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Abstract

We prove regularity for 7-harmonic maps from R™ into a sphere, where n
is odd. This extends the results of the recent article [DLR09a] by F. Da Lio
and T. Riviere to higher dimensions.

For the necessary compensation results we use L. Tartar’s approach for
Wente’s inequality in [Tar85], where the gain in regularity is only based
on one compensation inequality in the phase space and the application of
Holder and Young inequality.

1 Introduction

We consider for n,m € N and some bounded domain D C R™ the regularity of
critical points of the functional

B, (v) = / (A%’ ve HE®RR™), veS™ Lae inD. (L)
R"n

Here, S™! is the unit sphere in R™ and A% denotes the operator which acts on
a function v € L?(R™) according to

(8%0)"(© = Jgl? v(©) for all ¢ € R™\{0},

where ()" denotes the application of Fourier transform. The space H % (R") is the
space of all functions v € L?(R") such that A%v € L?(R™). The term “critical
point” is defined as usual:

Definition 1.1 (Critical Point). Let u € H? (R®,R™), D C R®. We say that u
is a critical point of E,(-) on D if u(z) € S™t for almost every x € D and

d

E(Ut7¢) = 0
t=0

for any ¢ € C§°(D,R™) where

"y — II(u+ty) in D, e HE R
u in R™\D, ’

Here, TI denotes the orthogonal projection from a tubular neighborhood of S™~!
into S™t defined as I(z) = .

=]
If n is an even number, the domain of E,(-) is just the classical Sobolev space
H3(R") = W22(R"), for odd dimensions this is a fractional Sobolev space (see
Section 2.3). Functions in H2 (R") are “almost continuous”, in fact this space



embeds continuously into BMO(R™), and even slightly improved integrability or
more differentiability would imply continuity.

In his seminal paper [Hé190], Hélein proved regularity of critical points of the func-
tional Es, i.e. harmonic maps into spheres. Critical points u € W12(D,S™~1) of
FE satisfy the following Euler-Lagrange equation

Au' = u'|Vul?, weakly in D, foralli=1...m.
We will write equations like this often in a contracted form
Au=u|Vul?, weakly in D. (1.2)

For mappings u € W12(R?,S™~1) this is a critical equation, as the right hand
side seems to lie in L!, only. A priori, this would merely imply that Vu belongs
to the weak L2-space, which we will denote by L*°°. But in fact, the right hand
side belongs to the Hardy space, which is a proper subspace of L' and which
reflects a certain compensation phenomenon on the right hand side. Namely,
members of the Hardy space behave well with Calderén-Zygmund operators, and
one can conclude continuity of u. In [Hél91] this result was extended to general
target manifolds, and in Riviere’s [Riv07] this was generalized to critical points of
conformally invariant variational problems in two dimensions. For more details
and references we refer to Hélein’s book [Hé102] and the extensive introduction in
[Riv07] as well as [Riv09].

Naturally, it is interesting to see how these results extend to other dimensions:
In the biharmonic case, n = 4, regularity was proven in [CWY99] in the case of
a sphere as a target manifold, and for more general targets in [Str03], [Wan04],
[Sch08] , [LRO8]. For even n > 6 similar regularity results hold, and we refer to
[GS09], [GSZGO09].

Regarding odd dimensions, only two results for dimension n = 1 are available.
In [DLR09a], Da Lio and Riviére prove Holder continuity of critical points of the
functional

2 .
, u€ H%(Rl,Rm), ueS" ! ae.

El<u):/\Aiu

Rl

In [DLRO9b] this is extended to the setting of general manifolds. One may expect
that similar regularity results should also hold for odd dimensions greater than
one, and as a first step, the case of a sphere is the main result of this work:

Theorem 1.2. For any odd dimension n > 1, critical points u € H3 (R?) of E,
on a bounded domain D are locally Hélder continuous in D.

Let us say a few words regarding the main ingredients we will use. In all dimen-
sions, the key tool for proving regularity results is the discovery of compensation
phenomena built into the right hand side of the respective Euler-Lagrange equa-
tion. In the pioneering two-dimensional case in [Hél90], using the constraint
|u| = 1, one can rewrite the right hand side of (1.2) as

ui|Vu|2 = Z (uiVuj — ujVui) V! = Z (313” Ao’ — 02 B 31uj)

j=1 j=1



where
813@‘ = u’82u7 — ujagu’, and — agBi]‘ = u@luj — u781u’.

By Poincaré’s lemma on differential forms, it is possible to choose such a B;;
because (1.2) implies

div (uiVuj - ujVui) =0 foreverye¢,j=1...m.

Thus, (1.2) transforms into

Al

Z (8lBij aguj — aQBij 81uj). (13)
j=1

The right hand side of the transformed Euler-Lagrange equation exhibits a com-
pensation phenomenon which was first discovered by Wente [Wen69], see also
[BC84], [Tar85]. In fact it lies in the Hardy space, cf. [Miil90], [CLMS93].

One way to shed light upon this regularizing effect in two dimensions can be found
in Tartar’s proof of the so-called Wente inequality in [Tar85]: Assume we have
for a,b € L*(R?) a solution w € H*(R?) of

Aw = ﬁ(a,b) = 01a O9b — Ooa O1b  weakly in R2. (1.4)

Taking the Fourier-Transform on both sides, this is (formally) equivalent to

[Pw(©) = C/QA(QT) WME =) (21(&2 — w2) — 22(& — @1)) da, for £ € R%
RQ
(1.5)
Now the compensation phenomena responsible for the higher regularity of w can
be identified with the following inequality:

1 (E2 — 22) — 2a(€1 — 21)| < [€]|2|F|€ — 2)?. (1.6)

Observe, that |z| as also |£ — x| appear to the power %, only. Interpreting these
factors as Fourier multipliers, this means that only “half the gradient”, more
precisely A%, of a and b enters the equation, which implies in a way that the
right hand side is a product of “lower order” operators. In fact, plugging (1.6)
into (1.5), one can conclude w” € L!(R?) just by Holder’s and Young’s inequality
on Lorentz spaces — consequently one has proven continuity of w. As (1.2) is of
the form (1.4) by a bootstraping argument (cf. [Tom69]) one gets analyticity of
the critical point u of Es(-).

In the present work — analogously to [DLR09a] — Euler-Lagrange equations will

look as follows, see Section 7:

Lemma 1.3 (Euler-Lagrange Equations). Let u € H? (R™) be a critical point of
E, on a bounded domain D C R"™. Then, for any cutoff function n € C§°(D),
n =1 on an open neighborhood of a ball D C D and w := nu,

7/wi Atw! Ny = 7/aij7f}ij +/A%wj H(w', ij),

Rn R Rn



for any ¥i; = =y € Cgo(D), where a;; € L*(R™) depends on the choice of .
Here, we adopt Einstein’s summation convention. Moreover, H(-,-) is defined on
H3(R") x Hz(R") as

H(a,b) :== A% (ab) —aAThb—bA%a, fora,be H?(R™).

Furthermore, the condition u € S™~1 on D implies
o n o 1 o o n
w' - AT = —§H(wz,wl) +A*n ae inR™.

Whereas in (1.4) the compensation phenomenon stems from the term H (49,
here it will appear during an estimate of H(:,-). This can be proven by Tartar’s
approach [Tar85], using nothing but the following easy “compensation inequality”
similar in its spirit to (1.6)

-1 -1 .
2P lel + € ], i p > 1

|z — &P — 1€ — |z°| < C, P ,
P )2 €2, if p € (0,1],

and then Holder and Young inequalities. More precisely, we will prove in Section 4

Theorem 1.4. For
H(u,v) = A% (uv) —vA Ty —uA%o,
the following estimate holds:
n A n A
[H (u, 0) | L2y < C [(A%Fu) L2y [(AT0) " [[L20 R)-

This compensation phenomenon was observed for the case n = 1 in [DLR09a]. In
fact, all compensation phenomena appearing in [DLR09a] can be proven by this
method, thus avoiding the use of paraproducts at the expense of using estimates
on Lorentz spaces.

Technically more tedious, but in the same spirit as in [DLR09a], one can find a
localized version of Theorem 1.4, proven in Section 6.

Theorem 1.5 (Localized Compensation Results). There is a uniform constant
~v > 0 depending only on the dimension n, such that the following holds. Let
H(-,-) be defined as in Theorem 1.4. For any v € H%(R™) and ¢ > 0 there exists
constants R > 0 and Ay > 0 such that for any ball B,(z) C R™, r € (0, R),

IH (0, 0)l 2B, (2)) < € A5 @l L2rn)  for any ¢ € C§°(By(x)),
and
1H (v, 0) |28, @) < & [0]Ba, o) + Cow >, 2 M0l @0\Bye (0)-
k=—o0

Here, [[v]]a is a quantity, which in a way measures the L*>-norm of A%v on
A C R™. More precisely,

[0l = 1A% 0] L2(a) + [v]a,2,
where [,z will be defined in Definition 2.34.



These local estimates control the local growth of the F-laplacian of any critical
point, as we will show using an analogue of the Hodge decomposition in the
fractional case.

Theorem 1.6. There are uniform constants Ay > 0 and C > 0 such that the
following holds: For any x € R™ and any r > 0 we have for every v € L*(R"),
suppv C By(z),

1 n
lvllz2(B, @) < C sup —_— /v At
peCE (Bayr(2) 1A% @l L2 @)

Then, by an iteration technique similar to the one in [DLR09a] (see the Ap-
pendix) we conclude in Section 9 that the critical point w of E,, lies in a nice
Morrey-Campanato space, which implies Holder continuity.

As for the Sections not mentioned so far: In Section 2 we will cover some ba-
sic facts on Lorentz and Sobolev spaces. In Section 3 we will prove a fractional
Poincaré inequality with a mean value condition. In Section 5 various localizing
effects are studied. In Section 8 we compare two types of homogeneous pseudo
norms for H?, and finally in Section 9, Theorem 1.2 is proved.

We will use fairly standard notation:

As usual, we denote by S = S(R") the Schwartz class of all smooth functions
which at infinity go faster to zero than any quotient of polynomials, and by
S =S (R") its dual.

For a set A C R™ we will denote its n-dimensional Lebesgue measure by |A|, and
rA, r > 0, will be the set of all points ra € R™ where € A. By B,(z) C R™ we
denote the ball with radius r» and center z € R™. If no confusion arises, we will
abbreviate B, = B,.(x).

If p € [1, 00] we usually will denote by p’ the Holder conjugate, that is % + 1% =1
By f % g we denote the convolution of two functions f and g.

When we speak of a multiindex o we will usually mean

n
a=(ag,...,a,) € (NU{0})" with length |a] := Z Q.
i=1
For such a multiindex o and z = (z1,...,2,)7 € R® we denote by

(i)™,
1

n
% =

(2

where we set (z;)° := 1 even if z; = 0.

For a real number p > 0 we denote by |p] the biggest integer below p and by [p]
the smallest integer above p.

As mentioned before, we will denote by f” the Fourier transform and by fV the
inverse Fourier transform, which on the Schwartz class S are defined as

PO = [ fa) e T dn, @)= [ f©) AT e
/ /



We then have
(O )1 (&) = 2mi&; [ ().

By i we denote here and henceforth the imaginary unit i = —1.
R is the Riesz operator which transforms v € S(R™) according to
Ay 3§ oA
(Rv)"(€) = i (©)-

More generally, we will speak of a zero-multiplier operator M, if there is m €
C*°(R™\{0}) homogeneous of order 0 and such that

(Mv)™(§) = m(§) v"(€), for all £ € R"\{0}.

For a measurable set D C R"™, we denote the integral mean of a integrable function
v:D—R

By N we denote the positive integers, by Ny we denote N U {0}.

Lastly, our constants — usually denoted by C' or ¢ — can possibly change from line
to line and usually depend on the space dimensions involved, further dependencies
will be denoted by a subscript, though we will make no effort to pin down the
exact value of those constants. If we consider the constant factors to be irrelevant
with respect to the mathematical argument, for the sake of simplicity we will omit
them in the calculations, writing <, >, =~ instead of <, > and =.

Acknowledgment. The author likes to thank Francesca Da Lio and Tristan
Riviere for introducing him to the topic, and Pawel Strzelecki for suggesting to
extend the results of [DLR09a] to higher dimensions. Moreover, he is grateful to
his supervisor Heiko von der Mosel for the constant support and encouragement.
The author is supported by the Studienstiftung des Deutschen Volkes.

2 Lorentz-, Sobolev Spaces and Cutoff Functions

2.1 Interpolation

In the following we will state some fundamental properties of interpolation meth-
ods, which will be used to deduce results on Lorentz and fractional Sobolev spaces
from similar results on classical spaces. For more on interpolation spaces, we refer
to [Tar07].

There are different methods of interpolation. We state here the so-called K-
Method, only.

Definition 2.1 (Interpolation by the K-Method). (¢f. [Tar07, Definition 22.1])
Let Z be a topological space and let X, Y C Z be two normed spaces with respective
norms || - |x, || - ||y, such that one can norm X NY by the norm

12l xny = max{]|z]|x, [[z]lv },



and X +Y C Z by the norm
Izlx+y = inf (llzlx +lyly)-
z=z+y

Set fort € (0,00) let forz€ X +Y

K(t,z) = _inf lzlx +tyly,

reX,yeY

and for 6 € (0,1) and q € [1, 0],

ot

(t? K(f,1)) -

Il vy, =
t

L~y

The space [X,Y g q with norm |- ||(x,y), , is then defined as every z € X +Y such
that ||z||[X,y]9,q < 00.

Proposition 2.2. (¢f. [Tar07, Lemma 22.2])
Let X,Y,Z be as in Definition 2.1. If ¢ < ¢’ < o0, 8 € (0,1), then

[X, Y}O,q c X, Y]G,q’a
and the embedding is continuous.

Proof of Proposition 2.2.
Fix 6 € (0,1). Denote

E,=[X,Y]op, peE]l o0l

Then for ¢ < oo, tg > 0, using that K(z,t) is monotone rising in ¢,

1215, = / 09K (1, 2))7 L
t

o t
> [ ey g
=t _oq
> (K(tovz))qaoe)q ’

that is
to? K(to,2) < lzllg,, for every ty >0,
which implies
[2llzc < Cosq

|2llp, for any g € [1, 00]. (2.1)
Thus, by Hélder inequality for co > ¢’ > ¢,

05, = I )
< zlEB7 Nl=lE,
(2.1) ’
D el



Proposition 2.2 [

The following two fundamental lemmata tell us how linear and bounded or linear
and compact operators defined on the spaces X and Y from Definition 2.1 behave
on the interpolated spaces.

Lemma 2.3 (Interpolation Theorem). (cf. [Tar07, Lemma 22.3])
Let X1,Y1, 74, Xo,Y5, Zs be as in Definition 2.1. Assume there is a linear operator
T: X1 —>Xoand T :Y, —» Y5 and Ax, Ay > 0 such that

ITllexix0) < Axs I Tlleenve) < Ay (2.2)

Denote for § € (0,1) and g € [1,00], E1 := [X1,Y1]e,q and E2 := [X3,Ya]g 4.
Then T is a linear, bounded operator T : E; — FEo such that

IT | 2(er 0y < AKATC

Proof of Lemma 2.3.
Denote by K1, Ko the K(-,-) used to define F; and FEs, respectively. For z € E;
and any decomposition z = x1 + y1, 1 € X1, y1 € Y1 we have

t 0K (Tzt) < t70(|Tal|x, + tITwllys)

_ Ay \7° Ay
AYOAS <Axt> <||5E1||X1 +tEHylHY1 .

Taking now the infimum over all decompositions z = x1 + y;, this implies for
. Ay

(2.2)
<

170K (Tz, t) < A OAS (7))~ K (2, 71).

Using the definition of E1, Fs, we have shown

—
T2l 5, < A AT |2l 5, -

Lemma 2.3 [

Lemma 2.4 (Compactness). (¢f. [Tar07, Lemma 41.4])

Let X,Y,Z be as in Definition 2.1. Let moreover G be a Banach space and
assume there is an operator T defined on X UY such that T : X — G is linear
and continuous and T :' Y — G is linear and compact. Then for any 6 € (0,1),
g€ [l,o0], T:[X,Y]gq — G is compact.

Proof of Lemma 2.4.

Fix 6 € (0,1). By Proposition 2.2 it suffices to prove the compactness of the
embedding for ¢ = 0o. Set E := [X,Y]g o Finally, we denote by A the norm of
T as a linear operator from X to G.

Let z; € E and assume that

llzkllg <1 for any k € N. (2.3)



Pick for any k,n € N, z}}, yi such that =} +y;! = 2, and

1 123 1
7 —lly2l| < 2K 2y < 2=,
il + ~llyill < 2K (2, ) < 25

Consequently, for any k,I,n € N,

HTZk _TZIHG

IN

1T (xk —2)lle + 1T (g — vi')lle

< Alllzglix +ll=llx) + 1T (e —vi)lle

4N n n
< v + 1Tk — v )le-

Finally, as T is a compact operator from Y in G, by a Cantor diagonal subsequence
argument, we can choose a subsequence (i);2; C N such that

lim ||T(y;, —vi)llc =0 for every n € N.
k,l—o0
Lemma 2.4 O

2.2 Lorentz Spaces

In this section, we recall the definition of Lorentz spaces, which are a refinement of
the standard Lebesgue-spaces. For more on Lorentz spaces, the interested reader
might consider [Hun66], [Zie89], [Gra08, Section 1.4].

