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3 Mean Value Poincaré Inequality of Fractional Order 26
3.1 On the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 On the Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Estimate of Mean Value Polynomials . . . . . . . . . . . . . . . . . 35
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Abstract

We prove regularity for n
2

-harmonic maps from Rn into a sphere, where n
is odd. This extends the results of the recent article [DLR09a] by F. Da Lio
and T. Rivière to higher dimensions.
For the necessary compensation results we use L. Tartar’s approach for
Wente’s inequality in [Tar85], where the gain in regularity is only based
on one compensation inequality in the phase space and the application of
Hölder and Young inequality.

1 Introduction

We consider for n,m ∈ N and some bounded domain D ⊂ Rn the regularity of
critical points of the functional

En(v) =
ˆ

Rn

∣∣4n
4 v
∣∣2, v ∈ H n

2 (Rn,Rm), v ∈ Sm−1 a.e. in D. (1.1)

Here, Sm−1 is the unit sphere in Rm and 4n
4 denotes the operator which acts on

a function v ∈ L2(Rn) according to(
4n

4 v
)∧

(ξ) = |ξ|
n
2 v∧(ξ) for all ξ ∈ Rn\{0},

where ()∧ denotes the application of Fourier transform. The space H
n
2 (Rn) is the

space of all functions v ∈ L2(Rn) such that 4n
4 v ∈ L2(Rn). The term “critical

point” is defined as usual:

Definition 1.1 (Critical Point). Let u ∈ H n
2 (Rn,Rm), D ⊂ Rn. We say that u

is a critical point of En(·) on D if u(x) ∈ Sm−1 for almost every x ∈ D and

d

dt

∣∣∣∣
t=0

E(ut,ϕ) = 0

for any ϕ ∈ C∞0 (D,Rm) where

ut =

{
Π(u+ tϕ) in D,
u in Rn\D,

∈ H n
2 (Rn).

Here, Π denotes the orthogonal projection from a tubular neighborhood of Sm−1

into Sm−1 defined as Π(x) = x
|x| .

If n is an even number, the domain of En(·) is just the classical Sobolev space
H

n
2 (Rn) ≡ W

n
2 ,2(Rn), for odd dimensions this is a fractional Sobolev space (see

Section 2.3). Functions in H
n
2 (Rn) are “almost continuous”, in fact this space



embeds continuously into BMO(Rn), and even slightly improved integrability or
more differentiability would imply continuity.
In his seminal paper [Hél90], Hélein proved regularity of critical points of the func-
tional E2, i.e. harmonic maps into spheres. Critical points u ∈W 1,2(D,Sm−1) of
E2 satisfy the following Euler-Lagrange equation

4ui = ui|∇u|2, weakly in D, for all i = 1 . . .m.

We will write equations like this often in a contracted form

4u = u|∇u|2, weakly in D. (1.2)

For mappings u ∈ W 1,2(R2,Sm−1) this is a critical equation, as the right hand
side seems to lie in L1, only. A priori, this would merely imply that ∇u belongs
to the weak L2-space, which we will denote by L2,∞. But in fact, the right hand
side belongs to the Hardy space, which is a proper subspace of L1 and which
reflects a certain compensation phenomenon on the right hand side. Namely,
members of the Hardy space behave well with Calderón-Zygmund operators, and
one can conclude continuity of u. In [Hél91] this result was extended to general
target manifolds, and in Rivière’s [Riv07] this was generalized to critical points of
conformally invariant variational problems in two dimensions. For more details
and references we refer to Hélein’s book [Hél02] and the extensive introduction in
[Riv07] as well as [Riv09].
Naturally, it is interesting to see how these results extend to other dimensions:
In the biharmonic case, n = 4, regularity was proven in [CWY99] in the case of
a sphere as a target manifold, and for more general targets in [Str03], [Wan04],
[Sch08] , [LR08]. For even n ≥ 6 similar regularity results hold, and we refer to
[GS09], [GSZG09].
Regarding odd dimensions, only two results for dimension n = 1 are available.
In [DLR09a], Da Lio and Rivière prove Hölder continuity of critical points of the
functional

E1(u) =
ˆ

R1

∣∣∣4 1
4u
∣∣∣2, u ∈ Ḣ 1

2 (R1,Rm), u ∈ Sm−1 a.e.

In [DLR09b] this is extended to the setting of general manifolds. One may expect
that similar regularity results should also hold for odd dimensions greater than
one, and as a first step, the case of a sphere is the main result of this work:

Theorem 1.2. For any odd dimension n ≥ 1, critical points u ∈ H n
2 (R2) of En

on a bounded domain D are locally Hölder continuous in D.

Let us say a few words regarding the main ingredients we will use. In all dimen-
sions, the key tool for proving regularity results is the discovery of compensation
phenomena built into the right hand side of the respective Euler-Lagrange equa-
tion. In the pioneering two-dimensional case in [Hél90], using the constraint
|u| ≡ 1, one can rewrite the right hand side of (1.2) as

ui|∇u|2 =
m∑
j=1

(
ui∇uj − uj∇ui

)
· ∇uj =

m∑
j=1

(
∂1Bij ∂2u

j − ∂2Bij ∂1u
j
)
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where

∂1Bij = ui∂2u
j − uj∂2u

i, and − ∂2Bij = ui∂1u
j − uj∂1u

i.

By Poincaré’s lemma on differential forms, it is possible to choose such a Bij
because (1.2) implies

div
(
ui∇uj − uj∇ui

)
= 0 for every i, j = 1 . . .m.

Thus, (1.2) transforms into

4ui =
m∑
j=1

(
∂1Bij ∂2u

j − ∂2Bij ∂1u
j
)
. (1.3)

The right hand side of the transformed Euler-Lagrange equation exhibits a com-
pensation phenomenon which was first discovered by Wente [Wen69], see also
[BC84], [Tar85]. In fact it lies in the Hardy space, cf. [Mül90], [CLMS93].
One way to shed light upon this regularizing effect in two dimensions can be found
in Tartar’s proof of the so-called Wente inequality in [Tar85]: Assume we have
for a, b ∈ L2(R2) a solution w ∈ H1(R2) of

4w = H̃(a, b) := ∂1a ∂2b− ∂2a ∂1b weakly in R2. (1.4)

Taking the Fourier-Transform on both sides, this is (formally) equivalent to

|ξ|2w∧(ξ) = c

ˆ

R2

a∧(x) b∧(ξ − x) (x1(ξ2 − x2)− x2(ξ1 − x1)) dx, for ξ ∈ R2.

(1.5)
Now the compensation phenomena responsible for the higher regularity of w can
be identified with the following inequality:

|x1(ξ2 − x2)− x2(ξ1 − x1)| ≤ |ξ||x|
1
2 |ξ − x|

1
2 . (1.6)

Observe, that |x| as also |ξ − x| appear to the power 1
2 , only. Interpreting these

factors as Fourier multipliers, this means that only “half the gradient”, more
precisely 4 1

4 , of a and b enters the equation, which implies in a way that the
right hand side is a product of “lower order” operators. In fact, plugging (1.6)
into (1.5), one can conclude w∧ ∈ L1(R2) just by Hölder’s and Young’s inequality
on Lorentz spaces – consequently one has proven continuity of w. As (1.2) is of
the form (1.4) by a bootstraping argument (cf. [Tom69]) one gets analyticity of
the critical point u of E2(·).
In the present work – analogously to [DLR09a] – Euler-Lagrange equations will
look as follows, see Section 7:

Lemma 1.3 (Euler-Lagrange Equations). Let u ∈ H n
2 (Rn) be a critical point of

En on a bounded domain D ⊂ Rn. Then, for any cutoff function η ∈ C∞0 (D),
η ≡ 1 on an open neighborhood of a ball D̃ ⊂ D and w := ηu,

−
ˆ

Rn

wi 4n
4 wj 4n

4 ψij = −
ˆ

Rn

aijψij +
ˆ

Rn

4n
4 wj H(wi, ψij),

4



for any ψij = −ψji ∈ C∞0 (D̃), where aij ∈ L2(Rn) depends on the choice of η.
Here, we adopt Einstein’s summation convention. Moreover, H(·, ·) is defined on
H

n
2 (Rn)×H n

2 (Rn) as

H(a, b) := 4n
4 (ab)− a4n

4 b− b4n
4 a, for a, b ∈ H n

2 (Rn).

Furthermore, the condition u ∈ Sm−1 on D implies

wi · 4n
4 wi = −1

2
H(wi, wi) +4n

4 η a.e. in Rn.

Whereas in (1.4) the compensation phenomenon stems from the term H̃(·, ·),
here it will appear during an estimate of H(·, ·). This can be proven by Tartar’s
approach [Tar85], using nothing but the following easy “compensation inequality”
similar in its spirit to (1.6)

||x− ξ|p − |ξ|p − |x|p| ≤ Cp

{
|x|p−1|ξ|+ |ξ|p−1|x|, if p > 1,
|x|

p
2 |ξ|

p
2 , if p ∈ (0, 1],

and then Hölder and Young inequalities. More precisely, we will prove in Section 4

Theorem 1.4. For

H(u, v) = 4n
4 (uv)− v4n

4 u− u4n
4 v,

the following estimate holds:

‖H(u, v)‖L2(Rn) ≤ C ‖
(
4n

4 u
)∧‖L2(Rn) ‖

(
4n

4 v
)∧‖L2,∞(Rn).

This compensation phenomenon was observed for the case n = 1 in [DLR09a]. In
fact, all compensation phenomena appearing in [DLR09a] can be proven by this
method, thus avoiding the use of paraproducts at the expense of using estimates
on Lorentz spaces.
Technically more tedious, but in the same spirit as in [DLR09a], one can find a
localized version of Theorem 1.4, proven in Section 6.

Theorem 1.5 (Localized Compensation Results). There is a uniform constant
γ > 0 depending only on the dimension n, such that the following holds. Let
H(·, ·) be defined as in Theorem 1.4. For any v ∈ H n

2 (Rn) and ε > 0 there exists
constants R > 0 and Λ1 > 0 such that for any ball Br(x) ⊂ Rn, r ∈ (0, R),

‖H(v, ϕ)‖L2(Br(x)) ≤ ε ‖4
n
4 ϕ‖L2(Rn) for any ϕ ∈ C∞0 (Br(x)),

and

‖H(v, v)‖L2(Br(x)) ≤ ε [[v]]BΛ1r(x) + Cε,v

∞∑
k=−∞

2−γ|k|[[v]]B2k+1r(x)\B2kr(x).

Here, [[v]]A is a quantity, which in a way measures the L2-norm of 4n
4 v on

A ⊂ Rn. More precisely,

[[v]]A = ‖4n
4 v‖L2(A) + [v]A,n2 ,

where [·]A,n2 will be defined in Definition 2.34.
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These local estimates control the local growth of the n
4 -laplacian of any critical

point, as we will show using an analogue of the Hodge decomposition in the
fractional case.

Theorem 1.6. There are uniform constants Λ2 > 0 and C > 0 such that the
following holds: For any x ∈ Rn and any r > 0 we have for every v ∈ L2(Rn),
supp v ⊂ Br(x),

‖v‖L2(Br(x)) ≤ C sup
ϕ∈C∞0 (BΛ2r(x))

1
‖4n

4 ϕ‖L2(Rn)

ˆ

Rn

v 4n
4 ϕ.

Then, by an iteration technique similar to the one in [DLR09a] (see the Ap-
pendix) we conclude in Section 9 that the critical point u of En lies in a nice
Morrey-Campanato space, which implies Hölder continuity.
As for the Sections not mentioned so far: In Section 2 we will cover some ba-
sic facts on Lorentz and Sobolev spaces. In Section 3 we will prove a fractional
Poincaré inequality with a mean value condition. In Section 5 various localizing
effects are studied. In Section 8 we compare two types of homogeneous pseudo
norms for H

n
2 , and finally in Section 9, Theorem 1.2 is proved.

We will use fairly standard notation:
As usual, we denote by S ≡ S(Rn) the Schwartz class of all smooth functions
which at infinity go faster to zero than any quotient of polynomials, and by
S ′ ≡ S ′(Rn) its dual.
For a set A ⊂ Rn we will denote its n-dimensional Lebesgue measure by |A|, and
rA, r > 0, will be the set of all points rx ∈ Rn where x ∈ A. By Br(x) ⊂ Rn we
denote the ball with radius r and center x ∈ Rn. If no confusion arises, we will
abbreviate Br ≡ Br(x).
If p ∈ [1,∞] we usually will denote by p′ the Hölder conjugate, that is 1

p + 1
p′ = 1.

By f ∗ g we denote the convolution of two functions f and g.
When we speak of a multiindex α we will usually mean

α = (α1, . . . , αn) ∈ (N ∪ {0})n with length |α| :=
n∑
i=1

αi.

For such a multiindex α and x = (x1, . . . , xn)T ∈ Rn we denote by

xα =
n∏
i=1

(xi)
αi ,

where we set (xi)0 := 1 even if xi = 0.
For a real number p ≥ 0 we denote by bpc the biggest integer below p and by dpe
the smallest integer above p.
As mentioned before, we will denote by f∧ the Fourier transform and by f∨ the
inverse Fourier transform, which on the Schwartz class S are defined as

f∧(ξ) :=
ˆ

Rn

f(x) e−2πi x·ξ dx, f∨(x) :=
ˆ

Rn

f(ξ) e2πi ξ·x dξ.

6



We then have
(∂kf)∧(ξ) = 2πiξi f∧(ξ).

By i we denote here and henceforth the imaginary unit i2 = −1.
R is the Riesz operator which transforms v ∈ S(Rn) according to

(Rv)∧(ξ) := i
ξ

|ξ|
v∧(ξ).

More generally, we will speak of a zero-multiplier operator M , if there is m ∈
C∞(Rn\{0}) homogeneous of order 0 and such that

(Mv)∧(ξ) = m(ξ) v∧(ξ), for all ξ ∈ Rn\{0}.

For a measurable set D ⊂ Rn, we denote the integral mean of a integrable function
v : D → R

(v)D ≡
 
D

v ≡ 1
|D|

ˆ

D

v.

By N we denote the positive integers, by N0 we denote N ∪ {0}.
Lastly, our constants – usually denoted by C or c – can possibly change from line
to line and usually depend on the space dimensions involved, further dependencies
will be denoted by a subscript, though we will make no effort to pin down the
exact value of those constants. If we consider the constant factors to be irrelevant
with respect to the mathematical argument, for the sake of simplicity we will omit
them in the calculations, writing ≺, �, ≈ instead of ≤, ≥ and =.

