = oo is necessary (and as we shall show also sufficient) for completeness of the
metrich. ForU = 1 we are at the Poincametric. In this case the conformal factor is given explicitly

b
Y 9 (n—4)/2
o= (=) ?

The Poincae metric(ué/ (”’4>5ij) ~ with u, as above has constagtcurvatureQ) = in(n® — 4).
j



Infinitely many complete radial conformal metrics with the same constant)-curvature

Theorem 1. For everya > 0, there exists a radial solution of the prescrib@ecurvature equation (3)
in the unit ball withQ = £n(n?® — 4), infinite boundary values &@tB and withu(0) = . Moreover,

(i) the conformal metric(u4/(”*4>5ij)ijon B is complete;

(i) if w(0) > 0is sufficiently small then the corresponding solution generates a metric with negative
scalar curvature.

The existence proof is given in Section 2. Closely related results can be found in a recent and
independent work of Diaz, Lazzo, Schmidt [DLS1]. Statement (ii) is discussed in Section 3.

According to forthcoming work [DLS2] of Diaz, Lazzo, Schmidt, one has, for the solutions con-
structed in Theorem 1, that asymptotically fop” 1

u(r) ~ C(1 — )72

whereC' = C(n) does not depend on the solution. Furthermore, the derivativeseghibit a cor-
responding uniform behavior. This is an even more precise information than just completeness of
the conformal metric. However, for the less far reaching statement (i) of completeness, we provide &
relatively simple and elementary independent proof in Section A.

The equation (3) is invariant under Moebius transformations of the unit ball. But the only solution
which is invariant under all Moebius transformations of the unit ball is the explicit solution (4). Hence,
we also have infinitely many distinct nonradial solutions, which is again in striking contrast to the
second order analogue of (3). The following is an open problem, which we could not solve in this
paper but hope to address in future work:

Find a geometric criterion, which singles out the explicit solution (4) among all other
solutions of (3).

One might guess that among all radially symmetric metrics the explicit P&moatric is uniquely
characterized by a condition of the kind

1
—C<R,<——<0
S g S C<

with a suitable constar®’. This is however wrong, since it follows from the result of [DLS2] that
for every radial solution: of (3) one has that the scalar curvature of the generated metric satisfies
lim,_, R, = —n(n — 1). It is however trivially true that the Poindametric is the only one with

R, = —n(n—1).

Infinitely many complete radial conformal metrics with the same non-constant)-curvature

For smooth positive radial function@ : B — R we give suitable assumptions ghsuch that the
conformal metrig(u?/ ("—4)5ij)ij has@-curvature equal to the given functich We can prove a result,
which is analogous to Theorem 1.

Theorem 2. Let Q@ € C'[0,1] and assume that there are two positive constapgs@; > 0 such
that0 < Qo < Q(r) < Q1 on|0, 1]. Suppose further that there exigts [0, 1) such that-@Q'(r) >
—qQ(r)on|0, 1], i.e.,r?Q(r) is monotonically increasing. Then, for every- 0, there exists a radial
solution of the prescribed-curvature equation (3) in the unit ball with infinite boundary values at
0B and withu(0) = «. Moreover,



(i) the conformal metriqu?/ ("—4>5ij)ijon B is complete;

(i) if »(0) > 0 is sufficiently small, then the corresponding solution generates a metric with nega-
tive scalar curvature.

Infinitely many solutions have also been observed by Chang and Chen [CC] in a different confor-
mally covariant fourth order equation Rt with exponential nonlinearity.

R. Mazzeo pointed out that perturbation methods developed by F. Pacard and him [MP] will also
apply in the present situation in order to construct neighbourhoods of nonradial solutions close to our
radial ones.

2 Shooting method

2.1 ConstantQ)-curvature

Here we look for radial solutions of (3). By means of a shooting method we shall construct infinitely
many distinct solutions. Applying the special Moebius transforms

1 1 a
b B=B. )= o a—<|a|2—1>‘—2 (x——) )
r_ o
|a|?

we even find nonradial solutions by setting
fa = JQE)Z_ZL)/(QN) .U O gpa’

where.J,, is the Jacobian-determinant @f. All these conformal metrics have constahcurvature
+n(n* — 4) and a continuum of them has negative scalar curvature.
In order to construct solutions of (3) with = %n(n2 — 4), we do this for the simplified problem

A%y = /=D >0 in B, u|0B = 0.

