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Abstract

In this article we raise the question if curves of finijef)-knot energyntro-
duced by O’Hra are at least pointwise filerentiable. If we exclude the highly
singular range j(— 2)p > 1 the answer isi0 for jp < 2 andyesfor jp > 2.

In the first case, which also contains the most prominent example dfidBess
energy(j = 2, p = 1) investigated by keepman, Hg, and Wi~G, we construct
counterexamples. Fgp > 2 we prove that finite-energy curves have in fact a
HoLper continuous tangent with &lper exponent%(jp - 2)/(p+ 2). Thus we
obtain a complete picture as to what extent the)-energy has self-avoidance
and regularizing #ects for (, p) € (0, ) x (0, ). We provide results for both
closed and open curves.
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primary  53A04
secondary 26A27,57M25

Introduction

A knot energys a functional that is bounded from below as®lf-repulsivei. e. blows

up on sequences of embedded curves converging to a curve with a self-intersection
[O’HO3, Def. 1.1]. One motivation to study such functionals is to find a “nicer”, that

is, less entangled shape for a given knot in order to determine its knot type, e. g. by
following the negative gradient flow of the knot energy up to a local minimum [He00].
By claiming self-repulsion one hopasot to run into the danger of leaving the ambient
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YIn general, self-repulsion does not penalize “pulling tight” of small knots, cf. [O’'H92b,
Thm. 3.1 (2)].



isotopy class during this process. Global minimizers within a prescribed knot class
may be regarded as optimal representatives of this knot class exhibiting an “ideal”
shape; see the nice illustrations of minimizing curves in various knot classes in [KS98].

The idea of considering energy functionals on knots goes back toksukra. He
thought of the motion of a non-elastic string with electrons on it lying in a viscous
liquid absorbing kinetic energy. In a first paper [Fuk88] he treated the case of knotted
polygons.

In 1991 J. O’'Hra [O’HI1] introduced the knot enerdy

- TR
e = [ xx(ly(s)—y(t)lz 5 FObOIEsE @

which may be viewed as a functional on the 86%4(X, R®) of regular absolutely con-
tinuous curves defined on an interv@lc R or a circleX = R/(¢Z). HereD,(s,t)
denotes the distance ¢fs) andy(t) ony. The factor|y(s)| |y(t)] guarantees the in-
variance under reparametrization, which allows us to restrict our attention to curves
parametrized by arc-length, that are naturaliystarrz continuous.

In 1994 M. RReepmaN, Z.-X. Hg, and Z. WAne proved in their seminal paper [FHW94]

the existence an@*!-regularity’ of E-minimizers in prescribed prime knot classes
using the invariance of this particular knot energy undéeivk transformations i3

Due to that they coined the nanMOBIUS energy Among many other things they
proved thatE takes finite values on fiiciently smooth embeddings 6f [FHW94,

Prop. 1.5], [He97, Thm. 1.5.1], and that, on the other hand, any curve with finite
Mogius energy has locally a biikscuitz constant arbitrarily close to 1 [FHW94, Cor.
1.3]. This means that the ddius energy exhibits a “regularizingféect: Finite energy
excludes corner points and even more so cusps on the curve. This fact led to the
question if finite energy implies fierentiability.

In his (unfortunately unpublished) lecture notes on th&i energy [He97, pp. 14
— 19] He constructed an open finite-energy curve (of “spiral” shape) that is ffeten-
tiable at a boundary point and asked about thiEecentiability at interior points [He97,
Problem 1.6.3f.

The answer to this question is contained as a special case in our Main Theorem below,
which in fact deals with an entire family of energies, the so-callep){energies

_ . o 1 (R
ev) = 2 | (- 5] O @

2|n fact, O’Hara’s first version of a knot energy equ%E - 2.

3Later, using the machinery of pseuddkdiential operators Hwas able to prov€®-smoothness
of the E-minimizers [He00, Cor. 5.3], thus resolving completely the regularity theory for minimizers of
this particular knot energy.

4In [FHW94, Rem. to Cor. 1.3] the authors conjectured the existence of such a curve.

September 30, 2006 2



where Z(y) denotes the length of. These energies were introduced and investi-
gated by O’Hra [O’'H92a], [O’H92b], [O’H94], [O’HO3]. The Mosius energy (1)
corresponds to the cage= 2, p = 1. According to the definition at the beginning
the general |, p)-energy is a true knot energy if and onlyjip > 2, see [O’H92b,
Thms. 1.9, 2.3].

In 2003 A. ABrAaMS, J. CANTARELLA, J. H. G. Fy, M. Gaowmi, and R. Fbwarp showed that
circles are the unique minimizers of all f)-energies among closed curvegit 1

and (j — 2)p < 1 [ACF*03, Cor. 3]. Their proof also works forj & 2)p > 1, but in

this case circles are onlyveakminimizers”, since their energy (and hence the energy
of all closed curves) is infinite in this case, which is a consequence of Lemma 1 (ii).
In the jp < 2 section we will see that circles are no longer minimizerg & 1 and
(i-2p=1.

Although knot energies are usually defined only in the context of closed curves, the
corresponding functionals are obviously also well-defined for open curves, so we al-
ways present statements in terms of open and closed curves.

In the present paper we prove the following

Main Theorem (Differentiability of finite-energy curves). Let j, p € (0, ).

() If jp < 2and(j — 2)p < 1there are finite-energy curves that are naffelien-
tiable. Furthermore these curves can be chosen of “infimal” energy, i. e.|with
energy arbitrarily close to the energy of a circle or a line respectively.

(i) If jp > 2all finite-energy curves are of class-@?, wherea = (jp — 2)/(p + 2).

With this result we obtain a complete picture of the regularizifigats of O’HsrA’S

(J, p)-energies for |, p) € (0,) x (0,); see Figure 1. The graphs of the three
functionsjp = 2, (j — 2)p = 1, andp = 1 partition the parameter spacgff) €

(0, 0) x (0, 0) into several regions of completelyfiirent behavior: In the white
region the (, p)-energy has no regularizingfect, see Part (i) of the Main Theorem.
In the grey region finite energy does lead toLber continuous first derivatives (Main
Theorem, Part (ii)), although in the hatched region above thediael one cannot
hope to findanyclosed curve with finite ener@y(In fact, we expect the same behavior
also in the grey hatched region bel@a= 1; at least sfiiciently smooth curves except
lines can be shown to have infinite energy there too, cf. Lemma 9) (I).addition

we have indicated in Figure 1 the bizarféeet that squares have always finite energy
in the white region, whereas the seemingly ideal shape of the circle leads to infinite
energy in the white region between the grapps 2)p = 1 andjp = 2.

SThis observation also shows that the assumptjonZ)p < 1 in Part (i) of the Main Theorem is in
the case of closed curves not a restriction at all.