Acknowledgment. The author likes to thank Francesca Da Lio and Tristan
Rivière for introducing him to the topic, and Pawe l Strzelecki for suggesting to
extend the results of [DLR09a] to higher dimensions. Moreover, he is grateful to
his supervisor Heiko von der Mosel for the constant support and encouragement.
The author is supported by the Studienstiftung des Deutschen Volkes.

2 Lorentz-, Sobolev Spaces and Cutoff Functions

2.1 Interpolation

In the following we will state some fundamental properties of interpolation meth-
ods, which will be used to deduce results on Lorentz and fractional Sobolev spaces
from similar results on classical spaces. For more on interpolation spaces, we refer
to [Tar07].
There are different methods of interpolation. We state here the so-called K-
Method, only.

Definition 2.1 (Interpolation by the K-Method). (cf. [Tar07, Definition 22.1])
Let Z be a topological space and let X,Y ⊂ Z be two normed spaces with respective
norms ‖ · ‖X , ‖ · ‖Y , such that one can norm X ∩ Y by the norm

‖z‖X∩Y = max{‖z‖X , ‖z‖Y },

7



and X + Y ⊂ Z by the norm

‖z‖X+Y := inf
z=x+y

(‖x‖X + ‖y‖Y ).

Set for t ∈ (0,∞) let for z ∈ X + Y

K(t, z) = inf
z=x+y
x∈X,y∈Y

‖x‖X + t‖y‖Y ,

and for θ ∈ (0, 1) and q ∈ [1,∞],

‖z‖q[X,Y ]θ,q
:=

∞̂

t=0

(
t−θ K(f, t)

)q dt
t
.

The space [X,Y ]θ,q with norm ‖ ·‖[X,Y ]θ,q is then defined as every z ∈ X+Y such
that ‖z‖[X,Y ]θ,q <∞.

Proposition 2.2. (cf. [Tar07, Lemma 22.2])
Let X,Y, Z be as in Definition 2.1. If q < q′ ≤ ∞, θ ∈ (0, 1), then

[X,Y ]θ,q ⊂ [X,Y ]θ,q′ ,

and the embedding is continuous.

Proof of Proposition 2.2.
Fix θ ∈ (0, 1). Denote

Ep := [X,Y ]θ,p, p ∈ [1,∞].

Then for q <∞, t0 > 0, using that K(z, t) is monotone rising in t,

‖z‖qEq =
ˆ ∞
t=0

t−θq(K(t, z))q
dt

t

≥
ˆ ∞
t=t0

t−θq(K(t, z))q
dt

t

≥ (K(t0, z))
q (t0)−θq

θq
,

that is
t−θ0 K(t0, z) ≺ ‖z‖Eq , for every t0 > 0,

which implies
‖z‖E∞ ≤ Cθ,q‖z‖Eq for any q ∈ [1,∞]. (2.1)

Thus, by Hölder inequality for ∞ > q′ > q,

‖z‖q
′

Eq′
= ‖t−θK(t, z)‖q

′

Lq′((0,∞), ddt )

≺ ‖z‖q
′−q
E∞

‖z‖qEq
(2.1)
≺ ‖z‖q

′

Eq
.

8



Proposition 2.2

The following two fundamental lemmata tell us how linear and bounded or linear
and compact operators defined on the spaces X and Y from Definition 2.1 behave
on the interpolated spaces.

Lemma 2.3 (Interpolation Theorem). (cf. [Tar07, Lemma 22.3])
Let X1, Y1, Z1, X2, Y2, Z2 be as in Definition 2.1. Assume there is a linear operator
T : X1 → X2 and T : Y1 → Y2 and ΛX ,ΛY > 0 such that

‖T‖L(X1,X2) ≤ ΛX , ‖T‖L(Y1,Y2) ≤ ΛY . (2.2)

Denote for θ ∈ (0, 1) and q ∈ [1,∞], E1 := [X1, Y1]θ,q and E2 := [X2, Y2]θ,q.
Then T is a linear, bounded operator T : E1 → E2 such that

‖T‖L(E1,E2) ≤ ΛθXΛ1−θ
Y .

Proof of Lemma 2.3.
Denote by K1, K2 the K(·, ·) used to define E1 and E2, respectively. For z ∈ E1

and any decomposition z = x1 + y1, x1 ∈ X1, y1 ∈ Y1 we have

t−θK2(Tz, t) ≤ t−θ(‖Tx1‖X2 + t‖Ty1‖Y2)
(2.2)

≤ Λ1−θ
X ΛθY

(
ΛY
ΛX

t

)−θ(
‖x1‖X1 + t

ΛY
ΛX
‖y1‖Y1

)
.

Taking now the infimum over all decompositions z = x1 + y1, this implies for
γ := ΛY

ΛX
> 0,

t−θK2(Tz, t) ≤ Λ1−θ
X ΛθY (γt)−θK1(z, γt).

Using the definition of E1, E2, we have shown

‖Tz‖E2 ≤ Λ1−θ
X ΛθY ‖z‖E1 .

Lemma 2.3

Lemma 2.4 (Compactness). (cf. [Tar07, Lemma 41.4])
Let X,Y, Z be as in Definition 2.1. Let moreover G be a Banach space and
assume there is an operator T defined on X ∪ Y such that T : X → G is linear
and continuous and T : Y → G is linear and compact. Then for any θ ∈ (0, 1),
q ∈ [1,∞], T : [X,Y ]θ,q → G is compact.

Proof of Lemma 2.4.
Fix θ ∈ (0, 1). By Proposition 2.2 it suffices to prove the compactness of the
embedding for q = ∞. Set E := [X,Y ]θ,∞. Finally, we denote by Λ the norm of
T as a linear operator from X to G.
Let zk ∈ E and assume that

‖zk‖E ≤ 1 for any k ∈ N. (2.3)

9



Pick for any k, n ∈ N, xnk , y
n
k such that xnk + ynk = zk and

‖xnk‖+
1
n
‖ynk ‖ ≤ 2K(zk,

1
n

)
(2.3)

≤ 2
1
nθ
.

Consequently, for any k, l, n ∈ N,

‖Tzk − Tzl‖G ≤ ‖T (xnk − xnl )‖G + ‖T (ynk − ynl )‖G

≤ Λ(‖xnk‖X + ‖xnl ‖X) + ‖T (ynk − ynl )‖G

≤ 4Λ
nθ

+ ‖T (ynk − ynl )‖G.

Finally, as T is a compact operator from Y in G, by a Cantor diagonal subsequence
argument, we can choose a subsequence (ik)∞k=1 ⊂ N such that

lim
k,l→∞

‖T (ynik − y
n
il

)‖G = 0 for every n ∈ N.

Lemma 2.4

2.2 Lorentz Spaces

In this section, we recall the definition of Lorentz spaces, which are a refinement of
the standard Lebesgue-spaces. For more on Lorentz spaces, the interested reader
might consider [Hun66], [Zie89], [Gra08, Section 1.4].

Definition 2.5 (Lorentz Space). Let f : Rn → R be a Lebesgue-measurable
function. We denote

df (λ) := |{x ∈ Rn : |f(x)| > λ}|.

The decreasing rearrangement of f is the function f∗ defined on [0,∞) by

f∗(t) := inf{s > 0 : df (s) ≤ t}.

For 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the Lorentz space Lp,q ≡ Lp,q(Rn), is the set of
measurable functions f : Rn → R such that ‖f‖Lp,q <∞, where

‖f‖Lp,q :=


(∞́

0

(
t

1
p f∗(t)

)q
dt
t

) 1
q

, if q <∞,

supt>0 t
1
p f∗(t), if q =∞, p <∞,

‖f‖L∞(Rn), if q =∞, p =∞.

Observe that ‖ · ‖Lp,q does not satisfy the triangle inequality.

Remark 2.6. We have not defined the space L∞,q for q ∈ [1,∞). For the sake
of overview, whenever a result on Lorentz spaces is stated in a way that Lp,q for
p = ∞, q ∈ [1,∞] is admissible, we in fact only claim that result for p = ∞,
q =∞.

10



An alternative definition of Lorentz spaces using Interpolation can be stated as
follows.

Lemma 2.7. (cf. [Tar07, Lemma 22.6])
For 1 < p <∞ and q ∈ [1,∞] let L̃p,q be defined as

L̃p,q :=
[
L1(Rn), L∞(Rn)

]
1− 1

p ,q
.

Then L̃p,q = Lp,q and ‖ · ‖L̃p,q is equivalent to ‖ · ‖Lp,q .

For Hölder inequality on Lorentz spaces, we will need moreover the following
result on the decreasing rearrangement.

Proposition 2.8. (cf. [Gra08, Proposition 1.4.5])
For any f, g ∈ S(Rn) and any t > 0,

(fg)∗(2t) ≤ f∗(t) g∗(t).

Proof of Proposition 2.8.
We have for any s, s1 ,s2 > 0 such that s = s1s2,

{x ∈ Rn : |f(x)g(x)| > s} ⊂ {x ∈ Rn : |f(x)| > s1} ∪ {x ∈ Rn : |g(x)| > s2},

so
dfg(s) ≤ df (s1) + df (s2).

Consequently, for any t > 0,

{s > 0 : dfg(s) ≤ 2t} ⊃ {s = s1s2 > 0 : df (s1) ≤ t, dg(s2) ≤ t},

which readily implies,
(fg)∗(2t) ≤ f∗(t)g∗(t).

Proposition 2.8

Proposition 2.9 (Basic Lorentz Space Operations). Let f ∈ Lp1,q1 and g ∈
Lp2,q2 , 1 ≤ p1, p2, q1, q2 ≤ ∞.

(i) If 1
p1

+ 1
p2

= 1
p ∈ [0, 1] and 1

q1
+ 1

q2
= 1

q then fg ∈ Lp,q and

‖fg‖Lp,q ≺ ‖f‖Lp1,q1 ‖g‖Lp2,q2 .

(ii) If 1
p1

+ 1
p2
− 1 = 1

p > 0 and 1
q1

+ 1
q2

= 1
q then f ∗ g ∈ Lp,q and

‖f ∗ g‖Lp,q ≺ ‖f‖Lp1,q1 ‖g‖Lp2,q2 .

(iii) For p1 ∈ (1,∞), f belongs to Lp1(Rn) if and only if f ∈ Lp1,p1 . The
”norms“ of Lp1,p1 and Lp1 are equivalent.

(iv) If p1 ∈ (1,∞) and q ∈ [q1,∞] then also f ∈ Lp1,q.

(v) Finally, 1
|·|λ ∈ L

n
λ ,∞, whenever λ ∈ (0, n).

11



Proof of Proposition 2.9.
As for (i), this is proved by classical Hölder inequality and Proposition 2.8. As
for (ii), this is the result in [O’N63, Theorem 2.6]. As for (iii), this follows by the
definition of f∗. Property (iv) was proven in Proposition 2.2, and lastly Property
(v) follows by the definition of Lp,∞.

Proposition 2.9

As the Lorentz spaces can be defined by interpolation, see Lemma 2.7, by the
Interpolation Theorem, Lemma 2.3, the following holds.

Proposition 2.10 (Fourier Transform in Lorentz Spaces). For any f ∈ S, p ∈
(1, 2), q ∈ [1,∞] we have

‖f∧‖Lp′,q ≤ Cp‖f‖Lp,q , ‖f∨‖Lp′,q ≤ Cp‖f‖Lp,q .

Here, 1
p′ + 1

p = 1.

Proposition 2.11 (Scaling in Lorentz Spaces). Let λ > 0 and f ∈ S(Rn). If we
denote f̃(·) := f(λ·), then

‖f̃‖Lp,q = λ−
n
p ‖f‖Lp,q .

Proof of Proposition 2.10.
We have that df̃ (s) = λ−ndf (s) for any s > 0 and thus f̃∗(t) = f(λnt) for any
t > 0. Hence,

∞̂

0

(
t

1
p f̃∗(t)

)q dt

t
= λ−q

n
p

∞̂

0

(
(λnt)

1
p f∗(λt)

)q dt

t
= λ−q

n
p ‖f‖qLp,q .

We can conclude.

Proposition 2.10

Proposition 2.12 (Hölder inequality in Lorentz Spaces). Let supp f ⊂ D, where
D ⊂ Rn is a bounded measurable set. Then, whenever p2 > p1 ≥ 1, q1 ∈ [1,∞]

‖f‖Lp1,q1 ≤ Cp,q |D|
1
p1
− 1
p2 ‖f‖Lp2 . (2.4)

Proof of Proposition 2.12.
Denote by χ ≡ χD the characteristic function of the set D ⊂ Rn. One checks that

χ∗(t) =

{
1 if t < |D|,
0 if t ≥ |D|.

Consequently,

‖χ‖Lp,q ≈ |D|
1
p whenever 1 ≤ p <∞, q ∈ [1,∞].

One concludes by applying Hölder inequality in Lorentz spaces, Lemma 2.9.

Proposition 2.12
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2.3 Fractional Sobolev Spaces

We will use two equivalent definitions of the fractional Sobolev space Hs, for the
equivalence we refer to [Tar07].

Definition 2.13 (Fractional Sobolev Spaces by Fourier Transform). Let f ∈ L2.
Then we say that for some s ≥ 0 the function f ∈ Hs ≡ Hs(Rn) if and only if
4 s

2 f ∈ L2(Rn). Here, the operator 4 s
2 is defined as

4 s
2 f := (|·|sf∧)∨ .

The norm, under which Hs(Rn) becomes a Hilbert space is

‖f‖2Hs(Rn) := ‖f‖2L2(Rn) + ‖4 s
2 f‖2L2(Rn).

Remark 2.14. Observe, that the definition of 4 2
2 does coincide with the usual

laplacian only up to a multiplicative constant, but this saves us from the nuisance
to deal with those standard factors in every single calculation.

Definition 2.15 (Fractional Sobolev Spaces by Interpolation). Let f ∈ L2(Rn).
Define for i, j ∈ N0

Ki,j(f, t) := inf
f=g+h

‖g‖W i,2(Rn) + t‖h‖Wk,2(Rn).

Then f ∈ Hs(Rn) if and only if t 7→ t−θKi,j(f, t) ∈ L2((0,∞), dtt ), where θ =
s−i
j−i ∈ (0, 1) and i < s < j.

