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Abstract

In this article we raise the question if curves of finite (j, p)-knot energyintro-
duced by O’H are at least pointwise differentiable. If we exclude the highly
singular range (j − 2)p ≥ 1 the answer isno for jp ≤ 2 andyesfor jp > 2.
In the first case, which also contains the most prominent example of theMÖBIUS

energy( j = 2, p = 1) investigated by F, H, and W, we construct
counterexamples. Forjp > 2 we prove that finite-energy curves have in fact a
Ḧ continuous tangent with Ḧ exponent12( jp − 2)/(p + 2). Thus we
obtain a complete picture as to what extent the (j, p)-energy has self-avoidance
and regularizing effects for (j, p) ∈ (0,∞) × (0,∞). We provide results for both
closed and open curves.

AMS Mathematics Subject Classification (2000)
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secondary 26A27, 57M25

Introduction

A knot energyis a functional that is bounded from below andself-repulsive, i. e. blows
up on sequences of embedded curves converging to a curve with a self-intersection
[O’H03, Def. 1.1]. One motivation to study such functionals is to find a “nicer”, that
is, less entangled shape for a given knot in order to determine its knot type, e. g. by
following the negative gradient flow of the knot energy up to a local minimum [He00].
By claiming self-repulsion one hopes1 not to run into the danger of leaving the ambient

RWTH Aachen, Institut für Mathematik, Templergraben 55, 52062 Aachen, Germany.
blatt@instmath.rwth-aachen.de, reiter@instmath.rwth-aachen.de

1In general, self-repulsion does not penalize “pulling tight” of small knots, cf. [O’H92b,
Thm. 3.1 (2)].
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isotopy class during this process. Global minimizers within a prescribed knot class
may be regarded as optimal representatives of this knot class exhibiting an “ideal”
shape; see the nice illustrations of minimizing curves in various knot classes in [KS98].

The idea of considering energy functionals on knots goes back to S. F. He
thought of the motion of a non-elastic string with electrons on it lying in a viscous
liquid absorbing kinetic energy. In a first paper [Fuk88] he treated the case of knotted
polygons.

In 1991 J. O’H [O’H91] introduced the knot energy2

E(γ) :=
"

X×X

(
1

|γ(s) − γ(t)|2
−

1
Dγ(s, t)2

)
|γ̇(s)| |γ̇(t)|dsdt (1)

which may be viewed as a functional on the setACreg(X,R3) of regular absolutely con-
tinuous curves defined on an intervalX ⊂ R or a circleX = R/(`Z). HereDγ(s, t)
denotes the distance ofγ(s) andγ(t) on γ. The factor|γ̇(s)| |γ̇(t)| guarantees the in-
variance under reparametrization, which allows us to restrict our attention to curves
parametrized by arc-length, that are naturally L continuous.

In 1994 M. F, Z.-X. H, and Z. W proved in their seminal paper [FHW94]
the existence andC1,1-regularity3 of E-minimizers in prescribed prime knot classes
using the invariance of this particular knot energy under M̈ transformations inR3.
Due to that they coined the nameMÖBIUS energy. Among many other things they
proved thatE takes finite values on sufficiently smooth embeddings ofS1 [FHW94,
Prop. 1.5], [He97, Thm. 1.5.1], and that, on the other hand, any curve with finite
M̈ energy has locally a bi-L constant arbitrarily close to 1 [FHW94, Cor.
1.3]. This means that the M̈ energy exhibits a “regularizing” effect: Finite energy
excludes corner points and even more so cusps on the curve. This fact led to the
question if finite energy implies differentiability.

In his (unfortunately unpublished) lecture notes on the M̈ energy [He97, pp. 14
– 19] H constructed an open finite-energy curve (of “spiral” shape) that is not differen-
tiable at a boundary point and asked about the differentiability at interior points [He97,
Problem 1.6.3].4

The answer to this question is contained as a special case in our Main Theorem below,
which in fact deals with an entire family of energies, the so-called (j, p)-energies

E j,p(γ) := L (γ) jp−2

"
X×X

(
1

|γ(s) − γ(t)| j
−

1
Dγ(s, t) j

)p

|γ̇(s)| |γ̇(t)|dsdt, (2)

2In fact, O’H’s first version of a knot energy equals1
2E − 2.

3Later, using the machinery of pseudo-differential operators H was able to proveC∞-smoothness
of theE-minimizers [He00, Cor. 5.3], thus resolving completely the regularity theory for minimizers of
this particular knot energy.

4In [FHW94, Rem. to Cor. 1.3] the authors conjectured the existence of such a curve.
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whereL (γ) denotes the length ofγ. These energies were introduced and investi-
gated by O’H [O’H92a], [O’H92b], [O’H94], [O’H03]. The M̈ energy (1)
corresponds to the casej = 2, p = 1. According to the definition at the beginning
the general (j, p)-energy is a true knot energy if and only ifjp ≥ 2, see [O’H92b,
Thms. 1.9, 2.3].

In 2003 A. A, J. C, J. H. G. F, M. G, and R. H showed that
circles are the unique minimizers of all (j, p)-energies among closed curves ifp ≥ 1
and (j − 2)p < 1 [ACF+03, Cor. 3]. Their proof also works for (j − 2)p ≥ 1, but in
this case circles are only “weakminimizers”, since their energy (and hence the energy
of all closed curves) is infinite in this case, which is a consequence of Lemma 1 (ii).
In the jp < 2 section we will see that circles are no longer minimizers ifp < 1 and
( j − 2)p ≥ 1.

Although knot energies are usually defined only in the context of closed curves, the
corresponding functionals are obviously also well-defined for open curves, so we al-
ways present statements in terms of open and closed curves.

In the present paper we prove the following

Main Theorem (Differentiability of finite-energy curves). Let j, p ∈ (0,∞).

(i) If jp ≤ 2 and ( j − 2)p < 1 there are finite-energy curves that are not differen-
tiable. Furthermore these curves can be chosen of “infimal” energy, i. e. with
energy arbitrarily close to the energy of a circle or a line respectively.

(ii) If jp > 2 all finite-energy curves are of class C1,α/2, whereα = ( jp − 2)/(p+ 2).

With this result we obtain a complete picture of the regularizing effects of O’H’s
( j, p)-energies for (j, p) ∈ (0,∞) × (0,∞); see Figure 1. The graphs of the three
functions jp = 2, (j − 2)p = 1, andp = 1 partition the parameter space (j, p) ∈
(0,∞) × (0,∞) into several regions of completely different behavior: In the white
region the (j, p)-energy has no regularizing effect, see Part (i) of the Main Theorem.
In the grey region finite energy does lead to Ḧ continuous first derivatives (Main
Theorem, Part (ii)), although in the hatched region above the linep = 1 one cannot
hope to findanyclosed curve with finite energy5. (In fact, we expect the same behavior
also in the grey hatched region belowp = 1; at least sufficiently smooth curves except
lines can be shown to have infinite energy there too, cf. Lemma 1 (ii).6) In addition
we have indicated in Figure 1 the bizarre effect that squares have always finite energy
in the white region, whereas the seemingly ideal shape of the circle leads to infinite
energy in the white region between the graphs (j − 2)p = 1 and jp = 2.

5This observation also shows that the assumption (j − 2)p < 1 in Part (i) of the Main Theorem is in
the case of closed curves not a restriction at all.

6To be more precise, on{( j − 2)p ≥ 1, jp > 2}we know that all curves which are at leastC3,1 (except
lines, since their curvature vanishes completely) and, on the other hand, all curves which fail to beC1,α/2

have infinite energy, see Lemma 1 (ii) and part (ii) of the Main Theorem.

September 30, 2006 3



0 1 2 3 4 5
0

1

2

j

p

jp = 2 ( j − 2)p = 1

E j,p < ∞ ⇒ C1,α/2

E j,p
= ∞ for “all” curves

E j,p
= ∞ for “smooth” curvesE j,p(�) < ∞

E j,p(�) < ∞, but E j,p(©) = ∞M̈ energy

Figure 1: Range of (j, p)
α = ( jp − 2)/(p+ 2)

The paper is structured as follows. In the first section we briefly discuss the range of
high singularity (j − 2)p ≥ 1 using techniques that will also appear later on. By means
of [ACF+03, Cor. 3], any closed curve has infinite (j, p)-energy if in additionp ≥ 1.
Furthermore, if an open or closed curve belongs toC3,1 on some open subdomain with
non-vanishing curvature, its energy is infinite. Note also that by part (ii) of the Main
Theorem the energy of polygons (except lines7) is infinite in the casejp > 2.

In the second settingjp < 2 we observe curves of finite energy that are not differen-
tiable, e. g. squares. We obtain the same fact for the boundary casej = 0, p = ∞which
corresponds to G’s distortion [O’H92b, Ex. 1.3]. Our result from the first section
is used to understand the bizarre effect in{ jp < 2, ( j − 2)p ≥ 1} mentioned above.

The third section is devoted to the situationjp = 2, where the involved construction of
a non-differentiable curve of finite energy is carried out. This curve possesses a local
bi-L constant arbitrarily close to 1, cf. Corollary 4. We briefly explain the
idea of our proof before going into detail. After constructing an open curve that is not
differentiable at one inner point and additionally has an arbitrarily small energy, we
“glue” it on a cylinder obtaining a closed curve that is not differentiable at one inner
point and whose energy is arbitrarily close to that of a circle, which is known [ACF+03,
Cor. 3] to be the unique minimizer forj ≤ 2. This technique of deriving an energy
bound for the “closure” of an open curve applies to a wide range of curves. At the end

7The energy of a line amounts to 0 for allj, p > 0.
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of this section we give a detailed proof of the fact thatE j,p is lower semi-continuous
under several suitable assumptions, generalizing [FHW94, Lemma 4.2].