5To be more precise, diij — 2)p > 1, jp > 2} we know that all curves which are at le&@st' (except
lines, since their curvature vanishes completely) and, on the other hand, all curves which faittd%e
have infinite energy, see Lemma 1 (ii) and part (ii) of the Main Theorem.
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EiP = oo for “all” curves}?j

E}P = oo for “smooth” curveg

(Mésius energy [Ej,p(g) < oo, bBUtEP(Q) = OOJ

Figure 1: Range of (j, p)
a=(jp-2)/(p+2)

The paper is structured as follows. In the first section we briefly discuss the range of
high singularity § — 2)p > 1 using techniques that will also appear later on. By means
of [ACF*03, Cor. 3], any closed curve has infinitg §)-energy if in additionp > 1.
Furthermore, if an open or closed curve belong8tbon some open subdomain with
non-vanishing curvature, its energy is infinite. Note also that by part (ii) of the Main
Theorem the energy of polygons (except lif)és infinite in the casgp > 2.

In the second settingp < 2 we observe curves of finite energy that are nffeden-
tiable, e. g. squares. We obtain the same fact for the boundary ea@gp = oo which
corresponds to gsmov’s distortion [O’H92b, Ex. 1.3]. Our result from the first section
is used to understand the bizarféeet in{jp < 2, (j — 2)p = 1} mentioned above.

The third section is devoted to the situatign= 2, where the involved construction of

a non-diterentiable curve of finite energy is carried out. This curve possesses a local
bi-Lipscurrz constant arbitrarily close to 1, cf. Corollary 4. We briefly explain the
idea of our proof before going into detail. After constructing an open curve that is not
differentiable at one inner point and additionally has an arbitrarily small energy, we
“glue” it on a cylinder obtaining a closed curve that is ndtelientiable at one inner
point and whose energy is arbitrarily close to that of a circle, which is known [ARGF

Cor. 3] to be the unique minimizer fgr < 2. This technique of deriving an energy
bound for the “closure” of an open curve applies to a wide range of curves. At the end

"The energy of a line amounts to O for @lip > 0.
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of this section we give a detailed proof of the fact tEaP is lower semi-continuous
under several suitable assumptions, generalizing [FHW94, Lemma 4.2].

In the forth section we deal witfp > 2. In this case any finite energy curve beldhgs

to C1/2, wherea = (jp—2)/(p+ 2). There are two key ingredients for this proof. The
first one is a kind of “quantified” bi-lesciitz constant that was derived in [O’H94,
Prop. 1.6]. The second, Lemma 16, was originally stated by:&iS and will allow

us to develop a technical tool in Lemma 17, which proves the regularity of curves
fulfilling the quantified bi-Lpscuirz estimate.

Acknowledgements/Ne would like to thank Heiko von der Mosel for many helpful
discussions and Zheng-Xu He for (informal) publishing his “informal notes” [He97].

(1-2)p21

Lemma 1 (Range of high singularity). Lety : X — R3 be an open or closed curve|in
arc-length parametrization, where X denotes an interva @ir a circle R/(¢Z), and
j, p> Owith (j — 2)p > 1. Then the conditions

(i) p>1and X=R/(£Z) or

(i) y € C*>! on an arbitrary open subdomain of X, where additionaily O,

both imply B-P(y) = co.

Proof. (i) According to Corollary 3 from [ACFEQ3], circles arestrict minimizers for
p>1, (j—2)p < 1among all closed curves of length iy arc-length parametrization.
From the proof of this result one can derive that this statement also holdl for 1,

while the circle is only aWweakminimizer” for (j—2)p > 1, since its energy (and hence
the energy of all closed curves) is infinite in this case, which is a consequence from
part (ii). So this gives a rigorous proof of the fact that all closed curves in arc-length
parametrization have infinite energy fgr<{ 2)p > 1.

(i) We start with the KyLor expansion ofy; for s,t € R we obtain

Y=y = yOS-1)+ 37O -7+ V(O -1 + Ra(s - 1),

whereRy(s—t) < & ||y(4)||Lm(R/([Z),R3) Is—t/*. The arc-length parametrization implies

M=1.% =037 =-RP so

() — y ()1

o S LT RBOFGe-0+Cils—t 3)

8Hence O’Hwra’s results forjp > 2 [O’H94] automatically extend to the larger class of regular
absolutely continuous curves.
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for someC; < oo depending offy®|| .. i = 1,2,3,4, and(. Sincex — x1/2is convex
on (Q =), we obtainy™/2 > 1 - 1(y — 1) for all y € (0, o). This leads to

S S [(Iy(S)—V(t)Iz)_j/Z_ll
() -y®OF Is-t st [\ Is-tP
> L(LHOP-Cils—tl)Is—tP.

Without loss of generality we may assume that therecgr® > 0 such thaty(t)| > ¢;
forallt € [0, g]. Now ¢ := min(so, 2%1, %f) yields

& e+t o] . " .
Ef(G) = f f ( t 1! ) dsdt > (%805)"8 f U@ P gy,
o Jt  \ly(s) -y Is-t/ 0

which is infinite if (j — 2)p > 1. O

jp<2

The (j, p)-energy of the unit squar® : [0,4] — R%, t — (t,0) fort € [0,1], t
(L,t-1)forte[1,2],t— (3-t,1)forte[2,3],t— (0,4-1)fort e [3,4], is finite.
The only interesting point is the interaction of neighboring segments, which leads to

dsdt
ff[‘”}*[m('Q@) QI Is- tv) fed fﬁmxm A - QP
dsdt /2 rdrdg e
ff[ol]z(52+t2)1p/2 f f ez - W 2(2-ip

So there is a curve of finitg,(p)-energy which is not dierentiable.

The same calculation yields th&tP is not self-repulsive, so this case does not model
a knot energy, cf. [O’'H92b, Thm. 1.9].

To obtain an open curve with arbitrary small energy take two lines and join them by a
suficiently large angle, i. er — . For closed curves one may replace a small piece of
a circle by an angle and adapt the arguments given in the proof of Proposition 13. If
j€(0,4),pell, 2) the (j, p)-energy of the curves constructed in the next section are
bounded by means ofddper’s inequality in terms of their j( 2) -energy which can be
chosen arbitrarily small.

For the boundary cage= 0, p = co which corresponds tokémov’s distortion [O’H92b,
Ex. 1.3] we furthermore obtain

distort@Q) = sup Do(s Y

o 19 - Q) %
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so thatQ is also an example for a nonff#rentiable curve whose distortion is finite.

In the set{(j, p) € Rz' j >4, J_iz <p< % we obtain the bizarre situation that the en-

ergy of a square is finite while the energy of a circle is infinite according to Lemma 1 (ii),
SO we cannot expect that equation (3) from [AOB] also holds for alp < 1, i. e. that
circles are still minimizers of thej(p)-functional.

jp=2

Let El! := E}?/1, Note that this notation is (fof # 2) different fromg() := E}! that
is used by O’Hra in [O’HO3].

Theorem 2 (Finite (j, T?)-energy does not imply dfferentiability). For anye > 0
and j € (0,4) there is an open curv& — R? of (], %)-energys & parametrized by
arc-length that is not giferentiable atO and coincides outside a neighborhoodOgt
with the x-axis.

—

Corollary 3 (Version for closed curves).Let : R/Z — R2? denote the circle g
lengthl. For anye > O and je€ (0, 4) there is a closed curv®/Z — R3 in arc-length
parametrization whosgj, %)-energy lies in the-neighborhood of E?/1(¢), but which
is not djferentiable at0.