Remark 2.16. In Section 2.5 we will prove an integral representation for the
fractional laplacian.

Our next goal is Poincaré’s inequality. As we want to use the standard blow up
argument to prove it, we premise a compactness and a (trivial) uniqueness result.

Lemma 2.17 (Uniqueness of solutions). Let f ∈ Hs(Rn). If 4 s
2 f = 0, then

f = 0.

Proof of Lemma 2.17.
As f ∈ Hs(Rn), f∧ exists and f∧(ξ) = |ξ|−s0 = 0 for every ξ ∈ Rn\{0}. Thus,
f∧ ≡ 0 as L2-function and we conclude that also f ≡ 0.

Lemma 2.17

Lemma 2.18 (Compactness). Let D ⊂ Rn be a smoothly bounded domain, s > 0.
Then, if fk ∈ Hs(Rn), supp fk ⊂ D, k ∈ N and ‖fk‖Hs ≤ C there exists a
subsequence fki , such that fki

i→∞−−−→ f ∈ Hs weakly in Hs, strongly in L2(Rn),
pointwise almost everywhere. Moreover, supp f ⊂ D.

Proof of Lemma 2.18.
The weak convergence result stems from the fact that Hs is reflexive. The point-
wise convergence follows from L2-convergence, so we will concentrate on the latter:
The claim on L2-convergence is true in the classical settings of s ∈ N, by Rellich-
Kondrachov Theorem. Next, we will prove the case s ∈ (0, 1), the other cases are

13



proven similar.
So fix D ⊂ Rn and s ∈ (0, 1). Denote by H̃ the space

H̃ := [L2(2D),W 1,2
0 (2D)]s,2.

By Rellich-Kondrachov Theorem and Lemma 2.4 the embedding H̃ → L2(2D) ⊂
L2(Rn) is compact. So we can conclude as soon as we prove that fk ∈ H̃ and
‖fk‖H̃ ≤ C̃.
Let ηD ∈ C∞0 (2D) be a smooth cutoff function, η ≡ 1 in D. Denote by T the
operator

T : v 7→ ηDv, v ∈ L2(Rn).

Then T is a continuous linear operator from W 1,2(Rn) into W 1,2
0 (2D) as well as

L2(Rn) into L2(2D). Interpolation-Lemma 2.3 implies that T maps continuously
Hs(Rn) into H̃, too. But as the support-condition on fk implies Tfk = fk
pointwise almost everywhere, we have proven that fk ∈ H̃ and

‖fk‖H̃ = ‖Tfk‖H̃ ≺ ‖fk‖Hs ≺ 1.

Lemma 2.18

With the compactness lemma, we can prove Poincaré’s inequality. As in [DLR09a,
Theorem A.2] we will use a support-condition in order to ensure compactness of
the embedding Hs(Rn) into L2(Rn) (cf. Lemma 2.18). This support condition
can be seen as saying that all derivatives are zero at the boundary, which makes
it not surprising that such an inequality should hold.

Lemma 2.19 (Poincaré Inequality). For any bounded domain D ⊂ Rn, s > 0,
there exists a constant CD,s > 0 such that

‖f‖L2(Rn) ≤ CD,s ‖4
s
2 f‖L2(Rn), for all f ∈ Hs(Rn), supp f ⊂ D. (2.5)

If D = rD̃ for some r > 0, then CD,s = CD̃,sr
s.

Proof of Lemma 2.19.
We proceed as in the standard blow-up proof of Poincaré’s inequality: Assume
on the contrary to (2.5) that there are functions fk ∈ Hs(Rn), supp fk ⊂ D, such
that

‖fk‖L2(Rn) > k‖4 s
2 fk‖L2(Rn), for every k ∈ N. (2.6)

Dividing by ‖fk‖L2(Rn) we can assume w.l.o.g. that ‖fk‖L2(Rn) = 1 for every
k ∈ N. Consequently, we have for every k ∈ N

‖fk‖Hs(Rn) ≺ ‖fk‖L2(Rn) + ‖4 s
2 fk‖L2(Rn) ≺ 1.

By Lemma 2.18 we can assume that fk converges weakly to some f ∈ Hs(Rn)
with support inside D, with strong convergence in L2(Rn) – modulo passing to a
subsequence of (fk)k∈N. This implies, that ‖f‖L2(Rn) = 1 and

‖4 s
2 f‖L2(Rn) ≤ lim inf

k→∞
‖4 s

2 fk‖L2(Rn)
(2.6)
= 0.

But this is a contradiction, as Lemma 2.17 implies that f ≡ 0.
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Lemma 2.19

A simple consequence of the “standard Poincaré inequality” is the following

Lemma 2.20 (Slightly more general Poincaré’s inequality). For any bounded
domain D ⊂ Rn, 0 < s ≤ t, there exists a constant CD,t > 0 such that

‖4 s
2 f‖L2(Rn) ≤ CD,t ‖4

t
2 f‖L2(Rn), for all f ∈ Hs(Rn), supp f ⊂ D.

If D = rD̃ for some r > 0, then CD,t = CD̃,tr
t−s.

Proof of Lemma 2.20.
We have

‖4 s
2 f‖L2 = ‖|·|s f∧‖L2

≤ ‖|·|t f∧‖L2(Rn\B1(0)) + ‖f∧‖L2(B1(0))

≤ ‖4 t
2 f‖L2 + ‖f‖L2

L.2.19
≤ CD,t ‖4

t
2 f‖L2 .

By scaling one concludes.

Lemma 2.20

The following proposition can be interpreted as an existence result - or as a variant
of Poincaré’s inequality:

Lemma 2.21. Let s ∈ (0, n), p ∈ [2,∞) such that

n− s
n

>
1
p
>
n− 2s

2n
. (2.7)

Then for any bounded set D ⊂ Rn there is a constant CD,s,p such that for any
v ∈ S(Rn), supp v ⊂ D, we have

‖4− s2 v‖Lp(Rn) ≤ CD,p,s ‖v‖L2 .

Here, 4− s2 v is defined as (|·|−sv∧)∨. In particular, if s ∈ (0, n2 ),

‖4− s2 v‖L2(Rn) ≤ CD,s ‖v‖L2 .

If D = rD̃, then CD,p,s = rs+
n
p−

n
2 CD̃.
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Proof of Lemma 2.21.
We want to make the following reasoning rigorous:

‖4− s2 v‖Lp
P.2.10
p≥2

≤ Cp ‖(4−
s
2 v)∧‖Lp′,p

= Cp ‖|·|−s v∧‖Lp′,p
(?)

≤ Cp ‖|·|−s‖Lns ,∞ ‖v
∧‖Lt,p

P.2.10
t>2

≤ Cp,s,t ‖v‖Lt′ ,p
P.2.11
t
′
<2

≤ Cs,t CD ‖v‖L2 .

To do so, we need to find t ∈ (2,∞) such that (?) holds:

1
p′

=
1
t

+
s

n

which is equivalent to (2.7). Then,

n

t′
− n

2
= s+

n

p
− n

2

and we conclude the proof by Proposition 2.9 and scaling by Proposition 2.11.

Lemma 2.21

We will use the following Hodge-decomposition result

Lemma 2.22 (Hodge decomposition). Let f ∈ L2(Rn), s > 0. Then for any
bounded domain D ⊂ Rn there is w ∈ Hs(Rn), h ∈ L2(Rn) such that

suppw ⊂ D,
ˆ

Rn

h 4 s
2ϕ = 0, for all ϕ ∈ C∞0 (D)

and
f = 4 s

2w + h a.e. in Rn.

Moreover,
‖h‖L2(Rn) + ‖4 s

2w‖L2(Rn) ≤ 4‖f‖L2(Rn). (2.8)

Proof of Lemma 2.22.
Set

E(v) :=
ˆ

Rn

∣∣4 s
2 v − f

∣∣2, for v ∈ C∞0 (D).

Then,
‖4 s

2 v‖2L2(Rn) ≤ 2E(v) + ‖f‖2L2(Rn). (2.9)
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As D is bounded, Poincaré’s inequality, Lemma 2.19, implies

‖v‖2Hs ≤ Cs,D(E(v) + ‖f‖2L2(Rn)).

Thus E(·) is coercive, i.e. for a minimizing sequence (wk)∞k=1, such that E(vk) ≤
E(0) (which exists, as w ≡ 0 is admissible), we can assume

‖wk‖2Hs ≤ C(E(0) + ‖f‖2L2(Rn)) = 2C‖f‖2L2(Rn), for every k ∈ N

and by compactness, see Lemma 2.18, we have (for possibly a subsequence) weak
convergence of wk to some w in Hs(Rn) and strong convergence in L2, as well as
suppw ⊂ D.
E(·) is lower semi-continuous with respect to weak convergence in Hs(Rn), so w
is a minimizer of E(·).
If we call h := 4 s

2w − f , Euler-Lagrange-Equations give that
ˆ

Rn

h 4 s
2ϕ = 0, for any ϕ ∈ C∞0 (D).

Equation (2.9) for w and ‖h‖L2 = E(w) ≤ E(0) then imply (2.8).

Lemma 2.22

Remark 2.23. In fact, h will satisfy enhanced local estimates, similar to esti-
mates a harmonic function would imply, cf. Lemma 5.11.

2.4 Cutoff Functions

We will have to localize our equations, so we introduce as in [DLR09a] a de-
composition of unity as follows: Let η ≡ η0 ∈ C∞0 (B2(0)), η ≡ 1 in B1(0) and
0 ≤ η ≤ 1 in Rn. Let furthermore ηk ∈ C∞0 (B2k+1(0)\B2k−1(0)), k ∈ N such that
0 ≤ ηk ≤ 1,

∑∞
k=0 η

k = 1 pointwise in Rn and
∣∣∇iηk∣∣ ≤ Ci2−ki for any i ∈ N0.

We call ηkx,r := ηk( ·−xr ). We will often omit the subscript when x and r should
be clear from the context.
For the sake of completeness we sketch the construction of those ηk:

Construction of suitable Cut-Off functions. Let at first η ≡ η0 ∈ C∞0 (B2(0)), η ≡
1 on, say, B 3

2
(0). We set

ηk(·) :=

(
1−

k−1∑
l=0

ηl(·)

)
k−1∑
l=0

ηl
( ·

2

)
. (2.10)

Obviously, ηk is smooth and we have the following decisive properties

(i) ηk ∈ C∞0 (B2k+1(0)\B2k−1(0)), if k ≥ 1, and

(ii)
∑k
l=0 η

l ≡ 1 in B2k , for every k ≥ 0.
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Indeed, this can be shown by induction: First one checks that (i), (ii) are true for
k = 0, 1. Then, assume that (i) and (ii) hold for some k− 1. By (ii) we have that
1−
∑k−1
l=0 ηl ≡ 0 in B2k−1(0) and (i) implies that

∑k−1
l=0 ηl

( ·
2

)
≡ 0 in Rn\B2k−1+12.

This implies (i) for k. Moreover,

k∑
l=0

ηl =
k−1∑
l=0

ηl +

(
1−

k−1∑
l=0

ηl

)
(·)

k−1∑
l=0

ηl
( ·

2

)
.

By (ii) we have that in B2k−1 the sum
∑k−1
l=0 η

l is identically 1, and thus the right
hand side is identically 1 in that set. On the other hand, in B2k−12 = B2k the
other sum

∑k−1
l=0 η

l
( ·

2

)
is identically 1, and thus also in Bk2\Bk−1

2 the property
(ii) holds for k. By induction (i) and (ii) hold for all k ∈ N0. It is easy to check
that also 0 ≤ ηk ≤ 1.
We remark that if one wants to guarantee that ηk ≡ 1 in some subset, one takes
x
2α , α > 1, instead of x

2 in (2.10). Then, this new property is a consequence of
property (ii) above.

Moreover, one checks that
∣∣∇iηk∣∣ ≤ Ci2−ki for every i ∈ N0: In fact, if we

abbreviate ψk :=
∑k
l=0 η

k, we have of course∣∣∇iηk∣∣ ≤ ∣∣∇iψk∣∣+
∣∣∇iψk−1

∣∣.
It is enough, to show that

∣∣∇iψk∣∣ ≤ Ci2−ki: We have

ψk = ψk−1 + (1− ψk−1)(·) ψk−1

(
1
2
·
)
.

By property (ii) we know that ψk ≡ 1 in B2k and ψk ≡ 0 in Rn\B2k+1 , so the
gradient in those sets is trivial. On the other hand, in B2k+1\B2k we know that
ψk−1 ≡ 0, by property (i), hence ψk = ψk−1( 1

2 ·) in this set. This implies

∇iψk = 2−i(∇iψk−1)
(

1
2
·
)
.

By induction or direct calculation one arrives then at
∣∣∇iψk∣∣ ≤ 2−ki‖∇iη0‖L∞ .

Remark 2.24. Also one can see that ηl2kr = ηl+kr . In fact above was proven that

η0
1

( ·
2

)
= η0

1(·) + (1− η0
1(·))η0

1

( ·
2

)
.

The claim then follows by induction.

We want to estimate some Lp-Norms of 4 s
2 ηkr,x. In order to do so, we will need

the following Proposition:

Proposition 2.25. (cf. [Gra08, Exercise 2.2.14, p.108]) For every g ∈ S(Rn),
p ∈ [1, 2], −∞ < α < np−2

p < β <∞, we have

‖g∧‖Lp(Rn) ≤ Cα,β,p
(
‖4α

2 g‖L2(Rn) + ‖4
β
2 g‖L2(Rn)

)
.
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Proof of Proposition 2.25.
Set q := p

p−2 . We abbreviate f := g∧ and set f = f1 + f2, where f1 = fχB1(0).
Here, χB1(0) denotes as usual the characteristic function of B1(0). Then f1(x) =
|x|αf1(x) |x|−α and hence

‖f1(x)‖Lp(Rn) ≤ ‖|·|α f1‖L2(B1(0)) ‖|·|
−α‖Lq(B1(0))

qα<n

≤ Cα‖|·|αf‖L2(B1(0)).

The same works for f2, using that qβ > n. Consequently, one arrives at

‖f‖Lp(Rn) ≤ Cα,β,p(‖|·|
α
f‖L2(Rn) + ‖|·|βf‖L2(Rn)).

Replacing again f = g∧ and using that |·|αg∧ = (4α
2 g)∧, |·|βg∧ = (4

β
2 g)∧ and

then applying Plancherel Theorem for L2-functions, one concludes.