In the forth section we deal withjp > 2. In this case any finite energy curve belongs8

to C1,α/2, whereα = ( jp−2)/(p+2). There are two key ingredients for this proof. The
first one is a kind of “quantified” bi-L constant that was derived in [O’H94,
Prop. 1.6]. The second, Lemma 16, was originally stated by S. S and will allow
us to develop a technical tool in Lemma 17, which proves the regularity of curves
fulfilling the quantified bi-L estimate.

Acknowledgements.We would like to thank Heiko von der Mosel for many helpful
discussions and Zheng-Xu He for (informal) publishing his “informal notes” [He97].

( j − 2)p ≥ 1

Lemma 1 (Range of high singularity). Letγ : X→ R3 be an open or closed curve in
arc-length parametrization, where X denotes an interval ofR or a circleR/(`Z), and
j, p > 0 with ( j − 2)p ≥ 1. Then the conditions

(i) p ≥ 1 and X= R/(`Z) or

(ii) γ ∈ C3,1 on an arbitrary open subdomain of X, where additionallyγ̈ , 0,

both imply Ej,p(γ) = ∞.

Proof. (i) According to Corollary 3 from [ACF+03], circles arestrict minimizers for
p ≥ 1, (j−2)p < 1 among all closed curves of length 2π in arc-length parametrization.
From the proof of this result one can derive that this statement also holds forall p ≥ 1,
while the circle is only a “weakminimizer” for ( j−2)p ≥ 1, since its energy (and hence
the energy of all closed curves) is infinite in this case, which is a consequence from
part (ii). So this gives a rigorous proof of the fact that all closed curves in arc-length
parametrization have infinite energy for (j − 2)p ≥ 1.
(ii) We start with the T expansion ofγ; for s, t ∈ R we obtain

γ(s) − γ(t) = γ̇(t)(s− t) + 1
2γ̈(t)(s− t)2 + 1

6

...
γ (t)(s− t)3 + R4(s− t),

whereR4(s− t) ≤ 1
4!

∥∥∥γ(4)
∥∥∥

L∞(R/(`Z),R3)
|s− t|4. The arc-length parametrization implies

|γ̇| ≡ 1, 〈γ̇, γ̈〉 ≡ 0,
〈
γ̇,

...
γ
〉
≡ − |γ̇|2, so

|γ(s) − γ(t)|2

|s− t|2
≤ 1− 1

12 |γ̈(t)|
2 (s− t)2 +C1 |s− t|3 (3)

8Hence O’H’s results for jp > 2 [O’H94] automatically extend to the larger class of regular
absolutely continuous curves.
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for someC1 < ∞ depending on
∥∥∥γ(i)

∥∥∥
L∞

, i = 1,2,3,4, and`. Sincex 7→ x− j/2 is convex

on (0,∞), we obtainy− j/2 ≥ 1− j
2(y − 1) for all y ∈ (0,∞). This leads to

1

|γ(s) − γ(t)| j
−

1

|s− t| j
=

1

|s− t| j

( |γ(s) − γ(t)|2
|s− t|2

)− j/2

− 1


≥

j
2

(
1
12 |γ̈(t)|

2
−C1 |s− t|

)
|s− t|2− j .

Without loss of generality we may assume that there arec1, ε0 > 0 such that|γ̈(t)| ≥ c1

for all t ∈ [0, ε0]. Now ε := min
(
ε0,

c2
1

24C1
, 1

2`
)

yields

E j,p(γ) ≥

∫ ε

0

∫ ε+t

t

(
1

|γ(s) − γ(t)| j
−

1

|s− t| j

)p

dsdt ≥
(

j
48c2

1

)p
ε

∫ ε

0
u(2− j)p du,

which is infinite if (j − 2)p ≥ 1. �

jp < 2

The (j, p)-energy of the unit squareQ : [0,4] → R2, t 7→ (t,0) for t ∈ [0,1], t 7→
(1, t − 1) for t ∈ [1,2], t 7→ (3− t,1) for t ∈ [2,3], t 7→ (0,4− t) for t ∈ [3,4], is finite.
The only interesting point is the interaction of neighboring segments, which leads to"

[0,1]×[1,2]

(
1

|Q(s) − Q(t)| j
−

1

|s− t| j

)p

dsdt ≤

"
[0,1]×[1,2]

dsdt

|Q(s) − Q(t)| jp

=

"
[0,1]2

dsdt
(s2 + t2) jp/2

≤

∫ π/2

0

∫ √
2

0

r dr dϕ
(r2) jp/2

=

π
2

2− jp
· 2(2− jp)/2.

So there is a curve of finite (j, p)-energy which is not differentiable.

The same calculation yields thatE j,p is not self-repulsive, so this case does not model
a knot energy, cf. [O’H92b, Thm. 1.9].

To obtain an open curve with arbitrary small energy take two lines and join them by a
sufficiently large angle, i. e.π − ε. For closed curves one may replace a small piece of
a circle by an angle and adapt the arguments given in the proof of Proposition 13. If
j ∈ (0,4), p ∈ [1, 2

j ) the (j, p)-energy of the curves constructed in the next section are

bounded by means of Ḧ’s inequality in terms of their (j, 2
j )-energy which can be

chosen arbitrarily small.

For the boundary casej = 0, p = ∞which corresponds to G’s distortion [O’H92b,
Ex. 1.3] we furthermore obtain

distort(Q) = sup
0≤s<t≤4

DQ(s, t)

|Q(s) − Q(t)|
= 2,
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so thatQ is also an example for a non-differentiable curve whose distortion is finite.

In the set
{
( j, p) ∈ R2

∣∣∣∣ j > 4, 1
j−2 < p < 2

j

}
we obtain the bizarre situation that the en-

ergy of a square is finite while the energy of a circle is infinite according to Lemma 1 (ii),
so we cannot expect that equation (3) from [ACF+03] also holds for allp < 1, i. e. that
circles are still minimizers of the (j, p)-functional.

jp = 2

Let E[ j] := E j,2/ j. Note that this notation is (forj , 2) different fromE( j) := E j,1 that
is used by O’H in [O’H03].

Theorem 2 (Finite (j, 2
j )-energy does not imply differentiability). For any ε > 0

and j ∈ (0,4) there is an open curveR → R2 of ( j, 2
j )-energy≤ ε parametrized by

arc-length that is not differentiable at0 and coincides outside a neighborhood of0R2

with the x1-axis.

Corollary 3 (Version for closed curves). Let ζ : R/Z → R2 denote the circle of
length1. For anyε > 0 and j ∈ (0,4) there is a closed curveR/Z → R3 in arc-length
parametrization whose( j, 2

j )-energy lies in theε-neighborhood of Ej,2/ j(ζ), but which
is not differentiable at0.

Using the fact that finite M̈ energy curves possess a local bi-L prop-
erty [FHW94, Cor. 1.3] we immediately deduce

Corollary 4 (Arbitrarily “small” local bi-L  constant does not imply differ-
entiability). There is an open curveR→ R2 in arc-length parametrization that is not
differentiable at0, but satisfies the following condition:

For anyε0 > 0 there is aδ > 0 such that for anyy ∈ R the restriction to
[y − δ, y + δ] is bi-L continuous with constant1+ ε0.

There is also a closed curveS1→ R2 with a similar property.

Before presenting the rigorous proof in several steps we give a brief

Outline of the proof.The main idea is to construct a basic componentκα, that lies on
thex-axis outside a neighborhood of the origin.

In a smaller neighborhood of the originκα lies on a
line segment that meets thex-axis at the origin in an
angle ofα as drawn on the left. The energy ofκα
amounts toO(α4/ j) by Proposition 7.
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Now letα∗ < α and replace (a part of) the line
segment by a copy ofκα∗ scaled down and re-
stricted to a suitable neighborhood of the origin,
so it fits into the gap. Because of the scaling
invariance we can choose this copy arbitrarily
small, i. e. we change the original curveκα only
on a very small subdomain at the origin.

The composite curve meets the origin in an angle ofα + α∗. It turns out that its energy
can be estimated in terms ofE[ j](κα), E[ j](κα∗) and some other terms that depend on
quantities which can be controlled by the scaling parameter ofκα∗, cf. Proposition 8.
So we obtain essentiallyO(α4/ j) +O((α∗)4/ j) as energy of the composite curve.

By repeating this process inductively forαk := 1
k we obtain a limit curve that performs

a rotation of
∑

k∈N k−1 = ∞ near 0 but has energy
∑

k∈N k−4/ j < ∞. �

For the rigorous proof of Theorem 2 we will collect a few tools at first which will be
used later on, starting with the following fact.

Lemma 5. Let j > 0. There is a constant C2 depending only on j> 0 such that for
λ, µ > 0 ∫ −λ

−∞

∫ ∞

λ

(
1

(s− t) j
−

1
(s− t + µ) j

)2/ j

dsdt ≤ C2

(
µ

2λ

)2/ j

(4)

holds.

Proof. Let q( j, x) := (1− jx)(1+ x) j. Since we have

d
d j q( j, x) = (1+ x) j [−x+ (1− jx) log(1+ x)

]
< 0 for all j, x > 0

and j 7→ q( j, x) is continuous on [0,∞), we arrive atq( j, x) ≤ q(0, x) = 1, i. e.