By a simple scaling argument both boundary value problems are equivalent. For radial solutions we
study the initial value problem

2 _ 17n2 nflg ’ _ (n+4)/(n—4)
Au(r)y=|r 5 r 5 u(r) = u(r) , r >0,
r r

u(0) = «, u'(0) =0, Au(0) = 3, (Au)'(0) = 0,

(6)

wherea > 0, 3 € R are given. If necessary,("t%/("=% will denote also the odd extension to
the negative reals; however, we mainly focus on positive solutions. It is a routine application or
modification of the Banach fixed point theorem or the Picard-Lividedsult to show that (6) always

has unique local’*-solutions.

It is a simple but very useful observation that the initial value problem enjoys a comparison prin-
ciple, see [MKR]:



Lemma 1. Letu,v € 04([ R)) an C([0, R)), Q > 0 be such that

{ el B): A - < -0 5 ) - Gy .
u(0) > v(0), u’(O) =0'(0) =0, Au(0) > Av(0), (Au)(0)= (Av)'(0)=0.
Then we have

Vre[0,R): uw(r) >o(r), o'(r)>'(r), Au(r) >Av(r), (Au)(r) > (Av)'(r). (8)

Moreover,

(i) the initial point 0 can be replaced by any initial point > 0 if all four initial data at p are
weakly ordered,

(i) a strict inequality in one of the initial data gt > 0 or in the differential inequality orip, R)
implies a strict ordering ofi, ', Au, Au' andv, v’, Av, Av' on(p, R).

The problem (6) has the following entire solutions

[n(n? —4)(n — 4)]"%4
Valr) = c 2\n—4 9
(r) (\/n(nQ —4)(n—4)+ (a2/(n—4)r) )"z 9

of (6) with &« > 0 and suitably chosefl, := (y(a) := AU,(0). It is known that these solutions

4
are the only positive entire solutions of (6), cf. [L], [WX1]. The mettic= Uy " 4,; arises as the
pullback of the standard metric of the sphBfeunder a stereographic projectionRé .
For our purposes it is enough to show the following result: the soldfipis a separatrix in the
r-u-plane, i.e., if we fixa > 0 and considep as a varying parameter thén, separates the blow-up
solutions from the solutions with one sign-change, which lie belgw

Lemma 2. Leta > 0 be fixed. Then, fof > 3, the solution: = u, s blows up on a finite interval,
which we denote by, R(«, 3)). The blow-up-radius?(«, 3) is monotonically decreasing ifi.

Proof. It is useful to have the explicit solutions

o\ —(n—4)/2
Vo(r) = a (1 = (Ai) ) , (10)

of (6) at hand, where., = a~2®=4 [n(n? — 4)(n — 4)]"/*. We fix anya > 0, somes > Fy(a)
and look at the corresponding solutian= u, g of (6). In order to see that'(r) — U/, (r) is strictly
increasing, note first by Lemma 1 thatu(r) — AU,(r) is positive and strictly increasing. Since

u'(r) — Ul (r fo rt" 1 (Au — AU,)(rt) dt it follows thatw/(r) — U/ (r) is also strictly increasing.
So u(r) cannot converge t0 and hence has to become unbounded as> co. By integrating
successively the differential equationwoive find R large enough such that

u(R) > 0, u'(R) >0, Au(R) > 0, (Au)'(R) > 0.
Sincelimg .o Va(r) = 0 locally uniformly inC*, we can find a sufficiently smaidt > 0 such that
wR) > Va(R),  W(R)>Vi(R),  Au(R)>AVi(R),  (Au)(R)> (AVa)(R).

But then, the comparison principle Lemma 1 shows that- R :  u(r) > Vz(r) and hence, blow
up of u at some finite radiug(«, 3). The monotonicity ofR(«, ) is also a direct consequence of
Lemma 1. [



Lemma 3. Leta > 0 be fixed. The blow-up radiu8(«, /3) is a continuous function af € (5, o).

Proof. Let 5 > [, be arbitrary but fixed and let denote= u, s the corresponding solution of (6).
The continuity from the right

Be B = R(o,fB) — R(a,f)

follows directly from the monotonicity of2(«, 3) in 5 and continuous dependence on initial data.
Only continuity from the left has to be proved.

First we show that for close enough t& = R(«, 3) the functionsu, v/, Au and(Au)" are finally
strictly increasing. For, »"~'v/, Au andr™~! (Au)’, this follows from successive integration of the
differential equation, since the relevant quantities become — at least finally — positive. It remains to
consider/ (R — 0) and(Au)’ (R — 0).