Proposition 2.25

Proposition 2.26. For any s > 0, p ∈ [1, 2], there is a constant Cs,p > 0, such
that for any k ∈ N0, x ∈ Rn, r > 0 we have

‖
(
4 s

2 ηkr,x
)∧ ‖Lp(Rn) ≤ Cs,p (2kr)−s+n

1
p′ . (2.11)

In particular,
‖4 s

2 ηkr,x‖Lp′ (Rn) ≤ Cs,p (2kr)−s+n
1
p′ . (2.12)

Proof of Proposition 2.26.
Fix r > 0, k ∈ N and x ∈ Rn. Set η̃(·) := ηkr,x(x+2kr·). By scaling it then suffices
to show that for a uniform constant Cs,p

‖
(
4 s

2 η̃
)∧ ‖Lp(Rn) ≤ Cs,p. (2.13)

By Proposition 2.25 for some admissible α, β > 0 (in the case p = 2 we can choose
α = β = 0)

‖
(
4 s

2 η̃
)∧ ‖Lp(Rn) ≤ Cα,β,p(‖4

s+α
2 η̃‖L2 + ‖4

s+β
2 η̃‖L2)

≤ Cα,β,p (‖η̃‖Hs+α + ‖η̃‖Hs+β ).

As Hs+α and Hs+β are (equivalent to) certain interpolation spaces between
L2(Rn) and some W i,2(Rn), i = iα,β ∈ N, we have ‖η̃‖Hs+α + ‖η̃‖Hs+β ≤
Cα,β‖η̃‖W i,2(Rn). The choice of i depends only on s, α, β, p and the dimen-
sion, but it is in particular independent of k, r, x. Thus, for a constant also
independent on the latter quantities, we have

‖η̃‖W i,2 ≤ Cα,β,s.

In fact, by the choice of the scaling for η̃, we have that supp η̃ ⊂ B2(0),
∣∣∇j η̃∣∣ ≤ Ci

for any 1 ≤ j ≤ i. Consequently, we have shown (2.13), and by scaling back we
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conclude the proof of (2.11). Equation (2.12) then follows by the continuity of the
inverse Fourier-transform from Lp to Lp

′
, see Proposition 2.10, whenever p ∈ [1, 2],

and the fact that ηkr,x ∈ Hs(Rn).

Proposition 2.26

A consequence is, that in a weak sense 4 s
2P vanishes for a polynomial P , if s is

greater than the degree of P :

Proposition 2.27. Let α be a multiindex α = (α1, . . . , αn), where αi ∈ N0,

1 ≤ i ≤ n. If s > 0 such that |α| =
n∑
i=1

|αi| ≤ dse − 1 then

ˆ

Rn

xα 4 s
2ϕ = 0, for every ϕ ∈ S(Rn).

Here, xα := (x1)α1 · · · (xn)αn .

Proof of Proposition 2.27.
We have 4 s

2ϕ ∈ L1(Rn) by a similar reasoning as in Proposition 2.26, so
ˆ

Rn

xα4 s
2ϕ := lim

R→∞

ˆ

Rn

xαη0
R,0 4

s
2ϕ ≤ lim

R→∞
R|α|‖4 s

2 η0
R,0‖L∞

ˆ

Rn

ϕ. (2.14)

By Proposition 2.26 we know that

‖4 s
2 η‖L∞(Rn) ≺

1
Rs

,

which implies that the terms of (2.14) converge to zero.

Proposition 2.27

Remark 2.28. We will use Proposition 2.27 in a formal way, by assuming in
calculations that 4 s

2xα = 0. Of course, as we defined the operator 4 s
2 only on

L2-Functions this should to be verified in each such calculation by using that

lim
R→∞

4 s
2 (ηRxα) = 0,

where the limit will be taken in an appropriate sense. For the sake of simplicity,
we will omit this recurring argument.

2.5 An Integral definition for the Fractional Laplacian

A further definition of the fractional laplacian for small order are the following
two propositions.

Proposition 2.29. Let s ∈ (0, 1). For some constant cn and any v ∈ S(Rn)

4 s
2 v(ȳ) = cn

ˆ

Rn

v(x)− v(ȳ)
|x− ȳ|n+s dx.
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Proof of Proposition 2.29.
It is enough to prove the claim for ȳ = 0. In fact, denote by τȳ the translation
operator

τȳv(·) := v(·+ ȳ).

Then, as any multiplier operator is translation invariant,

4 s
2 v(ȳ) = 4 s

2 (τȳv)(0)

= cn

ˆ

Rn

τȳv(x)− τȳv(0)
|x|n+s dx

= cn

ˆ

Rn

v(x+ ȳ)− v(ȳ)
|x|n+s dx

= cn

ˆ

Rn

v(x)− v(ȳ)
|x− ȳ|n+s dx,

where the transformation formula is valid because the integral converges abso-
lutely.
So let ȳ = 0, v ∈ S(Rn). For any R > 1 > ε > 0 we decompose v = v1+v2+v3+v4:

v = η4ε(v − v(0)) + (1− η4ε)(v − v(0)) + v(0)

= v1 + ηR(1− η4ε)(v − v(0)) + ηRv(0)

+(1− ηR)[(1− η4ε)(v − v(0)) + v(0)]

= v1 + v2 + v3 + v4,

that is

v1 = η4ε(v − v(0)),

v2 = ηR(1− η4ε)(v − v(0)),

v3 = ηRv(0),

v4 = (1− ηR)[(1− η4ε)(v − v(0)) + v(0)]

= (1− ηR)[(1− η4ε)v + η4εv(0)].

Observe that vk ∈ S(Rn), k = 1 . . . 4, and in particular 4 s
2 vk is well defined in

the classical sense. So for any ϕ ∈ C∞0 (B2ε(0))
ˆ

Rn

4 s
2 v ϕ = I1 + I2 + I3 + I4,
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where
Ik :=

ˆ

Rn

4 s
2 vk ϕ, k = 1, 2, 3, 4.

First, observe that by the Lebesgue-convergence theorem,

lim
R→∞

I4 = lim
R→∞

ˆ

Rn

(1− ηR)[(1− η4ε)(v − v(0)) + v(0)]4 s
2ϕ = 0. (2.15)

Moreover, by Proposition 2.26

|I3| ≺ |v(0)|‖ϕ‖L1R−s,

so
lim
R→∞

I3 = 0. (2.16)

As for v2, we have
ˆ

Rn

4 s
2 v2 ϕ =

ˆ

Rn

|ξ|s (v2 ∗ ϕ)∧(ξ) dξ

= cn

ˆ

Rn

|x|−n−s v2 ∗ ϕ(x) dx.

The last equality is true, as supp(v2 ∗ ϕ) ⊂ Rn\Bε(0) and (cf. [Gra08, Theorem
2.4.6])ˆ

Rn

|ξ|s ψ∧(ξ) dξ = cn

ˆ

Rn

|y|−n−s ψ(y) dy, for any ψ ∈ C∞0 (Rn\{0}).

Consequently, as the integrals involved converge absolutely, by Fubini’s theorem
ˆ

Rn

4 s
2 v2 ϕ = cn

ˆ

Rn

ˆ

Rn

ϕ(y)
v2(x− y)
|x|n+s dy dx

= cn

ˆ

B2ε

ϕ(y)
ˆ

Rn

ηR(x− y)(1− η4ε(x− y))
v(x− y)− v(0)
|x|n+s dx dy.

By Lebesgue’s dominated convergence theorem,

lim
R→∞

I2 = cn

ˆ

Rn

ϕ(y)
ˆ

Rn

(1− η4ε(x− y))
v(x− y)− v(0)
|x|n+s dx dy. (2.17)

Together, we infer from equations (2.15), (2.16) and (2.17) that for any ε > 0 and
any ϕ ∈ C∞0 (B2ε(0)),

ˆ

Rn

4 s
2 v ϕ =

ˆ

Rn

η4ε(v − v(0)) 4 s
2ϕ

+cn
ˆ

Rn

ϕ(y)
ˆ

Rn

(1− η4ε)
v(x− y)− v(0)
|x|n+s dx dy.
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We choose now a specific ϕ := ωε−nηε, where ω ∈ Rn is chosen such that
ˆ

Rn

ϕ = 1.

4 s
2 v is continuous because for v ∈ S(Rn) in particular (4 s

2 v)∧ ∈ L1(Rn). Con-
sequently,

lim
ε→0

ˆ

Rn

4 s
2 v ϕ = 4 s

2 v(0).

It remains to estimate
Ĩ :=

ˆ

Rn

η4ε(v − v(0)) 4 s
2ϕ,

and

ĨI :=
ˆ

Rn

ϕ(y)
ˆ

Rn

(1− η4ε)(x− y)
v(x− y)− v(0)
|x|n+s dx dy.

As for Ĩ, by Proposition 2.26,∣∣∣Ĩ∣∣∣ ≺ ε−n−s
ˆ

B2ε(0)

|v(y)− v(0)| dy

≺ ‖∇v‖L∞ ε−n−s+1|B2ε|

≺ ‖∇v‖L∞ ε1−s.

As s < 1, this implies
lim
ε→0

Ĩ = 0.

As for ĨI, we write

ϕ(y)(1− η4ε(x− y))
v(x− y)− v(0)
|x|n+s

= ϕ(y)
v(x)− v(0)
|x|n+s

−η4ε(x− y) ϕ(y)
v(x)− v(0)
|x|n+s

+ϕ(y)(1− η4ε(x− y))
v(x− y)− v(x)

|x|n+s

=: ii1 + ii2 + ii3.

By choice of ϕ, ˆ

Rn

ˆ

Rn

ii1 dy dx =
ˆ

Rn

v(x)− v(0)
|x|n+s dx.
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Moreover,
ˆ

Rn

ˆ

Rn

|ii2| dy dx ≺ ‖∇v‖L∞
ˆ

B10ε(0)

1
|x|n+s−1 dx ≺ ε1−s,

and ˆ

Rn

ˆ

Rn

|ii3| dy dx ≺ ε ‖∇v‖L∞
ˆ

Rn\Bε(0)

1
|x|n+s dx ≺ ε

s.

As a consequence, we can conclude

lim
ε→0

ĨI =
ˆ

Rn

v(x)− v(0)
|x|n+s dx.

Proposition 2.29

If s ∈ [1, 2) the integral definition for 4 s
2 in Proposition 2.29 is potentially non-

convergent, so we will have to rewrite it as follows.

Proposition 2.30. Let s ∈ (0, 2). Then,

4 s
2 v(ȳ) =

1
2
cn

ˆ

Rn

v(ȳ − x) + v(ȳ + x)− 2v(ȳ)
|x|n+s dx.

Remark 2.31. This is consistent with Proposition 2.30. In fact, if s ∈ (0, 1)
ˆ

Rn

v(y + x)− v(y)
|x|n+s dx dy =

ˆ

Rn

v(y − x)− v(y)
|x|n+s dx dy,

just by transformation rule and the symmetry of the kernel 1
|x|n+s . For this ar-

gument to be true, the condition s ∈ (0, 1) is necessary, because it guarantees the
absolute convergence of the integrals above.

Proof of Proposition 2.30.
This is done analogously to Proposition 2.30, where one replaces v(·) by v(·) +
v(−·) and uses that(

4 s
2 v
)
(0) =

1
2
(
4 s

2 (v(−·))(0) +4 s
2 (v(·))(0)

)
.

Then, the involved integrals converge for any s ∈ (0, 2), as

|v(x) + v(−x)− 2v(0)| ≤ ‖∇v‖L∞ |x|2.

Proposition 2.30

Proposition 2.32. For any s ∈ (0, 2), v, w ∈ S(Rn)
ˆ

Rn

4 s
2 v w = cn

ˆ

Rn

ˆ

Rn

(v(x)− v(y)) (w(y)− w(x))
|x− y|n+s dx dy.
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Proof of Proposition 2.32.
We have for v, w ∈ S(Rn), x ∈ Rn by several applications of the transformation
rule

ˆ

Rn

(v(y + x) + v(y − x)− 2v(y)) w(y) dy

=
ˆ

Rn

v(y + x)w(y) + v(y) w(y + x)− v(y)w(y)− v(y + x)w(y + x) dy

=
ˆ

Rn

v(y + x) (w(y)− w(y + x)) + v(y) (w(y + x)− w(y)) dy

=
ˆ

Rn

(v(y + x)− v(y)) (w(y)− w(y + x)) dy.

(2.18)
As all the involved integrals converge absolutely by Fubini’s theorem

ˆ

Rn

4 s
2 v(y) w(y) dy

P.2.30= cn

ˆ

Rn

ˆ

Rn

(v(y + x) + v(y − x)− 2v(y)) w(y)
|x|n+s dx dy

= cn

ˆ

Rn

ˆ

Rn

(v(y + x) + v(y − x)− 2v(y)) w(y)
|x|n+s dy dx

(2.18)
= cn

ˆ

Rn

ˆ

Rn

(v(y + x)− v(y)) (w(y)− w(y + x))
|x|n+s dy dx.

Proposition 2.32

In particular the following equivalence-result holds:

Proposition 2.33 (Fractional Laplacian - Integral Definition). Let s ∈ (0, 1).
For a constant cn ∈ R and for any v ∈ S(Rn)

‖4 s
2 v‖2L2(Rn) = cn

ˆ

Rn

ˆ

Rn

|v(x)− v(y)|2

|x− y|n+2s dx dy.

In particular, the function

(x, y) ∈ Rn × Rn 7→ |v(x)− v(y)|2

|x− y|n+2s

lies in L1(Rn × Rn) whenever v ∈ Hs(Rn).

We will now introduce the pseudo-norm [v]D,s, a quantity which for s ∈ (0, 1)
actually is equivalent to the local, homogeneous Hs-norm, cf. [Tar07], [Tay96];
But we will not use this fact as we will work with s = n

2 . Nevertheless, we will
see in Section 8 that [v]D,n2 is ”almost” comparable to ‖4n

4 v‖L2(D).
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Definition 2.34. For a domain D ⊂ Rn, s ≥ 0 set if s 6∈ N0

([u]D,s)
2 :=

ˆ

D

ˆ

D

∣∣∇bscu(z1)−∇bscu(z2)
∣∣2

|z1 − z2|n+2(s−bsc) dz1 dz2. (2.19)

If s ∈ N0 we just define [u]D,s = ‖∇su‖L2(D).