(1− jx)(1+ x) j ≤ 1 for all j, x > 0. (5)

For s, t > 0 andx = µ

s+t we obtain

1− j
µ

s+ t
≤

1(
1+ µ

s+t

) j
=

(
s+ t

s+ t + µ

) j

=⇒ 1−

(
s+ t

s+ t + µ

) j

≤ j
µ

s+ t
. (6)

This yields"
[λ,∞)2

(
1

(s+ t) j
−

1
(s+ t + µ) j

)2/ j

dsdt
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=

"
[λ,∞)2

1
(s+ t)2

1− (
s+ t

s+ t + µ

) j2/ j

dsdt

(6)
≤ ( jµ)2/ j

"
[λ,∞)2

(s+ t)−2−2/ j dsdt =
1
2
j

·
1

1+ 2
j

· j2/ j
(
µ

2λ

)2/ j

.

�

By T approximation there is ac3 > 0, such that, for anyα ∈ (0, c3],

0 < α − sinα ≤ 1
3α

3,
0 < 1− cosα ≤ α2,
0 < tanα − sinα ≤ α3,

1
2α ≤ sinα ≤ α,
α ≤ tanα ≤ 2α.

(7)

Let α ∈ (0, c3] and define

x(α) :=
1− cosα

tanα
< y(α) :=

1− cosα
sinα

= tan
α

2
≤ α,

ξα := 3 sinα + x(α) < ηα := 3α + y(α) ≤ 4α.
(8)

This yields by (7)

0 ≤ y(α) − x(α) = (1− cosα)
tanα − sinα
sinα tanα

≤ 2α3,

0 ≤ ηα − ξα ≤ 3α3.
(9)

Now we are going to construct the components we will later insert into one another
inductively.

ξα

ηα

y(α)

α x(α)

sinα

α

The basic componentκa : R → R2 is defined as drawn above and characterized by the
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following explicit formula in arc-length parametrization.

t 7→



(
cosα
sinα

)
t for t ∈ [0, y(α)],(

sin(t − α − y(α))
cos(t − α − y(α))

)
+

(
x(α) + sinα
1− 2 cosα

)
for t ∈ [y(α), y(α) + 2α],(

sin(t − ηα)
− cos(t − ηα)

)
+

(
ξα
1

)
for t ∈ [y(α) + 2α, ηα],(

t
0

)
−

(
ηα − ξα

0

)
for t ∈ [ηα,∞),

−κα(−t) for t ∈ (−∞,0).

To computeE[ j](κα) we need an estimate for the energy of an arc joined with a half
line. This curveζ̄α was first introduced by Z.-X. H in [He97, Ex. 1.1.2 and p. 15]; his
calculations lead toE[2](ζ̄α) = 2− α cot α2 = O(α2).

Lemma 6 (Energy of a “hockey stick”).

There are constants c4 ∈ (0,2π), C4 < ∞, depending only
on j > 0, such that forα ∈ (0, c4] the curveζ̄α : (−∞, α] →
R2 given by

t 7→


(

t
0

)
for t ≤ 0,(

sint
1−cost

)
for t ∈ [0, α].

satisfies
E[ j](ζ̄α) ≤ C4α

4/ j .

ζ̄7π/6

Proof. By modifying the arguments from Lemma 1 (ii) (estimate towards the other
direction) and applying them to the circle segment we will show that there are constants
c5 > 0,C5 < ∞ such thatE[ j](ζ̄α|[0,α]) ≤ C5α

4/ j for anyα ∈ (0, c5]. The arcζ := ζ̄α|[0,α]
obviously fulfills the assumptions of Lemma 1 (ii), so we arrive at

|ζ(s) − ζ(t)|2

|s− t|2
≥ 1− 1

12

∣∣∣ζ̈(t)∣∣∣2 (s− t)2 −C1 |s− t|3 (3*)

for C1 < ∞ depending only onα, since
∥∥∥ζ(i)

∥∥∥
L∞
= 1 for all i ∈ N. Since (1+ x)− j/2 =

1− j
2

∫ x

0
(1+ ξ)− j/2−1 dξ we obtain

y− j/2 ≤ 1− j
2y
− j/2−1(y − 1) ≤ 1+ j

4(1− y) for all y ∈
[
2−1/( j/2+1),1

]
.
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This leads to

1

|ζ(s) − ζ(t)| j
−

1

|s− t| j
=

1

|s− t| j

( |ζ(s) − ζ(t)|2
|s− t|2

)− j/2

− 1


≤

j
4

(
1
12

∣∣∣ζ̈(t)∣∣∣2 +C1 |s− t|
)
|s− t|2− j

≤
j
4

(
1
12 +C1α

)
|s− t|2− j

provided |ζ(s)−ζ(t)|
2

|s−t|2
≥ 2−1/( j/2+1). But sinceζ has a (uniform) local bi-L constant

arbitrarily close to 1, there is ac5 > 0 such that this requirement holds for all|s− t| ≤
c5. Now

E j,p(γ) ≤
∫ α

0

∫ a

0

(
1

|ζ(s) − ζ(t)| j
−

1

|s− t| j

)p

dsdt

≤
[

j
4

(
1
12 +C1α

)]p
· 2

∫ α

0

∫ α−t

0
u(2− j)p du

≤

[
j
4

(
1
12 +C1α

)]p[
(2− j)p+ 1

] [
(2− j)p+ 2

] · α(2− j)p+2 jp = 2
=: C5α

4/ j .

Since ∣∣∣ζ̄α(s) − ζ̄α(t)∣∣∣ ≤
∣∣∣ζ̄2α(s+ α) − ζ̄2α(t + α)∣∣∣ for s, t ∈ [−α, α]

we even obtainE[ j](ζ̄α|[−α,α]) ≤ C5(2α)4/ j for anyα ≤ 1
2c5. Certainly,E[ j](ζ̄α|(−∞,0]) = 0.

It remains to study the interaction of the intervals (−∞,−α] and [0, α]. Let s ∈ [0, α],
t ∈ [α,∞), α ≤ c4 := min

(
c3,

1
2c5,1, (2 j)−1/2

)
, which implies

(1+ τ) j
(5)
≤

1
1− jτ

≤ 1+ 2 jτ for anyτ ∈ [0, c2
4]. (10)

Since (
(s+ t)2

(sins+ t)2 + (1− coss)2

)1/2
(7)
≤

s+ t
s− s3 + t

≤ 1+
s3

t

and 0≤ s3

t ≤ α
2 ≤ c2

4 we arrive at∫ −α

−∞

∫ α

0

 1∣∣∣ζ̄α(s) − ζ̄α(t)∣∣∣ j
−

1
(s− t) j


2/ j

dsdt

≤

∫ ∞

α

∫ α

0

1
(s+ t)2

( (s+ t)2

(sins+ t)2 + (1− coss)2

) j/2

− 1

2/ j

dsdt

(10)
≤ (2 j)2/ j

∫ ∞

α

∫ α

0

1
(s+ t)2

(
s3

t

)2/ j

dsdt

≤ (2 j)2/ j

∫ ∞

α

∫ α

0

s6/ j

t2/ j+2
dsdt =

(2 j)2/ j

(6
j + 1)(2

j + 1)
· α4/ j .

Now E[ j](ζ̄α) ≤ 24/ jC5α
4/ j + 0+ 2 · (2 j)2/ j

(6/ j+1)(2/ j+1) · α
4/ j =: C4α

4/ j. �
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Proposition 7 (Energy of a segment).There are constants c0 ∈ (0, c4], C0 < ∞
depending only on j> 0 such that

E[ j](κα) ≤ C0α
4/ j for anyα ∈ (0, c0].

Proof. Forα ∈ (0, c4] consider the curvēζα defined in Lemma 6 in arc-length parametriza-
tion. Because of

|κα(s) − κα(t)| ≥
∣∣∣ζ̄2ηα(s+ ηα) − ζ̄2ηα(t + ηα)∣∣∣

for s, t ∈ (−∞, ηα] we obtain

E[ j](κα|(−∞,ηa]) ≤ E[ j](ζ̄2ηα) ≤ C4(2ηα)4/ j
(8)
≤ 84/ jC4α

4/ j for α ≤ c0 := 1
8c4.

By symmetry we obtain the same estimate forE[ j](κα|[−ηα,∞)).

It remains to treat the case

∫ −ηα

−∞

∫ ∞

ηα

(
1

|κα(s) − κα(t)|
j
−

1
(s− t) j

)2/ j

dsdt resp.
∫ ∞

ηα

∫ −ηα

−∞

· · · .

Because of|κα(s) − κα(t)| = (s− t) − 2(ηα − ξα) for s, (−t) ∈ [ηα,∞), the first integral
equals

∫ −ξα

−∞

∫ ∞

ξα

(
1

(s− t) j
−

1
(s− t + 2(ηα − ξα)) j

)2/ j

dsdt

(4)
≤ C2

(
ηα − ξα
ξα

)2/ j
(7) – (9)
≤ 22/ jC2α

4/ j .

By symmetry we arrive at the same estimate for the second integral. Summing up we
concludeE(κα) ≤ 2 · 84/ jC4α

4/ j + 2 · 22/ jC2α
4/ j =: C0α

4/ j. �

September 30, 2006 12



Proposition 8 (Joining curves). Let j ≥ 2, L ≥ Λ ≥ 1
2Λ ≥ ` ≥ λ > 0, β ∈ [0,2π).