Using the fact that finite MBrus energy curves possess a local liskrirz prop-
erty [FHW94, Cor. 1.3] we immediately deduce

Corollary 4 (Arbitrarily “small”  local bi-L escarrz constant does not imply dffer-
entiability). There is an open curvg — R? in arc-length parametrization that is npt
differentiable a0, but satisfies the following condition:

For anyey > O there is ad > 0 such that for any € R the restriction to
[y — 6,y + 4] is bi-Lipscurrz continuous with constarit+ &.

There is also a closed cung& — R? with a similar property.

Before presenting the rigorous proof in several steps we give a brief

Outline of the proof.The main idea is to construct a basic compongnthat lies on
the x-axis outside a neighborhood of the origin.

In a smaller neighborhood of the origiky lies on a
L/\ line segment that meets tixeaxis at the origin in an
\4 angle ofa as drawn on the left. The energy af
amounts tdD(a*) by Proposition 7.
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Now leta* < a and replace (a part of) the line
segment by a copy of,- scaled down and re-

stricted to a suitable neighborhood of the origin,

so it fits into the gap. Because of the scaling [//\
invariance we can choose this copy arbitrarily

small, i. e. we change the original cumggonly \4

on a very small subdomain at the origin.

The composite curve meets the origin in an angle efe*. It turns out that its energy
can be estimated in terms &/(«,), Elll(k,-) and some other terms that depend on
guantities which can be controlled by the scaling parameteg-otf. Proposition 8.
So we obtain essential®(a*1) + O((e*)*}) as energy of the composite curve.

By repeating this process inductively fof := % we obtain a limit curve that performs
a rotation ofy, . k! = co near 0 but has energy, . k%1 < co. O

For the rigorous proof of Theorem 2 we will collect a few tools at first which will be
used later on, starting with the following fact.

Lemma 5. Let j > 0. There is a constant {depending only on » 0 such that fol
ALu>0 _
—A 00 1 1 2/j /,[ 2/]
- — _ < = 4
fw L ((s—t)J (S—t+u)l) dsdt < Cz(za) )
holds.

Proof. Letq(j, X) := (1 - jx)(1+ x)). Since we have
d—‘}q(j, X) = (@A+x'[-x+@-jx)log(l+x] < O forall x>0
andj — q(j, X) is continuous on [), we arrive ag(j, X) < q(0,x) = 1, i. e.
1-jx)@A+x) < 1  foralljx>0. (5)

Fors t > 0 andx = £ we obtain

1] b 1 o ( S+t )J
S+t (1+$)1 S+t+u
s+t |/ .
— 1—( - ) < (6)
S+t+u S+t

This yields

2/j
ff ( t 1 ) dsdt
[1,00)2 (S+t)J (S+t+,u)1
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1 S+t W/
- ﬂ [1-( )) dsdt
[Loop? (S+1)2 S+t+u

©® o ff Y 1 1 ( u )2/1
< S+t I'dsdt = S - — j9 =) .
(iw) [m)z( ) 21,2 157
O
By TavLor approximation there is e > 0, such that, for ang € (0, c3],
0 < wa-sina < %as, 1, < sing <
0 < 1-cosa < a3 29 = @= * (7)
: 3 a < tana < 2a.
0 < tana-sina < «a°,
Leta € (0, c3] and define
X(@) = 1-cosa < (@) = 1-cose tans < a
" tana M= T5he ~ 92 =@ (8)
&y =3sina + x(a) < N = 3a + y(a) < da.
This yields by (7)
tana — sina
0 < ~x(@) = (1-cosq)———— 208,
y(@) = X(a) ( ) sinatane ¢ )
0 < Ne — é:(z < 30’3-

Now we are going to construct the components we will later insert into one another
inductively.

a N\ , X(:CY)

The basic componeRrt, : R — R? is defined as drawn above and characterized by the

September 30, 2006 9



following explicit formula in arc-length parametrization.

(Z?ns;v)t for t € [0, y(a)],

o) (1 zcan) vt 2
U s

(t)) _ (na 5 §a) for t € [, o),

k(1) fort € (—oo, 0).

To computeEl(k,) we need an estimate for the energy of an arc joined with a half
line. This curvel, was first introduced by Z.-X. Hin [He97, Ex. 1.1.2 and p. 15]; his
calculations lead t&?(¢,) = 2 - a cot = O(e?).

Lemma 6 (Energy of a “hockey stick”).

There are constantsce (0, 2r), C4 < oo, depending only

on j > 0, such that forx € (0, ¢4] the curve, : (-0, a] — s
R? given by B
- {rn/6
t
- (0) for t<0,
(o) for te[0,al.
satisfies o _ ]
E[J]({Q) < C4CZ4/J.

Proof. By modifying the arguments from Lemma 1 (ii) (estimate towards the other
direction) and applying them to the circle segment we will show that there are constants
Cs > 0,Cs < oo such thaEl(£,ljp..;) < Csa®! for anya € (0,cs]. The arcs = yljp.o]
obviously fulfills the assumptions of Lemma 1 (ii), so we arrive at

() — L)

T > L BRO - -Cls—tf (39

for C; < o depending only o, since||¢?|| ., = 1 for alli € N. Since (1+ x)71/2 =
1-4 Ox(l + &)71/271 d¢ we obtain

y 2 < 1-dyiiy-1) < 1+i(1-y)  forallye |27V 1),
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This leads to

S S | _[(M(s) 5(t)|)”2 1]
() —<F  Is-t/ Is=t' [\ Is—t?

i .2 » . .
< ﬁ(liz|§(t)| +C1|S—t|)|s—t|2‘ < 1(&+Cua)ls—tP

. _ 2 ; . . .
prowded% > 2-Y(/2+1) But since/ has a (uniform) local bi-tescarrz constant

arbitrarily close to 1, there is@ > 0 such that this requirement holds for @l t| <

Cs. Now
ip
E"(y) < ff (Ié(S) O e tl‘) dsdt
< [J +C1a/ f'f u(Z J)pdu
[J ( + Cla’)] i jp:.2 ‘
[(2_J)p+1][(2_1)p+2]a(2 p+2 — C5a4“
Since

6D = 4®] < |lan(s+a)-lult+a)]  forste[-a,a]

we even obtaifEll (£, ]_qq;) < Cs(22)*! for anya < ics. Certainly,EV(Z,|-w0p) = O
It remains to study the interaction of the intervals{, —a] and [Q «]. Let s € [0, «],
t € [@, 00), < ¢4 == min(cs, 3¢5, 1, (2j)*/2), which implies

) 1 .
L+7) < T < 1+2jr foranyre[0,ci. (10)
Since o
(s+t)? / @ S+t - 1+§
(sins+1)2 + (1 — coss)? s—-s*+t t
and 0< £ < o? < ¢ we arrive at

-o o 2/
f f ( - 1— i ! ] dsdt
—0 Jo |{a(S) — éa(t)| (s—1)l
Y | (s+ 1)2 2 2
«L fo (s+1t)? ((Sins+ )2 + (1 - Coss)Z) - 1| dsdt
T 0 @ § 2/j
2 @iy f fo S +1t)2 (T) dsdt

S e Pl i)2/] _
o [ [ Shwa - @Y
o Jo 7 CE+1E¢+1)

o — . . 2i)2/i . . .
Now Ell(z,) < 2%1Csa*) + 0+ 2- W@M) -l =1 Cual. O
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Proposition 7 (Energy of a segment).There are constantsyce (0,¢4], Co < oo
depending only on 3 0 such that

Ell(x,) < Coa*'  foranya € (0,cg.