We observe that

R
o =R"1(R-0)= / " Au dr; (11)
0

R R
0o =R"1(Au)'(R—-0) = / " A%udr = / Ly (/=) g (12)
0 0

From this we conclude far " R:

1

r n—1
(Au)(r) = /0 (3) sy ds = / (u(rt)) D/ (=agn=1 gy

r 0

4 1
nt / (u(rt))¥ 9 o (rt) e dt

n— 0

1
(Auw)'(r) = / (u(rt)) T/ ==L gt 4 g
0
— oo by (12)
1

W(r) = /O ' (f)“Au(s)ds:r /O -1 Au(rt) dt,

r

1 1
u'(r) = / t" T Au(rt) dt+r/ t"(Au)'(rt) dt
0 0
— 400 by (11)
Moreover, for later purposes we note thatfoy” R
1 1
u"(r) = 2/ t"(Au) (rt) dt+7’/ " (A (rt) dt
0 0

2 " Ay 1
pn+l /0 S (Au) (3) ds — C Z —AU(T) —C — +00.

C

Here,C denotes a constant which depends on the solution
Now, we consider a sequenck " 3. By monotonicity we haveR(«, 5;) > R(«, ). For
tr > 1, which will be adequately chosen below, we define the function

o r
vg(r) == tgl Wuaﬁ ( ) , (13)

t
which solves the same differential equationi@ag. We find values, — § < ro < R(«, 3) such that

Ua5(10) > 0, u;ﬂ(?‘g) >0, Auag(ro) >0, (Auag)(ro) >0,



and all these quantities are strictly increasing(en— d, R(«, 3)). By continuous dependence on
data, for3, close enough t¢ we also have

Ua g, (T0) > 0, u'aﬂk(rg) >0, Auag,(ro) >0, (Auag,) (ro) >0.

For suitably chosety, we conclude that
ve(ro) =t Puag <T_O)
) = s (1) <6 00) <l )
—n/2 r
Avg(rg) = t, "Auag (t_)

e T e
@) = 67 By (1) <4 Bt ) < (Bt ),

By continuous dependence on data, we may achieve
te \ 1 (k — 00).
The comparison result of Lemma 1 yields fop ry:
e, () 2 e(r).
This gives finally
R(a, 8) < R(a, B) < R(v) = R(c, B) - tx — R(a, §) as k — oo,
whereR(v;) denotes the blow-up-radius of. The proof is complete. m

Lemma 4. Leta > 0 be fixed. Then, for the limits of the blow-up radié&v, 3), one has:

lim R(a, 3) =00,  lim R(a, ) = 0. 14
Jimy (a,8) = o0 Jim, (o, B) (14)

Proof. The first claim is just a consequence of the global existence of the solutigh $or3, and
continuous dependence of solutions on the initial data. The proof of the second statement relies upo
some rescaling arguments. First we note that the same argument as in the proof of Lemma 2 show
that R(0, 1) < co. By the comparison result from Lemma 1 we conclude that

Vo' >0 R(a’;1) < R(0,1) < oo. (15)

For 5 > 0 we find the relation

s = (&) s ((5)777) =

wherecd’ is chosen such that
o fa\/m) ;o (4—n)/n
ﬁ—(a/) , lLe.a =a-p .
Obviously,a’ \, 0 for 3 co. We read from (16) and (15) that
«

I\ 2/(n—4) o 2/(n—4)
R(a. 8) = R(c/, 1) (—) < R(0,1) (—) — R(0,1)3°2"

« (0%

which tends td) as — oo. ]



Theorem 3. For everya > 0 there exists a radial solution of (6) with(0) = « which blows up at
r = 1. Moreover,

(i) if u, w are two such solutions with(0) < @(0) thenAw(0) > Au(0),

(i) if 0 < w(0) < [n(n? —4)(n —4)]"s" then the corresponding solution generates a metric with
negative scalar curvature.

Proof. Leta > 0 be fixed, and denote, ; the solution of (6). According to Lemmas 3 and 4, we find
a suitables > fy(a) such that for the blow-up-radius, we have precisely:, 3) = 1. Property (i)
is a consequence of Lemma 1. To see property (ii) note that under the hypotkesi®) < V,,,(0)
with ap = [n(n? — 4)(n — 4)]"s" we find by (i) thatAu(0) > AV,,(0) > 0 and hencedu > 0 on
[0,1). Thus by Lemma 8 below the solutiangenerates a metric with negative scalar curvaturel

In order to complete the proof of Theorem 1, it remains to prove the completeness of the induced
metrics. Indeed, these metrics are complete, see Section A.