Definition 2.5 (Lorentz Space). Let f : R" — R be a Lebesque-measurable
function. We denote

dp(A) :== Hz € R™ = |f(z)] > A}].
The decreasing rearrangement of f is the function f* defined on [0,00) by
fr(@) :=inf{s > 0: d;(s) <t}

For1 <p<o0,1< g < oo, the Lorentz space LP1 = LP1(R™), is the set of
measurable functions f: R™ — R such that || f| Lr.« < 00, where

(?(t;f*(ﬂ)q?)é, if g < o0,

[ fllpea =4 0 1 ,
supt>0tpf*(t), if ¢ =00, p < o0,
Il oo (mny, if g = 00, p= oo.
Observe that || - || e« does not satisfy the triangle inequality.

Remark 2.6. We have not defined the space L°>? for q € [1,00). For the sake
of overview, whenever a result on Lorentz spaces is stated in a way that LP9 for
p = 00, ¢ € [1,00] is admissible, we in fact only claim that result for p = oo,
q = o0.

10



An alternative definition of Lorentz spaces using Interpolation can be stated as
follows.

Lemma 2.7. (cf. [Tar07, Lemma 22.6])
For1<p< oo and q € [1,00] let L7 be defined as

LP4 = [LY(R™), L (R™)] 1-1

4 ’
Then LP? = [P and || - ||7,., s equivalent to || - || poa.

For Holder inequality on Lorentz spaces, we will need moreover the following
result on the decreasing rearrangement.

Proposition 2.8. (c¢f. [Gra08, Proposition 1.4.5])
For any f,g € S(R™) and any t > 0,

(fg)*(2t) < f*(t) g*(%).

Proof of Proposition 2.8.
We have for any s, s; ,s2 > 0 such that s = sy,

{z eR": |f(z)g(z)| > s} C{zeR": |f(x)] >si}U{zeR": |g(x)] > sa},
SO
dgg(s) < dg(s1) + dg(s2).
Consequently, for any ¢ > 0,
{s>0: dsg(s) <2t} D{s=s150>0: ds(s1) <t, dg(s2) <t},

which readily implies,
(fg)"(2t) < f*(t)g" (1)

Proposition 2.8 [

Proposition 2.9 (Basic Lorentz Space Operations). Let f € LPL% and g €
LP>%2 1 < py,p2,q1,q2 < .

(i) pr%er%:%G[O,l] andq%Jrq%:%thenfgeLP’q and

”fg”LP"? < Hf”LPl"H HgHLsz.
(i1) ff]%l+]%2—1:%>0 andq%—i—q%:% then f*g € LP? and
1f*glleea < || fllzrrar [[gllLrzaz.

(ii) For p1 € (1,00), f belongs to LP*(R™) if and only if f € LPvPr. The
"norms “ of LPVPr and LP' are equivalent.

(iv) If p1 € (1,00) and q € [q1,00] then also f € LP11,

(v) Finally, ﬁ € L, whenever A € (0,n).

11



Proof of Proposition 2.9.

As for (i), this is proved by classical Holder inequality and Proposition 2.8. As
for (i7), this is the result in [O’N63, Theorem 2.6]. As for (iii), this follows by the
definition of f*. Property (iv) was proven in Proposition 2.2, and lastly Property
(v) follows by the definition of LP>*°.

Proposition 2.9 [

As the Lorentz spaces can be defined by interpolation, see Lemma 2.7, by the
Interpolation Theorem, Lemma 2.3, the following holds.

Proposition 2.10 (Fourier Transform in Lorentz Spaces). For any f € S, p €
(1,2), g € [1, 00] we have

1 M e a < Collfllzoas 1LY Mzora < Cpllfllzoa.
1,1 _
Here, Ty = 1.
Proposition 2.11 (Scaling in Lorentz Spaces). Let A > 0 and f € S(R™). If we
denote f(-) := f(\), then

I Flloa = A7 || f]| Lo

Proof of Proposition 2.10. R
We have that df(s) = A™"dy(s) for any s > 0 and thus f*(t) = f(A"?) for any

t > 0. Hence,
Oo;'v* th ,QOO na\ L px th —q
/(tpf )" % =n qp/((A OEEAEY) NPy VI
0 0

We can conclude.

Proposition 2.10 [

Proposition 2.12 (Holder inequality in Lorentz Spaces). Let supp f C D, where
D C R" is a bounded measurable set. Then, whenever py >p; > 1, q1 € [1, 0]

[fllzrrar < Cpg [D[Pr %2 || fl[Lr2 (2.4)

Proof of Proposition 2.12.
Denote by x = xp the characteristic function of the set D C R™. One checks that

. 1 ift<|D|,
X (t) = :
0 ift>|D].
Consequently,
Ix|lLra = |D|% whenever 1 < p < 00, ¢ € [1, 00].

One concludes by applying Holder inequality in Lorentz spaces, Lemma 2.9.

Proposition 2.12 [

12



2.3 Fractional Sobolev Spaces

We will use two equivalent definitions of the fractional Sobolev space H?, for the
equivalence we refer to [Tar07].

Definition 2.13 (Fractional Sobolev Spaces by Fourier Transform). Let f € L2.
Then we say that for some s > 0 the function f € H® = H*(R™) if and only if
N3 f € L%(R™). Here, the operator A3 is defined as

ARf = (1
The norm, under which H*(R™) becomes a Hilbert space is
10 gy o= 1 F 12y + 122 Fl1 720y

Remark 2.14. Observe, that the definition of A% does coincide with the usual
laplacian only up to a multiplicative constant, but this saves us from the nuisance
to deal with those standard factors in every single calculation.

Definition 2.15 (Fractional Sobolev Spaces by Interpolation). Let f € L?(R").
Define fori,j € Ny

K j(f.t) = (dnf llgllwez®n) + tlAllwee@n).-

Then f € H*(R™) if and only if t — t=°K; j(f,t) € L?((0,00), %), where 6 =
J% €(0,1) andi < s <j.

Remark 2.16. In Section 2.5 we will prove an integral representation for the
fractional laplacian.

Our next goal is Poincaré’s inequality. As we want to use the standard blow up
argument to prove it, we premise a compactness and a (trivial) uniqueness result.

Lemma 2.17 (Uniqueness of solutions). Let f € H*(R™). If A5f = 0, then
f=0.

Proof of Lemma 2.17.
As f € H5(R™), f" exists and f(€) = |£|°0 = 0 for every ¢ € R"\{0}. Thus,
" =0 as L2-function and we conclude that also f = 0.

Lemma 2.17 O

Lemma 2.18 (Compactness). Let D C R™ be a smoothly bounded domain, s > 0.
Then, if fr € H*(R™), suppfx C D, k € N and ||fx|lgs < C there exists a
subsequence fy,, such that fy, ~——» f € H® weakly in H®, strongly in L*(R"),
pointwise almost everywhere. Moreover, supp f C D.

Proof of Lemma 2.18.

The weak convergence result stems from the fact that H? is reflexive. The point-
wise convergence follows from L?-convergence, so we will concentrate on the latter:
The claim on L2-convergence is true in the classical settings of s € N, by Rellich-
Kondrachov Theorem. Next, we will prove the case s € (0,1), the other cases are

13



proven similar. R
So fix D C R™ and s € (0,1). Denote by H the space

H :=[L*(2D),Wy*(2D)]s 2.

By Rellich-Kondrachov Theorem and Lemma 2.4 the embedding H — L?(2D) C
L?(R™) is compact. So we can conclude as soon as we prove that f, € H and
|l < C.
Let np € C§°(2D) be a smooth cutoff function, » = 1 in D. Denote by T the
operator

T :vwnpv, ve L*(R").

Then T is a continuous linear operator from W12(R") into W,*(2D) as well as
L?(R™) into L?(2D). Interpolation-Lemma 2.3 implies that 7' maps continuously

H*(R") into H, too. But as the support-condition on fi implies T'fx = fi
pointwise almost everywhere, we have proven that f, € H and

Ifellg = 1T full g < 1 fellms < 1.
Lemma 2.18 [

With the compactness lemma, we can prove Poincaré’s inequality. As in [DLR09a,
Theorem A.2] we will use a support-condition in order to ensure compactness of
the embedding H*(R") into L?(R") (cf. Lemma 2.18). This support condition
can be seen as saying that all derivatives are zero at the boundary, which makes
it not surprising that such an inequality should hold.

Lemma 2.19 (Poincaré Inequality). For any bounded domain D C R™, s > 0,
there exists a constant Cp s > 0 such that

1 fllz2ny < Cps |A2 fllp2ny,  for all f € H*(R™), supp f C D. (2.5)

IfD=rD for some v >0, then Cp s = Cp 1°.

Proof of Lemma 2.19.
We proceed as in the standard blow-up proof of Poincaré’s inequality: Assume
on the contrary to (2.5) that there are functions fi € H*(R™), supp fr C D, such
that

||kaL2(]R”) > k‘HA%kaL’z(]Rn), for every k € N. (26)
Dividing by || fx|l2&») we can assume w.l.o.g. that ||fx|/z2mn) = 1 for every
k € N. Consequently, we have for every k € N

I fellzrs ey < 1 fkllpzny + 1A% frll2@ny < 1.

By Lemma 2.18 we can assume that fi converges weakly to some f € H*®(R"™)
with support inside D, with strong convergence in L?(R™) — modulo passing to a
subsequence of (fx)ren. This implies, that || f||L2@®») =1 and
s P s (2.6)
1% fll 2y < liming A% fell ey % 0.

But this is a contradiction, as Lemma 2.17 implies that f = 0.

14



Lemma 2.19 [J

A simple consequence of the “standard Poincaré inequality” is the following

Lemma 2.20 (Slightly more general Poincaré’s inequality). For any bounded
domain D C R", 0 < s <t, there exists a constant Cp > 0 such that

|A2 fl| L2y < Chyt ||A%f”L2(]R")a for all f € H*(R™), supp f C D.

If D=1rD for somer >0, then Cp; = Cprt=>.

Proof of Lemma 2.20.

We have
82 fllz = |17 " llee
< P llze@enmi0) + 1 2280
< IAEfpe + | fllze

L.2.19 .
< Cp 1A fllre.

By scaling one concludes.
Lemma 2.20 O

The following proposition can be interpreted as an existence result - or as a variant
of Poincaré’s inequality:

Lemma 2.21. Let s € (0,n), p € [2,00) such that

n—s 1 n — 2s
> > .

2.7
n P 2n 27)

Then for any bounded set D C R™ there is a constant Cp s, such that for any
v € S(R™), suppv C D, we have

1A 50l ey < Cpips l0lle,
Here, A™%v is defined as (||| ""v")". In particular, if s € (0, 5),

|A™20| L2gny < Cps ||v]|L2.

If D=1D, then Cp s =75 "2 Cp.

15



Proof of Lemma 2.21.
We want to make the following reasoning rigorous:

P.2.10
>2

P>
IA7%0)e < Cp IATE0) ML s
= G I 0 Mlpern
< G Il gz 0 Mlzew

S Cp737t ||rU||Lt,,p

Cs,t CD HUHLZ-

1 1 n s
oot
which is equivalent to (2.7). Then,
non LR_n
A L L
2 2

and we conclude the proof by Proposition 2.9 and scaling by Proposition 2.11.
Lemma 2.21 O

We will use the following Hodge-decomposition result

Lemma 2.22 (Hodge decomposition). Let f € L?(R"), s > 0. Then for any
bounded domain D C R™ there is w € H*(R"), h € L*>(R") such that

suppw C D,

/h A2p=0, forallpe C5(D)
RTL

and
f=Aw+h ae. inR"™
Moreover,
1Bl 22 (ny + 1A Fw]|2ny < 4] f]|L2(n)- (2.8)
Proof of Lemma 2.22.
Set
E(v) := / }A%v . f|2, for v € C§°(D).
R
Then,
1A% 0] 22 (gny < 2E(v) + [ flZ2@n)- (2.9)
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As D is bounded, Poincaré’s inequality, Lemma 2.19, implies
[0 < Cs,p(B@) + | flI72n))-

Thus E(-) is coercive, i.e. for a minimizing sequence (wg)$2 ,, such that E(vy) <
E(0) (which exists, as w = 0 is admissible), we can assume

lwilFe < CEQ) + 1 fl72@n) = 2C 1 fZ2@n), for every k €N

and by compactness, see Lemma 2.18, we have (for possibly a subsequence) weak
convergence of wy, to some w in H*(R™) and strong convergence in L2, as well as
suppw C D.

E(-) is lower semi-continuous with respect to weak convergence in H*(R"), so w
is a minimizer of E(-).

If we call h:= Azw — f, Euler-Lagrange-Equations give that

/h A2p=0, forany ¢ c C(D).
R’VL
Equation (2.9) for w and ||h|| 2z = E(w) < E(0) then imply (2.8).
Lemma 2.22 O

Remark 2.23. In fact, h will satisfy enhanced local estimates, similar to esti-
mates a harmonic function would imply, cf. Lemma 5.11.

2.4 Cutoff Functions

We will have to localize our equations, so we introduce as in [DLR09a] a de-
composition of unity as follows: Let = n° € C§°(B2(0)), n = 1 in B1(0) and
0 <75 <1inR" Let furthermore n* € C§°(Byk+1(0)\Bar-1(0)), k € N such that
0<nk <1, Yoo n* = 1 pointwise in R™ and ’Vink‘ < C;27% for any i € Np.
We call nf . := n*(=%). We will often omit the subscript when z and r should
be clear from the context.

For the sake of completeness we sketch the construction of those n*:

Construction of suitable Cut-Off functions. Let at first n = n° € C§°(B2(0)), n =
1 on, say, B3 (0). We set

k—1 k—1
() = (1 - an<~>> ACIE (2.10)
=0 =0

Obviously, ¥ is smooth and we have the following decisive properties

(i) n* € C§°(Bar+1(0)\Bar-1(0)), if k > 1, and

(i) Zf:o n' =1 in Bayx, for every k > 0.

17



Indeed, this can be shown by induction: First one checks that (i), (ii) are true for
k =0,1. Then, assume that (i) and (ii) hold for some k — 1. By (ii) we have that

1-307") m = 0'in Bye-1(0) and (i) implies that 21— m (3) = 0 in R\ Bok-1415.
This implies (¢) for k. Moreover,

k k-1 E—1 E—1
S =X (1) 0 X ().
=0 =0 =0 =0

By (ii) we have that in Byr—1 the sum Z;:OI n' is identically 1, and thus the right
hand side is identically 1 in that set. On the other hand, in Byk-15 = Bayr the
other sum Z;:Ol n! (5) is identically 1, and thus also in B§\B§_1 the property
(ii) holds for k. By induction (i) and (ii) hold for all k¥ € Ny. It is easy to check
that also 0 < n < 1.

We remark that if one wants to guarantee that n* = 1 in some subset, one takes

5a, @ > 1, instead of § in (2.10). Then, this new property is a consequence of

property (ii) above.

Moreover, one checks that ‘Vink| < C;27% for every i € Ny: In fact, if we

abbreviate ¢* := Zf:o n*, we have of course
|v2nk} S ’vzwk| + ‘viwk71|.

It is enough, to show that {Viwk’ < C;27%: We have

WF = L (1= R () g (;)

By property (ii) we know that 9* = 1 in Byx and % = 0 in R™\ Bax11, so the

gradient in those sets is trivial. On the other hand, in Byr+1\Bor we know that
Y*=1 =0, by property (i), hence ¥ = ¢*~1(3.) in this set. This implies

Vii/}k _ 2—i(viwk—1) (;) .

By induction or direct calculation one arrives then at |[Vig*| < 27%|[Vin?| pe.

I+k

n(5) =m0+ @ =nfm(5)-

The claim then follows by induction.

Remark 2.24. Also one can see that nékr =, In fact above was proven that

We want to estimate some LP-Norms of Agnf@. In order to do so, we will need
the following Proposition:

Proposition 2.25. (¢f. [Gra08, Ezercise 2.2.14, p.108]) For every g € S(R™),
p €[1,2], —oo<a<n%<ﬁ<oo, we have

a B
l"Nzo) < Capp (0% gllza@n + 185 g2 ) -

18



Proof of Proposition 2.25.

Set g := p%. We abbreviate f := g" and set f = f1 + fa, where fi = fx,(0)-
Here, x g, (o) denotes as usual the characteristic function of B;(0). Then fi(z) =
|z|* f1(x) |x|”® and hence

|—(l

Ifi@lee@ny < MY filleesioy 1M Lasio)

qa<n «
< Calll 1" flle2(s, 0))-
The same works for fo, using that g8 > n. Consequently, one arrives at
Il @y < Capo(l1* Fllza@ey + 1117 Flr2eny)-

Replacing again f = ¢g” and using that |-|*¢" = (A% g)", |~|’Bg/\ = (Agg)A and
then applying Plancherel Theorem for L2-functions, one concludes.