Proof. Fora € (0, c4] consider the curvé, defined in Lemma 6 in arc-length parametriza-
tion. Because of

|K(Z(S) - er(t)| > |Ezmy (S+ na) - 5_2770 (t + 77(1)
for st € (—0,n,] We obtain

. - ) . .
EN(kolcoon) < EUNE2,,) < Cu@po)¥! < 8YIC4ua*1 fora <coi= gca.

By symmetry we obtain the same estimate ¥ (k, [, «))-

It remains to treat the case

e « 1 1 2/] 00 o
f f ( - — . ) dsdt resp. f f .
- Ner |K(I(S) - Ka(t)lJ (S - t)J Na J—00

Because 0fk,(S) — k,(t)] = (s=1) — 2(n, — &,) for s, (=t) € [n,, ), the first integral
equals

—Ea 00 1 1 2/j
[oo j;, ((S—t)j _(S—t+2(ﬂa—§a))j) dodt

2/j _
¢ cz(""é: é:“) 02 22/1Ca*1,
a

By symmetry we arrive at the same estimate for the second integral. Summing up we
concludeE(k,) < 2-8YICa*! + 2. 22/1Cpa*1 =: Coa/l. O

September 30, 2006 12



Proposition 8 (Joining curves).Let j>2,L> A > %A >(>1>0,8¢€]0,2n).
Lety : [-L—A, L+A] — R? be an open curve in arc-length parametrization satisfy

ing

y(t) (&%)t forall [t <A and

ly®) > A  forall |t > A.

Lets : [-(A-1)—¢, (A-1)+{] — R? be an open curve in arc-length parametrizatjon
satisfying

st) = ($F)(t+(-2) forallt<-e
lo(t)] < A forall |tj<¢, and
5t) = (2F)t-(c-2) forallt>e.

Then the energy of the open arc-length parametrized curve

yod: [FL-(A=-D-tL+(A-D)+{] — R
yt+€-2) forte[-L-(A-2)-¢,-1],
t — {5(t) fort e [-¢, (],
yt—€¢+2) forte[f,L+(A-2)+1],

fulfills the estimate E(y v~ 6) < EY(y) + EY(6) + 2C, + BZP.
In the proof we will need the fact that, far> b > 0, p € [0, 1],
a’-bP < (a-b)P (12)

holds, which can easily be verified by showing th8#(1—-0)P is monotone increasing
in o on [0, 3]. The fact that there is no similar estimate for- 1 is the reason for the
restriction toj > 2.

Proof. Let
A = [-L-(A=-D)-¢,-(A-2)-1],
B8 = [(A-)-(-1], __|A[8[c[D] & ]
Cc = [-t1{], Al12]3 4|5
D = [, (A=-2)+{], B 6|7 |89
E = [(A-D)+,L+(A-2)+1]. C 10| 11| 12
D 13| 14
We divide the integration domain into 25 subdomains:g 15

Because of symmetry we may restrict ourselves to 15
of them (see table on the right), but we have to keep
in mind to multiply by 2 df the diagonal. The term /
Ell(y) absorbs cases 1, 2, 6, 13, 14, E5!(¢) treats \ =
cases 7, 8, 10, 11; in both cases the symmetric do{_, _ &
mains are already considered.

Now we consider the cases 4, 5, 8, 9.

i

7

A—
o/

B
e/
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1 1 z“d 4
f (I(yné)(S)—(yné)(t)lj_(S—t)J) st

(AUB)X(DUE)

¢ L+A—A+l 1 1\
— f f ( - ) dsdt
—L=A+—t J¢E |’)/(S—f+/l) —’)/(t-|-€—/l)|J (S_t)J

-1 L+A 1 1 2/j
I (ms) 00 s-tra- a»i) dscl

The [ _LA_ R f;”\ part of EUl(y) was not already used in the absorbing process, so refer-
ring to (11) it sufices to examine

| L+A 1 1 2/j
_ . dsdt
IL—AL (|7(5)—7(t)|] (S—t+2(f—/1))‘)
-1 L+A 1 1 Z/Jd dt
_IL—AJ/: (I)/(S) _Y(t)|j - (S_t)j) >
aw (oo 1 2/l @ -2\
< ((s—t)i‘(s—t+2(f—ﬂ))i) dodt = Cz( A) |

For case 3lese A, t € C. Now |(y v 6)(S) — (y v O)(t)] > A — A leads to

L 1) AlC Le
L‘fC(KV’“fS)(S) —(y o)l (s-t)i) dsdt < A= 2 < 85

Since we arrive at the same situation in the remaining case 12, we obt8ly 2A2
together for both cases. Summing up and remembering that we have to multiply by 2
off the diagonal, we are finally lead to the formula stated above. |

Proposition 9 (Extending a curve). Let |, L*, A*, £, 1*,6* as in Proposition 8, and
B* = 0andy*(t) := (é)t forallt e [-L*— A*,L*+ A*]. Then there is a constantCG 0
depending only on j such that

/l*

) ] 25* 1+2/]
EUG  —~6) < EUs) + 2(:2( + 4(:6( ) .

Of course, Propositions 8 and 9 are also true for an analogous situaidn in

Proof. We treat cases 1, 2, 4,5, ..., 11, 13, 14, 15 as in the proof of Proposition 8. In
case 3 (and analogously in case 12) we obtairsterA, t € C the estimates

AN - AEN) = I9-C  and  Is—t < |§+C"
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This leads to

: LV i
fﬂfc(l(y* AN -y )OI (s—t)i) tas

—(A*—/l*)—[* 1 1 2/]
< Ile ( - — ) ds
o) \(=S= ) (=s+ 7))

© (1 1 2/j © q s | 2/
<2 (=- Vds = 2| = —( ) s
[\—A (SJ (s+ 25)’) j/:—x S; [ S+ 2t ] _
(6) Y A j2/j 20 1+2/] 20 142/
< (o Z/Jf s22ds = = = C :
< (@) : A-1 1+ % A=A 5\A -2
Notice thatElll(y*) = 0. O

. N2/
Proof of Theorem 2For |, x,y > 0 the functionj (x‘J - (x+ y)‘l) / IS monotone
increasing since, for & j; < jo,

2 2.0 £
( 1 1 )12 ( 1 1 )11 2 (11) 1 1 .
_— - = _— = - Z — — - .
X2 (X + y)Jz X2 (x + y)lz ij.% (X 4 y)jz'%

This yields thatEll is monotone increasing ify So we may restrict ourselves jos
[2,4). Fixky € N, such that

1 C\¥
ke > max(—, 1+ (—7) ) (12a)
Co £
for constantg; > 0, C; < oo that depend only on and will be defined later in this

proof. Let

1
L, = 2(1+4%
kKo (+3k0_1

and define fok € N, k > kg, the following positive quantities, whose estimates will be
proven by induction.