2.2 Nonconstant()-curvature

To obtain radial solutions of (3) for a prescribed smooth ra@iaurvature functior@) : B — R we
also use the shooting method. For simplicitydet= %Q. We then study the problem

A2y = Qu/e=D 4S50 inB, u|0B = oo, (17)

such that the conformal metrie.*/ ("‘4)5@)2,]. hasQ-curvature equal to the given functigh In all of
our discussion we make the following assumptions on the funélion

(Q1) there are two positive constaids, @, such thab < Q, < Q(r) < Q, on[0,1], Q € C'[0,1],
(Q2) there existg € [0,1) such that-Q'(r) > —qQ(r) on |0, 1], i.e.,7?Q(r) is increasing.

We extend@ as aC'-function to [0, co) which is bounded orl, c0) and satisfies (Q1), (Q2) on
0, 00).

Theorem 4. Let() satisfy(Q1), Q(2) For everya > 0, there exists a radial solution of the prescribed
Q-curvature equation (17) in the unit ball with infinite boundary values and with = «. Moreover,

(i) if u,u are two solutions with(0) < @(0) thenAu(0) > Awu(0),

(i) if w(0) > 0is sufficiently small then the corresponding solution generates a metric with negative
scalar curvature.

The initial value problem for (17) takes the form
A?u(r) = Tl_”g r”_lﬁ 2 u(r) = Q(r)u(r)m+/ (=4 r >0
or or ’ ’ (18)
u(0) = a, u'(0) =0, Au(0) = 3, (Au)'(0) = 0,

wherea > 0, 3 € R are given. Existence and uniqueness of la@&lsolutions denoted by, 5 is
standard.
We recall from (9) the definition of, = () = AU,(0) < 0.

9



Lemma 5. Leta > 0 be fixed. Then there exists a valge € [\/Q1 5, v Qo] With the following
properties:

(i) For —oo < 3 < B* the solutionu,, s is decreasing and has a finite first zero.

(i) For g > [* the solutionu,, s blows up on a finite intervaD, R(«a, 3)). For fixedq, the blow-
up-radius is decreasing if.

(iii) For § = p* the solutionu, g~ exists on0, co) and converges to at co.

Proof. For simplicity we assume that< Q(r) < 2 for r € [0, 00). As in the proof of Lemma 2 we
find with the help of the same subsolutidh(r) (& > 0 small enough) that fos > 3, the solution
a3 Must blow up at a finite valu®(«, 3). Likewise, we can use the functiobs,(r) := U, (v/2r)

n+4

solving A2U, = 2Us~" on |0, o) as supersolutions to see that for /23, the solutions:,, s have
a finite first zero. Hence we can define

B* = sup{f € R: u,z has afinite first zerg
= inf{# € R: u, 3 blows up at a finite valug,

where itis easy to see that the two numbers coincide. Moregvet,[v/23,, ). Finally, the solution
uq,3+ Must exist orj0, co) and can therefore only decay(at co. O

Lemma 6. Leta > 0 be fixed. Then, the blow-up radid¥ «, ) is a continuous function of <
(6%, 00).

Proof. Let 5 > 3* be fixed. Continuity of the blow-up radius from the right follows as before. For
the continuity from the left one shows first that foclose enough té&? = R(«, ) the functionsu,

o', Au and(Au) are finally strictly increasing. Far, r"~'u/, Au andr™~! (Au)’, this follows from
successive integration of the differential equation. To see the strict monotonieity(d&«)" near the
blow-up point one finds as before

R
0o =R"1(R-0)= / " A dr; (19)
0

R R
0o = R" HAu)' (R —0) = / r" AR dr = / " LQ(r)u Y (=) gy (20)
0 0
From this we conclude far " R:

S ~

(Au)(r) = /0 (3)" Qoui () ds = /0 Bt (e dt

r

nt i /0 OrtyurS (et () dt

(Au)"(r) = /0 Qrtyun=i (rt)t" " dt + r

n —

1
—H‘/ Q’(Tt)u%i(rt)t” dt
0
— 400 by (20),

where we have used hypothesis (Q2). The same proof as in Lemma 3 show§that” (r) — oo
asr /' R. The actual continuity proof of Lemma 3 was based on finding a subsolution

_ r
v (r) ==t "Uap (E) :

10



with v = "7‘4 and suitable, > 1. For non-constan® we need to choose a different positiyesince
the condition for, being a subsolution is given by

n+4 n+4

e~y n+4 n+4 ~
A2y =t Q0 M) e < Qv

To achieve this we use hypothesis (Q2). Hence we need to chosdesuch that-~ — 4 + 72—5‘1 <
—q. Sinceq € [0, 1) one possible choice ig = 3(n — 4)/8. Then the rest of the proof of Lemma 3
goes through. ]