Proposition 2.25 [

Proposition 2.26. For any s > 0, p € [1,2], there is a constant Cs, > 0, such
that for any k € Ny, x € R™, r > 0 we have

s A —s+n-L
(A% ,)" pony < Csp (257) 7597 (2.11)

In particular,
s —S8 n%
||A§nf,;c”LP’(R" <Csp (2"r) S (2.12)

Proof of Proposition 2.26.
Fixr >0,k € Nand z € R™. Set 7j(:) := n} ,(x+2%r-). By scaling it then suffices
to show that for a uniform constant C

ERONVAY
1 (A27)" |Le@ny < Cop- (2.13)
By Proposition 2.25 for some admissible a, 8 > 0 (in the case p = 2 we can choose

a=p=0)

ERSNAN sta 16 _
1(A27)" Lo @) Copp(lA7Z 02 + [[A7= 71| 2)

IN

IN

Copp llese + 17l re+s)-

As H*t® and H**# are (equivalent to) certain interpolation spaces between
L*(R™) and some W"2(R"), i = i,5 € N, we have ||| gsta + ||7]lgsts <
Ca gllillwiz2®n). The choice of i depends only on s, a, 3, p and the dimen-
sion, but it is in particular independent of k, r, . Thus, for a constant also
independent on the latter quantities, we have

HﬁHW12 < Ca,ﬁ,s~

In fact, by the choice of the scaling for 77, we have that supp 77 C Bs(0), Vjﬁ’ <C;
for any 1 < j < 4. Consequently, we have shown (2.13), and by scaling back we
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conclude the proof of (2.11). Equation (2.12) then follows by the continuity of the
inverse Fourier-transform from L? to L? |, see Proposition 2.10, whenever p € [1, 2],
and the fact that n¥ , € H*(R").

Proposition 2.26 [

A consequence is, that in a weak sense A2 P vanishes for a polynomial P, if s is
greater than the degree of P:

Proposition 2.27. Let « be a multiinder a = (aq,...,q,), where a; € Ny,

n
1<i<n. If s> 0 such that |a] = ) |a;| < [s] — 1 then
i=1

/xa A2p=0, for every p € S(R™).
Rﬂ.

Here, x® := (1) - - - (x,,)*".

Proof of Proposition 2.27.
We have A2y € L'(R") by a similar reasoning as in Proposition 2.26, so

/xaA%gp = lim /xo‘nORo Az < lim RAZDS o llne /ap. (2.14)
R—o0 ’ R—00 )
R"L R7Z R"L
By Proposition 2.26 we know that

s 1
AE S n '< =
| nllz (R™) R

which implies that the terms of (2.14) converge to zero.

Proposition 2.27 [

Remark 2.28. We will use Proposition 2.27 in a formal way, by assuming in
calculations that AN2x® = 0. Of course, as we defined the operator A% only on
L2-Punctions this should to be verified in each such calculation by using that

Aim Az (npa®) =0,

where the limit will be taken in an appropriate sense. For the sake of simplicity,
we will omit this recurring argument.

2.5 An Integral definition for the Fractional Laplacian

A further definition of the fractional laplacian for small order are the following
two propositions.

Proposition 2.29. Let s € (0,1). For some constant ¢, and any v € S(R™)

Azu(g) = C"/L_:(Es) dz.
J i
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Proof of Proposition 2.29.
It is enough to prove the claim for § = 0. In fact, denote by 75 the translation

operator

T50(-) == v(- + 7).

Then, as any multiplier operator is translation invariant,

Afu(y) = AF(ryv)(0)

- %/M(m

ol
Rn

= Cn/—v(x—l—yz;v(y) dx
|
R

s,
RrR™ y

where the transformation formula is valid because the integral converges abso-

lutely.

Solet g =0,v € S(R™). Forany R > 1 > ¢ > 0 we decompose v = v1+va+v3+vy:

that is

U1

V2

U3

Vg

Nae(v = v(0)) + (1 — mae) (v — v(0)) + v(0)
v1 + Nr(1 — nae) (v — v(0)) + nrv(0)
+(1 = nr)[(1 = n4e) (v — v(0)) + v(0)]

U1 + V2 + U3 + vy,

= mae(v—0(0)),

= nr(l—me)(v—v(0)),

= nrv(0),

= (1 =ng)[(1 = nac)(v — v(0)) + v(0)]

= (1 - nR)[(l - 7745)U + 774571(0)]-

Observe that v, € S(R™), k = 1...4, and in particular A2y, is well defined in
the classical sense. So for any ¢ € C5°(Ba:(0))

/A%UQO:.[1+IQ+13+I4,
RTL
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where
Iy == /Agvk p, k=1,234.
R’!‘L

First, observe that by the Lebesgue-convergence theorem,

R—o0

fim L= Jim [ (1= )1 = )0 - 0(0) + (O)2Fg =0, (2.15)
R

Moreover, by Proposition 2.26
[Is| < [v(0)[llollzr 7,

SO
Jim I3 = 0. (2.16)

As for vy, we have

/ Ay p = / I€° (v % )"\ (€) de
2,

Rn

Cn / |z| "7 vy x () dx.

Rn
The last equality is true, as supp(vs * ) C R™\B.(0) and (cf. [Gra08, Theorem
2.4.6

)
/ € 0 ©) dé = e, / ™" w(y) dy, for amy v € C5O(R™\{0}).
Rn Rn,

Consequently, as the integrals involved converge absolutely, by Fubini’s theorem

s Vo\ T —
/szzw = cn//sﬁ(y)wdydx
RTL

Rn Rn
v(x —y) —v(0
— e [ o) [t =) = nite — ) O ey
Boe R™
By Lebesgue’s dominated convergence theorem,
. v(ir —vy) —v(0
Jim 1= o [ o) (= ncta - y»(ljﬁﬂ dedy.  (217)

R Rn

Together, we infer from equations (2.15), (2.16) and (2.17) that for any € > 0 and
any ¢ € Cg°(B2:(0)),

[atve = [neto-w0) ot

R Rn

+cn/90(y)/(1 - 7745)W da dy.

Rn R
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We choose now a specific ¢ := we™"n., where w € R” is chosen such that

[

R'Il
A3v is continuous because for v € S(R") in particular (A2v)" € L'(R"). Con-
sequently,
lir% A2y o = A2p(0).
E—

Rn

It remains to estimate

7= / me(v — v(0)) Afg,

R™

and

= [ et [0 —ma)(x—ww de dy.

R R™

As for I, by Proposition 2.26,

1

1< e [ ) - o) dy
B2.(0)

< [ Vollpe e By |
< [Vllpe e

As s < 1, this implies _
lim I =0.

e—0

As for ﬁ, we write

P(y)(1 = mue(z — y))w

—mae(z — 1) o(y) W

v(z —y) —v(z)
+o(y) (1 — nae(x — y))mT
By choice of ¢,

‘.T|n+s

/ dydR[ d

R” R™
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Moreover,

1
//|222\ dy dz < ||Vv|| L= / WT dr < 7%,
x

R™ R™ BIUE(O)
and )
//|113| dy dx < € ||Vv| L / W de < £°.
R" R R”\ B. (0) =

As a consequence, we can conclude

limﬁ:/w dz.
e—0 i |$|

Proposition 2.29 [

If s € [1,2) the integral definition for A3 in Proposition 2.29 is potentially non-
convergent, so we will have to rewrite it as follows.

Proposition 2.30. Let s € (0,2). Then,

s 1 vy —z)+v(y+x)— 20y
AEo(g) = 5en ) |x(n+s ) — 20(y)

R™

dz.

Remark 2.31. This is consistent with Proposition 2.30. In fact, if s € (0,1)

/v(y+x)—v(y) i dy:/v(y—x)—v(y) dz dy,

‘x|n+s |x ‘ n—+s
R’!L R’!L

just by transformation rule and the symmetry of the kernel m%h For this ar-

gument to be true, the condition s € (0, 1) is necessary, because it guarantees the
absolute convergence of the integrals above.

Proof of Proposition 2.30.
This is done analogously to Proposition 2.30, where one replaces v(-) by v(-) +
v(—-) and uses that

(230)(0) = %(A%(v(—-))(O) + A (u(:)(0).

Then, the involved integrals converge for any s € (0,2), as
[o(x) + v(=z) = 20(0)| < Vol |2|.
Proposition 2.30 [

Proposition 2.32. For any s € (0,2), v,w € S(R™)

[otvume, [ [0 00 v

n+s
R'IL R’VL ]Rn |m o y‘
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Proof of Proposition 2.32.
We have for v,w € S(R™), x € R™ by several applications of the transformation
rule

/ (0(y +2) + v(y — 2) — 20(y)) w(y) dy

R

= /v(y +z)w(y) +v(y) w(y +z) —v(y)w(y) —v(y + z)w(y + z) dy
Rn

= /v(y+x) (w(y) —w(y +z)) +v(y) (wly +2z) —w(y)) dy
RTL
- / vy + 2) — v(y)) (w(y) —w(y + ) dy.

o
(2.18)

As all the involved integrals converge absolutely by Fubini’s theorem

/A%v(y) w(y) dy

R’n

P230 (v(y + ) +o(y —z) = 2v(y)) w(y) dx dy
n n+s
s |z

— Cn// (v(y+fﬂ)+v(y—f)—2v(y)) w(y) dy do

s ||

(218 (v(y + ) —v(y)) (w(y) —w(y +)) dy do
n n+s :
s ||

Proposition 2.32 [
In particular the following equivalence-result holds:

Proposition 2.33 (Fractional Laplacian - Integral Definition). Let s € (0,1).
For a constant ¢,, € R and for any v € S(R™)

5 [o(@) = v(y)|*
||A2UH%2(]R") = cn/ /7n+25 dxr dy
PR Al

In particular, the function

lo(x) = v(y)|*
o — [T

lies in L'(R™ x R™) whenever v € H*(R™).

(z,y) e R" x R" —

We will now introduce the pseudo-norm [v]p s, & quantity which for s € (0,1)
actually is equivalent to the local, homogeneous H®-norm, cf. [Tar07], [Tay96];
But we will not use this fact as we will work with s = 3. Nevertheless, we will
see in Section 8 that [v]p, = is "almost” comparable to [|A%v]|12(py.

25



Definition 2.34. For a domain D C R™, s > 0 set if s € Ny
L] —yls] 2
2 [ [IVYu(z) - VP u(z)|
([ulp,s)” = // P ) dz dzs. (2.19)

DD — 2|

If s € Ng we just define [u]p s = ||Voul 2(p)-

Remark 2.35. By the defintion of [-|p s it is obvious that for any polynomial P
of degree less than s,
[U + P]D,s = [U}D,s-

3 Mean Value Poincaré Inequality of Fractional
Order

Proposition 3.1 (Estimate on Convex Sets). Let D be a convez, bounded domain
and v < n+ 2, then for any v € S(R™),

/ / W dz dy < Cp, ! Vo(2)]? dz.

DD
If v =0, the constant Cp ., = C,, diam(D)?.

Proof of Proposition 3.1.
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By the Fundamental Theorem of Calculus,

//wu sty

2
< Vot =2 4 0
|z — 1y
t=0 D
1
[ [ [ [Delatty—o)P
= ///| 2 dx dy dt
-y
t=0 D
; IVo(z + t(y — x))?
v\r
+// 2 dy dx dt
t—1 D D |z —yl
2
(%)
= /// 1—t|2vqi/|z|_ e 5 (1—t)"" dz dy dt
t=0 D
1 Vo(
+///2‘U 'yztinddedt
1D t ’y|x Z|
-2

< /|Vv(z)\2/|2722|2_7 dzy dz
D

The inequality (%) needs that D is convex, so the transformation x — x+t(y—x)
maps D into a subset of D.

Proposition 3.1 [

An immediate consequence is the classical Poincaré inequality for mean values on
convex domains

Lemma 3.2. For any v € L*(D) for a convex set D C R™ there is a uniform
constant C' such that

/|v - ? < € (diam(D))? [Vvl13(p)-

In this section we prove in Lemma 3.6 a higher (fractional) order analogue of this
Mean-Value-Poincaré-Inequality. The ideas are not that different from proofs of
similar statements as e.g. in [DLR09a] or [GMO05, Proposition 3.6.] — only the
terms involved tend to be very large.

We will often suppose the following mean value condition for some N € Ny and a
domain D C R"

][a% =0, for any multiindex a € (Ng)", |a] < N. (3.1)
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3.1 On the Ball

We premise some very easy estimates.

Proposition 3.3. For s € (0,1), there exists a constant Cs > 0 such that for any

x € By(z0)
1
BT(wU)
and
1 —2s
poyE WS
Rn\BQT(mO)
Proof of Proposition 3.3.
We have
1 1
/ n+2s—2 dy S / n+2s—2 dZ
|z —yl ||
BT(IQ) Bzr(())
Sél (2r)2 2s
and

1 1 1
-yt o=y / Ela *
R\ Bap (o) R\ By, (0)

0
= (22
Proposition 3.3 [

Proposition 3.4. Let v € [0,n+2), N € N. Then for a constant Cn , and for
any v € S(R™) satisfying (3.1) on some B, = B,(z) C R,

//'“ |x_y|7 "y dr < Cypr?N~ 7//|VN VNu(y)|* d dy.

Proof of Proposition 3.4.
It suffices to prove this proposition for B1(0) and then scale the estimate. So let

r = 1. By Proposition 3.1,
2
[ [l g,
|z —yl

B1 By

< /\Vv(z)|2 dz

B,

/\Vv(z) — (Vo)p,|? dz

=< / /|Vv — Vo(z)? dz dzy
1 1
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Tterating this procedure N times, we conclude.
Proposition 3.4 [

Proposition 3.5. For any N € Ny, s € [0,1) there is a constant Cn s > 0 such
that the following holds. For anyv € S(R™), r > 0, xg € R™ such that (3.1) holds
on Byr(zo) we have for all multiindices o, 8 € (Ng)", |a] + 8| = N

A% ((0%r,20) (0°0)) || o oy < ON [] By (o), N s

Proof of Proposition 3.5.
The case s = 0 follows by classical Poincaré inequality, so let from now on s €

(0,1). Set
w(y) = (0% (9))(870(y)).
Note that supp w C Bs,. Moreover, by the definition of 7, ,, we have

lw| < Cy T"O‘l‘@ﬁv‘ < C’Nr‘ﬁl_N|86v‘. (3.2)

By Proposition 2.33 we have to estimate

; i) wl)
aful = // R e dy

R

|w w(y)|?
_ //yl”“s dz dy

Iw W)
—I-Q/ / —5.— dr dy
yl +2

B4, R™\By,

T v

R"\ By, Rm" \B4T

w
= / / o n+28| dx dy

1
2 / w / —l d
‘ |,fE _ y|n+2s y

Rn\B4r

= I+2II.
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To estimate 11, we use the fact that supp w C Bs, and the second part of Propo-
sition 3.3 to get

|[I7] =< /|w

G2 2081-N-s) / 0%y

3.1 2
G 2081-N-s) / ’aﬁv( - dy

U) B4r

» ,,2<|5|—N—s>—n/ / 10%u(y) — 9%v(x)|* dy da.
Bar Bay

As 0Pv satisfies (3.1) for N — ||, by Proposition 3.4,

//|85 )| dy dx < r?\V= IB\)//WN — V(e )|2

B4T B4r B4r B4r

Furthermore, we have for x,y € By,

7,771725 | y| n— 29

which altogether implies that

1] < / / VVo(y) — Vo)

By Bar

In order to estimate I, note that
jw(@) —w(y)] < (0% |r=]0%v(z) = 8%0(y)| + VO n, ||~ & = y| [070(y)|
< 198 (z) — 0Pu(y)| + 1Tz — y| |0 (y)|.

Thus, we can decompose |I| < |I1| + |Iz| where

9%o(x) — 0°
I = r2081- N)/ /‘ o y|n+gs( 0l dz dy,

Byr Bar

dPu(y
I, = p208-N- 1)/ /| | o MS dx dy
X —

Byr Bar

and

P.3.3 2
s_<<1 r2(|[3|—N)—2$/‘8[3,U(y)
3.1

@D ,ﬂ2<|ﬁ|fN>f<n+2s>//|aﬁv(y)faﬁv(z)|2 dy dz.

By, By,
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Using again that v satisfies (3.1) for N — || on By,., by Proposition 3.4

L] < 7"*"*25//’VNU(:C)—VNu(y)|2 dz dy

Bay By

‘VNu(x) — VNu(y)|2
=< / / T— dzx dy,

n+2s
B4y Bar

and the same for I>. This concludes the case s > 0.

Proposition 3.5 [

Lemma 3.6 (Poincaré’s inequality with mean value condition (Ball)). For any
N e Ny, s € [0,N], t € [0,s] — s+ 1) there is a constant Cn s+ such that the
following holds. For any v € S(R™) satisfying (3.1) for N and any Ba,(z9) C R”,
r >0, we have

IA

|A 20,0 L2 &n) ot 7 [V]By (w0 e

IA

s4t
Cs,t ’I'tHA 2 ’U||L2(Rn).

Remark 3.7. One checks in the following proof, that the claim is also satisfied
if v satisfies (3.1) on a ball By, for A € (0,4). The constant then depends also
on .

Proof of Lemma 3.6.