) ko — 1 > Ay, = 1, (12b)

1
= - 12
(017 k, ( C)
k—ll
Bk = - ﬁko =0, (12d)
K
k=Ko
AEG’E g 1
= — < — < = 12
T e S 6 T ® (12€)
O = Ty < %Ak’ (12f)
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A = Ny < b (129)
Ly + (Ak - /lk) +€— A1 = Ly 1, (12h)
fle) < G < L (12i)

\%

Lk+1
Ak+l

The estimate in (12Q), the first one in (12i) and the last one in (12e) are immediate.

For the initial stefk = ko the inequalityry, < alfo/ (2 - 3ay,) verifies (12e),

A2 o? A 1
ko ko ko
£ = < —_— = — 1
ko 2Ly, - 2 2 <

implies (12f) and the last inequality in (12,1 — Lk, = (Aky — Akg+1) + (G — i) =
0+ 0 yields (12h).

For the stefk — k + 1 we obtain as above

2 2 2
_ Ak+1a/k+1 ) i1 Qk+1
M1 = 53— = ——— = ,
2|—k+177ak+1 6Q’k+1 6
2 2
Vs _ Ak+1a’k+l < Axs1
S Toal
I—k+l
1
Livo = Lkt = A1 — Axsz + 1 — Aksa 2 Ak+1_§Ak+1 2 0.

>Aks1—lks1 >0

Notice that(Ly),y iS @ monotone increasing sequence; we will see in (14) that it con-
verges, wherea®y),.; is the diverging harmonic sequence. All other sequences are
monotone decreasing sequences that converge to 0.

We consider the sequence of functions

Ok - [-Ax + Ak — €, Ak — A + €] — R2, /\
(e (S ) (2 N
and start withy, : [-2,2] - R2, t - ().

If we defineyy,1 := yx v~ 6 for all k e N, k > ko, the conditions of Proposition 2 are
true in any step, sinc&y,1 < y(ax) by (12e). Now, forK > ko,

K K
) . . -2 L€
=0 < El +§ Elil(s,) + 2C § ( k) 32§ Kk
(YK) (Vko) ( k) 2 A

k=Ko k=ko Aﬁ
whereEU(y,) = 0, EUl(6y) < Co/k* by Proposition 7,

fk - /lk ™ nafk ‘f{tk 9) 2
S g < 2z, 13
Ak 3- %a/k k2 ( )
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Lili/A2 = 1/(2k?) by (12e), and therefore

Co + 241%1C, + 16 1

K
- 1
E[J] (’yK) < (Co + 22/J+1C2 + 16 Z m <
k=ko

4 _ (kn — 1)1
' -1 (ko— 1)
:ZCg
Because of
K K (12i) K+1
Lk — Lko Z Z < 1+2 Z 9
k=ko k=Ko k=Ko
®), (120), (1ff) , KL " L K+l g L 1 (14)
< + - < + 3 — < + 2
= k:ZkO 6 ¢ = 3 k;g Kk = 3ko—1

the limit L, := limg_ Lk < oo exists.

The reparametrizationg ~ [-1,1] — R?, %) := y((Lk + At), of y, to constant

velocity (depending ok) form aC°-Caucuy sequence by (14) antl, \, O that con-

verges to some limit curve.” € Co%[-1,1],R?. Now, by Lemma 15, we obtain
EllH.) < liminfise EW () < 0. Letye : [~Le, Leo] = R2, t > J(t/Ls).

The proof thaty,, is not diferentiable at O is deferred to Proposition 11.

Now we are going to exteng, : [-L., L.] — R?to R — R? via Proposition 9. Let
A =L+ A = Lig+ 1,0 = Lo — Ly, 4" i= Ay, = 1,6 := yo, @andL* > A*
arbitrary. The fact that our estimates will not depend.omill allow us to finally take
L* — oo.

We compute’™ = L, — Ly, < 1+ 3= and

3k01
20 (12b) 2(1 + %ﬁ) B 1
A=t 214 i) V-1 Vke- 1

Summing up and choosing := 1/ mln(— 1, % T+ -1) < o0, We obtain

J

. . = Q* 2/j 20+ 1+2/j
Ell(y* ~ 69 < EUY) +2C 4C
(y' o) < (07) + 2C; > +4Cs|

2/j
Cs 2 4Cs
< o1 1+2C2(k0 1) * o= DT
2/j 1
< (08 +2(8"co+ 406) T
. C7 (]ﬁa)
CERE i
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Remark 10.

(i) Inthe previous proof the limit curve,, was defined as

The fact that all curvegy are parametrized by arc-length yields for O

Yol) = MIJO wt) = (t - Z(fk - /lk)), (15)
pry

Lg+Ax>t

whereK is chosen so large thaty < t. The second identity is due to the fact
that

Yt = Vi (U (= A))
forallk > kg andA, <t < Ly + Ay

(i) Because ofyy < £A2, jax < (6k)~*r the sequencér),.; decreasessuper-
exponentiallyy. O

Proposition 11. The curvey,, constructed in the proof of Theorem 2 is nofeten-
tiable atO.

Proof. Let 7y := € + Yook (6 — A) € (0, Ls). Sincery > ¢ > A« we infer from (15)
that y.(t«) = () and notex (y.(z,),€1) = Bcmod 2r, wherex (-,-) € [0, 2n),
e = ((1)) andx = ymod Zr iff there is anm € Z with y — x = 2rm. We compute

a , 1
v« < 2; » < ém N 0,
@) 9 £ o ©® &y +3ad 2
b > Jue = oo Tw O fo T30 1+ N\, O
/lk é:ak fak k
and
- < —+ —+2) -5 < 1l+5+— 1
FPREY Z:; A ;KZ = ko1 ™

for k — oo. Sincelyk(€y)| = Ak andy.(0) = 0, we arrive at

ru(rd &) _ T <%o(7k)—7m(0) e1>
[yeo (Tl A Tk ’

COSBx = COSY (Yw(7k). €1)
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If v.. were diferentiable at O, the right hand side would converge. But the left hand
side does not converge since the sequégcemod 2r), ., ., is dense in [02r), as we
will see now.

For anys > 0 chooseK > max(ko, %) Since the harmonic series does not converge
and: — L € (0,0) for all k > K, for anyy € [B, ) there is somék, > K with

Bk, —y € [0,6). So, for anyx € [0, 2r — 0] we may find somey € [Bk, ) with
x = ymod 2r, which implies|(ﬁky — 27rm) - x‘ = By, — y < & for somem e Z. O

We will proceed to the situation of closed curves.

For the Moeius energy (, p) = (2,1) we obtain our result immediately by applying

the Mogius invariance. Let > 0. Carrying out an inversion on a circle whose center
does not lie on the curve referred to by Theorem 2 we obtain a closed curve of energy
4 + g according to [FHW94, Thm. 2.1]. Remember that thésiis energy of a circle
amounts to 4.

If we just want to obtain a closed curve of finite energy that
is not diferentiable at one point, i. e. skipping the “infi- N
mal” property, we might extend the curve constructed in Kj
Theorem 2 as indicated in the drawing on the right, using
estimates as in Proposition 8.

The basic idea in proving the “infimal” property is to “glue” the curve constructed in
the foregoing proofs on a cylinder; for a sphere we would arrive at the same situation.
As we mentioned in the introduction our technique applies to a wide range of open
curves, more precisely to planar cungthat are admittable in sense of Proposition 8.