Remark 2.35. By the defintion of [·]D,s it is obvious that for any polynomial P
of degree less than s,

[v + P ]D,s = [v]D,s.

3 Mean Value Poincaré Inequality of Fractional
Order

Proposition 3.1 (Estimate on Convex Sets). Let D be a convex, bounded domain
and γ < n+ 2, then for any v ∈ S(Rn),

ˆ

D

ˆ

D

|v(x)− v(y)|2

|x− y|γ
dx dy ≤ CD,γ

ˆ

D

|∇v(z)|2 dz.

If γ = 0, the constant CD,γ = Cn diam(D)2.

Proof of Proposition 3.1.
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By the Fundamental Theorem of Calculus,
ˆ

D

ˆ

D

|v(x)− v(y)|2

|x− y|γ
dx dy

≤
1ˆ

t=0

ˆ

D

ˆ

D

|∇v(x+ t(y − x))|2

|x− y|γ−2 dx dy dt

≤

1
2ˆ

t=0

ˆ

D

ˆ

D

|∇v(x+ t(y − x))|2

|x− y|γ−2 dx dy dt

+

1ˆ

t= 1
2

ˆ

D

ˆ

D

|∇v(x+ t(y − x))|2

|x− y|γ−2 dy dx dt

(F)

≤

1
2ˆ

t=0

ˆ

D

ˆ

D

|∇v(z)|2

(1− t)2−γ |z − y|γ−2 (1− t)−n dz dy dt

+

1ˆ

t= 1
2

ˆ

D

ˆ

D

|∇v(z)|2

t2−γ |x− z|γ−2 t−n dz dx dt

≺
ˆ

D

|∇v(z)|2
ˆ

D

|z − z2|2−γ dz2 dz

γ<n+2
≺

ˆ

D

|∇v(z)|2 dz.

The inequality (F) needs that D is convex, so the transformation x 7→ x+t(y−x)
maps D into a subset of D.

Proposition 3.1

An immediate consequence is the classical Poincaré inequality for mean values on
convex domains

Lemma 3.2. For any v ∈ L2(D) for a convex set D ⊂ Rn there is a uniform
constant C such thatˆ

D

|v − (v)D|2 ≤ C (diam(D))2 ‖∇v‖2L2(D).

In this section we prove in Lemma 3.6 a higher (fractional) order analogue of this
Mean-Value-Poincaré-Inequality. The ideas are not that different from proofs of
similar statements as e.g. in [DLR09a] or [GM05, Proposition 3.6.] – only the
terms involved tend to be very large.
We will often suppose the following mean value condition for some N ∈ N0 and a
domain D ⊂ Rn 

D

∂αv = 0, for any multiindex α ∈ (N0)n, |α| ≤ N. (3.1)
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3.1 On the Ball

We premise some very easy estimates.

Proposition 3.3. For s ∈ (0, 1), there exists a constant Cs > 0 such that for any
x ∈ Br(x0) ˆ

Br(x0)

1
|x− y|n+2s−2 dy ≤ Cs r2−2s,

and ˆ

Rn\B2r(x0)

1
|x− y|n+2s dy ≤ Cs r

−2s.

Proof of Proposition 3.3.
We have ˆ

Br(x0)

1
|x− y|n+2s−2 dy ≤

ˆ

B2r(0)

1
|z|n+2s−2 dz

s<1
≈ (2r)2−2s

and ˆ

Rn\B2r(x0)

1
|x− y|n+2s dy ≤ 1

2

ˆ

Rn\B2r(0)

1
|z|n+2s dz

s>0
≈ (2r)−2s.

Proposition 3.3

Proposition 3.4. Let γ ∈ [0, n+ 2), N ∈ N. Then for a constant CN,γ and for
any v ∈ S(Rn) satisfying (3.1) on some Br ≡ Br(x) ⊂ Rn,

ˆ

Br

ˆ

Br

|v(x)− v(y)|2

|x− y|γ
dy dx ≤ CN,γr2N−γ

ˆ

Br

ˆ

Br

∣∣∇Nv(x)−∇Nv(y)
∣∣2 dx dy.

Proof of Proposition 3.4.
It suffices to prove this proposition for B1(0) and then scale the estimate. So let
r = 1. By Proposition 3.1,

ˆ

B1

ˆ

B1

|v(x)− v(y)|2

|x− y|γ
dy dx

≺
ˆ

B1

|∇v(z)|2 dz

(3.1)
≈

ˆ

B1

|∇v(z)− (∇v)B1 |
2
dz

≺
ˆ

B1

ˆ

B1

|∇v(z)−∇v(z2)|2 dz dz2
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Iterating this procedure N times, we conclude.

Proposition 3.4

Proposition 3.5. For any N ∈ N0, s ∈ [0, 1) there is a constant CN,s > 0 such
that the following holds. For any v ∈ S(Rn), r > 0, x0 ∈ Rn such that (3.1) holds
on B4r(x0) we have for all multiindices α, β ∈ (N0)n, |α|+ |β| = N∥∥4 s

2
(
(∂αηr,x0)(∂βv)

)∥∥
L2(Rn)

≤ CN [v]B4r(x0),N+s.

Proof of Proposition 3.5.
The case s = 0 follows by classical Poincaré inequality, so let from now on s ∈
(0, 1). Set

w(y) := (∂αηr(y))(∂βv(y)).

Note that suppw ⊂ B2r. Moreover, by the definition of ηr,x0 we have

|w| ≤ Cα r−|α|
∣∣∂βv∣∣ ≤ CNr|β|−N ∣∣∂βv∣∣. (3.2)

By Proposition 2.33 we have to estimate

‖4 s
2w‖2L2 =

ˆ

Rn

ˆ

Rn

|w(x)− w(y)|2

|x− y|n+2s dx dy

=
ˆ

B4r

ˆ

B4r

|w(x)− w(y)|2

|x− y|n+2s dx dy

+2
ˆ

B4r

ˆ

Rn\B4r

|w(x)− w(y)|2

|x− y|n+2s dx dy

+
ˆ

Rn\B4r

ˆ

Rn\B4r

|w(x)− w(y)|2

|x− y|n+2s dx dy

=
ˆ

B4r

ˆ

B4r

|w(x)− w(y)|2

|x− y|n+2s dx dy

+2
ˆ

B4r

|w(y)|2
ˆ

Rn\B4r

1
|x− y|n+2s dx dy

= I + 2II.
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To estimate II, we use the fact that suppw ⊂ B2r and the second part of Propo-
sition 3.3 to get

|II| ≺ r−2s

ˆ

B4r

|w(y)|2 dy

(3.2)
≺ r2(|β|−N−s)

ˆ

B4r

∣∣∂βv(y)
∣∣2 dy

(3.1)
≺ r2(|β|−N−s)

ˆ

B4r

∣∣∣∂βv(y)−
(
∂βv

)
B4r

∣∣∣2 dy
≺ r2(|β|−N−s)−n

ˆ

B4r

ˆ

B4r

∣∣∂βv(y)− ∂βv(x)
∣∣2 dy dx.

As ∂βv satisfies (3.1) for N − |β|, by Proposition 3.4,ˆ

B4r

ˆ

B4r

∣∣∂βv(y)− ∂βv(x)
∣∣2 dy dx ≺ r2(N−|β|)

ˆ

B4r

ˆ

B4r

∣∣∇Nv(y)−∇Nv(x)
∣∣2.

Furthermore, we have for x, y ∈ B4r

r−n−2s ≺ |x− y|−n−2s
,

which altogether implies that

|II| ≤
ˆ

B4r

ˆ

B4r

∣∣∇Nv(y)−∇Nv(x)
∣∣2.

In order to estimate I, note that

|w(x)− w(y)| ≤ ‖∂αηr‖L∞
∣∣∂βv(x)− ∂βv(y)

∣∣+ ‖∇∂αηr‖L∞ |x− y|
∣∣∂βv(y)

∣∣
≺ r−|α|

∣∣∂βv(x)− ∂βv(y)
∣∣+ r−|α|−1|x− y|

∣∣∂βv(y)
∣∣.

Thus, we can decompose |I| ≺ |I1|+ |I2| where

I1 = r2(|β|−N)

ˆ

B4r

ˆ

B4r

∣∣∂βv(x)− ∂βv(y)
∣∣2

|x− y|n+2s dx dy,

and

I2 = r2(|β|−N−1)

ˆ

B4r

ˆ

B4r

∣∣∂βv(y)
∣∣2

|x− y|n−2+2s dx dy

P.3.3
s<1
≺ r2(|β|−N)−2s

ˆ

B4r

∣∣∂βv(y)
∣∣2 dy

(3.1)
≺ r2(|β|−N)−(n+2s)

ˆ

B4r

ˆ

B4r

∣∣∂βv(y)− ∂βv(z)
∣∣2 dy dz.
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Using again that ∂βv satisfies (3.1) for N − |β| on B4r, by Proposition 3.4

|I1| ≺ r−n−2s

ˆ

B4r

ˆ

B4r

∣∣∇Nu(x)−∇Nu(y)
∣∣2 dx dy

≺
ˆ

B4r

ˆ

B4r

∣∣∇Nu(x)−∇Nu(y)
∣∣2

|x− y|n+2s dx dy,

and the same for I2. This concludes the case s > 0.

Proposition 3.5

Lemma 3.6 (Poincaré’s inequality with mean value condition (Ball)). For any
N ∈ N0, s ∈ [0, N ], t ∈ [0, bsc − s + 1) there is a constant CN,s,t such that the
following holds. For any v ∈ S(Rn) satisfying (3.1) for N and any B4r(x0) ⊂ Rn,
r > 0, we have

‖4 s
2 ηrv‖L2(Rn) ≤ Cs,t r

t [v]B4r(x0),s+t

≤ Cs,t r
t‖4

s+t
2 v‖L2(Rn).

Remark 3.7. One checks in the following proof, that the claim is also satisfied
if v satisfies (3.1) on a ball Bλr for λ ∈ (0, 4). The constant then depends also
on λ.

Proof of Lemma 3.6.
We have

4 s
2 = 4

γ
24 δ

24K

for

γ = s− bsc ∈ [0, 1),

δ = bsc − 2
⌊
bsc
2

⌋
∈ {0, 1},

K =
⌊
bsc
2

⌋
∈ N0.

If δ = 1 this is (cf. Remark 2.14)

4 s
2 = cnRi4

γ
2 ∂i4K ,

and if δ = 0 it is
4 s

2 = cn4
γ
24K .

As the Riesz Transform Ri is a bounded operator from L2 into L2 we can estimate
both cases by

‖4 s
2 (ηrv)‖L2 ≺

∑
α,β∈(N0)n

|α|+|β|=2K+δ

‖4
γ
2
(
(∂αηr)(∂βv)

)
‖L2 .
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This and Proposition 3.5 imply

‖4 s
2 (ηrv)‖2L2 ≺

ˆ

B4r

ˆ

B4r

∣∣∇2K+δv(x)−∇2K+δv(y)
∣∣2

|x− y|n+2s

≺ r2t

ˆ

B4r

ˆ

B4r

∣∣∇2K+δv(x)−∇2K+δv(y)
∣∣2

|x− y|n+2s+2t .

We conclude by using Proposition 2.33.

Lemma 3.6

3.2 On the Annulus

In order to get an estimate similar to Proposition 3.1 on the annulus, Proposition
3.10, we would like to divide the annulus in finitely many convex parts. As this
is clearly not possible, we have to enlarge the non-convex part of the annulus.

Proposition 3.8 (Convex cover). Let A = B2\B1(0) or B2\B 1
2
(0). Then for

each ε > 0 there is λ = λε > 0, M = Mε ∈ N and a family of open sets Cj ⊂ Rn,
j ∈ {1, . . . ,M} such that the following holds.

• For each j ∈ {1, . . . ,M} the set Cj is convex.

• The union

B2\B1 ⊂
M⋃
j=1

Cj ⊂ B2\B1−ε or B2\B 1
2
⊂

M⋃
j=1

Cj ⊂ B2\B 1
2−ε

,

respectively.

• For each i, j ∈ {1, . . . ,M} such that Ci ∩ Cj 6= ∅

conv (Ci ∪ Cj) ⊂ B2\B1−ε or conv (Ci ∪ Cj) ⊂ B2\B 1
2−ε

,

respectively, where conv (Cj ∪ Cj+1) denotes the convex hull of Cj ∪ Cj+1.

• For each x, y ∈ A, at least one of the following conditions holds

(i) |x− y| ≥ λ or
(ii) both x, y ∈ Cj for some j.

Proof of Proposition 3.8.
We sketch the case B1\B 1

2
. For any r > 0 one can cover the sphere {x ∈ Rn :

|x| = 1
2} by a finite number M of subsets Sk, k = 1, . . . ,M such that the diameter

of Sk ∪ Sl for every k, l ∈ {1, . . . ,M} with Sk ∩ Sl 6= ∅ is at most r. Note as well
that as r tends to zero, M explodes, but the Rn-convex hull of Sk ∪ Sl lies in
B 1

2
\B 1

2−ε
, for increasingly small ε. The sets Cj are then defined as

Cj = conv ({x ∈ Rn: |x| < 1, x = αy for α > 1 and y ∈ Sj}) .

As there are only finitely many open sets Cj covering B1\B 1
2

the last condition
is satisfied as well.
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Proposition 3.8

Proposition 3.9. Let A = B2\B1(0) or B2\B 1
2
(0). Then for any ε > 0, there

exists Cε so that the following holds. For any v ∈ S(Rn)
ˆ

A

ˆ

A

|v(x)− v(y)|2 dx dy ≤ Cε
ˆ

Ã

|∇v|2(z) dz,

where Ã = B2\B1−ε(0) or B2\B 1
2−ε

(0), respectively.

Proof of Proposition 3.9.
By Proposition 3.8 we can estimate

ˆ

A

ˆ

A

|v(x)− v(y)|2 dx dy

≤
M∑

i,j=1

ˆ

Ci

ˆ

Cj

|v(x)− v(y)|2 dx dy

=:
M∑

i,j=1

Ii,j .

If i = j we have by convexity of Ci and Proposition 3.1

Ii,j ≤ Cε,Cj
ˆ

Cj

|∇v|2(z) dz ≤ Cε
ˆ

Ã

|∇v|2(z) dz.