Letγ : [−L−Λ, L+Λ] → R2 be an open curve in arc-length parametrization satisfying

γ(t) =
(
cosβ
sinβ

)
t for all |t| ≤ Λ and

|γ(t)| ≥ Λ for all |t| ≥ Λ.

Letδ : [−(Λ−λ)−`, (Λ−λ)+`] → R2 be an open curve in arc-length parametrization
satisfying

δ(t) =
(
cosβ
sinβ

)
(t + (` − λ)) for all t ≤ −`,

|δ(t)| ≤ λ for all |t| ≤ `, and
δ(t) =

(
cosβ
sinβ

)
(t − (` − λ)) for all t ≥ `.

Then the energy of the open arc-length parametrized curve

γx δ : [−L − (Λ − λ) − `, L + (Λ − λ) + `] −→ R2

t 7−→


γ(t + ` − λ) for t ∈ [−L − (Λ − λ) − `,−`],
δ(t) for t ∈ [−`, `],
γ(t − ` + λ) for t ∈ [`, L + (Λ − λ) + `],

fulfills the estimate E[ j](γx δ) ≤ E[ j](γ) + E[ j](δ) + 2C2

(
` − λ

λ

)2/ j

+ 32
L`
Λ2
.

In the proof we will need the fact that, fora ≥ b ≥ 0, p ∈ [0,1],

ap − bp ≤ (a− b)p (11)

holds, which can easily be verified by showing thatσp+(1−σ)p is monotone increasing
in σ on [0, 1

2]. The fact that there is no similar estimate forp > 1 is the reason for the
restriction toj ≥ 2.

Proof. Let
A := [−L − (Λ − λ) − `,−(Λ − λ) − `],
B := [−(Λ − λ) − `,−`],
C := [−`, `],
D := [`, (Λ − λ) + `],
E := [(Λ − λ) + `, L + (Λ − λ) + `].

We divide the integration domain into 25 subdomains.
Because of symmetry we may restrict ourselves to 15
of them (see table on the right), but we have to keep
in mind to multiply by 2 off the diagonal. The term
E[ j](γ) absorbs cases 1, 2, 6, 13, 14, 15,E[ j](δ) treats
cases 7, 8, 10, 11; in both cases the symmetric do-
mains are already considered.
Now we consider the cases 4, 5, 8, 9.

A B C D E

A 1 2 3 4 5
B 6 7 8 9
C 10 11 12
D 13 14
E 15

B

A

E

DC

`

Λ − λ

Λ − λ

` L

L
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"
(A∪B)×(D∪E)

(
1

|(γx δ)(s) − (γx δ)(t)| j
−

1
(s− t) j

)2/ j

dsdt

=

∫ −`

−L−Λ+λ−`

∫ L+Λ−λ+`

`

(
1

|γ(s− ` + λ) − γ(t + ` − λ)| j
−

1
(s− t) j

)2/ j

dsdt

=

∫ −λ

−L−Λ

∫ L+Λ

λ

(
1

|γ(s) − γ(t)| j
−

1
(s− t + 2(̀ − λ)) j

)2/ j

dsdt

The
∫ −λ
−L−Λ

∫ L+Λ

λ
part ofE[ j](γ) was not already used in the absorbing process, so refer-

ring to (11) it suffices to examine∫ −λ

−L−Λ

∫ L+Λ

λ

(
1

|γ(s) − γ(t)| j
−

1
(s− t + 2(̀ − λ)) j

)2/ j

dsdt

−

∫ −λ

−L−Λ

∫ L+Λ

λ

(
1

|γ(s) − γ(t)| j
−

1
(s− t) j

)2/ j

dsdt

(11)
≤

∫ −λ

−L−Λ

∫ L+Λ

λ

(
1

(s− t) j
−

1
(s− t + 2(̀ − λ)) j

)2/ j

dsdt
(4)
≤ C2

(
` − λ

λ

)2/ j

.

For case 3 lets ∈ A, t ∈ C. Now |(γx δ)(s) − (γx δ)(t)| ≥ Λ − λ leads to∫
A

∫
C

(
1

|(γx δ)(s) − (γx δ)(t)| j
−

1
(s− t) j

)2/ j

dsdt ≤
|A| |C|

(Λ − λ)2
≤ 8

L`
Λ2
.

Since we arrive at the same situation in the remaining case 12, we obtain 2· 8L`/Λ2

together for both cases. Summing up and remembering that we have to multiply by 2
off the diagonal, we are finally lead to the formula stated above. �

Proposition 9 (Extending a curve). Let j, L∗,Λ∗, `∗, λ∗, δ∗ as in Proposition 8, and
β∗ := 0 andγ∗(t) :=

(
1
0

)
t for all t ∈ [−L∗−Λ∗, L∗+Λ∗]. Then there is a constant C6 > 0

depending only on j such that

E[ j](γ∗x δ∗) ≤ E[ j](δ∗) + 2C2

(
`∗ − λ∗

λ∗

)2/ j

+ 4C6

(
2`∗

Λ∗ − λ∗

)1+2/ j

.

Of course, Propositions 8 and 9 are also true for an analogous situation inRn.

Proof. We treat cases 1, 2, 4, 5, . . . , 11, 13, 14, 15 as in the proof of Proposition 8. In
case 3 (and analogously in case 12) we obtain fors ∈ A, t ∈ C the estimates

|(γ∗x δ∗)(s) − (γ∗x δ∗)(t)| ≥ |s| − `∗ and |s− t| ≤ |s| + `∗.
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This leads to∫
A

∫
C

(
1

|(γ∗x δ∗)(s) − (γ∗x δ∗)(t)| j
−

1
(s− t) j

)2/ j

dt ds

≤ |C|

∫ −(Λ∗−λ∗)−`∗

−L∗−(Λ∗−λ∗)−`∗

(
1

(−s− `∗) j
−

1
(−s+ `∗) j

)2/ j

ds

≤ 2`
∫ ∞

Λ−λ

(
1
sj
−

1
(s+ 2`) j

)2/ j

ds = 2`
∫ ∞

Λ−λ

1
s2

[
1−

( s
s+ 2`

) j
]2/ j

ds

(6)
≤ (2`)1+2/ j j2/ j

∫ ∞

Λ−λ

s−2−2/ j ds =
j2/ j

1+ 2
j

·

(
2`
Λ − λ

)1+2/ j

=: C6

(
2`
Λ − λ

)1+2/ j

.

Notice thatE[ j](γ∗) = 0. �

Proof of Theorem 2.For j, x, y > 0 the functionj 7→
(
x− j − (x+ y)− j

)2/ j
is monotone

increasing since, for 0< j1 < j2,(
1
x j2
−

1
(x+ y) j2

) 2
j2

=

(
1
x j2
−

1
(x+ y) j2

) 2
j1
·

j1
j2 (11)

≥

 1

x j2·
j1
j2

−
1

(x+ y) j2·
j1
j2


2
j1

.

This yields thatE[ j] is monotone increasing inj, so we may restrict ourselves toj ∈
[2,4). Fix k0 ∈ N, such that

k0 > max

(
1
c0
,1+

(C7

ε

)c7
)

(12a)

for constantsc7 > 0, C7 < ∞ that depend only onj and will be defined later in this
proof. Let

Lk0 := 2

(
1+ 4

3

1
k0 − 1

) √
k0 − 1 > Λk0 := 1, (12b)

and define fork ∈ N, k ≥ k0, the following positive quantities, whose estimates will be
proven by induction.

αk :=
1
k
, (12c)

βk :=
k−1∑
κ=k0

1
κ
, βk0 := 0, (12d)

rk :=
Λ2

kα
2
k

2Lkηαk

≤
αk

6
≤

1
6
, (12e)

`k := rkηαk ≤ 1
2Λk, (12f)
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λk := rkξαk ≤ `k, (12g)

Lk+1 := Lk + (Λk − λk) + `k − Λk+1 ≥ Lk ≥ 1, (12h)

Λk+1 := rky(αk) ≤ `k ≤ 1. (12i)

The estimate in (12g), the first one in (12i) and the last one in (12e) are immediate.

For the initial stepk = k0 the inequalityrk0 < α
2
k0
/
(
2 · 3αk0

)
verifies (12e),

`k0 =
Λ2

k0
α2

k0

2Lk0

≤
Λk0

2
=

1
2
< 1

implies (12f) and the last inequality in (12i).Lk0+1 − Lk0 = (Λk0 −Λk0+1) + (`k0 − λk0) ≥
0+ 0 yields (12h).

For the stepk→ k+ 1 we obtain as above

rk+1 =
Λ2

k+1α
2
k+1

2Lk+1ηαk+1

(8)
≤

α2
k+1

6αk+1
≤

αk+1

6
,

`k+1 =
Λ2

k+1α
2
k+1

2Lk+1
≤

Λk+1

2
,

Lk+2 − Lk+1 = Λk+1 − Λk+2︸        ︷︷        ︸
≥Λk+1−`k+1

+ `k+1 − λk+1︸      ︷︷      ︸
≥0

≥ Λk+1 −
1
2Λk+1 ≥ 0.

Notice that(Lk)k∈N is a monotone increasing sequence; we will see in (14) that it con-
verges, whereas(βk)k∈N is the diverging harmonic sequence. All other sequences are
monotone decreasing sequences that converge to 0.

We consider the sequence of functions

δk : [−Λk + λk − `k,Λk − λk + `k] → R2,

t 7→
(

cosβk − sinβk
sinβk cosβk

)
rkκαk(

1
rk

t)

and start withγk0 : [−2,2]→ R2, t 7→
(

t
0

)
.