Proposition 12 (Projecting a curve onto a cylinder).For j € (0,4), ¢ € (0,1] let
y : [-¢, €] — R? be a curve in arc-length parametrization!'fy) < co. Then the
energy of the projectiop” : [-¢, £] — R3 of y onto a cylinder of radiu% satisfies

Elly) < ElpY) < Elp)+wEN®Y),

wherew : [0, 1] x [0, 00) — [0, o) is a continuous function witly(0, -) = 0 depending
only on j.

By projectionwe mean that the plane in whighlies is “glued” onto the cylinder, so
lengths are preserved, i. B, = D,, and since sinx > nx— 27x3 on (Q o) we obtain

(9 -y® = Lisin(@hy(s)-y®O) = (9 -yl -2k -y®F. (16)

This result can be extended jp > 2, but due to the lack of the biskscuirz prop-
erty (19) our proof fails forjp < 2.

In the proof of Theorem 2 we used the fact that the energy of a line amounts to zero for
all j together with the monotonicity gf— EUI to transfer the “infimal” property from
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] € [2,4) to (Q4). In the case of closed curves we face the problem thatjﬂfan(
energy of the circle depends gnSo, forj € (0, 2) we will make use of MikowskI1's
inequality. Applying the mean value theoremxte- x*/P, we arrive at

a-b < atVrp@YP-bYP) for a>b>1 pell, ). (17)

Proof. The first inequality is an immediate consequence of (16). For the second we
start computing fox € (0, 3]

1 1 1 G 1 2jx2
(x—2x8)1 X (x — 2x38)! ( ( X ) T X(1-2¢)1 1-2x?
) Nl oo
= A goagm < 2 (a8

If j <2 we obtain using the Mkowskr inequality

2/j ir2
E[i] *\]/2 _ E[i] /2 < l ( 1 _ 1 ) d dtl
o) SO ff[_mz S -7 e —yor

(16), (18) . \2/i1i/2 .
< [(2{))2(22+J 1(25)2-1)2“] < 2Mje,

2/j

which impliesEl(y") - EUl(y) < (EW()72 + 21) - 252 by (17).

In casej € (2,4) we arrive at

. . 11 2/j
E[J](,y*) _ E[J](’)/) (S) ff ( 1 - 1 j) dsdt
eaz \[y () =y lv(s) — ()l
16), (18 . . .
L g f[ P9~ 0 asa
_€’€2

2 22+4/jjZ/jK(E[J](y))4/j—2ff S— Y1 dsdlt
[_[’g]2
21+8/j j2+2/j ) - .
< I KEYR
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Proposition 13 (Modifying a closed curve).Let/ : R/Z — R3 be a circle of lengtii
parametrized in arc-length by 2 (sin(2rt), 1 — cos(2t), 0), andA € (0, £], £ > O,
] € (0,4). If we change&’ on (-4, 2) by inserting a curve segment (parametrized
constant velocity) of lengt® that is completely contained in

{£ (sin(2rt), 1 - cos(2rt), u) |t € [-A, 4], u € R} N Bsingry/=(0).

which is a ball in the cylinder induced lgy the new curvér : R/Z — R® satisfies

ENQ-ENQ)| < ENQ )+ a)(f + (§ - 1))

where® : [0,0) — [0, ) is a continuous function witk(0) = 0 depending only

on j.

For j < 2 the estimaté&Elll(¢) < EUI(7) immediately follows from [ACFO3, Cor. 3]
implying EUI(¢) < EUNZ) < EWQ) + EN(Zl 1 ) + @ (£ + (5 - 1)).

by

Proof. We will again split up the integration domain, but since we intend to treat closed

curves we have to consideparallelogram

R = {(st)eR?se[-3 3] tels+5s-3]), E »
which yieldsD,(s,t) = |s—t| for (s,t) € R. Due to
symmetry we may restrict ts > 0 and coverR N
([0,0) X R)by AUBUCUDUEUF U[-1,13]% 1
where y
C &
A = (L4 x[/l/l]) n R, |
8 = ([0.1] -3-1) R ///
c = (0.4 1i+2) N R 2  mee
----- 2
D = ([3- ,1]><[1 1) N R
& = (43 x[1-2) nR el 7
F = ([/L% ]X[——+/l /l]) n R. i /1
—32
Note that/]y = {lv, whereY = [-3,-4] or [4,3
FurthermorelZ(s)| = £ for s € [-4, 4] and [Z(9)] = |
l£(9)| = 1 elsewhere.

Since the subdomain¥ = A, B,C, D are bounded away from the diagonal we may
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estimate the corresponding integrals to the measure of their domain obtaining

2/ .
fL{lZ(s>—12(t)|"_Dzét>i] coffewfdrds < cot

for some generi€y < co. The identityD; = D, on & yields

20 1e e 2]
ffs(li(s)—lat)l" B D.z(l&ﬂ") o] [cw]deds - = ffce(lg(s)—lm)v - Dc(lst)l') dtds.

In the remaining cas#, whereD;(s,t) < (s—t) + 2(¢ — 1) for (s,t) € F, we first
considerj < 2 and apply Mvkowskr1's inequality

1 L 2/ja X ir2 . . 2] i/2
ffgc(li(s)—Z(t)lj B DZ(S‘”) 'K(S)‘ “/:(t)|dt ds] ) lff’f (lg(s)‘g(t)lj - Dz(st)j) dtds]

) [fL((S—lt)i C(s-t+ ;(g_ ,1))1)2/J dtdslj/z < Ci/z(g - 1),

which implies

GNP 2/i
I (caser - o) o] cas— (1 (i - o) s

oo (e NPT 2 (e
e et (i -a)

<

by (17). Forj € (2, 4) we obtain
1 RS EINIE . L\
fj‘;: (|Z(5)—Z(t)|J - DZ(S*t)j) ‘g(s)' ‘g(t)‘ dtds-— ff,]_- (I{(S)*{(t)lj - D{(St)j) dtds

© 1 1 2/ @ ¢\
- fL((S—t)j_(S—t+2(K—A))J) dtds < CZ(E_l) :

which concludes the proof @&l!!(?) — Elil(¢) < - - -.
For Ell() — EL1(Z) < - -- we may use the same estimates as above. O

Proof of Corollary 3. Let ¢ > 0 and take the open curge: R — R? that was con-
structed in the proof of Theorem 2 choosiBd!(y) < /3. Recall thaE!? is scaling
invariant, so scaling dows we may assume thafz,;_,, lies on the thex-axis for
someu € (0, 4] without affecting its energy. We denote the length of the curve 4

by ¢ which tends to 0 ag ~\, 0. By choosing: suficiently small the ratioﬁ of curve-

length Z and diameter 2tends to 1. So the terf+ (§ - 1) may be chosen arbitrary
small, i. e the quantitiesa(¢, Ell(y)) and LJ(€+ (f -~ 1)) are both bounded by/3.
Applying Propositions 12 and 13 we obtdi#!({) — EU(¢)| < e. O
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Lemma 14 (Bi-Liescarrz continuity of finite energy curves for jp > 2). Let jp> 2.
There is a continuous monotone decreasing functioa K|, : [0, c0) — (0, o) such
that, for any finite-energy € C%(X,R%) and st € X

(9 -y®) = K(E"™() Dy(st). (19)

Moreover the energy of non-injective curves is infinite.