We have \
A3 = ATAINK
for
v = s—[s]€0,1),

If 6 =1 this is (cf. Remark 2.14)
A% =, RiAZ9;AK,

and if 6 =0 1it is
A% =, ATAK,

As the Riesz Transform R; is a bounded operator from L? into L? we can estimate
both cases by

IAEm0)le < D0 A% ((0°0)(070)) 2=

o,B€(Ng)™
|a|+]B|=2K+35

31



This and Proposition 3.5 imply

. V2K+5U(x) _ V2K+5U(y) 2
i < [ [ - |

n+2s
By Bar y| )
0 ‘V2K+5v($) _ V2K+5v(y)’
= r |1‘ _ y|n+23+2t :
By Bar

We conclude by using Proposition 2.33.
Lemma 3.6 [

3.2 On the Annulus

In order to get an estimate similar to Proposition 3.1 on the annulus, Proposition
3.10, we would like to divide the annulus in finitely many convex parts. As this
is clearly not possible, we have to enlarge the non-convex part of the annulus.

Proposition 3.8 (Convex cover). Let A = B3\Bi1(0) or B2\B1(0). Then for
each € > 0 there is A = A >0, M = M. € N and a family of open sets C; C R™,
j€{l,..., M} such that the following holds.

o For each j € {1,...,M} the set C; is convez.
o The union
M M
B\BiC |JCCB\Bi. or B)\ByC|]JC;CB\B;_.,
j=1 j=1
respectively.
e For eachi,j € {l,..., M} such that C;NC; # 0
conv (C; UC;) C Bo\Bi— or conv (G UGC)) C Bo\By_,,
respectively, where conv (C; U Cjy1) denotes the convex hull of C; U Cjyq.
e For each x,y € A, at least one of the following conditions holds

(i) |lx —y| > X or

(i1) both x,y € C; for some j.
Proof of Proposition 3.8.
We sketch the case Bl\B%. For any r > 0 one can cover the sphere {x € R™ :
|z| = 4} by a finite number M of subsets Sy, k = 1,..., M such that the diameter
of S, U S, for every k,l € {1,..., M} with S NS # 0 is at most r. Note as well
that as r tends to zero, M explodes, but the R™-convex hull of S; U .S; lies in
Bi1\B1__, for increasingly small e. The sets C; are then defined as

2 2
Cj=conv({xeR" x| <1, x=ayfora>1landyeS,;}).

As there are only finitely many open sets C; covering B;\B 1 the last condition
is satisfied as well.
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Proposition 3.8 [

Proposition 3.9. Let A = By\B1(0) or Bo\B1(0). Then for any e > 0, there

exists Ce so that the following holds. For any v € S(R™)
//\v ) —o(y)|* da dy < C. /|Vv\ (2) d

where A = By\Bi_.(0) or By\Bi_.(0), respectively.

Proof of Proposition 3.9.
By Proposition 3.8 we can estimate

//|v ) —v(y)? da dy
Z//h} —o(y)| dz dy

1,]= 1C

Z L.

ij=1

IN

If : = j we have by convexity of C; and Proposition 3.1

L, <Cec. /\vu|2<z) &z < C. /|Vv|2(z) dz

Cj

If i and j are such that C; N C; # 0,

no< | [ @ - o

conv(C;UC;j) conv(C;UC;)

P3.1
=< / |Vv|1

conv(C;UC;j)

/|Vv|2.
A

Finally, in any other case for i, j, there are indices k; € {1,..., M}, 1 =1,...

such that ky =i and kr = j and Cy, N Cy,, # 0. Let’s abbreviate

(0) = ][C .
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With this notation,

i = //|v —o(y)|? dx dy

Car | [ [ 1) - ol +§j| )i |+ 1)y = o) oy
C; C;

IN

L
< Ii,i + Ij,j + Zlkz,lHl'

So we can reduce this case for i, j, to the estimates of the previous cases and
conclude.

Proposition 3.9 [
As a consequence we have

Proposition 3.10. Let A = By\B1(0) or B2\B1(0). Then for any e > 0,
v € [0,n +2) there exists C.  so that the following holds. For any v € S(R™)

//w@:ﬁwam@<@w/wwﬁ
A A i

where A = By\Bi_.(0) or By\Bi_.(0), respectively.

Proof of Proposition 3.10.
By Proposition 3.8 we can divide

2
v(x) —v
N
\v
|ﬂ{ dx dy + X7 lv(z) — v(y)|?* dx dy.
Y A A

Jj= 1C

These quantities are estimated by Proposition 3.1 and Proposition 3.9, respec-
tively.

Proposition 3.10 [J

As a consequence of the last estimate, analogously to the case of a Ball, we can
now prove the following Poincaré-inequality:

Lemma 3.11 (Poincaré’s Inequality with mean value condition (Annulus)). For
any N € Ny, s € [0, N], t € [0, [ s] —s+1) there is a constant C s such that the
following holds. For any v € S(R™), xg € R™, r > 0 such that v satisfies (3.1)
for N on Ay = Bory1,.(20)\Bar-1,.(xg) or Ay = Baori1,.(x0)\Bar,.(x0) and some
zg € R™, r > 0 we have

s 2t
IAZ0 ]| 2y < Coe (257)7 [0] 4, 00
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where R
Ak = ng+2r($0)\32kfzr(l‘0).

Proof of Lemma 3.11.
As in the ball case one can reduce the problem to estimate

Pv(z) — 0%v(y) 2
[ [t e,

Jd Y|

for some slightly thicker D D Ay and some multiindex || < N. Applying Propo-
sition 3.10, the latter integral is estimated (up to a constant depending on the
radius and k), by

/ |V8511(z) |2 dz.
D

Using the mean value property, one can estimate this by

/ (V0P u(z) — (VOPv) 4, |2 dz

D
= / /|V6ﬁv(z)—V85v(2)|2 dz dz.
D D

Iterating this (and in every step thickening the set D), one concludes.

Lemma 3.11

Remark 3.12. Again, one checks that the claim is also satisfied if v satisfies
(3.1) on a possibly smaller annulus, making the constant depending also on this
scaling.

3.3 Estimate of Mean Value Polynomials

For a domain D C R™ and N € Ny and for v € S(R™) we define the polynomial
P(v) = Pp n(v) to be the polynomial of order N such that

][Ga(v — P(v)) =0, for every multiindex o € (Np)™, || < N. (3.3)
D

The goal of this section is to estimate in Lemma 3.16 and in Lemma 3.17 the
difference

Pp, (v) — PBri(U)\BQk—lr

in terms of A2v. This is done analogously to the proof of [DLR09a, Lemma 4.2],
only that we have to extend their argument to polynomials of degree greater than
0.
We will need an inductive description of P(v). First, for a multiindex a =
(a1,...,a) set

al:=aq!. .. a,! = 0%,
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For i € {0,..., N} set

Qon) = QAW+ Y et - QA0

) =i D (3.4)
Q) = ) ][ .
la|=N D
One checks that '
0°Q" = 90°P, whenever |a > i, (3.5)

and in particular Q° = P.
Moreover we will introduce the following sets of annuli:

Aj = Aj(?”) = Ber\BQj—lr, Aj = Aj(?‘) = Aj U Aj_;,_l.

Proposition 3.13. For any N € N, s € (N,N + 1), D C Dy C R" bounded
domains there is a constant Cp, p n,s such that the following holds: Let v €
S(R™). For any multiindex o € (Ng)™ such that |a] =1 < N —1,

(0= QA () — (9°(v - QA ()

D‘
Do

Do\ 2
< CDz,D,N,s (ﬁ) diam(DQ)%-i_s_N [v]D2,s

where [v]p,s is defined as in (2.19).
IfD—’rD DQ—?"DQ, thenCD2DNs—r iC[b,D,N,s'

Proof of Proposition 3.13.
Let us denote
I= /

D>

0 (0= @A) — (070 = Qi () |

A first application of Holder- and classical Poincaré’s inequality yields
3 [} z+1
I <Cp,p, |D2|? [VO* (v — Qp N L2(Ds)-

Next, (3.5) and the definition of P in (3.3) imply that we can apply classical
Poincaré inequality N — ¢ times more, to estimate I by

1
< Cp,pn |Da2|? VY (v = Pp n(0))]L2(py)

1
= CDg,D,N |D2|2 HVNU— (VNU)DHL2(D2)

D
Cp,.D.N :Dj (D//WN — Vo) de dy |

36

[N

IN



which is bounded by

2

2
| Dy nt3(soN) |VN No(y )|
Cp, DN <D1| diam(D5) y|n+2(s de dy |

The scaling factor for D = rD then follows by the according scaling factors of
Poincaré’s inequality.

Proposition 3.13 [J

Proposition 3.14. For any N € Ng, s € (N, N+1), there is a constant Cn 4 > 0
such that the following holds: For any j € Z, any multiindez || < i < N and
v e S(R™)

Proof of Proposition 3.14.
Assume first that i = N. Then

< CN75(2j7“)s_‘a|_% [v] 4

o (@, - @4 )| .
QAJ QAJ+1 L (A;) 345

l0°(QA, QAJH)”LN
3.4 ,
(4) (29r)N = ‘0‘| //|VN VNo(y)| dx dy

i
< (277) NQA(A /|VN —VNo(y)|* de dy

< @)

SIS

Now let i < N — 1 and assume we have proven the claim for i + 1. By (3.4),
sz - Q2j+1
_ i+l i+1
= Q4 — @4,

1 7 z
+ Z 3 28 ][8’8(11 Q) - f w-Qt)
Aj

J+1

1 i i
+ 35| forent e
A
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Consequently,

10°(Q, — Q' )l )

< 0%(QF = QUL ) = ay
1—|a ﬁ z+1 ,8 1+1
@) \IZ][a Qi) ][a —Qi)
\Bl_lA Ajr
+(27r)le Z 10°( ZZZL - Hl)”L o (A;)-
|B|=i

Then the claim for 7 + 1 and Proposition 3.13 conclude the proof.
Proposition 3.14 [J

Proposition 3.15. For any N € Ng, s € (N,N + 1) there is a constant Cn s
such that the following holds. For any multiinder o € (No)", [a| < i < N, for
anyr >0,k €Z and anyv € S(R") if s —i — 5 #Oforanyze{z N},

10%(Q%, — Qi‘k)”m(&) < Cy ro7lol=% <2k(s—|a\—%> + Qk(i—la\)) [v]Rn s,

andifs—%—%z()foranyge{i,...,N}

10(Q%, — Qu )l L= (44
< COp ., ro1ol=% gk(i=lal) (|k|+1+2k(s i ’;)) [V]Rn s

Here, Ak = ng+1r($)\szT(.%‘) and Ak = B2k+1r(l')\BQk—1T(J}).

Proof of Proposition 3.15.
For the sake of shortness of presentation, let us abbreviate

4 = |0%(Q%, — Qu ) L (4,)-
Assume first i = N.

(3.4) o 8
ave L i ][3%—][35

\ﬁ\ N _

> (Ag)
][VNvf][VNv

, |Az\ N N
~ (2k’l“)N lo ][V ][V
|B \

=< (QkT)Nfla
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As 1A —2in(1 — 277y and thus 3. 121 =1 we estimate formally further

IB.] 2 B
N,o
d; o
S (2kp)N-led Z an][vzv ][VN
l=—00
< (2Fp)N-lal Z 2znz ][VN ][ v,
I=—o0 j Ajt1
1
2
k—1 ,
< (2kp)N-lel Z 21”2 )" //’VNU(.%‘)—VNU(y)| dx dy
l=—o00 J=l i A
k J J

=< 2k N—|o Z 2lnz 2] —%+s—N [’U]Ajs

l=—o00

If k£ > 0 this estimate is written correctly, if £ < 0 we mean

k—1 k—1
de,a = (Qk)Nf\od,rsff*\od ( Z In 2J 5+s— N) ]Aj,s
l=—00 gj=l

0 -1
I j(—24s—N
320N P )
=k  j=k
Now we have to take care, whether s — 5 — N = 0 or not. Let

e {2k<s—£‘—N>, ifs— 12— N #0,

Ik, ifs—2—N=0,

and respectively,
b =3 =N) - if 5 — 53— N #0,
R ifs—2—N=0.

With this notation, applying Holder’s inequality for series, div’o‘ is estimated in-
dependently of whether k > 0 or not,

O oo
R DI N IO
l=—o00 =m0
0
< e EmlelghN=a)g, [ylp, o + (2F)N—lelps=lal=3 Z 2" bfv]ee s
l=—o0

=< ’I"Si%ila‘ ['U}Rn,s (2k(N7|aDak + (2]€)N*‘0‘|) :

39



This concludes the case i = N. Next, let « < N and assume the claim is proven
for i + 1.

4t = 0@, — Q%)L (an)
e 1 3 2k ][aﬁ Qi ][aﬁ Q)
|B]=i
< ditte
‘ 0
Y (@) e, 3 g ][ (- Q) - ][ (- Q).
|8]=i l=—o0

1A

In _
where ¢, 2 = 1B

SO Z ;2" =1 as we have done in the case i = N above.
— 00

We estimate further, .
<dith

+ Z 2k i—|al Z oln dz+1,ﬁJr ][8ﬁ Qz-i-l ][8[3 7,+1

|8l=1

As above in the case i = N we use a telescopmg series to write

][aﬁ( Qz+1 ][aﬁ ’L+1

2y

k—1 '

X|fore-ain- f de-ai
j J+1

B+l _ i+l
< E Hf’) (@4 — Q4.
g=l

IN

L (A;)

+forw-aQut) - ][ - Qi)
A Ajir

Aj
k—1

> I +11))

Jj=l

Q

Again we should have taken care of whether [ <k —1 or k—1 <, but as in the
case ¢ = N both cases are treated the same way. The first term is estimated by
Proposition 3.14,

ye-181-3 ysim%
I; < (2'r) P g, = @) 7l
And by Proposition 3.13,
I < (2r) "5 o] g = (7r)* 7% [l
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Hence,

e
|
-

for aj and by similar to the i = IV case above defined as

Qk(s—35—i) ifs— 45— N#0,
ay =
» k|, ifs—2—N=0,

and respectively,

], ifs—4—-N=0.

) {2l<s’£i>, if s—2— N #0,
l =
2

Plugging all these estimates in, we have achieved the following estimate
ag”
ol
) i .
=< d;:_l’a + Z (ri) @ Z 21nd;+1,5
|B|=i l=—0o0

frsTlel=% okG=lal (g, 4 1) [v]gn .

n _

5 i = 0 for some 7 > i or not, using the claim for

In either case, whether s —
i+ 1 we have

Z (ri)ii‘al i 21"df+1’ﬁ < Cns 7’57%4“‘,
|8]=i l=—o0
and thus can conclude.
Proposition 3.15 [
As an immediate consequence of Proposition 3.15 we get

Lemma 3.16. For a uniform constant C > 0, for any v € S(R"), r >0, k € N
17 (P, 121 (v) = Pa. 12 (0) Lo @n) < C (1+ [ED[AT0]| 2 @)

Here, Ay = Bors1,(2)\Bor,(x) and Ay = Boks1,(x)\Bas-1,(z).

We will need moreover a little sharper version of Lemma 3.16. We will state this

for s = § to shorten the presentation.
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Lemma 3.17. Let N := [§] —1 and v > N. Then for ¥ = =N +min(n,v) and
for any v € S(R™), B,.(x9) CR™, r >0,

702

S 2 (P, (0) — Payw )l s,y < G0 S 2701 [l
k=1 j

j=—o0

Here, Ay, = Bors1,(x)\Bor, () and Ay = Borr1,.(2)\Bor—1,.(2).
Proof of Lemma 3.17.
As in the proof of Proposition 3.15, set
Ay = 10%(Ql, — Qu ) 1~ (4,
Moreover, we set
i, . —~vk gt,0
She=3 "2 dp
k=1

and

s = 3 ok g,
Then, by the calculations in the proof of Proposition 3.15,

0

[es) k—1
N,« —la —jN+In—~vk+kN—k|c| B
Sy < Ty Y D2 l4,,

k=1l=—o00 j=I
0

= el 3 2Ny, XJ: i?” k(N =y=lal)
32
l

j=—00 co k=1

3

oo O_ oo
—|a| —jN ~ in ok(N—y—|a
Sy 3 S e
j=1 I=—o0 k=j+1

>N 0
=l j(n—N) .
< r E 2 [v]4,, 2

j=—00

=l J(=v—lal) _
+r le []4, -
=
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Similarly,

0 k—1 k-1

N _ iy B
ST < |ev] E : } : 2 :2 FNFIntykkN=klal [y]
Jr2

k=—c0l=—0c0 j=I
0 -1

0
e E § § :2ij+ln+’Yk+kN7k|a| o4, 4
)2

k=—o0 l=k j=k

0 0 j
—lef =N, - Ingk(v+N—|al)
SACID SERLUID SED SELE
Jj=—0o0 k=j+1l=—00
0 J 0
—le —JNT] - Inok(y+N—|al)
D SERA TS SID L
Jj=—00 k=—o0l=j+1
0
—le G(n—=N)[,1 -
eI eI
=T
+plod Z 210l y] 2,
772
j=—00

For0<i< N -1,
e i+1,«
S5 < 5

+pi—lel Z i 2k(i7|a\77)si_—|;ll,/3

|Bl=i k=1
oo 0 k-1
frmlol 3 gkinlel) § gin 7 g [v]4, =
'
k=1 l=—00 Jj=l
Y>i .
+1,
< st
+Ti—\a| Z Sitllyﬁ
|B]=i
0 . .
D S TP
j=—00 )
oo
4y lal ZQj(—v—la\) Wi n
J_l 702
i<N
< +1,
< st
SRAED Wit
|B]=1
0
+T_|a‘ Z 2](7L—N) [U]Aj,%
Jj=—00

—le J(=r=lel) 1,7 -
o ;2 [’U]AJ>%.
]:
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And

Si,a =< Si—i—l,a

- -
0
4pi—lal Z Z Qk(i—la\+7)5i+nlﬂ
|B|=i k=—o0
0 k-1
kffoo lffoo
4 la| Z Qk(z lal+7) Z2ln Z 92— ji AE
k=—o0 j=k—1 e
i+1,a
< 80
+’I"’L || Z Sz_tll
|B|=i
al Z 2*]1[1]}1&%% Z Z 2ln2k(zf|a\+~y)
j=—00 l_fook_]Jrl
0
S Tl g 3 S
j=—o00 k=—o0 l=j
i+1,a
< S84
il gL
—n
|B|=1
0
4pled Z 2](”*1)[0]153_,%
j=—00
4pladl Z Qj(v—la\)[v]éi
Pl 2
SN itla
< S
il Z Gitls
—n
|B|=i
0
4plodl Z Qj(n_N)[U]Ajﬁ
)
j=—00
0
4y lel Z 23’(74&\)[@]@2
i 72
Consequently, one can prove by induction for ¢ € {0,..., N}, that whenever
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v > N, |a] <4, for ¥ :=min(n — N,y + |a|)

S,iy’a +Sﬁ: < C’y,N T_Ia‘ Z 2_‘]‘Iﬁ [U]Av n

VRN

(3.6)

j=—00
Taking ¢ = 0, a = 0, we conclude.