If we defineγk+1 := γk x δk for all k ∈ N, k ≥ k0, the conditions of Proposition 2 are
true in any step, sinceΛk+1 ≤ y(αk) by (12e). Now, forK ≥ k0,

E[ j](γK) ≤ E[ j](γk0) +
K∑

k=k0

E[ j](δk) + 2C2

K∑
k=k0

(
`k − λk

λk

)2/ j

+ 32
K∑

k=k0

Lk`k

Λ2
k

,

whereE[ j](γk0) = 0, E[ j](δk) ≤ C0/k4/ j by Proposition 7,

`k − λk

λk

(7)
≤

ηαk − ξαk

3 · 1
2αk

(9)
<

2
k2
, (13)
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Lk`k/Λ
2
k = 1/(2k2) by (12e), and therefore

E[ j](γK) <
(
C0 + 22/ j+1C2 + 16

) K∑
k=k0

1
k4/ j

≤
C0 + 22/ j+1C2 + 16

4
j − 1︸                  ︷︷                  ︸
=:C8

·
1

(k0 − 1)4/ j−1
.

Because of

LK − Lk0 ≤

K∑
k=k0

`k +

K∑
k=k0

Λk

(12i)
≤ 1+ 2

K+1∑
k=k0

`k

(8), (12e), (12f)
≤ 1+ 2

K+1∑
k=k0

αk

6
· 4αk ≤ 1+ 4

3

K+1∑
k=k0

1
k2

≤ 1+ 4
3

1
k0 − 1

(14)

the limit L∞ := limK→∞ LK < ∞ exists.

The reparametrizations ˜γk : [−1,1] → R2, γ̃k(t) := γk((Lk + Λk)t), of γk to constant
velocity (depending onk) form aC0-C sequence by (14) andΛk ↘ 0 that con-
verges to some limit curve ˜γ∞ ∈ C0([−1,1],R2). Now, by Lemma 15, we obtain
E[ j](γ̃∞) ≤ lim inf k→∞ E[ j](γk) < ∞. Let γ∞ : [−L∞, L∞] → R2, t 7→ γ̃(t/L∞).

The proof thatγ∞ is not differentiable at 0 is deferred to Proposition 11.

Now we are going to extendγ∞ : [−L∞, L∞] → R2 to R → R2 via Proposition 9. Let
Λ∗ := Lk0 + Λk0 = Lk0 + 1, `∗ := L∞ − Lk0, λ

∗ := Λk0 = 1, δ∗ := γ∞, andL∗ ≥ Λ∗

arbitrary. The fact that our estimates will not depend onL∗ will allow us to finally take
L∗ → ∞.

We computè ∗ = L∞ − Lk0

(14)
≤ 1+ 4

3
1

k0−1 and

2`∗

Λ∗ − λ∗
(12b)
=

2
(
1+ 4

3
1

k0−1

)
2
(
1+ 4

3
1

k0−1

) √
k0 − 1

=
1

√
k0 − 1

.

Summing up and choosingc7 := 1/min
(

4
j − 1, 2

j ,
1
2 +

1
j

)
< ∞, we obtain

E[ j](γ∗x δ∗) ≤ E[ j](δ∗) + 2C2

(
`∗ − λ∗

λ∗

)2/ j

+ 4C6

(
2`∗

Λ∗ − λ∗

)1+2/ j

≤
C8

(k0 − 1)4/ j−1
+ 2C2

 4
3

k0 − 1

2/ j

+
4C6

(k0 − 1)1/2+1/ j

≤

(
C8 + 2

(
4
3

)2/ j
C2 + 4C6

)
·

1
(k0 − 1)1/c7

=:
C7

(k0 − 1)1/c7

(12a)
< ε.

�
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Remark 10.

(i) In the previous proof the limit curveγ∞ was defined as

γ∞(t) := lim
k→∞
γk

(
Lk − Λk

L∞
t

)
.

The fact that all curvesγk are parametrized by arc-length yields fort > 0

γ∞(t) = lim
k→∞

Lk+Λk>t

γk(t) = γK

t − ∞∑
k=K

(`k − λk)

 , (15)

whereK is chosen so large thatΛK < t. The second identity is due to the fact
that

γk(t) = γk+1 (t + (`k − λk))

for all k ≥ k0 andλk ≤ t ≤ Lk + Λk.

(ii ) Because ofrk+1 ≤
1
6Λ

2
k+1αk ≤ (6k)−2 rk the sequence(rk)k∈N decreases “super-

exponentially”. ^

Proposition 11. The curveγ∞ constructed in the proof of Theorem 2 is not differen-
tiable at0.

Proof. Let τk := `k +
∑∞
κ=k (`κ − λκ) ∈ (0, L∞). Sinceτk ≥ `k ≥ λk we infer from (15)

that γ∞(τk) = γk(`k) and note<) (γ∞(τκ),e1) ≡ βk mod 2π, where<) (·, ·) ∈ [0,2π),
e1 :=

(
1
0

)
andx ≡ ymod 2π iff there is anm ∈ Z with y − x = 2πm. We compute

τk ≤ 2
∞∑
κ=k

`κ
(14)
≤ 4

3

1
k− 1

↘ 0,

ξαk

(7)
≥ 3

2αk
(9)
=⇒

`k
λk

=
ηαk

ξαk

(8)
≤

ξαk + 3α3
k

ξαk

≤ 1+
2
k2

↘ 0

and

τk
λk

≤
`k
λk
+

∞∑
κ=k

`κ − λκ
λκ

(13)
<

`k
λk
+ 2

∞∑
κ=k

1
κ2

≤ 1+
2
k2
+

2
k− 1

↘ 1

for k→ ∞. Since|γk(`k)| = λk andγ∞(0) = 0, we arrive at

cosβk = cos<) (γ∞(τk),e1) =
〈γ∞(τk),e1〉

|γ∞(τk)|
=

τk
λk

〈
γ∞(τk) − γ∞(0)

τk
,e1

〉
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If γ∞ were differentiable at 0, the right hand side would converge. But the left hand
side does not converge since the sequence(βk mod 2π)k∈N,k≥k0

is dense in [0,2π), as we
will see now.

For anyδ > 0 chooseK > max
(
k0,

1
√
δ

)
. Since the harmonic series does not converge

and 1
k −

1
k+1 ∈ (0, δ) for all k ≥ K, for any y ∈ [βK ,∞) there is someky ≥ K with

βky − y ∈ [0, δ). So, for anyx ∈ [δ,2π − δ] we may find somey ∈ [βK ,∞) with

x ≡ ymod 2π, which implies
∣∣∣∣(βky − 2πm

)
− x

∣∣∣∣ = βky − y < δ for somem ∈ Z. �

We will proceed to the situation of closed curves.

For the M̈ energy (j, p) = (2,1) we obtain our result immediately by applying
the M̈ invariance. Letε > 0. Carrying out an inversion on a circle whose center
does not lie on the curve referred to by Theorem 2 we obtain a closed curve of energy
4+ ε according to [FHW94, Thm. 2.1]. Remember that the M̈ energy of a circle
amounts to 4.

If we just want to obtain a closed curve of finite energy that
is not differentiable at one point, i. e. skipping the “infi-
mal” property, we might extend the curve constructed in
Theorem 2 as indicated in the drawing on the right, using
estimates as in Proposition 8.

The basic idea in proving the “infimal” property is to “glue” the curve constructed in
the foregoing proofs on a cylinder; for a sphere we would arrive at the same situation.
As we mentioned in the introduction our technique applies to a wide range of open
curves, more precisely to planar curvesδ that are admittable in sense of Proposition 8.

Proposition 12 (Projecting a curve onto a cylinder).For j ∈ (0,4), ` ∈ (0, 1
4] let

γ : [−`, `] → R2 be a curve in arc-length parametrization, E[ j](γ) < ∞. Then the
energy of the projectionγ∗ : [−`, `] → R3 of γ onto a cylinder of radius1

2π satisfies

E[ j](γ) ≤ E[ j](γ∗) ≤ E[ j](γ) + ω(`,E[ j](γ)),

whereω : [0, 1
4] × [0,∞)→ [0,∞) is a continuous function withω(0, ·) ≡ 0 depending

only on j.

By projectionwe mean that the plane in whichγ lies is “glued” onto the cylinder, so
lengths are preserved, i. e.Dγ∗ = Dγ, and since sinπx ≥ πx−2πx3 on (0,∞) we obtain

|γ∗(s) − γ∗(t)| ≥ 1
π

sin(π |γ(s) − γ(t)|) ≥ |γ(s) − γ(t)| − 2 |γ(s) − γ(t)|3 . (16)

This result can be extended tojp ≥ 2, but due to the lack of the bi-L prop-
erty (19) our proof fails forjp < 2.