The proof in [O’H92b, Thm. 2.3] or [O'HO3, Thm. 2.4.1(2)], which restricts to closed
curves of length 1, also holds for open curves. Sigée is invariant under scaling
and reparametrization by definition, we obtain the claim for arbitrary curves of finite
energy.

Acurvey : X — R3is called
¢ |ocally rectifiableift it is rectifiable on any compact subsetXf

e regular absolutely continuoust it is absolutely continuous ang # 0 almost
everywhere.

Lemma 15 (Lower semi-continuity of the length and energy functional in the
topology of pointwise convergence)Let X=[a,b],a< b € [-o0, 0] or X = R/(¢Z),
¢ > 0. Let(yn) be a sequence of locally rectifiable curggs X — R3that converge
pointwise to a curveyg : X — R3.

(i) For any connected subdomaind X we obtain

ZLyl) < liminf Ly, (20)

where.Z denotes the length functional. In particulggis also locally rectifiable
if liminf,_. -Z(ynl) is finite for all compact subsetsd X.

@) If yo,v1,72,... are in addition regular absolutely continuous curves para-
metrized by constant velocitieg vy, v, . . ., Which are uniformly bounded, and
j, p> 0, we arrive at

EXP(yo) < liminf EMP(y,). (21)
n—oo

(@ii) If yo,¥1,72,... are merely regular absolutely continuous curves satisfying
SURoy -Z (vn) < o0 we obtain(21)in case jp> 2.

The first two parts of this result, whose second part bases on [He97, Lemma 1.4.1],
were taken from [Rt04, Lemma 1.17]. The claim is also true for non-injective curves.
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Proof. (i) For [&,b'] c Xletke N, anda’ <ty < --- <ty < b’ be given. By definition
we have

k
L) =Y rnlt) = yolti-o)
IT(l
> Z lyo(ti) — yo(ti—1)l = lyn(ti) — Yot = [¥nalti-1) — yo(ti—2)I,
i—1
and this yields

K
Iirnrl)i(gf Llapy) = Zl“ lyo(ti) = yo(ti—2)! .

Taking the supremum of decompositiasis< ty < --- < ty < b’ andk € N, we arrive
at (20).

(ii) Passing to a subsequence we may assume the existence.qf IEAP(y,) € [0, ].
If EMP(y,) — oo nothing is to prove. So let lim,., EMP(y,) be finite. This implies
EP(y,) < oo for almost everyn € N. Now we obtainya(s) — ya(t)l = lyo(S) — vo(t)|
pointwise for alls, t € [a, b] such that

1 1

- —_ I- - ..
[7o(9) — 7ol " a9 — 7a(O]

On the other hand we infé, (s, t) < liminf,_. D, (s t) pointwise for alls, t € [a, b]
from (20), i. e.
1 > liminf
D(st) —  noe D, (St
For almost eveng € [a, b] and|h| < 1 we arrive at

) h—0 S+ h) —yy(S
6w = o) 7ole+ = el
< lim 7”(S+h)‘7”(s)i < liminf o,
n—oo h nN—oo

A formal calculation yields

1 1 P »
(l)’o(S) — oM Dy(s t)j) Yo(S)l yo(t)l

1 1\
< liminf - | vn(S)| [yn()
- (m(s) — ()l Dyn(s,t)l) 7SI

for £2-almost evens, t € [a, b]. By assumption the double integrd&s$P(y,,) exist, and
their values are finite. &rou’s lemma implies existence and finiteness of the right hand
side, implying (21).
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(iii) Let lim n_. E'P(yy,) be finite and moreoveEP(y,) < B < c0. We assume that
(Yn)ne @re open curves, the proof goes parallel for closed curvesyLg0; 1] — R3
the reparametrization ¢4, to constant veIocith| = Z(yn). Since the elements, are
Lipscurrz continuous with a uniform constant spgp-Z(yn), the sequence is uniformly
equicontinuous. By

a@® < [¥a(t) = 7a(0) + [7n(0) — ¥0(0)] + [¥0(0)|

<SURhew -Z (¥n) —0 asn—oo

it is also uniformly bounded. So, by ther£eLA-Ascorr theorem, we may pass to a
subsequence converging to some TO([0, 1], R?) in the C°-topology. The fact that
they, are also bi-kpscurrz continuous with uniform constant méR, sup,.; -2 (yn))
(see Lemma 14) is transferred o Which is in particularegular absolutely contin-
uous. Using (ii) we arrive aEP(y) < liminf ., EP(H,) = liminf . EMP(y,). We
conclude this proof by verifyindeP(yo) = E*P(y). It suffices to show Imagg, =
Imagey. For Imagey, c Imagey considery € Imagey,, so there is a € [0, 1] sat-
isfying y = yo(t) = lim,_ yn(t). Furthermore there is a sequentg,«; < [0, 1]
with y,(t) = yn(tn). By compactness there is somgec [0, 1] such that passing to a
subsequence we obtain— t,. Now

yo(t) = ¥(t)l < [¥a(t) = yo(t)| + [¥n(to) — ¥(to)| + [¥n(t) — ¥n(to)| -

—0 asn—oo —0 ash—oo < [yn(tn)=¥n(to)l
< constjty—to|
—0 asn—ow

For the other direction Image > Imagey we use the fact thatis injective due to bi-
LipscHiTz continuity, soy™t o yg : [a,b] — [0, 1] is well-defined. Since is continuous
on a compact interval, its inverse*’is also continuous, henge¥ y, is continuous.
Because of

v@ = Imy@ = Im7©) = 30

we arrive at ¢! o yp)(@) = 0 and by the same way ag ("o y0)(b) = 1. Using the
mean value theorem we obtain for apy= y(t), t € [0,1], at € [a, b] satisfying

(7 © y0)(7) = t, henceyo(r) = ¥(1). 0

jp>2

For the casgp > 2 O’Hara showed that finite-energ@!-curves are in fac€*/2
[O'H94, Thm. 1.11]. We will prove that the same is true also@8t-curves. By our
framework used for arriving at pointwiseftiirentiability we obtain the stepgC? =
Cte/2" almost immediately, without carrying out a geometric argument as the treat-
ment of “solid cylinders” conducted in O’kka’s proof [O'H94, Sublemma 1.10],

cf. [O'HO3, pp. 67 — 74] for a more detailed version.
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Again we will provide results for both closed and open curves. Xet= R/Z or
[0, 1] respectively. Proving the second part of the Main Theorem we start with some
technical preliminaries.

Lemma 16 ([Sem91, Lemma 8.5 revised])For £ > Oleta: [0,¢{] — R" be a curve
parametrized by arc-length, where 2 a(0), Q := a(f). Then we obtain for all
t [0, 4]

L QI)”Z

‘a(t)—(P+%(Q—P))‘ < 35( )

The norm on the left hand side cannot be estimated to a power o%
¢ — |P - Q| greater thar%, for e. g. the arc-length parametrization .

of a, : [0,2] — R?, t = h(t, min(t, 2 - t)), satisfies P 1 Q-

lan@)-(P+3Q-P)|  _ 118 h ¥ (vl 1-28
(¢-IP-QI? = h (2\/1+h2—2> = h 2h > h

which tends to infinity af \, 0if 8 > 1.