Lemma 3.17 [

3.4 Poincaré-like results if the mean value far away vanishes

Proposition 3.18. There exists a constant C > 0 such that for any r > 0,
xzo € R", k € Ny, v € S(R™) we have

175 0o (0 = P)|[ 2@y < C (257) % (14 |k]) |25 ]| p2n),

where P is the polynomial of order {%1 —1 such that v— P satisfies the mean value
condition (3.1) in Ba,.. Here, in a slight abuse of notation for k =0, nk = Nr="N1r
for m from Section 2.4.

Proof of Proposition 3.18.
Let Py be the polynomial of order N = {%1 — 1 such that v satisfies the mean
value condition (3.1) in By, \Bar-1,.. We then have,

0% (v = Pl 2@y =< 05 (v = Pe)ll2ny + (2°7) * 1P = Pall Lo (Byess \Bye_s,)-

As Lemma 3.16 estimates the second part of the last estimate, we are left to
estimate "
||7’]7]f(’0 - Pk)||L2(R") S C (2kT) 2 ||AZUHL2(]R")'

But this is rather easy, as by classical Poincaré inequality and the fact that by
choice of P the mean values over Bok,\Bok-1, of all derivatives up to order [ % |
of v — P, are zero, so

15 n
9% (v = Pe)ll ey < (2°7) 27 (VL) (0 — Pe)llL2(B s \Byr_1,)-

If n is odd, we use again use the mean value condition to see

IV (0 = Po)llZ2 5

ok+1,\Bok—1,)

~< ][ / ’VN’U(JJ) — VNv(y)’2 dz dy

Bok, \Bak—1, Byk+1,\Byk-1,

< (2" / / (VN0(z) — VNu(y)| iz dy

|z —y|*"

Bok+1,\Byk—1,. Bok+1,\Byk—1,
k)™ o2
=< (2 7") ||A4'U||L2(Rn).
Taking the square root of the last estimate, one concludes.

Proposition 3.18 [
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4 Higher Integrability and Compensation Phe-
nomena

We will frequently use the following operator
H(u,v) := AT (uw) — (ATu)v —uliv, u,ve S(RM). (4.1)

Although there is no product rule making H(u,v) = 0, or H(u,v) an operator of
lower order, in some way this quantity still acts like an operator of lower order,
as Lemma 4.3 shows.

This was observed in [DLR09a]. As remarked there, the compensation phenomena
that appear are very similar to the ones in Wente’s inequality (cf. the introduc-
tion of [DLR09a] for more on that). In fact, even Tartar’s proof in [Tar85] still
works.

In this section we present a rather easy estimate which somehow models the
compensation phenomenon: More specifically, for p > 0 we are going to treat in
Corollary 4.2 the quantity

|z =yl — |y — |=["].
Proposition 4.1. For any z,y € R" and any p > 0 we have

|z|” if pe (0,1),

lz —y[” = Jyl’| < C 1
=l 4 JallyP ifp > 1.

Proof of Proposition 4.1.
The inequality is obviously true if |y| < 2|z| or £ = 0. So assume z # 0 and
2|z| < |yl, in particular,

t
- tal 2y~ thal = (1= § )l 2 Jel. forany e Q1) (@2

We use Taylor expansion to write

Lp]
lz—y" =yl <>
k=1

For k > 1,

k

dlpl+1
ﬁ‘t

p

7O|y —tx’| + sup

te(0,1)

k

—k k
ﬁ < \y—tw|p |£L" .

ly — tal”

So for 1 < k < |p],

k
e,
For k= |p| +1>p, s € (0,1),

—k k —1
<yl = < 2l + [yl

|z — tyl”
=0

(4.2)
L )P

— szlP| < |y — sz[P"|x|

k
’dskly

46



Proposition 4.1 [

Proposition 4.1 has the following consequence

Corollary 4.2. For any z,y € R™ and any p > 0, 0 € [0, 1] we have for a uniform
constant Cp > 0

[P Jy[Pt ifp e (0,1],

llz = y” = y[" = |z[’| < C _ o
Pl ]+ eyl i > 1

Proof of Corollary 4.2.
We only prove the case p > 1, the case p € (0, 1) is similar. By Proposition 4.1,

|z = yl” = Iyl — |=["]
< min{[z[", [y} + |2yl + |yI” =]
< 20"yl + 20y ).
Corollary 4.2 O]
Lemma 4.3. For any u,v € S(R™) we have in the case n = 1,2
[H(u, )" ()] < C [(AZu)" |+ [(AF0)",

and in the case n > 3

2

(H(w,0) (©)] < € [(A"F )|« |(220)" (8" 0)|

*

+c’(A%u)A

*

Proof of Lemma 4.3.
As u,v € S(R™) one checks that H(u,v) € L?*(R™) and thus its the Fourier-
Transformation is well defined. Consequently,

(o) €)= 650 ot (€) — ' s (HEu)(€) — "+ (1 Fu)(©)
= [e-now (9F -l - lo-g?) a.

Rn
If n =1,2 Corollary 4.2 gives
1612 = lyl? —le ¥ < C yI¥ 16— ul?,
in the case n > 3 we have

1612 = 1yl% — e~ yF| < C (W™= €=yl +IE— ol Iyl

This gives the claim.

Lemma 4.3 [
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Theorem 4.4. (c¢f. [Tar85], [DLR09a, Theorem 1.2, Theorem 1.3/, [DLR09b])
Let u,v € S(R™) and set

INE]

H(u,v) = AT (uv) —vATu —ulto.

Then, s
1H (u,0) M p2a@ny < Cn [[ATul|L2@n) |A20] L2 Rn)-

and
4 4
[H (1, 0) | 22 @ny < Cp [(A20) M| p20o gy A% 0] 12(R0).

In particular,
HH(UaU)HLZ(R") < Cn HA%UHL?(R”) HA%U||L2(R")~

Proof of Theorem 4.4.
Lemma 4.3 implies, in the case n = 1,2

(o) < (HTHaT0) « (75 at))
and in the case n > 3
(Huo)l < c (17 @Fr) « (@t
+C (7= (%) « (117 a%0)"]).

Now we use Holder’s inequality: By Proposition 2.9 we have that

|,|_% c L4,o<>(]Rn)7 2.4 L%,Q, L2 . [0 L%,oo’
7" e L (R™), L2 LM C Lfz? [200. [n° C [ufs™
|77 € LR (Rn), L2. L7250 ¢ L2102, [%00. [#25:%° ¢ [R50,

Moreover, convolution acts as follows
4 4 4 4
L3?%x L32 C L%, L3> x [32 C L?,
2 3 2 3 2n 3
Lits2 5 [7o12 ¢ L2 [ada? 5 [0 4 [at2>® x L7712 C [2,
We can conclude.

Theorem 4.4 [

5 Localization Results for the fractional Lapla-
cian

Even though A® is a nonlocal operator, its “differentiating force” concentrates
around the point evaluated. Thus, to estimate A2 at a given point = one has to
look “only around” x. In this spirit the following results hold.
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5.1 Multiplication with disjoint support

The following result is used many times in [DLR09a]. For the sake of overview,
we state it as a Lemma:

Lemma 5.1. Let M be an operator with Fourier multiplier m € S(R™), m €
C>*(R™\{0}), i.e.
Mv := (mv")".

If m is homogeneous of order § > —n, for any a,b € C§°(R™) such that for some
v,d >0, z € R", suppa C B, (z) and suppb C R™\Bg4~(z),

/(l Mb < CM d_n_6 Ha”Ll(Rn) ||bHL1(]Rn).

Rn
An immediate corollary, taking m := |-|**", is
Corollary 5.2. Let s,t > —n. Then, for all a,b € S, such that for some d,vy > 0,
suppa C B, (x) and suppb C R™"\ By (z),

/A%“ Azh < Crpor d a1 |Jb]l 10

Rn

Lemma 5.1 follows from the following proposition, using that by the transla-
tion invariance of multiplier operators one can assume that suppa C B,(0) and
supp b C R™\B,4(0).

Proposition 5.3. Let m € S and m € C®°(R"\{0}). If for some § > —n we
have that m(Ax) = XNom(zx) for any x € R™, X > 0, then

/m N < Cpp d70 lellLrmny,  for any v € C°(R™\B,4(0)), d > 0.
Rn

Proposition 5.3 again follows from some general facts about the Fourier Transform
on tempered distributions:

Proposition 5.4 (Smoothness takes over to Fourier Transform). Let f € S (R")
and f € C*(R™\{0}), i.e. assume there is f € C°(R™\{0}) such that

fle] = /f% for all p € S, suppp C R™\{0}.
Rﬂ.

If moreover f is weakly homogeneous of order § € R, i.e.
fleO)] =2"""flgl, forall g €S,
then f°, f¥ € S’ (R™) also belong to C>(R™\{0}).

Proof of Proposition 5.4.
We refer to [Gra08, Proposition 2.4.8].
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Proposition 5.4 [

Proposition 5.5 (Homogeneity takes over to Fourier Transform). Let f € S (R").
If f is weakly homogeneous of order § € R, then g = f¥ € S (R™) is homogeneous
of order v = —n — 4.

Proof of Proposition 5.5.
Just by the definition of Fourier transform on tempered distributions,

FYIPO] = flp)] = A7 I (5] = XA A ()

Proposition 5.5 [

Proposition 5.6 (Weak Homogeneity and Strong Homogeneity). Let g € S l (R™),
g € C*(R™\{0}). If g is weakly homogeneous of order v, then also pointwise

g(Ax) = N7g(z), for every x € R™\{0}, A > 0.

Proof of Proposition 5.6.
We have for any ¢ € S(R™) with support away from 0, and any A > 0

gl 1] = [ 9(a) o 10) do = X" [ 502) ()
and by homogeneity

A gl] = glp(A)).
Thus,

/(/\'Yg(x) — g(Ax))p(x) =0, forany ¢ €S,0 ¢ suppp
be
which implies A g(z) = g(Ax) for any x # 0.
Proposition 5.6 [

Proposition 5.7 (Strong Homogeneity). Let g € S (R™), g € C°(R™\{0}). If
there is v < 0 such that

g(Ax) = XNVg(x) for every x € R*"\{0}, A >0
then

[ 90 <@gl el for cvery ¢ € CR@RNB). d > 0.

Proof of Proposition 5.7.
For every ¢ € C§°(R™\B4(0)), d > 0, we have

y T =00
[ 9@ ele) do = [1al o 57 ole) do "< P lgllmen s el

Proposition 5.7 [

Proposition 5.4 - Proposition 5.7 imply Proposition 5.3.
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5.2 Equations with disjoint support localize

As a consequence of Corollary 5.2 we can de facto localize our equations, i.e.
replace multiplications of nonlocal operators applied to mappings with disjoint
support (which would be zero in the case of local operators) by an operator of
order zero:

Lemma 5.8 (Localizing). Let a € H? (R"). Assume there is d,y > 0, x € R"
such that for E := B14(z), suppa C R"\E. Then there is a function b € L*(R™)
such that for D := Bg(x)

/A%a Aip= /b w, for every ¢ € C§°(D)

R™ R

and
16l L2rny < Cp EllallL2@n)-

Proof of Lemma 5.8.
We are going to show that

lf(p)] = /A%a A%gp < Cp.elelrmny forevery ¢ € C°(D). (5.1)

n

Then f(-) is a linear and bounded operator on the dense subspace C§°(D) C
L?(D). Hence, it is extendable to all of L?(D). Being a linear functional, by
Riesz’ representation theorem there exists b € L*(D) such that f () = (b, ¢) L2(p)
for every ¢ € L?(D).

It remains to prove (5.1), which is done as in the proofs of [DLR09a]. Set r :=
+(y+d), so that E D By, (x) D D. Applying Corollary 5.2

oo
/A%a Nipg = ) /A%(nf,xa) Afyp
R'ﬂ

k=0 gn
C52 o= o oknn k
< 22 "nrall L @y llel L1 mmy
k=1
oo
_3
< 22 257 Infall L2 @mylloll Lt mny
k=1
o
_3
< 22 22 |al L2y |l L2 (D)
k=1
< Nallzz@mllellL2p)-

Lemma 5.8 [
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5.3 Hodge decomposition: Local estimates of s-harmonic

functions

If for an integrable function h we have weakly Ah = 0 in a, say, big ball, we can

estimate

2
r
||h||L2(Br) S C <p) ||hHL2(Bp)7 for 0 <r< p-

The goal of this subsection is to prove in Lemma 5.11 a similar estimate, for the

nonlocal operator Az,
Again, we premise some estimates:

Proposition 5.9. Let s € (0,2). Then for any v € S(R™), suppv C B,.(x),

2
k € Ny,

I[(A%75 )" * [(A720)M | 2@ny < C27F°|0]| 12 n)-

Proof of Proposition 5.9.
By convolution rule and

==
+
N =

we have

I[(AZE)" | * [(A7E0) L2 @ny < IAEE ) ML @e) 1(A7F0)" [ L2@n).

By Lemma 2.21
(A 50) 2@y = 1A 50] 2qn) < Cor o] 2.
Furthermore, Proposition 2.26 implies

(A2 08 ) ey < Cs(24r) 7"

Together, (5.2), (5.3) and (5.4) give the claim.

(5.2)

(5.3)

(5.4)

Proposition 5.9 [

As a consequence we have

Proposition 5.10. For any v € S, suppv C B.(z), k € Ny we have for a

uniform constant C
n _n 1
125 (e A5 0) 2@y < C 2755 0]l L2gen)-

Proof of Proposition 5.10.
We have that

NF(f A7) = (ATE ) AT ot o+ Hnf,, A o).
By the support condition on v,

=0, ifk>1,
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so trivially for any k£ € Ny,
78 2vllz2@ny < 2775 ||0] 2 ey,

Next, applying Proposition 2.26 and Lemma 2.21 for s = § and p = 4, we have

I(A 0t A vl sy < AT (A Follpe < 2750 ] 1o,
Thus, we have shown that

A% (8, A7 10) | L2@ny < 2775 0]l 2@ny + 1H () 4 A7 10) | L2@ny.  (5.5)
By Lemma 4.3 we have that in the case n = 1,2

”H(nrm? )||L2(R") = |H Asnrm | * | 781})/\“|L2(R")7

and in the case n > 3

1H (17 4, A7 5 0) [ 22an)

(A% )l + 1| (2 Rk

. (A*%u)A]HLz.

< k)
That is, we have to estimate

I[(AZRE )+ [(A720)"llz2 < Cs 277 |Jv]| 2 (5.6)

where s = 7 in the case n = 1,2 ands:%*zors:linthecasenzii. In all

three cases we have that 0 < s < & and Proposition 5.9 implies (5.6). Plugging
these last estimates into (5.5) we conclude.

Proposition 5.10 [

Lemma 5.11 (Estimate of the Harmonic Term). Let h € L*(R™), such that

/h ATp=0 for any ¢ € C§°(Bar(x)). (5.7)

for some A > 0. Then, for a uniform constant C > 0
1Bl L2 (B, )y < C ATF||hflL2(@n).

Proof of Lemma 5.11.