Lemma 7. Leta > 0 be fixed. Then, for the limits of the blow-up radii&, 3), one has:

lim R(a, 3) = oo, lim R(a, 8) = 0. 21
Jim. Ra, B) = oo Jim, (a, B) (21)

Proof. For 5 = 3* there exists a global solution tendingitat co. By continuous dependence on the
initial data the first statement follows. The proof of the second statement is adapted from Lemma 4.
Let v, 5 be the solution 0of\% = Qu=1 with v(0) = a, v'(0) = 0, Av(0) = S, (Av)'(0) = 0. The
argument of Lemma 5 shows that; blows up at the finite poin§ (0, 1). Fora’ > 0 let us denote the
blow-up point ofv, ; by S(¢/, 1). ThenS(a/,1) < S(0,1) < oco. For positived we find the relation

= (B ((2)"). @

whered’ is chosen such that

n/(n—4) .
3= (ﬁ,) ,i.e. o =a- gl
(6]

We see that,, s is a subsolution ta,, 5. The blow-up positions therefore satisfy

o\ 2/ o\ 2/)
Ra.p) < 5.0 = 5@ (2) T <son(E) T = s
which tends td) as — oo. ]

Proof of Theorem 4.The proof follows from Lemmas 6 and 7. Let us prove property (ii). If we

4—n n— n+4 .
defineV := Q,® Vi, with ap = [n(n? — 4)(n — 4)]"5" then A2V = Q,V+i. Therefore, if
0 < u(0) < V(0) thenAwu(0) > AV(0) > 0 by an argument similar to (i), and hence: > 0 on
[0,1). Thus by Lemma 8 below the solutiangenerates a metric with negative scalar curvaturel

In order to finish the proof of Theorem 2, it remains to show the completeness of the induced
metrics. See Section A.

3 Subharmonicity and negative scalar curvature

Let us recall that we consider conformal metrics of the form
hij = u¥/ =96, (23)
In order to compute the scalar curvature it is more convenient to write the conformal factor as
hij = vV (72,

¥R
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i.e. we set := "2/ 1y = o(=0/(=2) The scalar curvatur®, of the metric(h;;),; is then
given by

R = M= eymen py = A 2o gy -2/
(- 2) (n—2)
B ) B N (I ) N S (VIR VD I
1) 9

The following lemma is an immediate consequence of this formula:

Lemma 8. Letu : B — (0,00) be aC*-function such that-Au < 0 in B. Then the conformal
metrich given by (23) satisfies
R, <0 in B.

For radially symmetric solutions, also the converse is true:

Proposition 1. Letu : B — (0,00) be an unbounded smooth radially symmetric solution of the
perturbed Paneitz equation (17) for the hyperbolic ball with> 0. Assume further thak, < 0in
B. Then

—Au <0 in B.

Proof. Since A%y > 0, the function—Auw is superharmonic. So, if we assume that\u > 0
somewhere, then in particular
—Au(0) > 0.

Sinceu is assumed to be radially symmetric, we also have
Vu(0) = 0.

Now, formula (24) would giveR,(0) > 0, a contradiction. O

A Completeness of the conformal metric

Completeness of the metric= wia d;; on B means that every maximally extended geodesic curve
has infinite length. However, the following lemma reduces this to a property, which is simpler to
check.

Lemma 9. Letu be a radial solution of (17). The induced metﬂéézj onH" is complete if and
only if

1
/ u(r) ™ dr = 0.
0

Proof. To see necessity of the above condition note that for fixedR™\ {0} the curvey(r) = rz/|z|
forr € (—1, 1) is a maximally extended geodesic and its length is given by

1 1
2/ <’Y/(7’)7’Y/(7‘)>,1/2 dr = 2/ Wi dr
0 0

12



Next we prove sufficiency. Let be a maximally extended geodesiqi, 1) parameterized oveR.
Thenlim; .1, |y(t)| = 1. Clearlyy has infinite length i (¢) = dist,(v(¢),0) becomes unbounded
for t — fo00. Since

RIGTI.
5(t) = / i () dr
0
the claim follows. O

We recall that according to forthcoming work [DLS2] of Diaz, Lazzo, Schmidt, one has, for the
solutions with constan®-curvature constructed in Theorem 1, that asymptotically-fof 1

u(r) ~ C(1 — r?)4=m/2,

whereC' = C(n) does not depend on the solution. This gives in particular that

1
/ u(r)? ™ dr = 0o

and so, the completeness of the conformal metric. This work covers a very general situation, is quite
involved and relies on deep work of Mallet-Paret and Smith [MPS] on Pa@rBandixson results

for monotone cyclic feedback systems. Moreover, we expect all these solutions to oscillate infinitely
many times around the explicit solution (4) and around each other.