Proof. Applying a rotation and a translation we may assutne 0, Q = |P- Q|e,.
Fort € [0, ¢] we find the following estimate for the vectaft) := (ai(t), ..., a,-1(t)) €
R,

IA

0 0 1/2
aQ < fo @), B s (0)] VZ( fo |(a1(t),...,an_1(t))|2dt)
1/2

jal=1 Ca e ) ( ‘L )1/2

= «/Z(fo (1- an(t)?) dt < \/ZZfo(l an(t)) dt
1/2

= V2(-P-Q)? < ﬁf(#ﬁq) .

Now [a,(£)| — an(t) < |an(€) — an(t)] < € -t yieldsan(t) > |P — Q| - (¢ — 1), which leads
to

t t
a-;P-Q = (-P-Q(;-1) = --IP-Q).
On the other handi,(t) < |a(t)| < t implies
t t t
an(t)_E“D_Ql < t—Z,IP—QI = E(f—IP—QI) < ¢(-IP-Ql,
t {—1P-Q| . .
hence'an(t) _E“D_ QI‘ < — /) Using the estimate faa(f) we conclude
t (-IP-Q| (—1P- Q)"
aw-tp-of < o P9, va (P29
t l t
By x < v/xfor x € [0, 1] we obtain the result. O

A
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Lemma 17. Lety € C%(X,,R®) be parametrized by arc-length. Suppose that there
are numbersr > 0, oo € (O, %], C < oo such that for any € (0, og] the quantity

|s—t| }
K = Supy ——— —1|ste X, |s—-t| <
@ p{ 79— : )
fulfills the estimate
k(o) < Co°. (22)

Then there is azy = go(a@, 00,C) > 0, such that all xz &, € X; with [X—2Z < &,
X< &< <z,and¢ -] > 3|x- 7 satisfy

Y@ -—y(¥) () —v(E)
(@ -y 1¥(Q) - ¥

< 48VC-|x-2Z"?.

Note that the restrictiofs — t| < g < % implies|s—-t| = D,(s,t) and
st < (L+x(s—t)) (9 —y®)  forall |s—t < go. (23)
Proof. We choosey € (0, 0] so small that
k(eg) < 1L (24)

Forx,z &, ¢ € X; as in the assumptions we set

a = y({)-v@).
b = =5 pe-Hml.

Decomposing

Z_
Z_

L) - [0 - (v + 225500

7Z—

a-b = [0~ (S

we apply Lemma 16 witf = z— x, a = y(- — X), andt = £ or & respectively. This
yields

la— b

IA

6|z—x|(

1/2 _ _ lz-x| 1/2

z— X — (2 - y(X (23) 1z X -

1z X = Iy(2 - y(X)| 2 6lz-x (i)
|z— X |z— X

1
1+ «(jz— X))

1/2
6lz- X (1 ) < 6lz—X-«(z— x)Y?

(22)
< 6VClz- x>,
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Since

_ @ -4 ey 1,
(@ -yl > Tt -4 = zlz-X

we obtain recalllntjIal b| 2""“bl

Y@ -v(X)  ¥({) - la—b| 2
YO0 Moyl S 2w S 8VeR-x

Lemma 18. The hypotheses of Lemma 17 imply C>/2(X,, R3).

Proof. Forx,ze Xy with x<z< X+ g andx < s<t<zletk e N be such that
27%lz—-x > |t—-9 > 2¥z-«x.

Then there aré, £ € [x.2, & < 4,1 = 0,...,k satisfying Fo,Z0] = [% 2, [£ 4] =
[s.t], [&, 4] € [é-1, 4], andlg — &l = 31621 — &l for 1 = 0,... k=1 and|g — & >
% 10k-1 — &c-1l. Applying Lemma 17 to

y(&) — y(&)
Iy (1) — y(&)l

we arrive at

Viei—wl < 48+/C - 2-1+1e/2 . - X2 (25)

forl =1,...k. We now compute

')’(Z) —y(x) () —¥(9
Z—X t—s
‘7(2) —v®) @ -y |, | YD -rv(® ¥ - ()
Z- X (@ =y 1@ =yl () —¥(S)
y®) =¥ () - ’y(S)
y(t) - 7(8)I t—

oy ts
@~ O~
= +Z|V'1_V|+ =

Y@-y()I ly(©)—y(s)l

" k(z- X)) + 48VC - |z — X" Z (2—“/2) )

=0

(22)
< 2C-|z— X" +48VC-|z— x*?-

1-22
< C.lz-x"?, (26)
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whereC, is a constant depending only arandC.

Now lety € R ory € (0, 1) respectively and chooge= (0, £9] so small thaty + 6 € X;.

Using the last inequality witlk = y — 6 andz = y + § we obtain

y(®) —¥(9)  y(X+6) —y(x-9)
t—s 20

forally — 6 < s<t<y+4. Thusy is differentiable iry.

Finally we obtainy € C1*/2 by

(2 - y(X)
'7(2) -y(¥) -y(z)‘ N 'Y(Z;: Z(X) B -y(x)'

< Cu(26)?

Z—X
Y@ -y(®)  y(@-y(z- h)' N
Z-X h

Y@ -—y(¥)  y(x+h)-y(X

lim
Z—X h

h\,0

lim
h\,0

IA

(26)
< 2C,|z- X2

for all x,ze X; with |z— X < &g and
Y@ -y(¥) < 2£,°D,(z, )"
for all X,z e X; with D,(z X) > &o. O

Proposition 19 (Quantified bi-Liescarrz estimate for finite energy curves of unit-
length, [O’H94, Prop. 1.6]). For jp > 2 lety € C%(X.,R®) be parametrized by
arc-length with E-P(y) < B for some B> 0. Then there is an A A(j, p, B) > 0, such
that, provideds —t| < og := min((ZA)‘(F”Z)/(jp‘Z), %)

[y (s) — ¥(®)l
1= Apy(s) -y 2/

Is—t] <

The proof which may be found in [O'H94, pp. 49 —51] or [Q’HOS, Cor. 4.2.3(1)] also
holds for open curves. The conditifg t| < min((2A)‘(P+2>/(JP—2>, %) guarantees that

the denominator of the right hand side is bounded beIO\él ayd thats—-t| = D, (s 1)
holds.

Proof of the second part of the Main Theorefks mentioned in the introduction we
may restrict ourselves to arc-length parametrized curves. Due to scaling invariance we
may furthermore assume that the length of our curve is 1. Sp &C%' (X4, R%) be
parametrized by arc-length witB-P(y) < co. Proposition 19 guarantees condition (22)
with C = 2A anda = (jp - 2)/(p + 2), for

_ _ (ip=2)/(p+2) ,
|S t| _ < Ab/(S) Y(t)l . < 2A|’}/(S) _ y(t)l(jp—Z)/(p+2) .
ly(s) — y(®) 1 — Aly(s) — y(t)|P-2/(P+2)
Now the claim follows by Lemma 18. O
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