In the proof of Theorem 2 we used the fact that the energy of a line amounts to zero for
all j together with the monotonicity ofj 7→ E[ j] to transfer the “infimal” property from
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j ∈ [2,4) to (0,4). In the case of closed curves we face the problem that the (j, 2
j )-

energy of the circle depends onj. So, for j ∈ (0,2) we will make use of M’s
inequality. Applying the mean value theorem tox 7→ x1/p, we arrive at

a− b ≤ a1−1/pp (a1/p − b1/p) for a ≥ b ≥ 1, p ∈ [1,∞). (17)

Proof. The first inequality is an immediate consequence of (16). For the second we
start computing forx ∈ (0, 1

2]

1
(x− 2x3) j

−
1
x j
=

1
(x− 2x3) j

(
1−

(
1− 2x2

) j
) (5)
≤

1
x j(1− 2x2) j

·
2 jx2

1− 2x2

= 2 j ·
x2− j

(1− 2x2)1+ j
≤ 22+ j jx2− j . (18)

If j ≤ 2 we obtain using the M inequality

E[ j](γ∗) j/2 − E[ j](γ) j/2 ≤

"
[−`,`]2

(
1

|γ∗(s) − γ∗(t)| j
−

1

|γ(s) − γ(t)| j

)2/ j

dsdt

 j/2

(16), (18)
≤

[
(2`)2

(
22+ j j (2`)2− j

)2/ j
] j/2

≤ 24+ j j`2,

which impliesE[ j](γ∗) − E[ j](γ) ≤
(
E[ j](γ) j/2 + 2j j

)2/ j−1
· 25+ j`2 by (17).

In casej ∈ (2,4) we arrive at

E[ j](γ∗) − E[ j](γ)
(11)
≤

"
[−`,`]2

(
1

|γ∗(s) − γ∗(t)| j
−

1

|γ(s) − γ(t)| j

)2/ j

dsdt

(16), (18)
≤ 22+4/ j j2/ j

"
[−`,`]2

|γ(s) − γ(t)|4/ j−2 dsdt

(19)
≤ 22+4/ j j2/ jK(E[ j](γ))4/ j−2

"
[−`,`]2

|s− t|4/ j−2 dsdt

≤
21+8/ j j2+2/ j

4− j
· K(E[ j](γ))4/ j−2 · `4/ j .

�
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Proposition 13 (Modifying a closed curve).Letζ : R/Z→ R3 be a circle of length1
parametrized in arc-length by t7→ 1

2π (sin(2πt),1− cos(2πt),0), andλ ∈ (0, 1
8], ` > 0,

j ∈ (0,4). If we changeζ on (−λ, λ) by inserting a curve segment (parametrized by
constant velocity) of length2` that is completely contained in{

1
2π (sin(2πt),1− cos(2πt),u)

∣∣∣ t ∈ [−λ, λ],u ∈ R
}
∩ Bsin(πλ)/π(0),

which is a ball in the cylinder induced byζ, the new curvẽζ : R/Z→ R3 satisfies∣∣∣E[ j](ζ̃) − E[ j](ζ)
∣∣∣ ≤ E[ j](ζ̃ |[− 1

4 ,
1
4 ]) + ω̃

(
` +

(
`

λ
− 1

))
,

whereω̃ : [0,∞) → [0,∞) is a continuous function with̃ω(0) = 0 depending only
on j.

For j ≤ 2 the estimateE[ j](ζ) ≤ E[ j](ζ̃) immediately follows from [ACF+03, Cor. 3]
implying E[ j](ζ) ≤ E[ j](ζ̃) ≤ E[ j](ζ) + E[ j](ζ̃ |[− 1

4 ,
1
4 ]) + ω̃

(
` +

(
`
λ
− 1

))
.

Proof. We will again split up the integration domain, but since we intend to treat closed
curves we have to consider aparallelogram

R :=
{
(s, t) ∈ R2

∣∣∣ s ∈ [−1
2,

1
2], t ∈ [s+ 1

2, s−
1
2]

}
,

which yieldsDζ(s, t) = |s− t| for (s, t) ∈ R. Due to
symmetry we may restrict tos ≥ 0 and coverR ∩
([0,∞) × R) byA ∪ B ∪ C ∪ D ∪ E ∪ F ∪ [−1

4,
1
4]2,

where

A :=
(
[ 1

4,
1
2] × [−λ, λ]

)
∩ R,

B :=
(
[0, λ] × [−1

2,−
1
4]

)
∩ R,

C :=
(
[0, λ] × [ 1

4,
1
2 + λ]

)
∩ R,

D :=
(
[ 1

2 − λ,
1
2] × [1 − λ,1]

)
∩ R,

E :=
(
[λ, 1

2] × [λ,1− λ]
)

∩ R,

F :=
(
[λ, 1

2 − λ] × [−1
2 + λ,−λ]

)
∩ R.

Note thatζ̃ |Y = ζ |Y, whereY = [−1
2,−λ] or [λ, 1

2].

Furthermore| ˙̃ζ(s)| = `
λ

for s ∈ [−λ, λ] and | ˙̃ζ(s)| =
|ζ̇(s)| = 1 elsewhere.

1
2

−1
2

1
2

−1
2

s

t

A

B

C

D

E

F

Since the subdomainsY = A,B,C,D are bounded away from the diagonal we may
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estimate the corresponding integrals to the measure of their domain obtaining"
Y

 1∣∣∣ζ̃(s) − ζ̃(t)∣∣∣ j
−

1
Dζ̃(s, t) j


2/ j ∣∣∣∣ ˙̃ζ(s)∣∣∣∣ ∣∣∣∣ ˙̃ζ(t)∣∣∣∣ dt ds ≤ C9`

for some genericC9 < ∞. The identityDζ̃ = Dζ onE yields!
E

(
1

|ζ̃(s)−ζ̃(t)|
j −

1
Dζ̃ (s,t)

j

)2/ j ∣∣∣∣ ˙̃ζ(s)∣∣∣∣ ∣∣∣∣ ˙̃ζ(t)∣∣∣∣ dt ds =
!
E

(
1

|ζ(s)−ζ(t)| j
− 1

Dζ (s,t) j

)2/ j

dt ds.

In the remaining caseF , whereDζ̃(s, t) ≤ (s− t) + 2(̀ − λ) for (s, t) ∈ F , we first
considerj ≤ 2 and apply M’s inequality[!

F

(
1

|ζ̃(s)−ζ̃(t)|
j −

1
Dζ̃ (s,t)

j

)2/ j ∣∣∣∣ ˙̃ζ(s)∣∣∣∣ ∣∣∣∣ ˙̃ζ(t)∣∣∣∣ dt ds

] j/2

−

[!
F

(
1

|ζ(s)−ζ(t)| j
− 1

Dζ (s,t) j

)2/ j

dt ds

] j/2

≤

"
F

(
1

(s− t) j
−

1
(s− t + 2(̀ − λ)) j

)2/ j

dt ds

 j/2
(4)
≤ C j/2

2

(
`

λ
− 1

)
,

which implies!
F

(
1

|ζ̃(s)−ζ̃(t)|
j −

1
Dζ̃ (s,t)

j

)2/ j ∣∣∣∣ ˙̃ζ(s)∣∣∣∣ ∣∣∣∣ ˙̃ζ(t)∣∣∣∣ dt ds−
!
F

(
1

|ζ(s)−ζ(t)| j
− 1

Dζ (s,t) j

)2/ j

dt ds

≤

[
E[ j](ζ) j/2 +C j/2

2

(
`

λ
− 1

)]2/ j−1

·
2
j
·C j/2

2

(
`

λ
− 1

)
by (17). For j ∈ (2,4) we obtain!

F

(
1

|ζ̃(s)−ζ̃(t)|
j −

1
Dζ̃ (s,t)

j

)2/ j ∣∣∣∣ ˙̃ζ(s)∣∣∣∣ ∣∣∣∣ ˙̃ζ(t)∣∣∣∣ dt ds−
!
F

(
1

|ζ(s)−ζ(t)| j
− 1

Dζ (s,t) j

)2/ j

dt ds

(11)
≤

"
F

(
1

(s− t) j
−

1
(s− t + 2(̀ − λ)) j

)2/ j

dt ds
(4)
≤ C2

(
`

λ
− 1

)2/ j

,

which concludes the proof ofE[ j](ζ̃) − E[ j](ζ) ≤ · · · .

For E[ j](ζ) − E[ j](ζ̃) ≤ · · · we may use the same estimates as above. �

Proof of Corollary 3. Let ε > 0 and take the open curveγ : R → R2 that was con-
structed in the proof of Theorem 2 choosingE[ j](γ) < ε/3. Recall thatE j,p is scaling
invariant, so scaling downγ we may assume thatγ|R\[−µ,µ] lies on the thex-axis for
someµ ∈ (0, λ] without affecting its energy. We denote the length of the curveγ[−λ,λ]

by ` which tends to 0 asλ ↘ 0. By choosingµ sufficiently small the ratio`
λ

of curve-

length 2̀ and diameter 2λ tends to 1. So the term̀+
(
`
λ
− 1

)
may be chosen arbitrary

small, i. e the quantitiesω(`,E[ j](γ)) and ω̃
(
` +

(
`
λ
− 1

))
are both bounded byε/3.

Applying Propositions 12 and 13 we obtain
∣∣∣E[ j](ζ̃) − E[ j](ζ)

∣∣∣ < ε. �

September 30, 2006 22



Lemma 14 (Bi-L continuity of finite energy curves for jp ≥ 2). Let jp≥ 2.
There is a continuous monotone decreasing function K= K j,p : [0,∞) → (0,∞) such
that, for any finite-energyγ ∈ C0,1(X,R3) and s, t ∈ X

|γ(s) − γ(t)| ≥ K(E j,p(γ)) · Dγ(s, t). (19)

Moreover the energy of non-injective curves is infinite.

The proof in [O’H92b, Thm. 2.3] or [O’H03, Thm. 2.4.1(2)], which restricts to closed
curves of length 1, also holds for open curves. SinceE j,p is invariant under scaling
and reparametrization by definition, we obtain the claim for arbitrary curves of finite
energy.

A curveγ : X→ R3 is called

• locally rectifiableiff it is rectifiable on any compact subset ofX;

• regular absolutely continuousiff it is absolutely continuous and ˙γ , 0 almost
everywhere.