In what follows we give an independent and relatively simple and elementary proof of the state-
ment of completeness by means of a suitable transformation and energy considerations. The proc
applies in the same way both to the case of constant and non-co@stanvature functions. The
final statement of completeness is given in Theorem 5 in Section A.6 below.

Estimates from above and a first nonoptimal estimate from below are deduced in the original
setting of equation (17). For the final conclusion t!ﬁém(r)Q/(”—“) dr = oo we have to perform a
change of variables such that " 1 is replaced by — oo so that elementary qualitative theory of
dynamical systems becomes applicable. This procedure is somehow motivated by techniques recent
developed for fourth order equations in [GG, FG].

A.1 Pohazaev’s identity for solutions of (17)
The following is true for every € (0, 1), cf. [PO], [PS]:

2n

n — 4/ ~
— x-VQ(x)ur1dx
27’L BT(O) ( )

n—4
2

2 —

5 nAuVu -vdo

u)—|—

= / VAuw(z:-Vu—l—
Sr(0)

n—4

(x - V)Q(a:)u% do.

1
- / Au(z"D*uv) — =(z - v)(Au)® +
S,(0) 2 n

For radial solutions this implies

n

_4 " ~ 2n
5 /OQ'(s)uMs”ds

=" Au) (rv' +

n—4 n o, .4, n(l o  n—4 ~ 2n_
5 u)—|—2r uAu—r (2(Au) + o Q(r)u ) (25)

A corresponding equality holds for radial solutions [pnr], where the integration on the left-hand
side is fromp to  and on the right-hand side the corresponding term evaluaiets atbtracted.

13



A.2 Maximal blow-up rate for radial solutions of (17)

Proposition 2. Letu : B — [0, oo) be an unbounded smooth radial solutions of the perturbed Paneitz
equation (17) on the unit ball with < Q(r) < 2. Then there exists a constatit= C'(u) such that

u(r) SC’( ! )7124

1—1r2

Proof. As was shown in the proof of Lemma 3, we may chopse (0, 1) such that
u,u',u”, Au, (Au)’ > 0 are increasing in(p,1).

By C' we denote a constant dependinguorBy using the analogue of Pokaev’s identity (25) on
the interval[p, | we obtain for all- € (p, 1)

n_4 ~ 2n n

S QU () + T (Aur)

- 4 " ~ 2n
5 /p Q' (s)un=1(s)s" ds +
n—4

=" (Auw) (ru’ + u) + gr"”u’Au +C. (26)

We estimate the two sides of the equality separately.
Right-hand sideThe following estimates for > p obtained by integration

u(r) = ulp)+ /T u'(s)ds < u'(r) + C,
Au(r) < (Au) (r) +C.

Hence the entire right-hand side of (26) can be estimated;by(r) (Auv)’ (r) + C, and since//(r),
(Au)' (r) — oo for r — 1 we find thatCu/'(r) (Au)’ (r) for p < r < 1 is an upper estimate for the
right-hand side of (26).

Left-hand sideAfter dropping the last term in the left-hand side of (26) a lower bound is given by

—4 7 2n —4 (" d ~ 2n
- /p @ (surs ()" ds + (1 - )" /p L (9 Qs (s)) ds

n_4 ~ 2n

+ P SQr (), (@7)

wherees € (0, 1) is chosen later. The two integrals add up to

n2_n4un2—n4(s)s” + (1= e)Q(s)s™um (s)u'(s) ds,

/pr < —eQ'(s) +n(l — 5)@(5)3’1>

which is positive provided = ¢ is chosen sufficiently small. Hence, for finding a lower bound for
(27) the two integrals can be dropped. Moreover, by u$irgQ@ < 2 we obtain finally that

n_4 2n
Ny g
5 rtun=1(r)

is lower bound for the right-hand side of (26).

€0

Hence, (26) yields the existence of a constant C(u, p, ) such that
wt < Cu' (Au) onfp,1).

14



Multiplication with «’ leads to

3n—4

(un-s )/ <Cou”? (Au) =C <u'2Au>/ —2Cu'u"Au < C (u'QAu>, on|p, 1),

and integration shows
3n—4

wn < Cyu*Au+ Cy < Cu*Auon [p,1).
Now, as above, we can estimate

n—1 n—1

u'(p) +

Au(r) =u"(r) + . .

/ u"(s)ds < Cu"(r)+ C < Cu"(r)
p

and we may proceed to the inequality

3n—4

un < C(u)?Au < Ou)*u”.