If i and j are such that Ci ∩ Cj 6= ∅,

Ii,j ≤
ˆ

conv(Ci∪Cj)

ˆ

conv(Ci∪Cj)

|v(x)− v(y)|2

P.3.1
≺

ˆ

conv(Ci∪Cj)

|∇v|1

P.3.8
≺

ˆ

Ã

|∇v|2.

Finally, in any other case for i, j, there are indices kl ∈ {1, . . . ,M}, l = 1, . . . , L,
such that k1 = i and kL = j and Ckl ∩ Ckl+1 6= 0. Let’s abbreviate

(v)k :=
 
Ck

v.
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With this notation,

Ii,j =
ˆ

Ci

ˆ

Cj

|v(x)− v(y)|2 dx dy

≤ CM

ˆ
Ci

ˆ

Cj

|v(x)− (v)i|2 +
L∑
l=1

∣∣(v)kl − (v)kl+1

∣∣2 + |(v)j − v(y)|2 dx dy


≺ Ii,i + Ij,j +

L∑
l=i

Ikl,ll+1 .

So we can reduce this case for i, j, to the estimates of the previous cases and
conclude.

Proposition 3.9

As a consequence we have

Proposition 3.10. Let A = B2\B1(0) or B2\B 1
2
(0). Then for any ε > 0,

γ ∈ [0, n+ 2) there exists Cε,γ so that the following holds. For any v ∈ S(Rn)
ˆ

A

ˆ

A

|v(x)− v(y)|2

|x− y|γ
dx dy ≤ Cε,γ

ˆ

Ã

|∇v(z)|2 dz,

where Ã = B2\B1−ε(0) or B2\B 1
2−ε

(0), respectively.

Proof of Proposition 3.10.
By Proposition 3.8 we can divide

ˆ

A

ˆ

A

|v(x)− v(y)|2

|x− y|γ
dx dy

≤
M∑
j=1

ˆ

Cj

ˆ

Cj

|v(x)− v(y)|2

|x− y|γ
dx dy + λ−γ

ˆ

A

ˆ

A

|v(x)− v(y)|2 dx dy.

These quantities are estimated by Proposition 3.1 and Proposition 3.9, respec-
tively.

Proposition 3.10

As a consequence of the last estimate, analogously to the case of a Ball, we can
now prove the following Poincaré-inequality:

Lemma 3.11 (Poincaré’s Inequality with mean value condition (Annulus)). For
any N ∈ N0, s ∈ [0, N ], t ∈ [0, bsc− s+ 1) there is a constant CN,s,t such that the
following holds. For any v ∈ S(Rn), x0 ∈ Rn, r > 0 such that v satisfies (3.1)
for N on Ak = B2k+1r(x0)\B2k−1r(x0) or Ak = B2k+1r(x0)\B2kr(x0) and some
x0 ∈ Rn, r > 0 we have

‖4 s
2 ηkr v‖L2(Rn) ≤ Cs,t

(
2kr
)2t

[v]Ãk,s+t,
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where
Ãk = B2k+2r(x0)\B2k−2r(x0).

Proof of Lemma 3.11.
As in the ball case one can reduce the problem to estimate

ˆ

D

ˆ

D

∣∣∂βv(x)− ∂βv(y)
∣∣2

|x− y|n+2s dx dy,

for some slightly thicker D ⊃ Ak and some multiindex |β| ≤ N . Applying Propo-
sition 3.10, the latter integral is estimated (up to a constant depending on the
radius and k), by ˆ

D

∣∣∇∂βv(z)
∣∣2 dz.

Using the mean value property, one can estimate this by
ˆ

D

∣∣∇∂βv(z)− (∇∂βv)Ak
∣∣2 dz

≺
ˆ

D

ˆ

D

∣∣∇∂βv(z)−∇∂βv(z̃)
∣∣2 dz dz̃.

Iterating this (and in every step thickening the set D), one concludes.

Lemma 3.11

Remark 3.12. Again, one checks that the claim is also satisfied if v satisfies
(3.1) on a possibly smaller annulus, making the constant depending also on this
scaling.

3.3 Estimate of Mean Value Polynomials

For a domain D ⊂ Rn and N ∈ N0 and for v ∈ S(Rn) we define the polynomial
P (v) ≡ PD,N (v) to be the polynomial of order N such that

 

D

∂α(v − P (v)) = 0, for every multiindex α ∈ (N0)n, |α| ≤ N . (3.3)

The goal of this section is to estimate in Lemma 3.16 and in Lemma 3.17 the
difference

PBr (v)− PB2kr(v)\B2k−1r

in terms of 4 s
2 v. This is done analogously to the proof of [DLR09a, Lemma 4.2],

only that we have to extend their argument to polynomials of degree greater than
0.
We will need an inductive description of P (v). First, for a multiindex α =
(α1, . . . , αn) set

α! := α1! . . . αn! = ∂αxα.
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For i ∈ {0, . . . , N} set

QiD,N (v) := Qi+1
D,N (v) +

∑
|α|=i

1
α!

xα
 

D

∂α(v −Qi+1
D,N (v)),

QND,N (v) :=
∑
|α|=N

1
α!

xα
 

D

∂αv.

(3.4)

One checks that
∂αQi = ∂αP, whenever |α| ≥ i, (3.5)

and in particular Q0 = P .
Moreover we will introduce the following sets of annuli:

Aj ≡ Aj(r) = B2jr\B2j−1r, Ãj ≡ Ãj(r) := Aj ∪Aj+1.

Proposition 3.13. For any N ∈ N, s ∈ (N,N + 1), D ⊂ D2 ⊂ Rn bounded
domains there is a constant CD2,D,N,s such that the following holds: Let v ∈
S(Rn). For any multiindex α ∈ (N0)n such that |α| = i ≤ N − 1,

ˆ

D2

∣∣∣∂α(v −Qi+1
D,N (v))−

(
∂α(v −Qi+1

D,N (v))
)
D

∣∣∣
≤ CD2,D,N,s

(
|D2|
|D1|

) 1
2

diam(D2)
n
2 +s−N [v]D2,s

where [v]D,s is defined as in (2.19).
If D = rD̃, D2 = rD̃2, then CD2,D,N,s = rN−iCD̃2,D̃,N,s

.

Proof of Proposition 3.13.
Let us denote

I :=
ˆ

D2

∣∣∣∂α(v −Qi+1
D,N )−

(
∂α(v −Qi+1

D (v))
)
D

∣∣∣.
A first application of Hölder- and classical Poincaré’s inequality yields

I ≤ CD,D2 |D2|
1
2 ‖∇∂α(v −Qi+1

D,N )‖L2(D2).

Next, (3.5) and the definition of P in (3.3) imply that we can apply classical
Poincaré inequality N − i times more, to estimate I by

≤ CD2,D,N |D2|
1
2 ‖∇N (v − PD,N (v))‖L2(D2)

= CD2,D,N |D2|
1
2 ‖∇Nv −

(
∇Nv

)
D
‖L2(D2)

≤ CD2,D,N

(
|D2|
|D1|

) 1
2

ˆ

D2

ˆ

D2

∣∣∇Nv(x)−∇Nv(y)
∣∣2 dx dy

 1
2

,
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which is bounded by

CD2,D,N

(
|D2|
|D1|

) 1
2

diam(D2)
n+2(s−N)

2

ˆ

D2

ˆ

D2

∣∣∇Nv(x)−∇Nv(y)
∣∣2

|x− y|n+2(s−N)
dx dy

 1
2

,

The scaling factor for D = rD̃ then follows by the according scaling factors of
Poincaré’s inequality.

Proposition 3.13

Proposition 3.14. For any N ∈ N0, s ∈ (N,N+1), there is a constant CN,s > 0
such that the following holds: For any j ∈ Z, any multiindex |α| ≤ i ≤ N and
v ∈ S(Rn) ∥∥∥∂α (QiAj −QiAj+1

)∥∥∥
L∞(Aj)

≤ CN,s(2jr)s−|α|−
n
2 [v]Ãj ,s.

Proof of Proposition 3.14.
Assume first that i = N . Then

‖∂α(QNAj −Q
N
Aj+1

)‖L∞(Aj)

(3.4)
≺ (2jr)N−|α|

1
|Aj |2

ˆ

Ãj

ˆ

Ãj

∣∣∇Nv(x)−∇Nv(y)
∣∣ dx dy

≺ (2jr)N−|α|
1
|Aj |

ˆ
Ãj

ˆ

Ãj

∣∣∇Nv(x)−∇Nv(y)
∣∣2 dx dy


1
2

≺ (2jr)−|α|−
n
2 +s[v]Ãj ,s.

Now let i ≤ N − 1 and assume we have proven the claim for i+ 1. By (3.4),

QiAj −Q
i
Aj+1

= Qi+1
Aj
−Qi+1

Aj+1

+
∑
|β|=i

1
β!

xβ

 
Aj

∂β(v −Qi+1
Aj+1

)−
 

Aj+1

∂β(v −Qi+1
Aj+1

)


+
∑
|β|=i

1
β!

xβ

 
Aj

∂β(Qi+1
Aj+1

−Qi+1
Aj

)

 .
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Consequently,

‖∂α(QiAj −Q
i
Aj+1

)‖L∞(Aj)

≺ ‖∂α(Qi+1
Aj
−Qi+1

Aj+1
)‖L∞(Aj)

+(2jr)i−|α|
∑
|β|=i

 

Aj

∣∣∣∣∣∣∣∂β(v −Qi+1
Aj+1

)−
 

Aj+1

∂β(v −Qi+1
Aj+1

)

∣∣∣∣∣∣∣
+(2jr)i−|α|

∑
|β|=i

‖∂β(Qi+1
Aj+1

−Qi+1
Aj

)‖L∞(Aj).

Then the claim for i+ 1 and Proposition 3.13 conclude the proof.

Proposition 3.14

Proposition 3.15. For any N ∈ N0, s ∈ (N,N + 1) there is a constant CN,s
such that the following holds. For any multiindex α ∈ (N0)n, |α| ≤ i ≤ N , for
any r > 0, k ∈ Z and any v ∈ S(Rn) if s− ĩ− n

2 6= 0 for any ĩ ∈ {i, . . . , N},

‖∂α(QiBr −Q
i
Ak

)‖L∞(Ãk) ≤ CN,s r
s−|α|−n2

(
2k(s−|α|−n2 ) + 2k(i−|α|)

)
[v]Rn,s,

and if s− ĩ− n
2 = 0 for any ĩ ∈ {i, . . . , N}

‖∂α(QiBr −Q
i
Ak

)‖L∞(Ãk)

≤ CN,s rs−|α|−
n
2 2k(i−|α|)

(
|k|+ 1 + 2k(s−i−n2 )

)
[v]Rn,s.

Here, Ak = B2k+1r(x)\B2kr(x) and Ãk = B2k+1r(x)\B2k−1r(x).

Proof of Proposition 3.15.
For the sake of shortness of presentation, let us abbreviate

di,αk := ‖∂α(QiBr −Q
i
Ak

)‖L∞(Ãk).

Assume first i = N .

dN,αk

(3.4)
≺

∥∥∥∥∥∥
∑
|β|=N

∂αxβ

β!

 
Br

∂βv −
 

Ak

∂βv

∥∥∥∥∥∥
L∞(Ãk)

≺ (2kr)N−|α|

∣∣∣∣∣∣
 

Br

∇Nv −
 

Ak

∇Nv

∣∣∣∣∣∣
≈ (2kr)N−|α|

∣∣∣∣∣∣
0∑

l=−∞

|Al|
|Br|

 

Al

∇Nv −
 

Ak

∇Nv

∣∣∣∣∣∣.
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As |Al||Br| = 2ln(1− 2−n) and thus
0∑

l=−∞

|Al|
|Br| = 1 we estimate formally further

dN,αk

≺ (2kr)N−|α|
0∑

l=−∞

2ln

∣∣∣∣∣∣
 

Al

∇Nv −
 

Ak

∇Nv

∣∣∣∣∣∣
≺ (2kr)N−|α|

0∑
l=−∞

2ln
k−1∑
j=l

∣∣∣∣∣∣∣
 

Aj

∇Nv −
 

Aj+1

∇Nv

∣∣∣∣∣∣∣
≺ (2kr)N−|α|

0∑
l=−∞

2ln
k−1∑
j=l

(2jr)−n

ˆ
Ãj

ˆ

Ãj

∣∣∇Nv(x)−∇Nv(y)
∣∣2 dx dy


1
2

≺ (2kr)N−|α|
0∑

l=−∞

2ln
k−1∑
j=l

(2jr)−
n
2 +s−N [v]Ãj ,s.

If k > 0 this estimate is written correctly, if k ≤ 0 we mean

dN,αk ≺ (2k)N−|α|rs−
n
2−|α|

( k−1∑
l=−∞

2ln
k−1∑
j=l

2j(−
n
2 +s−N) [v]Ãj ,s

+
0∑
l=k

2ln
l−1∑
j=k

2j(−
n
2 +s−N) [v]Ãj ,s

)
.

Now we have to take care, whether s− n
2 −N = 0 or not. Let

ak :=

{
2k(s−n2−N), if s− n

2 −N 6= 0,
|k|, if s− n

2 −N = 0,

and respectively,

bl :=

{
2l(s−

n
2−N), if s− n

2 −N 6= 0,
|l|, if s− n

2 −N = 0.

With this notation, applying Hölder’s inequality for series, dN,αk is estimated in-
dependently of whether k > 0 or not,

(2k)N−|α|rs−|α|−
n
2

0∑
l=−∞

2ln (ak + bl)

 ∞∑
j=−∞

[v]2
Ãj ,s

 1
2

≺ rs−
n
2−|α|2k(N−α)ak[v]Rn,s + (2k)N−|α|rs−|α|−

n
2

0∑
l=−∞

2lnbl[v]Rn,s

≺ rs−
n
2−|α| [v]Rn,s

(
2k(N−|α|)ak + (2k)N−|α|

)
.
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This concludes the case i = N . Next, let i < N and assume the claim is proven
for i+ 1.

di,αk = ‖∂α(QiBr −Q
i
Ak

)‖L∞(Ak0 )

(3.4)
≺ di+1,α

k +
∑
|β|=i

(
2kr
)i−|α| ∣∣∣∣∣∣

 

Br

∂β(v −Qi+1
Br

)−
 

Ak

∂β(v −Qi+1
Ak

)

∣∣∣∣∣∣
≺ di+1,α

k

+
∑
|β|=i

(
2kr
)i−|α|

cn

0∑
l=−∞

2ln

∣∣∣∣∣∣
 

Al

∂β(v −Qi+1
Br

)−
 

Ak

∂β(v −Qi+1
Ak

)

∣∣∣∣∣∣,
where cn2ln = |Al|

|Br| , so
0∑

l=−∞
cn2ln = 1 as we have done in the case i = N above.