Lemma 15 (Lower semi-continuity of the length and energy functional in the
topology of pointwise convergence).Let X= [a,b], a < b ∈ [−∞,∞] or X = R/(`Z),
` > 0. Let(γn)n∈N be a sequence of locally rectifiable curvesγn : X→ R3 that converge
pointwise to a curveγ0 : X→ R3.

(i) For any connected subdomain I⊂ X we obtain

L (γ0|I ) ≤ lim inf
n→∞

L (γn|I ), (20)

whereL denotes the length functional. In particularγ0 is also locally rectifiable
if lim inf n→∞L (γn|I ) is finite for all compact subsets I⊂ X.

(ii) If γ0, γ1, γ2, . . . are in addition regular absolutely continuous curves para-
metrized by constant velocitiesv0, v1, v2, . . . , which are uniformly bounded, and
j, p > 0, we arrive at

E j,p(γ0) ≤ lim inf
n→∞

E j,p(γn). (21)

(iii) If γ0, γ1, γ2, . . . are merely regular absolutely continuous curves satisfying
supn∈NL (γn) < ∞ we obtain(21) in case jp≥ 2.

The first two parts of this result, whose second part bases on [He97, Lemma 1.4.1],
were taken from [Rt04, Lemma 1.17]. The claim is also true for non-injective curves.
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Proof. (i) For [a′,b′] ⊂ X let k ∈ N, anda′ ≤ t0 < · · · < tk ≤ b′ be given. By definition
we have

L (γn|[a′,b′]) ≥
k∑

i=1

|γn(ti) − γn(ti−1)|

≥

k∑
i=1

|γ0(ti) − γ0(ti−1)| − |γn(ti) − γ0(ti)| − |γn(ti−1) − γ0(ti−1)| ,

and this yields

lim inf
n→∞

L (γn|[a′,b′]) ≥

k∑
i=1

|γ0(ti) − γ0(ti−1)| .

Taking the supremum of decompositionsa′ ≤ t0 < · · · < tk ≤ b′ andk ∈ N, we arrive
at (20).

(ii) Passing to a subsequence we may assume the existence of limn→∞ E j,p(γn) ∈ [0,∞].
If E j,p(γn) → ∞ nothing is to prove. So let limn→∞ E j,p(γn) be finite. This implies
E j,p(γn) < ∞ for almost everyn ∈ N. Now we obtain|γn(s) − γn(t)| → |γ0(s) − γ0(t)|
pointwise for alls, t ∈ [a,b] such that

1

|γ0(s) − γ0(t)|
j
= lim

n→∞

1

|γn(s) − γn(t)|
j
.

On the other hand we inferDγ0(s, t) ≤ lim inf n→∞ Dγn(s, t) pointwise for alls, t ∈ [a,b]
from (20), i. e.

1
Dγ0(s, t) j

≥ lim inf
n→∞

1
Dγn(s, t) j

.

For almost everys ∈ [a,b] and |h| � 1 we arrive at

v0 = |γ̇0(s)|
h→0
←−−−

∣∣∣∣∣γ0(s+ h) − γ0(s)
h

∣∣∣∣∣
≤ lim

n→∞

∣∣∣∣∣γn(s+ h) − γn(s)
h

∣∣∣∣∣ ≤ lim inf
n→∞

vn.

A formal calculation yields(
1

|γ0(s) − γ0(t)|
j
−

1
Dγ0(s, t) j

)p

|γ̇0(s)| |γ̇0(t)|

≤ lim inf
n→∞

(
1

|γn(s) − γn(t)|
j
−

1
Dγn(s, t) j

)p

|γ̇n(s)| |γ̇n(t)|

forL2-almost everys, t ∈ [a,b]. By assumption the double integralsE j,p(γn) exist, and
their values are finite. F’s lemma implies existence and finiteness of the right hand
side, implying (21).
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(iii) Let lim n→∞ E j,p(γn) be finite and moreoverE j,p(γn) ≤ B < ∞. We assume that
(γn)n∈N are open curves, the proof goes parallel for closed curves. Let ˜γn : [0,1]→ R3

the reparametrization ofγn to constant velocity
∣∣∣ ˙̃γn

∣∣∣ = L (γn). Since the elementsγn are
L continuous with a uniform constant supn∈NL (γn), the sequence is uniformly
equicontinuous. By

|γ̃n(t)| ≤ |γ̃n(t) − γ̃n(0)|︸          ︷︷          ︸
≤supn∈NL (γn)

+ |γ̃n(0)− γ̃0(0)|︸           ︷︷           ︸
→0 asn→∞

+ |γ̃0(0)|

it is also uniformly bounded. So, by the À-A theorem, we may pass to a
subsequence converging to some ˜γ ∈ C0([0,1],R3) in theC0-topology. The fact that
theγn are also bi-L continuous with uniform constant max

(
B, supn∈NL (γn)

)
(see Lemma 14) is transferred to ˜γ, which is in particularregular absolutely contin-
uous. Using (ii) we arrive atE j,p(γ̃) ≤ lim inf n→∞ E j,p(γ̃n) = lim inf n→∞ E j,p(γn). We
conclude this proof by verifyingE j,p(γ0) = E j,p(γ̃). It suffices to show Imageγ0 =

Imageγ̃. For Imageγ0 ⊂ Imageγ̃ considery ∈ Imageγ0, so there is at ∈ [0,1] sat-
isfying y = γ0(t) = limn→∞ γn(t). Furthermore there is a sequence(tn)n∈N ⊂ [0,1]
with γn(t) = γ̃n(tn). By compactness there is somet0 ∈ [0,1] such that passing to a
subsequence we obtaintn→ t0. Now

|γ0(t) − γ̃(t0)| ≤ |γn(t) − γ0(t)|︸          ︷︷          ︸
→0 asn→∞

+ |γ̃n(t0) − γ̃(t0)|︸           ︷︷           ︸
→0 asn→∞

+ |γn(t) − γ̃n(t0)|︸           ︷︷           ︸
≤ |γ̃n(tn)−γ̃n(t0)|
≤ const·|tn−t0|
→0 asn→∞

.

For the other direction Imageγ0 ⊃ Imageγ̃ we use the fact that ˜γ is injective due to bi-
L continuity, so ˜γ−1 ◦ γ0 : [a,b] → [0,1] is well-defined. Since ˜γ is continuous
on a compact interval, its inverse ˜γ−1 is also continuous, hence ˜γ−1 ◦ γ0 is continuous.
Because of

γ0(a) = lim
n→∞
γn(a) = lim

n→∞
γ̃n(0) = γ̃(0)

we arrive at (˜γ−1 ◦ γ0)(a) = 0 and by the same way at (˜γ−1 ◦ γ0)(b) = 1. Using the
mean value theorem we obtain for anyy = γ̃(t), t ∈ [0,1], a τ ∈ [a,b] satisfying
(γ̃−1 ◦ γ0)(τ) = t, henceγ0(τ) = γ̃(t). �

jp > 2

For the casejp > 2 O’H showed that finite-energyC1-curves are in factC1,α/2

[O’H94, Thm. 1.11]. We will prove that the same is true also forC0,1-curves. By our
framework used for arriving at pointwise differentiability we obtain the step “C1 ⇒

C1,α/2” almost immediately, without carrying out a geometric argument as the treat-
ment of “solid cylinders” conducted in O’H’s proof [O’H94, Sublemma 1.10],
cf. [O’H03, pp. 67 – 74] for a more detailed version.
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Again we will provide results for both closed and open curves. LetX1 := R/Z or
[0,1] respectively. Proving the second part of the Main Theorem we start with some
technical preliminaries.

Lemma 16 ([Sem91, Lemma 8.5 revised]).For ` > 0 let a : [0, `] → Rn be a curve
parametrized by arc-length, where P:= a(0), Q := a(`). Then we obtain for all
t ∈ [0, `] ∣∣∣∣∣a(t) −

(
P+

t
`
(Q− P)

)∣∣∣∣∣ ≤ 3`

(
` − |P− Q|
`

)1/2

.

The norm on the left hand side cannot be estimated to a power of
` − |P− Q| greater than12, for e. g. the arc-length parametrization
of ah : [0,2]→ R2, t 7→ h(t,min(t,2− t)), satisfies

h

P 1 Q

|ah(1)−(P+ 1
2 (Q−P))|

(`−|P−Q|)β = h1−β
(

h
2
√

1+h2−2

)β
= h1−β

( √
1+h2+1

2h

)β
≥ h1−2β

which tends to infinity ash↘ 0 if β > 1
2.

Proof. Applying a rotation and a translation we may assumeP = 0, Q = |P− Q|en.
For t ∈ [0, `] we find the following estimate for the vector ˆa(t) := (a1(t), . . . ,an−1(t)) ∈
Rn−1.

|â(t)| ≤
∫ `

0
|(ȧ1(t), . . . , ȧn−1(t))|dt ≤

√
`

(∫ `

0
|(ȧ1(t), . . . , ȧn−1(t))|

2 dt

)1/2

|ȧ|=1
=

√
`

(∫ `

0

(
1− ȧn(t)

2
)
dt

)1/2

≤
√
`

(
2
∫ `

0
(1− ȧn(t)) dt

)1/2

=
√

2` (` − |P− Q|)1/2
≤

√
2`

(
` − |P− Q|
`

)1/2

.