In a similar way, multiplication with,’ and integration leads to
wn < Cu'* on p, 1), wi=i < Cu/ on [0, 1).
Solutions ofC’ = vi=1 on some intervdlp, ¢) are given by

n — 4 n—4 s

m(r)z( 5 c) T-r)E, s< L

If for some value of € [p, 1) we would haveu(ry) > v;(rg) thenu(rg) > vs(rg) for somes € (0,1).
Thenu stays strictly above; and hence: blows up somewhere in the intervig, 0), i.e., strictly
before the point. This contradiction shows tha{r) < v;(r) for all » € [p, 1). This establishes the
claim. 0

A.3 Afirst estimate from below for the blow-up rate of radial solutions to (17)
Letu = u(r) solveA%u = Q(r)us-: on|0,1), u(1) = co with 1 < Q(r) < 2. Then, forr > ro we
may assume that(r) is increasing andAw)’(r) > 0. Thus
n—1 r n—1 _ nt4 n+4
@uye) = (%) @wen) + [ (2)"7 Q0 ds < (Bu) () + 20 0),

T 0 r

and hence y »
Au(r) < Au(ro) + (Aw) (ro) + 2un=i(r) = K + 2un(r)

with suitably choser{ = K (u) > 0. Now letv be the unique radial solution of
Av =K + v forrg < r < 1, v(rg) = u(rg), v(l) = oco.

Thenw is a subsolution for, and
1 n—4

- _r2> " on[rg, 1)

whereC' = C(ry; u). Hence we have proved the following result:

u(r) > v(r) > C’(

Proposition 3. Letu : B — [0, o0) be an unbounded smooth radial solution of the perturbed Paneitz
equation (17) o3 with 1 < Q(r) < 2. Then there exists a constafit= C'(u) such that

n—4

)T on[1/2,1).

u(r) > C(

1—1r2
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A.4 A transformation: Moving the boundary r = 1 to o

The equation (17) reads in radial coordinates

2(” B 1>u///<7,) + (n B 1)(” — 3)u//<7,) . (TL B 1)(” — 3) /

r r2 r3

u(r) +
With the transformation

4—n

u(r) = (1 —r?) 2 v(=log(l — %)), o(t)= 6(4_”)t/2u( 1—et), te(0,00)

we get
Ko@) + K" (t) + Ko ()" (t) + K (1)’ (t) + Kou(t) = %q(t)vm (t) (28)
with
Ky = 11—6(n4 — 4n3 — 4n® + 16n),
K\ (t) = % ((1 — e N2 (—4n® 4+ 24n — 32) + (1 — e ") (4n® — 16n* — 16n + 64)

+4n® — 4n? — 24n),

Eventually, it will be useful to have the valué§® = lim; ., K;(¢), i.e,

1 1
K(‘)’O:En(n—Q)(n+2)(n—4), Kfozﬁ(n—l)(nz—2n—4),
3
K§°:§n2—3n—1, K =2n — 2, K =1.

In view of the differentiability properties assumed @rit is enough to consider
q(t) =1+ ae™®

as a prototype.
Note that (28) has always the constant solutiprre 0. Moreover, in the case of constapt i.e.
n—4

a = 0, it has a second constant solution= (16K,) s .
Motivated by the observation that

W (r) =0 v'(t) + ——u(t) =0

2
we transform (28) into a system far(t) = (wy (t), wo(t), ws(t), wy(t))? by setting

n—4 n—4 n—4

wy(t) = v(t), wao(t) = ' (t) + 5 v(t), ws(t) =v"(t) + 5 V'(t), wa(t) = 0" (t) + Tv"(t).

16



The resulting system is

wj Eti = —”(T;lwl(t) + wo(t)

wh(t) = wsl(t

wht) = wit) (29)
Ky(t)wy(t) Co(t)wa(t) + Cy(t)ws(t) + Ca(t)ws(t) + q(t)ws (£)51,

where

By explicit calculations we get' (¢) = 0 and

1, 1
Cg(t) = —gnd + 571
Cs(t)=1-— §n2 + e_t(ln2 —n)+ e_%(ln —1)
’ 4 2 2
3 1
Cy(t) = —gn +ef(2n —2) +e (2 - 571)

To get an idea about the behavior of the almost-autonomous system (29) we replace the function
C;(t) by their limit C° = limy_ C;(t),7 = 2,3,4 andt — ¢(t) by the constant. In other words
we put for the moment = 0 and study the resulting autonomous system

wi(t) = =Fhwi(t) + ws(t)
wy(t) = ws(t)
whlt) = it | (50)
wi(t) = C5Pws(t) + C5Pws(t) + Cwy(t) 4+ fwi (¢) 4,
where ) . 5 5
Cgo = —gns + §n, Cgo =1- Zn2, O:fo = —§n