We estimate further,
≺ di+1,α

k +

+
∑
|β|=i

(
2kr
)i−|α| 0∑

l=−∞

2ln

di+1,β
l +

∣∣∣∣∣∣
 

Al

∂β(v −Qi+1
Al

)−
 

Ak

∂β(v −Qi+1
Ak

)

∣∣∣∣∣∣
 .

As above in the case i = N we use a telescoping series to write∣∣∣∣∣∣
 

Al

∂β(v −Qi+1
Al

)−
 

Ak

∂β(v −Qi+1
Ak

)

∣∣∣∣∣∣
≤

k−1∑
j=l

∣∣∣∣∣∣∣
 

Aj

∂β(v −Qi+1
Aj

)−
 

Aj+1

∂β(v −Qi+1
Aj+1

)

∣∣∣∣∣∣∣
≺

k−1∑
j=l

∥∥∥∂β(Qi+1
Aj
−Qi+1

Aj+1
)
∥∥∥
L∞(Aj)

+
 

Ãj

∣∣∣∣∣∣∣∂β(v −Qi+1
Aj+1

)−
 

Aj+1

∂β(v −Qi+1
Aj+1

)

∣∣∣∣∣∣∣
≈

k−1∑
j=l

(Ij + IIj).

Again we should have taken care of whether l < k − 1 or k − 1 ≤ l, but as in the
case i = N both cases are treated the same way. The first term is estimated by
Proposition 3.14,

Ij ≺
(
2jr
)s−|β|−n2 [v]Ãj ,s =

(
2jr
)s−i−n2 [v]Ãj ,s.

And by Proposition 3.13,

IIj ≺ (2jr)−n+n
2 +s−i [v]Ãj ,s = (2jr)s−i−

n
2 [v]Ãj ,s.
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Hence, ∣∣∣∣∣∣
 

Al

∂β(v −Qi+1
Al

)−
 

Ak

∂β(v −Qi+1
Ak

)

∣∣∣∣∣∣
≺ rs−i−

n
2

k−1∑
j=l

(2j)s−i−
n
2 [v]Ãj ,s

≺ rs−i−
n
2 (ak + bk)

k−1∑
j=l

[v]2
Ãj ,s

 1
2

,

for ak and bk similar to the i = N case above defined as

ak :=

{
2k(s−n2−i), if s− n

2 −N 6= 0,
|k|, if s− n

2 −N = 0,

and respectively,

bl :=

{
2l(s−

n
2−i), if s− n

2 −N 6= 0,
|l|, if s− n

2 −N = 0.

Plugging all these estimates in, we have achieved the following estimate

di,αk

≺ di+1,α
k +

∑
|β|=i

(
2kr
)i−|α| 0∑

l=−∞

2lndi+1,β
l

+rs−|α|−
n
2 2k(i−|α|) (ak + 1) [v]Rn,s.

In either case, whether s − n
2 − ĩ = 0 for some ĩ ≥ i or not, using the claim for

i+ 1 we have

∑
|β|=i

(
2kr
)i−|α| 0∑

l=−∞

2lndi+1,β
l ≺ CN,s rs−

n
2−|α|,

and thus can conclude.

Proposition 3.15

As an immediate consequence of Proposition 3.15 we get

Lemma 3.16. For a uniform constant C > 0, for any v ∈ S(Rn), r > 0, k ∈ N

‖ηkr (PBr,bn2 c(v)− PAk,bn2 c(v))‖L∞(Rn) ≤ C (1 + |k|)‖4n
4 v‖L2(Rn).

Here, Ak = B2k+1r(x)\B2kr(x) and Ãk = B2k+1r(x)\B2k−1r(x).

We will need moreover a little sharper version of Lemma 3.16. We will state this
for s = n

2 to shorten the presentation.
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Lemma 3.17. Let N := dn2 e − 1 and γ > N . Then for γ̃ = −N + min(n, γ) and
for any v ∈ S(Rn), Br(x0) ⊂ Rn, r > 0,

∞∑
k=1

2−γk ‖(PBr,N (v)− PAk,N (v))‖L∞(Ãk) ≤ Cγ
∞∑

j=−∞
2−|j|γ̃ [v]Ãj ,n2 .

Here, Ak = B2k+1r(x)\B2kr(x) and Ãk = B2k+1r(x)\B2k−1r(x).

Proof of Lemma 3.17.
As in the proof of Proposition 3.15, set

di,αk := ‖∂α(QiBr −Q
i
Ak

)‖L∞(Ãk).

Moreover, we set

Si,αγ :=
∞∑
k=1

2−γk di,αk

and

Si,α−γ :=
0∑

k=−∞

2γk di,αk .

Then, by the calculations in the proof of Proposition 3.15,

SN,αγ ≺ r−|α|
∞∑
k=1

0∑
l=−∞

k−1∑
j=l

2−jN+ln−γk+kN−k|α| [v]Ãj ,n2

= r−|α|
0∑

j=−∞
2−jN [v]Ãj ,n2

j∑
l=−∞

∞∑
k=1

2ln 2k(N−γ−|α|)

+r−|α|
∞∑
j=1

2−jN [v]Ãj ,n2

0∑
l=−∞

∞∑
k=j+1

2ln 2k(N−γ−|α|)

γ>N
≺ r−|α|

0∑
j=−∞

2j(n−N) [v]Ãj ,n2

+r−|α|
∞∑
j=1

2j(−γ−|α|) [v]Ãj ,n2 .
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Similarly,

SN,α−γ ≺ r−|α|
0∑

k=−∞

k−1∑
l=−∞

k−1∑
j=l

2−jN+ln+γk+kN−k|α| [v]Ãj ,n2

+r−|α|
0∑

k=−∞

0∑
l=k

l−1∑
j=k

2−jN+ln+γk+kN−k|α| [v]Ãj ,n2

≺ r−|α|
0∑

j=−∞
2−jN [v]Ãj ,n2

0∑
k=j+1

j∑
l=−∞

2ln2k(γ+N−|α|)

+r−|α|
0∑

j=−∞
2−jN [v]Ãj ,n2

j∑
k=−∞

0∑
l=j+1

2ln2k(γ+N−|α|)

≺ r−|α|
0∑

j=−∞
2j(n−N)[v]Ãj ,n2

+r−|α|
0∑

j=−∞
2j(γ−|α|)[v]Ãj ,n2 .

For 0 ≤ i ≤ N − 1,

Si,αγ ≺ Si+1,α
γ

+ri−|α|
∑
|β|=i

∞∑
k=1

2k(i−|α|−γ)Si+1,β
−n

+r−|α|
∞∑
k=1

2k(i−|α|−γ)
0∑

l=−∞

2ln
k−1∑
j=l

2−ji [v]Ãj ,n2

γ>i
≺ Si+1,α

γ

+ri−|α|
∑
|β|=i

Si+1,β
−n

+r−|α|
0∑

j=−∞
2j(n−i) [v]Ãj ,n2

+r−|α|
∞∑
j=1

2j(−γ−|α|) [v]Ãj ,n2

i≤N
≺ Si+1,α

γ

+ri−|α|
∑
|β|=i

Si+1,β
−n

+r−|α|
0∑

j=−∞
2j(n−N) [v]Ãj ,n2

+r−|α|
∞∑
j=1

2j(−γ−|α|) [v]Ãj ,n2 .
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And

Si,α−γ ≺ Si+1,α
−γ

+ri−|α|
∑
|β|=i

0∑
k=−∞

2k(i−|α|+γ)Si+1,β
−n

+r−|α|
0∑

k=−∞

2k(i−|α|+γ)
k−1∑
l=−∞

2ln
k−1∑
j=l

2−ji [v]Ãj ,n2

+r−|α|
0∑

k=−∞

2k(i−|α|+γ)
0∑
l=k

2ln
l∑

j=k−1

2−ji [v]Ãj ,n2

≺ Si+1,α
−γ

+ri−|α|
∑
|β|=i

Si+1,β
−n

+r−|α|
0∑

j=−∞
2−ji[v]Ãj ,n2

j∑
l=−∞

0∑
k=j+1

2ln2k(i−|α|+γ)

+r−|α|
0∑

j=−∞
2−ji[v]Ãj ,n2

j∑
k=−∞

0∑
l=j

2ln2k(i−|α|+γ)

≺ Si+1,α
−γ

+ri−|α|
∑
|β|=i

Si+1,β
−n

+r−|α|
0∑

j=−∞
2j(n−i)[v]Ãj ,n2

+r−|α|
0∑

j=−∞
2j(γ−|α|)[v]Ãj ,n2

i≤N
≺ Si+1,α

−γ

+ri−|α|
∑
|β|=i

Si+1,β
−n

+r−|α|
0∑

j=−∞
2j(n−N)[v]Ãj ,n2

+r−|α|
0∑

j=−∞
2j(γ−|α|)[v]Ãj ,n2

Consequently, one can prove by induction for i ∈ {0, . . . , N}, that whenever
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γ > N , |α| ≤ i, for γ̃ := min(n−N, γ + |α|)

Si,αγ + Si,α−γ ≤ Cγ,N

r−|α| ∞∑
j=−∞

2−|j|γ̃ [v]Ãj ,n2

 . (3.6)

Taking i = 0, α = 0, we conclude.

Lemma 3.17

3.4 Poincaré-like results if the mean value far away vanishes

Proposition 3.18. There exists a constant C > 0 such that for any r > 0,
x0 ∈ Rn, k ∈ N0, v ∈ S(Rn) we have

‖ηkr,x0
(v − P )‖L2(Rn) ≤ C

(
2kr
)n

2 (1 + |k|) ‖4n
4 v‖L2(Rn),

where P is the polynomial of order
⌈
n
2

⌉
−1 such that v−P satisfies the mean value

condition (3.1) in B2r. Here, in a slight abuse of notation for k = 0, ηkr ≡ ηr−η 1
2 r

for η from Section 2.4.

Proof of Proposition 3.18.
Let Pk be the polynomial of order N =

⌈
n
2

⌉
− 1 such that v satisfies the mean

value condition (3.1) in B2kr\B2k−1r. We then have,

‖ηkr (v − P )‖L2(Rn) ≺ ‖ηkr (v − Pk)‖L2(Rn) +
(
2kr
)n

2 ‖P − Pk‖L∞(B2k+1r\B2k−1r).

As Lemma 3.16 estimates the second part of the last estimate, we are left to
estimate

‖ηkr (v − Pk)‖L2(Rn) ≤ C
(
2kr
)n

2 ‖4n
4 v‖L2(Rn).

But this is rather easy, as by classical Poincaré inequality and the fact that by
choice of Pk the mean values over B2kr\B2k−1r of all derivatives up to order bn2 c
of v − Pk are zero, so

‖ηkr (v − Pk)‖L2(Rn) ≺
(
2kr
)bn2 c ‖∇bn2 c(v − Pk)‖L2(B2k+1r\B2k−1r).

If n is odd, we use again use the mean value condition to see

‖∇N (v − Pk)‖2L2(B2k+1r\B2k−1r)

≺
 

B2kr\B2k−1r

ˆ

B2k+1r\B2k−1r

∣∣∇Nv(x)−∇Nv(y)
∣∣2 dx dy

≺
(
2kr
)n ˆ

B2k+1r\B2k−1r

ˆ

B2k+1r\B2k−1r

∣∣∇Nv(x)−∇Nv(y)
∣∣2

|x− y|2n
dx dy

≺
(
2kr
)n ‖4n

4 v‖2L2(Rn).

Taking the square root of the last estimate, one concludes.

Proposition 3.18
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4 Higher Integrability and Compensation Phe-
nomena

We will frequently use the following operator

H(u, v) := 4n
4 (uv)− (4n

4 u)v − u4n
4 v, u, v ∈ S(Rn). (4.1)

Although there is no product rule making H(u, v) ≡ 0, or H(u, v) an operator of
lower order, in some way this quantity still acts like an operator of lower order,
as Lemma 4.3 shows.
This was observed in [DLR09a]. As remarked there, the compensation phenomena
that appear are very similar to the ones in Wente’s inequality (cf. the introduc-
tion of [DLR09a] for more on that). In fact, even Tartar’s proof in [Tar85] still
works.

In this section we present a rather easy estimate which somehow models the
compensation phenomenon: More specifically, for p ≥ 0 we are going to treat in
Corollary 4.2 the quantity

||x− y|p − |y|p − |x|p|.

Proposition 4.1. For any x, y ∈ Rn and any p > 0 we have

||x− y|p − |y|p| ≤ Cp

{
|x|p if p ∈ (0, 1),
|x|p + |x||y|p−1 if p > 1.

Proof of Proposition 4.1.
The inequality is obviously true if |y| ≤ 2|x| or x = 0. So assume x 6= 0 and
2|x| < |y|, in particular,

|y − tx| ≥ |y| − t|x| ≥
(

1− t

2

)
|y| ≥ |x|, for any t ∈ (0, 1). (4.2)

We use Taylor expansion to write

||x− y|p − |y|p| ≺
bpc∑
k=1

∣∣∣∣ dkdtk ∣∣∣t=0
|y − tx|p

∣∣∣∣+ sup
t∈(0,1)

∣∣∣∣ dbpc+1

dtbpc+1
|y − tx|p

∣∣∣∣.
For k ≥ 1, ∣∣∣∣ dkdtk |y − tx|p

∣∣∣∣ ≺ |y − tx|p−k|x|k.
So for 1 ≤ k ≤ bpc,∣∣∣∣ dkdtk ∣∣∣t=0

|x− ty|p
∣∣∣∣ ≺ |y|p−k |x|k ≺ |x|p + |x||y|p−1

.

For k = bpc+ 1 > p, s ∈ (0, 1),∣∣∣∣ dkdsk |y − sx|p
∣∣∣∣ ≺ |y − sx|p−k|x|k (4.2)

≺ |x|p.
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Proposition 4.1

Proposition 4.1 has the following consequence

Corollary 4.2. For any x, y ∈ Rn and any p > 0, θ ∈ [0, 1] we have for a uniform
constant Cp > 0

||x− y|p − |y|p − |x|p| ≤ Cp

{
|x|pθ |y|p(1−θ) if p ∈ (0, 1],
|x|p−1|y|+ |x||y|p−1 if p > 1.