Now |an(`)| − an(t) ≤ |an(`) − an(t)| ≤ ` − t yieldsan(t) ≥ |P− Q| − (` − t), which leads
to

an(t) −
t
`
|P− Q| ≥ (` − |P− Q|)

( t
`
− 1

)
≥ − (` − |P− Q|) .

On the other hand,an(t) ≤ |a(t)| ≤ t implies

an(t) −
t
`
|P− Q| ≤ t −

t
`
|P− Q| =

t
`

(` − |P− Q|) ≤ ` − |P− Q| ,

hence
∣∣∣∣∣an(t) −

t
`
|P− Q|

∣∣∣∣∣ ≤ ` (` − |P− Q|
`

)
. Using the estimate for ˆa(t) we conclude

∣∣∣∣∣a(t) −
t
`
|P− Q|

∣∣∣∣∣ ≤ `

(
` − |P− Q|
`

)
+
√

2`

(
` − |P− Q|
`

)1/2

.

By x ≤
√

x for x ∈ [0,1] we obtain the result. �
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Lemma 17. Let γ ∈ C0,1(X1,R
3) be parametrized by arc-length. Suppose that there

are numbersα > 0, %0 ∈ (0, 1
2], C < ∞ such that for any% ∈ (0, %0] the quantity

κ(%) := sup

{
|s− t|

|γ(s) − γ(t)|
− 1

∣∣∣∣∣ s, t ∈ X1, |s− t| ≤ %

}
fulfills the estimate

κ(%) ≤ C%α. (22)

Then there is anε0 = ε0(α, %0,C) > 0, such that all x, z, ξ, ζ ∈ X1 with |x− z| ≤ ε0,
x ≤ ξ < ζ ≤ z, and|ξ − ζ | ≥ 1

2 |x− z| satisfy∣∣∣∣∣ γ(z) − γ(x)
|γ(z) − γ(x)|

−
γ(ζ) − γ(ξ)
|γ(ζ) − γ(ξ)|

∣∣∣∣∣ ≤ 48
√

C · |x− z|α/2 .

Note that the restriction|s− t| ≤ %0 ≤
1
2 implies |s− t| = Dγ(s, t) and

|s− t| ≤
(
1+ κ(|s− t|)

)
· |γ(s) − γ(t)| for all |s− t| ≤ %0. (23)

Proof. We chooseε0 ∈ (0, %0] so small that

κ(ε0) ≤ 1. (24)

For x, z, ξ, ζ ∈ X1 as in the assumptions we set

a := γ(ζ) − γ(ξ),

b :=
ζ − ξ

z− x
[
γ(z) − γ(x)

]
.

Decomposing

a− b =

[
γ(ζ) −

(
ζ − x
z− x

γ(z) +
z− ζ
z− x

γ(x)
)]
−

[
γ(ξ) −

(
ξ − x
z− x

γ(z) +
z− ξ
z− x

γ(x)
)]

we apply Lemma 16 with̀ = z− x, a = γ(· − x), andt = ζ or ξ respectively. This
yields

|a− b| ≤ 6 |z− x|

(
|z− x| − |γ(z) − γ(x)|

|z− x|

)1/2
(23)
≤ 6 |z− x|

 |z− x| − |z−x|
1+κ(|z−x|)

|z− x|


1/2

= 6 |z− x|

(
1−

1
1+ κ(|z− x|)

)1/2

≤ 6 |z− x| · κ(|z− x|)1/2

(22)
≤ 6

√
C |z− x|α/2+1 .
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Since

|γ(ξ) − γ(ζ)|
(23)
≥

|ξ − ζ |

1+ κ(|ξ − ζ |)

(24)
≥ 1

2 |ξ − ζ | ≥ 1
4 |z− x|

we obtain recalling
∣∣∣∣ a
|a| −

b
|b|

∣∣∣∣ ≤ 2 |a−b|
|a|∣∣∣∣∣ γ(z) − γ(x)

|γ(z) − γ(x)|
−
γ(ζ) − γ(ξ)
|γ(ζ) − γ(ξ)|

∣∣∣∣∣ ≤ 2
|a− b|
|a|

≤ 48
√

C |z− x|α/2 .

�

Lemma 18. The hypotheses of Lemma 17 implyγ ∈ C1,α/2(X1,R
3).

Proof. For x, z ∈ X1 with x < z≤ x+ ε0 andx ≤ s< t ≤ z let k ∈ N be such that

2−k+1|z− x| ≥ |t − s| > 2−k|z− x|.

Then there areξl , ζl ∈ [x, z], ξl < ζl, l = 0, . . . , k satisfying [ξ0, ζ0] = [x, z], [ξk, ζk] =
[s, t], [ξl , ζl] ⊂ [ξl−1, ζl−1], and|ζl − ξl | = 1

2 |ζl−1 − ξl−1| for l = 0, . . . , k−1 and|ζk − ξk| ≥
1
2 |ζk−1 − ξk−1|. Applying Lemma 17 to

νl :=
γ(ζl) − γ(ξl)
|γ(ζl) − γ(ξl)|

we arrive at
|νl−1 − νl | ≤ 48

√
C · 2(−l+1)α/2 · |z− x|α/2 , (25)

for l = 1, . . . k. We now compute∣∣∣∣∣γ(z) − γ(x)
z− x

−
γ(t) − γ(s)

t − s

∣∣∣∣∣
≤

∣∣∣∣∣γ(z) − γ(x)
z− x

−
γ(z) − γ(x)
|γ(z) − γ(x)|

∣∣∣∣∣ + ∣∣∣∣∣ γ(z) − γ(x)
|γ(z) − γ(x)|

−
γ(t) − γ(s)
|γ(t) − γ(s)|

∣∣∣∣∣
+

∣∣∣∣∣ γ(t) − γ(s)|γ(t) − γ(s)|
−
γ(t) − γ(s)

t − s

∣∣∣∣∣
(25)
≤

|z−x|
|γ(z)−γ(x)| − 1

|z−x|
|γ(z)−γ(x)|

+

k∑
l=1

|νl−1 − νl | +

|t−s|
|γ(t)−γ(s)| − 1

|t−s|
|γ(t)−γ(s)|

(23)
≤ κ(|z− x|) + 48

√
C · |z− x|α/2

∞∑
l=0

(
2−α/2

)l
+ κ(|t − s|)

(22)
≤ 2C · |z− x|α + 48

√
C · |z− x|α/2 ·

1
1− 2−α/2

·

≤ Cα |z− x|α/2 , (26)
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whereCα is a constant depending only onα andC.

Now lety ∈ R or y ∈ (0,1) respectively and chooseδ ∈ (0, ε0] so small thaty± δ ∈ X1.
Using the last inequality withx = y − δ andz= y + δ we obtain∣∣∣∣∣γ(t) − γ(s)t − s

−
γ(x+ δ) − γ(x− δ)

2δ

∣∣∣∣∣ ≤ Cα(2δ)
α/2

for all y − δ ≤ s< t ≤ y + δ. Thusγ is differentiable iny.

Finally we obtainγ ∈ C1,α/2 by

|γ̇(z) − γ̇(x)|

≤

∣∣∣∣∣γ(z) − γ(x)
z− x

− γ̇(z)
∣∣∣∣∣ + ∣∣∣∣∣γ(z) − γ(x)

z− x
− γ̇(x)

∣∣∣∣∣
≤ lim

h↘0

∣∣∣∣∣γ(z) − γ(x)
z− x

−
γ(z) − γ(z− h)

h

∣∣∣∣∣ + lim
h↘0

∣∣∣∣∣γ(z) − γ(x)
z− x

−
γ(x+ h) − γ(x)

h

∣∣∣∣∣
(26)
≤ 2Cα |z− x|α/2

for all x, z ∈ X1 with |z− x| ≤ ε0 and

|γ̇(z) − γ̇(x)| ≤ 2ε−α/20 Dγ(z, x)α/2

for all x, z ∈ X1 with Dγ(z, x) ≥ ε0. �

Proposition 19 (Quantified bi-L estimate for finite energy curves of unit-
length, [O’H94, Prop. 1.6]). For jp > 2 let γ ∈ C0,1(X1,R

3) be parametrized by
arc-length with E( j,p)(γ) ≤ B for some B> 0. Then there is an A= A( j, p, B) > 0, such
that, provided|s− t| ≤ %0 := min

(
(2A)−(p+2)/( jp−2), 1

2

)
,

|s− t| ≤
|γ(s) − γ(t)|

1− A |γ(s) − γ(t)|( jp−2)/(p+2)
.

The proof which may be found in [O’H94, pp. 49 – 51] or [O’H03, Cor. 4.2.3 (1)] also
holds for open curves. The condition|s− t| ≤ min

(
(2A)−(p+2)/( jp−2), 1

2

)
guarantees that

the denominator of the right hand side is bounded below by1
2 and that|s− t| = Dγ(s, t)

holds.

Proof of the second part of the Main Theorem.As mentioned in the introduction we
may restrict ourselves to arc-length parametrized curves. Due to scaling invariance we
may furthermore assume that the length of our curve is 1. So letγ ∈ C0,1(X1,R

3) be
parametrized by arc-length withE j,p(γ) < ∞. Proposition 19 guarantees condition (22)
with C = 2A andα = ( jp − 2)/(p+ 2), for

|s− t|
|γ(s) − γ(t)|

− 1 ≤
A |γ(s) − γ(t)|( jp−2)/(p+2)

1− A |γ(s) − γ(t)|( jp−2)/(p+2)
≤ 2A |γ(s) − γ(t)|( jp−2)/(p+2) .

Now the claim follows by Lemma 18. �
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