It suffices to prove the claim for big A, say A > 8. Let kg € N, kg > 3, such that
A < 2% < 2A. Approximate h by functions h. € S(R") such that ||h—he | 12gn) <
€. By Riesz’ representation theorem,

hellL2(B,(2)) =  sup /hev.

veC® (Br(a))
ol 2 <1
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For such a v we estimate

[reo = [@thaaty

= > [t ot
k=0

o0 k}o*Q
= Y [l Y [hoatule i
k=ko—1 k=0
= I+1I

The second term IT goes to zero, as for k < ko—2 we have that suppn¥ , C Ba,(z)
and thus

[re st ot D [on steks b

< e = hllzz@ny 17,7 F0)

||H%(R”)
k _n
< E”(nr,zA 4’U)HH%(R7¢)-
Hence,
17 S Cko,r,x,vf-
For the remaining term we have, using crucially Proposition 5.10,
o0
1=y [hestahatty
k=kq
oo
< D ATMELATE) I L2@ey hell2@n)-
k=kq
p510 X2 1
< D27 hell ey
k=kq
Because of -
S ohs <o < oATE,
k=kqo
we arrive at
1
/hs v < Cykg,zrAE + CATS HhHL?(R")-
Letting € — 0, we conclude.
Lemma 5.11 O

The following theorem proves Theorem 1.6.
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Theorem 5.12. There is a uniform A > 0 and a uniform constant C' such that
the following holds: For any x € R"™ and any r > 0 we have for every v € L*(R"),
suppv C By(z)

1 n
lvllL2(B, () < C sup - /UA4¢.
peCg (Bar@) 1AT @l L2@®n)

Proof of Theorem 5.12.
We have,
lvllz2(B,.(z)) = sup /fv.

FerL2@n)

Il 2 <1
By Lemma 2.22 and Lemma 5.11, we decompose f = AT +h, ¢ € H (R") and
supp ¢ C Bay(2), ||| z2(5,(x)) < C A™%. Thus, by the support condition on v,

n C
HUHLZ(BT(z)) <C sup /UA‘IQO-F KHU”Lz(BT(I))'

PECH(Bpy ()

n
4
182l 2En) <t

Taking A big enough, we can absorb and conclude.

Theorem 5.12 I

5.4 Multiplication of lower order operators localize well

The goal of this subsection is Lemma 5.14, which essentially states that terms of
the form ) )
ATa NTT2)

“localize alright”, if s is neither of the extremal values 0 nor 7.

Proposition 5.13 (Lower Order Operators and L?). For any s € (0,%), M,
My zero multiplier operators there exists a constant Car, a,.s > 0 such that for
any u,v € S(R™),

—-n

2s E]
[My AT u MaA™ 20l p2mey < Oty s l[ull 2y 0]l 22

Proof of Proposition 5.13.

Set p := 2 € (2,00) and ¢ := -2~

n—2s"’

As 2 < p,q < 00, (using also Hormander’s
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multiplier theorem, [H6r60])

n

My AT 0w My A= 50|12

< My AT || 1o | Mo 50 1a
p,q€(1,00) — :
TR AT e A7 R |
€0 3) 2s—n
P.2.10 S— —
17w g -0 g
P,q>2 2s—n -~
=< 17 wMlpere (11177 0™l par
< [ulM 22 [[0"]|p22
~ Jull 22 [Jv]l g2

Proposition 5.13 [

Lemma 5.14. Let s € (0, 5) and My, My operators defined by Fourier multipliers

of zero homogeneity. Then there is a constant Cpr, ar,,s > 0 such that the following
holds. For any u,v € S and any A > 2,

|A2Mu A2 Movl| 2, (2))
n —s = —ks ||k 1 B
< Cus <A4u||L2(BzAr(E)) AT 2 ”n"”Aw”LQ> ol

k=1
Proof of Lemma 5.14.

As usual
||A%M1u A1—3 Mv|| 2B, () = sup /MlA%u MyAT™3 g ®.
©E€CE (Br(a))
el 2<1

For such a ¢ we then divide A2w into the part which is close to B,(z) and the
far-off part:

/Mlﬂgu MQA%_% v @
- /MlA%*%(nMA%u) MpAEE u g

s

+Z/M1A%_%(n/’§TA%u) MyAEE
k=1

o0
I+ Z II,.
k=1

We first estimate the I by Proposition 5.13

1] < [Imgror AT a2 | AT 0| .
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In order to estimate I, observe that for any ¢ € C§°(Br(x)), |¢ll2z < 1,

s€(0,%), if we set p:= nigs €(1,2)

llo MgA_%A%UHLl
< lellzr@my ||M2A7%A%”HLP’(R7L)
< | ATEAT ]| gy

s —s n N
< PHTHATY) oo ey

— n N

< r? ||H S(A‘*’U) ||Lp,2(]Rn)

s —s n A
< e (AT0) e

< || AT e

Hence, as for any k& > 1 we have dist(supp ¢, suppn%,) = 2FAr,

s

[ mnaiiah ot mati oy
< @A) TR R A [MATTE v g
< (@A) TR, AT | r AT e

< @A) A ullze r* AT vl

278N Ik, At ullre |AT V] e

Q

Lemma 5.14 [

A different version of the same effect is the following Lemma.

Lemma 5.15. Let s € (0, %) and My, My operators defined by Fourier multipliers
of zero homogeneity. Then there is a constant Cpy, ar,,s > 0 such that the following

holds. For any u,v € S and for any A > 2

A2 Myu NS5 Myvl| 25, (a))

IN

Caty Mays 125U\ L2(Bynry 125 0] L2(Bon0)

oo
+Cnny 2t A% IInar 8% 0] 12 Y027 0k, A% w12
k=1

o0
+Cnnyates N5 mar Sl gz Y0 2079 0, A% o2

=1
0o

+Cy s ATE DT 27 G =Dk ARy 2 [y, A% 0] .
k=1
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Proof of Lemma 5.15.
We have

A%Mlu A%7% MQU
= A%_%Ml(nArA%u) AT M2(77ATA%U)

ARTEM (nk, AFu) AT2 My (narAiv)

NE

_|_

~
Il
-

vl

ATTEM (nar A% u) A2 My (nh, A% 0)

n
NE

~

_|_
[M]el

AFTEMy (), A% u) ATF My (n, A% v)

J=1

oo

k
oo oo
= I+ Zuk +ank + Z IV,
k=1 1=1 k=1
By Proposition 5.13,
Iz < A% ullL2(Byn,) 18TV L2(Bo0,)-
As in the proof of Lemma 5.14,

1Tkl 25,y < 27FA™* 0k, A% ull 2 Inar Dol 22,

and

10 p2em,y < 207 2N % nar At ul| 2 [nh, A% 0|2

Finally,

1Viglezsy < (25A7) 7 ok, A% ullre 1872 (nh,A%0) 12,

S

< (25A) 7T (AN TE o ok, At ule [, ATl e
< ATE 2O ik A o, AT,
Lemma 5.15 [
5.5 Product rules for polynomials

Proposition 5.16 (Product Rule for Polynomials). Let N € Ny, s > N. Then
for any M a multiplier operator defined by

(Mv)" =mv”,  for any v € S(R™),

form € C°(R™\{0}) and homogeneous of order 0, there exist for every multiindex
B € (No)", |8 < N, an operator Mg = Mg, N, Mg = M if |3| = 0, with

58



multiplier mg € C°(R™\{0} also homogeneous of order 0 such that the following
holds. Let Q =z for some multiindez o € (No)", |a| < N. Then

MAEQp) = Y- 9°Q MpA™ g (5.8)
|BI<]ex]

Consequently, for any polynomial P = > caz?,
la|<N

MA(Pp)= Y 0°P Msn™" .
BI<N

Proof of Proposition 5.16.

The claim for P follows immediately from the claim of Q) as left- and right hand
side are linear in the space of polynomials.

For M an operator as requested with multiplier m, for @ € (Ng)™ a multiindex

and s > 0 set 1

(2mi)le!

and let M, s be the according operator with m, s as multiplier. We have the
following relationship

Ma,s(€) == €117 a2 (¢]* m(€)),

(Maas)ﬂ,s—m\ =Muyig,s- (5.9)
Observe furthermore that
1
z1v(z) = fTﬁ(alvA)v(x),
so for s > 1
s A\
(MAZ(()1v)) ()
_ 1 59 A
= T35 m(§) [€]°01v"(§)
1 A 1 s
- T onm I (MAZ0)N(€) + 5= (m(§)[E]*)v" (€)
i 2mi
1 s s—1 A
= o AMARNE) + M AT (@),
i
that is ‘ .
MA2(()v)(z) = 2 MAZY + My A7 v, (5.10)
So one could suspect that for @@ = = for some multiindex «, |a| < s,
s 1 s—18]
DEQe) = Y, 0°Q 5 Mps A7 (5.11)
18I1<s ’
where
B! :=061!... B,
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This is of course true if = 1. As induction hypothesis, fix N > 0 and assume
(5.11) to be true for any monomial Q of degree at most N < N whenever § > N
and M is an admissible operator. Let then @) be a monomial of degree at most
N, and assume s > N. We decompose w.l.o.g. Q = 21Q for some monomial Q of
degree at most N — 1. Then,

(5.10)

MA5Qp) "= e MAT (Qp) + My (Qp). (5.12)

For a multiindex 3 = (31,...,3,) € (No)" let us set

Tl(ﬁ) = (51 + 1762; ce aﬂn) and T—l(ﬁ) = (ﬂl - 17ﬂ27~ . aﬁn)

Observe that
P (21Q) = 107 P Q 4 2,0°Q. (5.13)

Applying now in (5.12) the induction hypothesis (5.11) on MAZ and M , =,
we have

A 1 s—18l
MAQ(QQP) = xr1 Z 8[3@ EMﬂ}S AT ¥
|8I<s '
-1 s—(|8|+D)
+ Z 5} Q@(M(I,O, ,0)’5)55—1A Py
it P
5.9 ~ 1 s—18]
N 20%Q FiMos B0
18I<s '
P | s=[m1(®)]
5 i 5= 8]
+ Y 9°Q E(an),s) ATE e
ot P
Next, by (5.13)
ﬂl
|B]<s
_ Z 8771([3)(2 %Mﬂ,s 872‘[3'()0
18I <s '
=~ 1 s—|m1(8)|
3 i s=mB)]
+ Z 0 Q E(MT1(5)75> A ’ ¥
s P
~ 1 s—18|
= Z (9ﬁ JtlQ) *'Mﬂ,s AR ¥
|BI<s
1 518l
72871('6)Q ﬁSAQ ®
@
B1>1
5~ 1 =n®]|
Y 00 L) 675,
o
~ Iﬁl
= 8’8 (LﬁlQ) Mﬁs A 2
1BI<s



Proposition 5.16 [

Proposition 5.17. There is a uniform constant C' > 0 such that the following
holds: Let v € S(R™) and P any polynomial of degree at most N := [§] — 1.
Then for any A > 2, B, (o) CR", ¢ € C§°(B,(20)), [|A% @l p2@n) < 1,

||A%(P<p) - PA%SO”Lz(BT(xo))
< C A% (Marae (v = P)L2@n) + 1A 10]| 22(Ban, (20

+C AT 27k, ATl 2 ).
k=1

Proof of Proposition 5.17.
By Proposition 5.16

s—18|

AE(Pg)—PATp= > c3(0°P)MsgA™= .
1<|BIEN

As we estimate the L?-norm on B, and there 0, = 1, we will further rewrite

n—2|8]
= = Y (v =P)MsA T o
1<|8<N
+ Z 05(8ﬁv)M3A%iwgp
1<|8I<N
= Y (Is+1Ip).
1<|8I<N

As 1< |B] < N < 4, we have by Lemma 5.14

(oo}
11528,y < AT 0]|L2(Bap,) + AT ZQ_MB‘HTI}C\TA%UHL%
k=1

and by Proposition 5.13 applied to A% (1yx,, (v — P) and ¢
1261l 2Eny =< 1A% (ar0p (0 = P))ll 22 (kn)-

Proposition 5.17 [J

6 Proof of Theorem 1.5

Lemma 6.1. There is a uniform constant C > 0 such that for any ball B,.(x¢) C
R™, ¢ € C§°(Br(20)), |A%F¢llz2 <1, and A > 4 as well as for any v € S(R™),

1H (v, ©) || L2 (B, (z0))

n _1 n
<C (lBureon s + 1850l 5y o) + A H1AT 0 2can))
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Proof of Lemma 6.1.
We have for almost every point in B, = B, (z),

H(U,(ﬂ) — A%(U@)—’UA%QD_QDA%’U
= A% (Narvp) — ’I]ATUA%QD - QDA% (narv + (1 = nar)v)
= I—-II-1II

Then we rewrite for a polynomial P of order [5] — 1 which we will choose below,
using again that the support of ¢ lies in B,.,

I =A% (ar(v = P)p) + A% (Py),
IT = (v — P)AT o+ PAT o,
IIT = A% (npr(v = P)) + A% (nar P) + A% ((1 = nar)v).

Thus, L
I—II—1III=T1+1I-1II,
where
I = H(ar(v—P),p),
IT = Af(Pp) - PAfy,
IIT = AP+ (1—na)(w— P)).

Theorem 4.4 implies
1] 2 my < 1A% (nar(0 = P)) |l 22,

Proposition 5.17 states that

11 L2(B,)

o0
< 1A% nar (0 = Pllgany + 1830l + A7 S 27H 0k, A% oll sy
k=1

< AT (v = P)llp2@n) + [ A%

|L2(Bay) T AT ”A%U”L%R")-

It remains to estimate I1I. Choose P to be the polynomial such that v — P
satisfies the mean value condition (3.1) for N = [§] — 1 and in Bay,-.
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By Proposition 2.27 we have to estimate for ¢ € C§°(B,), ||| 2 <1
> [uestuke-p)
k=1

=
. _3n
<) @R T el e Ik, (v = P)|pe

~
Il
-

") 7T Ink, (v — Pl re

h

A

=)
[

~
Il

1

A ATE S 27ER (25A0) 7P |l (v — Pl
kO:ol
P.3.18 n n n
2TOATE DY 2R+ k) AT e
k=1

< Aol 2 gn).
One concludes by using Lemma 3.6 in order to estimate
1A% (nar(v = P))Iz2 < [V]Ban,z-
Lemma 6.1 O

Lemma 6.2. For any v € H%(R"), e >0, there exists A >0, R >0, v > 0 such
that for all xg € R", r < R
||H(vav)||L2(Br(£Co))

< e([]Binz + 1A% 0]5,,,)

RASTNVS (Z 2 AT 2 an + 30 27 [U]Ak’g'>
k=1

k=—o0
Here we set Ay, := Boktagp, \Bak-1,.-
Proof. Let 6 > 0 to be chosen later. Choose A > 10 depending on § such that
ATE A% o] pany < 6. (6.1)

Depending on § and A choose R > 0 so small such that

(V] Byonr (o), 2 + A5 0] 12(Broan(ze)) < 0, for all g € R, r < R. (6.2)
From now on let r < R and xy € R" be arbitrarily fixed and denote by B, =
B,(x9). Let ¢ € C§°(B,). Set P = Py = Pg,,,(v) the polynomial of degree

N :=[5] — 1 such that the mean value condition (3.1) holds on Bas,. Then,

v="ar(v = P)+ (1 —nar)(v —P)+ P =:vp +v_p+ Py
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and consequently,
02 = ()2 4 (v_n)? 4 (PA)* 4 2up v_p 4+ 2 (vp +v_p) Py. (6.3)

The next arguments will be at first only formally correct, as v_, is not in S(R™).
But as we are later going to work with v* , = nk (v — P) only, one can straighten
out these incomplete arguments by a suitable cutoff argument (as in the proof of
Proposition 2.29). For the sake of shortness of presentation, we are going to ignore
this flaw. In the same spirit, observe that although we introduced the operator
A% only for H?%-functions, and not for e.g. polynomials like P, by the same
suitable cutoff-function argument the following “formal” calculations are in fact
valid: We rewrite using in each step that by Proposition 2.27 formally A% Py = 0:
H(v,v)p
= (AT(v®) —20A%0)p
63 n n n
(D) + AF )+ BT (P
+2NT (va ’U_A) + oA ((UA +u_p) PA)
—QuAATop — 20N ATv_p — 2P\ Aoy — 2PAA%11_A><,0
= H(va,va)p
+2 (A% ((va +v_p) Pp) — 2Py AT (va + ’U_A)) ©
+ (A% (Py)? = Pa A%PA) ®
+ (A%(U,A)2 + oA (va v_p) — QUAA%U,A) %)
= [+II+III+1IV)e.