The autonomous system has the steady-states
na n—4 e
0 = (0,0,0,0) andP = ((16K,)"%", "7(16K0)T4, 0,0);

note thatO is also a steady state for the almost autonomous system (29). At the(pthetsystem
(30) has the linearized stability matrix

2
0 0 1 0
Mo o 0 0 1
0 C5° O COF
with four negative eigenvalues
M=2-C =1t >N\=—t >N =—1—"
2 2
and corresponding eigenvectors
n (n—2)>2
¢1:(170a070)7 ¢2:(1a_1a_1+§a_( 4 ) )7
n? 3n  3(n+2)?
¢3 = (17—277%—7), ¢4 = (1,—3,3+7,—%)-



ThusO is asymptotically stable for (30). At the poiftthe linearized stability matrix is

in 1 0 0

2
0 0 1 0
Mp = 0 0o 0 1

mp, O O OF

with the eigenvalues

l1-n ¢ ——— l1-n ¢+ ————
#1:17 Ho = —N, H3 = 9 _5 n2+2n_97 Mg = 9 +§ n2+2n_9

Thus P has a three-dimensional stable manifold and a one-dimensional unstable manifold.

A.5 Stability of O in the nonautonomous equation (28)

Lemma 10. The originO is an asymptotically stable steady state of the system (29). Moreover the
following holds

(i) if w is a solution to the system (29) such that for a sequépee oo, one has thatv(t,) — O,
then for anye > 0 one has that eventually

ol e (155 +2)1)

(i) the corresponding solution(r) = (1 — rQ)%wl(— log(1 — r?)) of the original equation (17)
is bounded near = 1.

Proof. System (29) has the form
w'(t) = Mow(t) + G(t,w(t));

1 T
G(t,w) = (— + O(e_t)> <O, 0,0, w0 4)> + e 'Bw+ e Cw

16
with constantt x 4—matricesB andC. In particular
t—o0,w—0O |w| o

i.e. Condition [H, (8.11)] is satisfied. Since all eigenvalues\fy are belowu := (4 — n)/2, the
corollary of [H, Theorem 8.1] shows asymptotic stability of the oriGinMoreover, for a solutiom
with w(tz) — O, it follows from this corollary that

log |w(t)| 4—n

Hence, for any > 0, one has that eventually

jw(t)] < exp ((4_7” + a) t) .

For the solution: of the original equation (17) this means that fox. 1 close enough ta
u(r) < (1—r*)"".

In view of the minimal blow up rate for unbounded solutions proved in Proposition 3, this shows that
r — u(r) has to remain bounded near 1. O

18



A.6 Energy considerations

Theorem 5. Letu : B — [0, 00) be an unbounded smooth radial solutions of the perturbed Paneitz
equation (17) on the unit ball with < Q(r) < 2. Then

1
/ u(r)¥ " Vdr = .

Proof. First we take from Proposition 2 that in the transformed coordinatesbounded. Then, as
in [FG, Lemma 2], we see that alst . .., v are bounded.
Let us assume for contradiction that

1
/ u(r)? " Ydr < oo,

which gives that
/ v(s)*ds < C'/ v(s)Y " ds < 0.
0 0

Testing the differential equation (28) once witland once with/’ gives that fort — oo

/Ot W (s)ds — K& /Ot o ()2 ds = O(1);

¢ t
Kgo/ v"(s)*ds — Kfo/ v'(s)?ds = O(1).
0 0

Observe that only the terms with constant coefficients are relevant since all other terms contain &
factore™! and produce finite integrals.
Combining the two equations above gives

(KK — Kfo)/o v"(s)*ds = O(1).

Since
(K°K3® — K7°) >0,
this shows first -
/ v"(s)*ds < o0
0
and then

/ v'(s)*ds < oo.
0

Testing the differential equation (28) witl’ finally gives

/ v"(s)*ds < 0o
0

so that .
/0 (w1(5)? + wa(s)* + ws(s)? + wa(s)?) ds < oc.
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Consequently there is a sequemnge” oo such that

klim (wy, wa, w3, wy) (tx) = 0.

SinceO = (0,0,0,0) is stable, this shows that

lim (wy, we, w3, wyg) (t) = 0.

t—o0

From Lemma 10 we conclude thafr) remains bounded near= 1, contradicting the assumption

onu. [
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