By Theorem 4.4 and Lemma 3.6 we have

n 2 (6~2)
|22,y < 1AT0Al 720y < ([U]Binr,2)” <8 [V]Bans 2

As for I, by Proposition 5.16, w € S(R"™)

(A% (w Py) — PAATw)

= "2} Z 8ﬁPA Mgﬁnii‘mw
1<IBISN
supp ¢ 3 n=2[8] 8 n—2|p]
=" Z (8 (Mar(Pa —v)) MgA™ = w+ 0%v Mg/A™ 3 w),
I<IBIEN
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SO
I\lL2m,y < > II0 N+ 105+ 117+ 115,

1<IBIEN
where .
117 = 110°(nar(Pa = v)) Mg vl p2(m,),
n—2|3]
IIQB’A = ||85’U MﬁA 4 UAHL2(BT)a
n—2|3|
Hf,f/\ = (10" (nar(Pr — v)) Mg~ v-allz2(B,)
and

n—2|B|
115y =|0%v MgA™5 v_p|lL2(s,)-

Observe that all the operators involved are of order at most N, which is lower
than . Consequently, by Proposition 5.13 and Poincaré’s inequality, Lemma 3.6,

Iy, < 1A% (ar(Pa = 0)llz@ny 1A% oAl L2

< ([’U]Bm,g)Q

(6.2)
=< 4 [U]Bu\r,%'

By Lemma 5.14 and Poincaré’s inequality, Lemma 3.6,

o0
Iy, =< [|A%vye (uA%m(BZA,.) + Az ZQ_kHﬁfArAZUHL?)
k=1

n _1 n
< By (I8%0lra(s0,) + A AT 0l
(6.2)
(6.1)

< ATV La(min,)-

As for IIgﬁA and IIlﬂ’fA, for any w € S(R™),

n—2|8|

[0%w MagA™5 " v_pl|12(5,)

n-2|8

> _n n |
< Z||85A 4(774TA4’LU) M,gA 4 nXT(U—PA)HLQ(BT)
k=1

o0
_n n n=2|8]
+ 3> 1074 (nf, A% w) MpA™ 5 0k, (v = Pa)llz2(s,)
k=1
= A+ A,
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As before, by Lemma 5.1 and using that 1 < || < %, we first concentrate on Ay,

2|8|
Tk (v = Pa)ll2(a,)

|85A %(774TA%U))
*%”Hﬁ\ BA—D
< (2" 107 A7 (nay AT W) 22 [0, (v — Pa)l o

L.2.21 n+ﬁ n_
20 @20 an) T ) B e A F ] ek, (v — P2

2 —18]

4?2 5

_ <A> ar AT w| g2 2081708 (Ar) =3 |0k, (v — Pa)|l 2.
—k(3=181) convergent),

Thus, by Proposition 3.18 and as || < § (making } k2

A\ 218 . N
) IS wlze Ao

ATF| AT wl| 2,y 14T 0] L2 gy

(6.1) n
< 0 [[ATvllL2Bas,-

For the estimate of Ay we observe
_n 2|8]
||aBA (7747"A4w) MﬂA 4 Wzer(

n=2/3|

v = PA)||L2(BT)

< @) P (AT w) || [|MpA e (v — Pa)lr2cs,)

_n_ n —32n+8| n
< @) (AT w) [ (25Ar) 2T IR, (0 = Pl

_n — n *”+‘ﬁ‘
< 2) V(A% w)|| 2 (2¢4) 1%, (0 = Pa)ll 2

Summing first over k£ and then over [, using again Proposition 3.18

o0
ATEES 2 g, At w2 (| AT 0]

Ay <
=1
(6.1) < n
= d 22 l||774llTA4w||L2'
=1
So we have shown that
Haﬂ U—AHLZ(BT)
o0
< 0> 2 kAt w] e
=1
< O||ATw| e

_ and w = v, in the case of H _a, this implies

Setting w = v in the case of II

I}, < 8)|A%vall e < [V]Byy,. 2,
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and -
Iy, < Ca Y 27 A% 0|24,
=1
As for I11, again by Proposition 5.16 (remember that N = [§] — 1), we have to
estimate quantities of the type

2|8|

8BPA MﬁAnil PA,

where 1 < |8 < N. We rewrite

n—2|8|

8ﬂPA M,@A T Py

n—2|8] n—

= —8ﬁ(v—PA) MBA 4 PA+8%M5A ZW]DA

n—2|3| n—2|8|

= 8'H(U—PA)MgA 4 (U—PA)—aB’L}MﬁA 4 (U—PA)

n=2|3] n=2|B]

—0%(v — Pp) MgA— 3 v — 0% MgA™ % v.

Next we apply Lemma 5.15 and use that A%v = A% (v — P,) to get

112,y < 18%0lZap,,,) + 1A% 0] Y27 |0k, A 0] e
k=1

(6.2) n . a
< 0 [ ATolL2(Baa +CA:”A%UHL2(R") 22 kHA‘Lv”LQ(Ak)'
k=1

Finally, we have to estimate I'V. Set
Ak = BQ’“+4AT\B2’<*4AT~

Using Lemma 5.1 the first term is done as follows (setting Py to be the polynomial
of order N where v — Py, satisfies (3.1) on Bgr+1,,\Bor-14,)

A% (nk, (1 —nar)(v = P)?)|I128,)
< 27RERATEYTR ok (v — P2

—k2npA—3n_-n n n
< okiny-iny (n (0 — POl + 27 (Ar)"| nMP—Pk)n%w)

L.3.11

2 2’“3”Agnr”((QkAr)"[v]iikn+2”’“(Ar)”|| ngr(ppkn'gm)
)

L.3.16 n

20 At 2t (W, R (P - ROl 18T )

1
4

< AE 9k ([“]ik,;+|| UKT(P—PICHLNAZ“HL"‘)'
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As § — % > [§] — 1, Lemma 3.17 is applicable and as by Proposition 2.33

oo 1 0 1

_pl—4 n _pl—4
E 2 k= [’U]%k’% =< ‘|A4U||L2(Rn) E 2 k—
k=1

k=1

[U]Ak7%’

we have for some vy > 0,

1A% )l < L+ la%ele) Y 277 M)y, o

k=—o00

o0
=kl n
< Chlatol,e > 27 lans
k=—o0

For the next term in IV, using the disjoint support as well as Lemma 3.6, Lemma
3.11 and Lemma 3.16, and as

3

UAU_A = Zm(m’ir(” - P))’

k=1
we can estimate

||A%(UA U—A)HL?(B,.)

IN

3 3
> (2°Ar) ol [Ink, (v = P)|e ¥
k=1

= Af%[U}BzAT,g HA%U”LQ(R")
(6.1)

U|Baar,%-

Last but not least,

||UAA%771]«€(U - P)||L2(Br)

< (2"Ar)"lvall2 Ik, (v — P)| 2
< 27"(Ar) 2 [l s [0, (0 = P2
(6.2)

<ok (( @A) T E k0 = Pllee + [, (P — Pl )

< 627 lang + 27 F k(P = Po)lp).

Again, as § > N, Lemma 3.17 implies that for some v > 0.

o0
”UAA%U—A”LQ(BT) = OHA%UHL%A Z 27W|k|[v]Ak7%'
k

=—00

We conclude by taking § small enough to absorb all the remaining constants which
do not depend on A or ||A%v]|z. O

68



7 Euler-Lagrange Equations

As in [DLR09a] we will have two equations controlling the behavior of a critical
point of F,. First of all, we are going to use a different structure equation:
Obviously, for any u € H 2 (R",R™) with u(xz) € S™~! almost everywhere on a
domain D C R™, we have for w := nu, n € C§°(D),

iwi ATt = —% iH(wiawi) + A,
i=1

=1

or in the contracted form
n 1 n
w~AZw:—§H(w,w)+AZ77. (7.1)

The Euler-Lagrange Equations are calculated as in [DLR09a]:

Proposition 7.1 (Localized Euler-Lagrange Equation). Let n € C§°(D) and
n =1 on an open neighborhood of some ball DcD.

Let uw € H%(R™) be a critical point of E(u) on D. Then w = nu satisfies for
every Y;; € C3°(D), such that Vi = =i,

—/’LUi A%wj A%’L/)” = —/aijwij—i—/A%wj H(’wi,wi]‘). (72)
R‘VL R’!L R‘VL
Here a € L*(R™) depends on the choice of 1.

Proof of Proposition 7.1.
Let ¢ € C§°(D,R™). Recall that in Definition 1.1 we have set

u+ tdmy,[p] + o(t) in D,
U+ =
’ u in R"\D.
Then u; belongs to H? (R",R™) and u; € S™ ! a.e. in D. Hence, Euler-Lagrange

equations of the functional F,, defined in (1.1) look like

/A%U~A%dﬂ'u[§0] =0, for any ¢ € C§° (D).
]Rn

In particular, for any v € H? (R",R™) such that suppv C D and v € T,,S™!
a.e. (i.e. dmy[v] =vin D)

/A%WA%Q):O. (7.3)
RTL

Let 1;; € C§°(D,R), 1 <4,j < m, thy; = —tij. Then vJ := ;;ul € HE (R",R™).
Moreover, u-v = 0. As for x € D the vector u(z) € R™ is orthogonal to the tan-
gential space of S™~1 at the point u(x), this implies v € T;,S™~!. Consequently,
(7.3) holds for this v.
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Let 1 be the cutoff function from above, i.e. n € C§°(D), n = 1 on an open
neighborhood of the ball D C D and set w := nu.
Because of suppt) C D we have that v/ = w'4;;. Thus, by (7.3)

/A4w] A (w'yy) /A I —ud) AT (whihyy). (7.4)
R?L R’!L

Observe that w' € L>*(R™)NH 2 (R™) and by choice of n and D, there exists d > 0
such that dist supp((w? — u?), D) > d. Hence, Lemma 5.8 implies that there is
a; € L*(R™) such that

/A w! —u?) A%go:/&jgo for all p € C3°(D).
Rn
Consequently, for a;; := a;w’ € L*(R™),
/A —u?) AT (wlp) = /aij«p for all p € C3°(D).
RrR™ Rn
Moreover, |al|z2®n) < Cy,p. Hence, (7.4) can be written as
/A%wj A (w'ihy) Z/aij%j, (7.5)
R’V‘L R’L

which is valid for every 1;; € C§°(D) such that 1;; = —1bj;.
Moving on, we have just by the definition of H(:,"),

AT (W) = ATw' gy +w' ATy + H(w',1yg). (7.6)
Hence, putting (7.5) and (7.6) together

7/U)i A%wj A%wij

Rﬂ,
= _/aij¢ij +/A%wj AT "l}ij‘i‘/A%wj H(w',ij)
R!L R‘VL R’!L
bij=—vji
= /amd’w /A4w] H(w', ).
R'ﬂ

Proposition 7.1 [

8 Homogeneous Norm for the Fractional Sobolev
Space

We recall from Section 2.5 the definition of the “homogeneous norm” [u]p s: If
$>0, s ¢ Ny,
\vm u(z1) — Vlu(z))? e
// |2 LD) 1 @22
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Otherwise, [u]p s is just ||V*ul[z2(py.

8.1 Comparison results for the homogeneous norm

Lemma 8.1. There is a uniform v > 0 such that for any ¢ > 0, n € N, there
exists a constant C. > 0 such that for any v € S(R™), B, = B,(x) C R"

W5, < cllpig + ClllATolim,

T2
oo
+ 27 Inf, A% 2
k=1

DI CF

j=—o00

where /Nlj = Byj+a,\Bai—3,.

Proof of Lemma 8.1.

For simplicity, we assume B, = B,(0). Set N := [§]| — 1 and let P, be the
polynomial of degree N such that the mean value condition (3.1) holds for N and
Bs,.. Let at first n be odd. For

0 := o (v — Pay),

we calculate

2 - 2
(We,.2)" = (0s.z2)
Yy [ [ @R =T~ o)
|o|=N gn fn ==l
Fz32 3 /A%aa@ T
la]=N R
Thus,

(Wp,2)? < 1A% 02 sup /A%{; MA% o,
P€ECHC (Bar(0))

n R
a3 gl 2<1

where M is a zero-multiplier operator. One checks that by a similar argument
this also holds for n even. Using Young’s inequality,

PECE (B2,(0))
n
ATl o<1

N 1 . )
([lsg) < ellAtolle+ 2 sup /Azﬁ MA%
Rn

L.3.6 1 n n
=< elBy,n + = sup ANED MAp.
£ @€CHC (B2 (0)) /
A1 6|, o<1
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For such a ¢ we divide

= /A%v MA%QO

R‘VL
—Z /A" 0 (v — Py)) MOE

k=1 gn
= /(A%v) nrMAT g
RTL

—|—Z/A4v nk MA%p
k= 1]Rn

-3 /A%(WST(U—PQT)) MA%g
k=1 gn

= I+§:Hk - iIHk.
k=1 k=1

Obviously,
1| < ||A%v[|p2(py,)-

Moreover, for any k € N by Proposition 5.1 and Poincaré-Inequality, Lemma 2.19,
Il =< (25) " llng, A% o]z 7

= (28) "llnf A% o e,

As for IT1y, let for k € N, P¥ the Polynomial which makes v — P satisfy the
mean value condition (3.1) on Bok+1,\Bgr-1,.. If k > 2,

(1L < %(2’“) b (v = Pao) e

n

_3p, n o

= Tz (Qk) ’ (”7]]267"(07132]@7")”[/2 +2k27"2”77§r(P2r*szr)”L“’)

L.3.11 -n

< @) (i + Inbe(Par = PR)o )

This and Lemma 3.17 imply for a v > 0,
\le -
ZIIIk =< Z 2P o] 4, -
]—700

It remains to estimate III; (where we can not use the disjoint support-Lemma,
Lemma 5.1). By Lemma 3.11

||A%77%T(U - P21r)||L2 < [U]A~1 %a

)
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SO

IIIl < HA%nér(v_P%r)HLz+||A%n%r (PQIT_PQT) ||L2

< [la, s + 1850, (P = Pay) Il

The following will be similar to the calculations in the proof of Lemma 3.6 and
Proposition 3.5. Set

e 1= 00, 0% (P — Pu).
We calculate

||A%U%T(P217" - 1327“)”%2 = Z [w@ﬂ]ﬂz{m%

o] +]8]="25+
Note that supp wq, g C Bas,\Bay, SO
[waﬂ]ﬂin 1
< sl [ [ o ey

Ay R"\Bior

+HVwe, g7 //| 7 dx dy
HVvaslin [ e dedy

A 3107\31
< wa gl Fer™ Va5 7

< sup 0% (Py — Py, )|

L°° su 1
Bl PP 15,.)

sup r'ﬁlﬂaﬁ(Pg,. - P21T)
1Bl< 2t

Q

”L‘x’(supp n3,.)

Now, in the proof of Lemma 3.17, more precisely in (3.6), it was shown that

> 270 (Por — Py )l e )
k=1

= 22 M%QL - QDA
k=1
(3.6) e .
-8l =71317,)] -
< r Z 2 [U]AJ_7%.
j=—00
Thus, in particular,

[wa. plgn, 3 < Z 273Wlo] 4, .

)
j=—00

Lemma 8.1 [
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8.2 Localization of the homogeneous Norm

For the convenience of the reader, we will repeat the proof of the following result
in [DLR09a].

Lemma 8.2. (¢f. [DLR0Ya, Theorem A.1])
For any s € (0,1) there is a constant Cs > 0 such that the following holds. For
anyv € S(R"), r >0, z € R,

([v]B,( * <o, Z v]a,,s)

k=—o0
Here Ay, denotes Bok+1,.(x)\Bok—1,(z).
Proof of Lemma 8.2.

Denote by R
A := Bart1,.(2)\Bar, (v),
and set
(v)k —][v, and (v); :][07
Ak Ak
as well as
[v]k == [v]a,,s, and [v];:=[v]B, s
With these notations,
|v
[v], < Z 71+26 d dy
kl=— OOA
< 3 Z [v]i
k=—oc0
—1 lo(x
+2 ) Z // n+25 da;dy
k=—ocol=—00 *
For z € Ay, andyeﬁl and [ < k — 2,
v(z) — v(y)|*
|Z‘ _ y‘n-‘rQS
—n—2s
< (2") [o(@) — v(y)|?
—n—2s 2 2 2
< @) (Jo(@) — @)l + o) @) + @) - @4 )
—n—2s 2
=< (2’%) (’v(x)—(v)ﬂ +|v(y) | +|l—k|2‘ Z+1 )
= I+ II+1II.
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As for I and 11, we have

and

Consequently,

IA
\‘l MO
2

Similarly,

> ¥ [[n

l=—cok=l+17 7

-1

-1
= Z Z 22(k+l)s[u]l2

l=—o0 k=I+1
—1

<) [ulf

l=—0c0

As for I, we have
2
|0 — W]
< (2') T2 gi(n+2s) 2 [v]?
< 9(-n+2s)i L —n+2s [v])2.
This implies that we have to estimate

-1 k—2 k-1

PSR- V-l ()

k=—o0l=—o00 i=l
-1 -1 i
= Y20 NN (k1) 27 2,
1=—00 k=i+1l=—c0

(0]



Now,

0
Z (k _ Z) 2—2ks
k=i+1
9—2ls Z (k*l) 2(k—1)s
k=it1
o ~
— 272ls Z ]% 2—2ks
k=it1-1
< 277 / 2720 dt
i+1—1

< 27 (i— 1 42) 27207

= 272 (j — [ +2),

and 4
%
> 2i—1+2)
l=—0o0 )
l=—0o0
l=—00
Thus,

Z 2( n+2s)z Z i 2 2ks gln =< Z

1=—00 k=i+1ll=—0c0 1=—00

Lemma 8.2 [

Remark 8.3. By the same reasoning as in Lemma 8.2, one can also see that
for two Annuli-families of different width, say Ag := Bor+x,\Bar-»r and Ay :=
Bokta, \Bok—ar we can compare

k+Nxa
[Wlaws <Coans D, (U4,

I=k—Nx.a

In particular we don’t have to be too careful about the actual choice of the width
of the family Ay for quantities like

e}
> 2 Mlay

k=—o0
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as long as we can afford to deal with constants depending on the change of width,
i.e. if we can afford to have e.g.

oo
Canms Y 275, s

l=—o00
In fact this is because of
oo
> 27 a
k=—o0
2N—1 —2N oo
< Z [U]Ak75+ Z 27 [’U]Akys—’_ Z 2" [U]AIwS
k=—2N+1 k=—00 k=2N
2N—1  k+N —2N  k+N
k
<D 2 Blaet 2 > 2 hla,
k=—2N+11l=k—N k=—o0 I=k—N
oo k+N
227" > P bla
k=2N I=k—N
3N —2N k4N
< ANV N oW g 2N YN 2 )
I=—3N k=—o00 I=k—N
') k+N
20 > D0 27 la,
k=2N I=k—N
3N —N oo
< 2 2l 2N Y 2 el 2N Y 2 g
1=—3N l=—o0 I=N
< Cangy Y 277 g

l=—00

Of course, the same argument holds for [v]a, s replaced by |[A2v|p2(a,), too.

9 Growth Estimates

Lemma 9.1. Let w € H3 (R",R™) be a solution of (7.1). Then for any e > 0,
there exists a constant A > 0, R > 0, v > 0, all depending on w, such that for
any o € R™, r € (0, R)

Jw - AT w| 2B, (2e))
< €(||A%w||L2(B4Ar) + [w]BMT,%)

+OA,w <7’Z +22_7k||A%wHL2(Ak) + Z 2_7k[w]Ak>.

k=1 k=—o0

Here, Ak = ng+1r(l‘0)\B2k71T(£L’0).
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Proof of Lemma 9.1.
By (7.1),
|w- A%wllrzs,) < [H(w, w)|lr2s,) + 1A% 25,)-

As A% is bounded (similar to the proof of Proposition 2.26),
1A%l 25,y < Cyr.

We conclude by applying Lemma 6.2, using also Remark 8.3.
Lemma 9.1 O

The next Lemma is a simple consequence of Hélder and Poincare inequality,
Lemma 2.19.

Lemma 9.2. Let a € L*(R™). Then
[aw<crt all 183l
R’!L
for any ¢ € C§°(By(x0)), > 0.
Lemma 9.3. Let w € Hz (R") N L®(R") be a solution of (7.2). Then for any

e > 0 there is A > 0, R > 0 such that for any B,(x) C D, r < R and any
skew-symmetric o € R™*" |a| < 2,

o0
lw'as; A% w2,y < el DFwll sy + Cop ( Y e ||Mw||Ak>'
k=1

Here, Ak = ng+1r(l‘0)\B2k71T(Io).

Proof of Lemma 9.3. }
Let 6 > 0 to be chosen later. Moreover let D, D, n as in (7.2). Set A; > 0 the
scaling constant from Theorem 5.12. Set Ay > Ay such that

(Ay — 10A1) "2 | AT w|| 2z < 6. (9.1)
Choose then R > 0 such that
whenever B,(zr) C D then Byaq(z) C{y€ D:n(y) =1}, forallrc (0,R)
and such that moreover
(W] Byop,r,n + ||A%w||L2(Bl()A2r) <¢ forany z € R", r € (0,R).

Pick r € (0,R), € D such that B,(x) C D. For sake of brevity, we set v :=
wiai; ATw?. By Theorem 5.12

lnev]lre < C sup /nr v A%go.

PECE (Bpy r(2))

n
a2l 2<1
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We have for such a ¢

/nrv A%W

R'Vl
= /v A%Wr/(m—l)v A

I+11

In order to estimate II, we use the compact support of ¢ in By, and apply
Corollary 5.2 and Poincaré’s inequality, Lemma 2.19:

I = /(mfl)v Nty
C.5.2 o0
L.2.19 n
< Oy 22_nk [nfollLe 1A% @]l @n
k=1
< O 22—1« kvl L2
k=1
(oo}
< COnlwlee Y 27F InfATw] e
k=1

In fact, this inequality is first true for k > K, (when we can guarantee a disjoint
support of n* and ). By choosing a possibly bigger constant C}, it holds also
for any k£ > 1. The remaining term [ is controlled by the PDE (7.2).

r ‘2 /aij o so+/A%wj H(w',p)
RrR™ RrR™

oo
= Il +/774A17" A%wj H(wza(p) +Z /nf/&lr A%wj H(wl7@)
R” k=1 R™

I+ 1 + Z I3 .
k=1

By Lemma 9.2,
Il S CAI’I“i ||a||L2.

By Lemma 6.1 and choice of As > Ay, (9.1),

Ir <6 ||774A27'A%1UHL2'
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As for I3 i, because the support of ¢ and nfjAlT is disjoint, by Lemma 5.1,

/nffAer%ij(wi,w)
R"L

- / AR w (A% (wig) — WAt )
Rn

A

Cn, (2kr)_n||77§A1rA%wj |2 l|w||pee T

Q

[wllz=e 27" [Infy, AT w!| 2.

Lemma 9.3 [

Lemma 9.4. Let w € H? (R") N L™ satisfy (7.2) and (7.1), and w(y) € S™1
fory € D. Then for any e > 0 there is A >0, R >0 and v > 0 such that for all
r € (0,R), x € R™ such that B,.(z) C D,

[w]B,,z + lw|L2(s,)

< e(wlss,.z + Ivllzesan)

+C€ Z 27’Y|k|([w]Ak,% + HA%w||L2(Ak))

k=—o0

+C.r3.

Here, Ak = B2k+1r(1‘0)\ng71T(CE0).

Proof of Lemma 9.4.

Let 41,92 > 0 to be chosen later. Let R > 0 (later possibly chosen smaller) such
that whenever B,(x) C D, r < R, then also Bio,(x) C {y: n(y) = 1}.

Pick any B,(x) = B, C D, r < R. By Lemma 8.1 we have for some v > 0

(W], 2 + v 2B,

< di[w]p,, + Cs, <||Mw|m<3m+ > 2Wk([w]Ak,g+||A2w||Lz<Ak>)>.

k=—o0

Choose depending on s from Lemma 9.1 and Lemma 9.3 a possibly smaller radius
R > 0 and A > 0 such that for any skew symmetric matrix a € R™*", || < 2

w- A% w2, + lw ey ATw || L2 (s,
< &(1A%vl|L2(B,,) + [WB,,,2)

00
+Ct52,w <7~S + Z 2—7\’@\ (||A%w||L2(Ak) + [w]Ak7g)>

k=—o0
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As by the choice of R > 0 we know that |w| = 1 on By,, we have for any vector
v eR?,

v < |w(y) - v| + sup |w'(y)a;v7|,  for any y € Byy,
«

where «;; = —a;; and |a| = 1. Thus,

1A% W] L2(p,) < w- AFw|ras,,) + [w'ayAtw! | r2p,,)-
Taking for given € > 0 first 4; > 0 small enough, and then J5 small enough to
absorb Cs,, we conclude.

Lemma 9.4 [

Finally we can prove Theorem 1.2, which is an immediate consequence of the
following

Theorem 9.5. Let w € H? (R®)NL> satisfy (7.2) and (7.1). Thenw € C%(D)
for some o > 0.

Proof of Theorem 9.5.
Squaring the estimate of Lemma 9.4, we have

(lwls,.2)” + (lwlc2s,))”

< a2(luf}, .y + 8%l

+Ce Y2 2 ([wlh, g + 8% w]a(a, )
k=—o0
+Cer™.
Set
ae = a(r) i= [l g + 185 w]3e,)-

Then, for some uniform C; > 0 and ¢; < 0

Ka
AT w]|F2(p,,y < C Z ak,

k=—o00

and by Lemma 8.2 also

Ka
2 Z
[w]BAr,% <Cy ag,
k=—o00
and of course,

—1
[w]g, 2 + 1A% w][T2p,) > a > a.

k=—o00
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Choosing ¢ > 0 sufficiently small to absorb the effects of the independent constants
c1 and Cq, this implies

—1 1 Ka %)
_ —|vlk n
Z ak§2 Z ar +C Z 271" q 4+ Cr
k=—o0 k=—oc0 k=—o00
This is valid for any B, C D, where r € (0, R). Let now for k € Z,
T2 o2
b= Wl ) g + 1A 0lha )
Then for any N <0,
N 1 Ka o
- — ||k nN pn
dobe<g Y et C Y 27Ny 4 02 VRY
k=—o k=—o k=—o0
Consequently, by Lemma A.2, for a Ny < 0 and a 8 > 0 (not depending on z),
N
Z bk§C2'BN, for any N < Np.
k=—oc0
This implies in particular
|A%v||2p,y < C 7P forallr < R and B,(z) C D.

Consequently, Dirichlet Growth Theorem, Theorem A.6, implies that v € C%#(D).
Theorem 9.5 [

A Ingredients for the Dirichlet Growth Theorem

A.1 TIteration Lemmata

In [DLR09a, Proposition A.1] the following Iteration Lemma is proven.

Lemma A.1. Let ap € I1(Z), ar > 0 for any k € Z and assume that there is
a > 0 such that for any N <0

N e}
Z ap < A ( Z Y (NHI=k) g, 4 2°‘N> . (A1)

k=—o0 k=N+1

Then there is § € (0,1), Ag > 0 such that for any N <0

N
Z (7% S 2BNA2.

k=—o0

82



Proof. For the convenience of the reader we repeat the arguments of [DLR09a]

for this Lemma:
Set for N <0

N
AN = E ag.
k=—o0

Then obviously,
ap = Ak — Ak—l-

Equation (A.1) then reads as (note that Ay € (°°(Z))

=

Ay <

10

—

2'y(N+1—k)Ak _Akfl +2aN>

=

oo

Il
=

Il
=
/\/\(—\/—\/—\
Il Il
[ =[~]2 =[]s

bl
[u

k=N+2

—

k=N+1

I
-

k=N+1 k=N+1
= Al(Q1=27) E: YINHI=F) 4, Ay + 20N
k=N-+1
This calculation is correct as (27%)° € I'([N,N +1,.

QY(N+1=K) 4, Z YN =k) g,

2’7(N+17k)Ak . Z QW(Nf(kfl))Akil _ AN + 2aN>

AN + 2&]\’)

o)
2')/(N+17k)Ak _97 Z 2'y(N7k+1)Ak _ AN + 2(1N>

) |

..,00]) because of the

condition v > 0. Otherwise we could not have used linearity for absolutely con-

vergent series.
We have shown that (A.1) is equivalent to

AN‘<AJ£f(1—2*V) 53 N1k g, A gan
T14A 1+A
k=N-+1
Set T := ﬁ(l — 277). Then, for all N <0,
Ay < Y 2/ WHZR 4, 4 9o, (A2)
k=N+1
Set
1 if k=0,
TR i=<KT ifk=1,
T(T+27M)k 1 if k> 1.
Then for any K >0, N <0,
[eS) K
An-g Stiqn Y, 2WHIR AL 4N " pe(V KR, (A.3)

k=N+1 k=0
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In fact, this is true for K = 0, N < 0 by (A.2). Moreover, if we assume that (A.3)
holds for some K > 0 and all N < 0, we calculate

AN-—K-1
= Aw-p-k
(A.3) > K
< T 3 2NV Y pe (VKR
k=N k=0
=  Tk41 (AN+2—7 Z 27(N+1—k)Ak>
k=N+1
K
+) " moeWo1mKER)
k=0
(A.2) 00 o
< men (T Y 2V 40N L omr B (VIR g,
k=N+1 KN 1
K
+ 3 m2e VKR
k=0
= Trp(T+277) Z QV(Nka)Ak_‘_TKH?N
k=N+1
K
+ 3 2o (VDR
k=0
s K+1
= Tiyz Y 2WEIRAL 4N o (NEUREDHR),
k=N+1 P

This proves (A.3) for any K > 0 and N < 0. Hence, as 7 < 1
AN—K S C’YTK+1AOO + 2aNCa.

So for any N <0

A = A1) 1]

IN
gQ
2
A/
2
| I
+
Do
m‘:
~—

Using now that 7, < 2-% for all k > 0, have shown that
Ay < Cy0An2N.
for some small p > 0. O

As a consequence the following Iteration Lemma holds, too.
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Lemma A.2. For any Ay,A2,v > 0, L € N there exists a constant Az > 0 and
an integer N < 0 such that the following holds. Let (ax) € I1(Z), a, > 0 for any
k € Z such that for every N <0,

N 1 N+L N oo

Then for any N < N,

N 0o
Z ap < A3 Z 27(N7k)ak + A32’YN
k=—o0 k=N+1

and consequently for some 8 € (0,1), Ay > 0 (depending only on ||ak|;(z), As)
and for any N < N

N
Z Q. S A42ﬁN

k=—o0

Proof of Lemma A.2.
Firstly, (A.4) implies

N
> w

k=—o00

N+L N
< 2 Z ag + 2A4 Z 2A/(k7N)ak-
k=N+1 k=—oc0
o0
+20y Y 27V Rgp 4 A2
k=N+1
N+L N
< L+l Z 27(N_k)ak+2/\1 Z Qv(k—N)ak
k:£+l k=—00
+2A, Z VIN=R) g A2V
k=N+1
N o)
< 20 Y 20 Ng g (2B b any) YT 2V Rg, 4 A2,
k=—o0 k=N+1
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Next, choose K € N such that 277% < ﬁ. Then,

N
>
k=—oc0
N-—K N

2A,4 Z 27k=Ng, + 244 Z 21(k=N) g,
k=—o0 k=N—-—K+1

HE 4 20,) Y WV Rgy 4 A2

k=N+1
N

| N-K
3 Zak+2A1 Z ag

k=—o0 k=N—K+1

H(E 4 20,) Y 2V Rg 4 A7
k=N+1

IA

IN

Consequently,

N—-K
>
k=—o0
N

Ay D at+ (77 4hy) > 27V Mg, 4 2R,27

k=N—-K+1 k=N+1
N

4N 27K Z VIN=K=k)g,
k=N—-K+1

IN

IN

A2 (22 an,) YT WV ER g ap,2 N

k=N+1
oo

(40,275 4 27K (27842 L ap,)) DT 2 INTE TR, 4 gp 2K 97N K
k=N—K+1

o0
= A3< d o WEKR g o NR)
k=N—-K+1

IN

This is valid for any N < 0, so for any N < —K

N 00
Z ap < As Z 2'V(N_k)ak + 27N
k=—o0 E=N+1

We conclude by Lemma A.1.
Lemma A.2 [J

A.2 A fractional Dirichlet Growth Theorem

In this section we will state and prove a Dirichlet Growth-Type theorem using
mainly Poincaré’s inequality. For an harmonic analysis approach to similar, yet
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more general results, we refer to [Ada75].
Let us introduce some quantities related to Morrey- and Campanato spaces as
treated in [Gia83] for some domain D C R™, A >0

Toan(e)i= sy (o [P

and

_ 2
Mp xr(v) :== sup p / ‘U — (’U)DﬂBp(x)’

z€D
O<p<R DNB,(x)

Moreover, let us denote by C%*(D), « € (0,1) all Holder continuous functions to
the exponent a. Then the following relations hold:

Lemma A.3 (Integral Characterization of Holder continuous functions). (cf.
[Gia83, Theorem III.1.2])

Let D C R™ be a smoothly bounded set, and \ € (n,n + 2), v € L?(D). Then
v € CY(D) for a= % if and only if for some R >0

MD’)\’R(’U) < 00.

Lemma A.4 (Relation between Morrey- and Campanato spaces). (cf. [Gia83,
Proposition I11.1.2])

Let D C R™ be a smoothly bounded set, and X\ € (1,n), v € L?*(D). Then for a
constant Cp x >0

Jpar() < Cpar ([vlz2p) + Mpoar(v)).
As a consequence of Lemma A.4 we have

Lemma A.5. Let D C R"™ conver, smoothly bounded domain. Set N := [%].
Then if v € L*(D), X € (n,n + 2),

Mprr() < Coxr|lvlavp) + >, Mpaan.r(00)
la|=N

Proof of Lemma A.5.
For any r € (0, R), z € D set B, = B,(x). As D is convex, also B, N D is convex,
so by classical Poincaré inequality on convex sets, Lemma 3.2,

L.3.2
/|v—(v)DmBT|2 < Cdiam(D N B,)? /|Vv|2

DNB, DNB,.

< 7 / Vol

DNB,
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Consequently,
Mpxr(v) < Cp Jpa—2r(VV).

As A e (n,n+2), A —2 < n, by Lemma A 4,
Jpa—2,r(Vv) < Cprx (IVV|L2(p) + Mpa,r(VV)).

Iterating this estimate N times, using that A — 2N > 0, we conclude.
Lemma A.5 [J

Finally, we can prove a sufficient condition for Holder continuity on D expressed
by the growth of A% v:

Lemma A.6 (Dirichlet Growth Theorem). Let D C R™ be a smoothly bounded,
convex domain, let v € H* (R™) and assume there are constants A > 0, a € (0,1),
R > 0 such that

sup 1 [v]B, (z),n <A. (A.5)

r€(0,R)
xz€D

Then v € C%(D).

Proof of Lemma A.6.

We only treat the case where n is odd, the even dimension case is similar. Set
N := |%]. We have for any z € D, r € (0, R), D, := B.(z) N D, using that the
boundary of D is smooth and thus |D,| > ¢p|B;|

/‘VNU(I)—(VNU)D ’

D,
. n— 2
(diam(D,))*"=™) |VNv(z) — VNu(y)| e d
D, | 2(n—N) z ay
r a2 |z =y
2

r

< N ([’U] Br(z),%)

(A_<5) 7,‘n—QN—‘,-QozA?

Thus, for A\ =n+2a € (n,n +2)
Mpr_anr(VV0) < A.
By Lemma A.5 this implies
Mp xn(0) < A+ [ulliv e,

which by Lemma A.3 is equivalent to v € C%%(D).
Lemma A.6 [
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