Proof of Corollary 4.2.
We only prove the case p > 1, the case p ∈ (0, 1) is similar. By Proposition 4.1,

||x− y|p − |y|p − |x|p|

≺ min {|x|p, |y|p}+ |x|p−1|y|+ |y|p−1|x|

≤ 2|x|p−1|y|+ 2|y|p−1|x|.

Corollary 4.2

Lemma 4.3. For any u, v ∈ S(Rn) we have in the case n = 1, 2

|H(u, v)∧(ξ)| ≤ C
∣∣(4n

8 u)∧
∣∣ ∗ ∣∣(4n

8 v)∧
∣∣,

and in the case n ≥ 3

|(H(u, v))∧(ξ)| ≤ C
∣∣∣(4n−2

4 u)∧
∣∣∣ ∗ ∣∣∣(4 1

2 v)∧
∣∣∣+ C

∣∣∣(4 1
2u)∧

∣∣∣ ∗ ∣∣∣(4n−2
4 v)∧

∣∣∣.
Proof of Lemma 4.3.
As u, v ∈ S(Rn) one checks that H(u, v) ∈ L2(Rn) and thus its the Fourier-
Transformation is well defined. Consequently,

(H(u, v))∧(ξ) = |ξ|
n
2 u∧ ∗ v∧(ξ)− u∧ ∗ (|·|

n
2 v∧)(ξ)− v∧ ∗ (|·|

n
2 u∧)(ξ)

=
ˆ

Rn

u∧(ξ − y) v∧(y)
(
|ξ|

n
2 − |y|

n
2 − |x− ξ|

n
2

)
dy.

If n = 1, 2 Corollary 4.2 gives∣∣∣|ξ|n2 − |y|n2 − |ξ − y|n2 ∣∣∣ ≤ C |y|n4 |ξ − y|n4 ,
in the case n ≥ 3 we have∣∣∣|ξ|n2 − |y|n2 − |ξ − y|n2 ∣∣∣ ≤ C (|y|

n−2
2 |ξ − y|+ |ξ − y|

n−2
2 |y|).

This gives the claim.

Lemma 4.3
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Theorem 4.4. (cf. [Tar85], [DLR09a, Theorem 1.2, Theorem 1.3], [DLR09b])
Let u, v ∈ S(Rn) and set

H(u, v) := 4n
4 (uv)− v4n

4 u− u4n
4 v.

Then,
‖H(u, v)∧‖L2,1(Rn) ≤ Cn ‖4

n
4 u‖L2(Rn) ‖4

4
2 v‖L2(Rn).

and
‖H(u, v)‖L2(Rn) ≤ Cn ‖(4

4
2u)∧‖L2,∞(Rn) ‖4

4
2 v‖L2(Rn).

In particular,

‖H(u, v)‖L2(Rn) ≤ Cn ‖4
n
4 u‖L2(Rn) ‖4

n
4 v‖L2(Rn).

Proof of Theorem 4.4.
Lemma 4.3 implies, in the case n = 1, 2

|(H(u, v))∧| ≤ C
(
|·|−

n
4
∣∣(4n

4 u)∧
∣∣) ∗ (|·|−n4 ∣∣(4n

4 v)∧
∣∣)

and in the case n ≥ 3

|(H(u, v))∧| ≤ C
(
|·|−1∣∣(4n

4 u)∧
∣∣) ∗ (|·|−n−2

2
∣∣(4n

4 v)∧
∣∣)

+C
(
|·|−

n−2
2
∣∣(4n

4 u)∧
∣∣) ∗ (|·|−1∣∣(4n

4 v)∧
∣∣) .

Now we use Hölder’s inequality: By Proposition 2.9 we have that

|·|−
n
4 ∈ L4,∞(Rn), L2 · L4,∞ ⊂ L 4

3 ,2, L2,∞ · L4,∞ ⊂ L 4
3 ,∞,

|·|−1 ∈ Ln,∞(Rn), L2 · Ln,∞ ⊂ L
2n
n+2 ,2, L2,∞ · Ln,∞ ⊂ L

2n
n+2 ,∞,

|·|−
n−2

2 ∈ L
2n
n−2 ,∞(Rn), L2 · L

2n
n−2 ,∞ ⊂ L

n
n−1 ,2, L2,∞ · L

2n
n−2 ,∞ ⊂ L

n
n−1 ,∞.

Moreover, convolution acts as follows

L
4
3 ,2 ∗ L 4

3 ,2 ⊂ L2,1, L
4
3 ,∞ ∗ L 4

3 ,2 ⊂ L2,

L
2n
n+2 ,2 ∗ L

n
n−1 ,2 ⊂ L2,1, L

2n
n+2 ,2 ∗ L

n
n−1 ,∞ + L

2n
n+2 ,∞ ∗ L

n
n−1 ,2 ⊂ L2.

We can conclude.

Theorem 4.4

5 Localization Results for the fractional Lapla-
cian

Even though 4s is a nonlocal operator, its “differentiating force” concentrates
around the point evaluated. Thus, to estimate 4 s

2 at a given point x one has to
look “only around” x. In this spirit the following results hold.
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5.1 Multiplication with disjoint support

The following result is used many times in [DLR09a]. For the sake of overview,
we state it as a Lemma:

Lemma 5.1. Let M be an operator with Fourier multiplier m ∈ S(Rn), m ∈
C∞(Rn\{0}), i.e.

Mv := (mv∨)∧.

If m is homogeneous of order δ > −n, for any a, b ∈ C∞0 (Rn) such that for some
γ, d > 0, x ∈ Rn, supp a ⊂ Bγ(x) and supp b ⊂ Rn\Bd+γ(x),

ˆ

Rn

a Mb ≤ CM d−n−δ ‖a‖L1(Rn) ‖b‖L1(Rn).

An immediate corollary, taking m := |·|s+t, is

Corollary 5.2. Let s, t > −n. Then, for all a, b ∈ S, such that for some d, γ > 0,
supp a ⊂ Bγ(x) and supp b ⊂ Rn\Bd+γ(x),

ˆ

Rn

4 s
2 a 4 t

2 b ≤ Cn,s,t d−(n+s+t) ‖a‖L1 ‖b‖L1

Lemma 5.1 follows from the following proposition, using that by the transla-
tion invariance of multiplier operators one can assume that supp a ⊂ Bγ(0) and
supp b ⊂ Rn\Bγ+d(0).

Proposition 5.3. Let m ∈ S ′ and m ∈ C∞(Rn\{0}). If for some δ > −n we
have that m(λx) = λδm(x) for any x ∈ Rn, λ > 0, then

ˆ

Rn

m ϕ∧ ≤ Cm d−n−δ ‖ϕ‖L1(Rn), for any ϕ ∈ C∞0 (Rn\Bd(0)), d > 0.

Proposition 5.3 again follows from some general facts about the Fourier Transform
on tempered distributions:

Proposition 5.4 (Smoothness takes over to Fourier Transform). Let f ∈ S ′(Rn)
and f ∈ C∞(Rn\{0}), i.e. assume there is f̃ ∈ C∞(Rn\{0}) such that

f [ϕ] =
ˆ

Rn

f̃ϕ, for all ϕ ∈ S, suppϕ ⊂ Rn\{0}.

If moreover f is weakly homogeneous of order δ ∈ R, i.e.

f [ϕ(λ·)] = λ−n−δf [ϕ], for all ϕ ∈ S,

then f∧, f∨ ∈ S ′(Rn) also belong to C∞(Rn\{0}).

Proof of Proposition 5.4.
We refer to [Gra08, Proposition 2.4.8].
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Proposition 5.4

Proposition 5.5 (Homogeneity takes over to Fourier Transform). Let f ∈ S ′(Rn).
If f is weakly homogeneous of order δ ∈ R, then g = f∨ ∈ S ′(Rn) is homogeneous
of order γ = −n− δ.

Proof of Proposition 5.5.
Just by the definition of Fourier transform on tempered distributions,

f∨[ϕ(λ·)] = f [ϕ(λ·)∧] = λ−nf [ϕ∧(
1
λ
·)] = λ−nλ−(−n−γ)f [ϕ∧(

1
λ
·)].

Proposition 5.5

Proposition 5.6 (Weak Homogeneity and Strong Homogeneity). Let g ∈ S ′(Rn),
g ∈ C∞(Rn\{0}). If g is weakly homogeneous of order γ, then also pointwise

g(λx) = λγg(x), for every x ∈ Rn\{0}, λ > 0.

Proof of Proposition 5.6.
We have for any ϕ ∈ S(Rn) with support away from 0, and any λ > 0

g[ϕ(λ−1·)] =
ˆ
g̃(x) ϕ(λ−1x) dx = λn

ˆ
g̃(λz) ϕ(z)dz

and by homogeneity
λn+γg[ϕ] = g[ϕ(λ−1·)].

Thus, ˆ

Rn

(λγ g̃(x)− g̃(λx))ϕ(x) = 0, for any ϕ ∈ S, 0 6∈ suppϕ

which implies λγ g̃(x) = g̃(λx) for any x 6= 0.

Proposition 5.6

Proposition 5.7 (Strong Homogeneity). Let g ∈ S ′(Rn), g ∈ C∞(Rn\{0}). If
there is γ ≤ 0 such that

g(λx) = λγg(x) for every x ∈ Rn\{0}, λ > 0

thenˆ
g ϕ ≤ dγ‖g‖L∞(Sn−1) ‖ϕ‖L1(Rn), for every ϕ ∈ C∞0 (Rn\Bd(0)), d > 0.

Proof of Proposition 5.7.
For every ϕ ∈ C∞0 (Rn\Bd(0)), d > 0, we have

ˆ
g(x) ϕ(x) dx =

ˆ
|x|γ g

(
x

|x|

)
ϕ(x) dx

γ≤0

≤ |d|γ‖g‖L∞(Sn−1) ‖ϕ‖L1(Rn).

Proposition 5.7

Proposition 5.4 - Proposition 5.7 imply Proposition 5.3.
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5.2 Equations with disjoint support localize

As a consequence of Corollary 5.2 we can de facto localize our equations, i.e.
replace multiplications of nonlocal operators applied to mappings with disjoint
support (which would be zero in the case of local operators) by an operator of
order zero:

Lemma 5.8 (Localizing). Let a ∈ H n
2 (Rn). Assume there is d, γ > 0, x ∈ Rn

such that for E := Bγ+d(x), supp a ⊂ Rn\E. Then there is a function b ∈ L2(Rn)
such that for D := Bd(x)

ˆ

Rn

4n
4 a 4n

4 ϕ =
ˆ

Rn

b ϕ, for every ϕ ∈ C∞0 (D)

and
‖b‖L2(Rn) ≤ CD,E‖a‖L2(Rn).

Proof of Lemma 5.8.
We are going to show that

|f(ϕ)| :=

∣∣∣∣∣∣
ˆ

Rn

4n
4 a 4n

4 ϕ

∣∣∣∣∣∣ ≤ CD,E‖ϕ‖L2(Rn) for every ϕ ∈ C∞0 (D). (5.1)

Then f(·) is a linear and bounded operator on the dense subspace C∞0 (D) ⊂
L2(D). Hence, it is extendable to all of L2(D). Being a linear functional, by
Riesz’ representation theorem there exists b ∈ L2(D) such that f(ϕ) = 〈b, ϕ〉L2(D)

for every ϕ ∈ L2(D).
It remains to prove (5.1), which is done as in the proofs of [DLR09a]. Set r :=
1
2 (γ + d), so that E ⊃ B2r(x) ⊃ D. Applying Corollary 5.2

ˆ

Rn

4n
4 a 4n

4 ϕ =
∞∑
k=0

ˆ

Rn

4n
4 (ηkr,xa) 4n

4 ϕ

C.5.2
≺

∞∑
k=1

2−2kn‖ηkra‖L1(Rn)‖ϕ‖L1(Rn)

≺
∞∑
k=1

2−
3
2kn‖ηkra‖L2(Rn)‖ϕ‖L1(Rn)

≺
∞∑
k=1

2−
3
2kn‖a‖L2(Rn)‖ϕ‖L2(D)

≺ ‖a‖L2(Rn)‖ϕ‖L2(D).

Lemma 5.8
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5.3 Hodge decomposition: Local estimates of s-harmonic
functions

If for an integrable function h we have weakly 4h = 0 in a, say, big ball, we can
estimate

‖h‖L2(Br) ≤ C
(
r

ρ

)2

‖h‖L2(Bρ), for 0 < r < ρ.

The goal of this subsection is to prove in Lemma 5.11 a similar estimate, for the
nonlocal operator 4 s

2 .
Again, we premise some estimates:

Proposition 5.9. Let s ∈ (0, n2 ). Then for any v ∈ S(Rn), supp v ⊂ Br(x),
k ∈ N0,

‖
∣∣(4 s

2 ηkr,x)∧
∣∣ ∗ ∣∣(4− s2 v)∧

∣∣‖L2(Rn) ≤ C2−ks‖v‖L2(Rn).

Proof of Proposition 5.9.
By convolution rule and

1
1

+
1
2

= 1 +
1
2

we have

‖
∣∣(4 s

2 ηkr,x)∧
∣∣ ∗ ∣∣(4− s2 v)∧

∣∣‖L2(Rn) ≺ ‖(4
s
2 ηkr,x)∧‖L1(Rn) ‖(4−

s
2 v)∧‖L2(Rn). (5.2)

By Lemma 2.21

‖(4− s2 v)∧‖L2(Rn) = ‖4− s2 v‖L2(Rn) ≤ Csrs‖v‖L2 . (5.3)

Furthermore, Proposition 2.26 implies

‖(4− s2 ηkr,x)∧‖L1(Rn) ≤ Cs(2kr)−s. (5.4)

Together, (5.2), (5.3) and (5.4) give the claim.

Proposition 5.9

As a consequence we have

Proposition 5.10. For any v ∈ S, supp v ⊂ Br(x), k ∈ N0 we have for a
uniform constant C

‖4n
4 (ηkr,x4−

n
4 v)‖L2(Rn) ≤ C 2−k

1
8 ‖v‖L2(Rn).

Proof of Proposition 5.10.
We have that

4n
4 (ηkr,x4−

n
4 v) = (4n

4 ηkr,x)4−n4 v + ηkr,xv +H(ηkr,x,4−
n
4 v).

By the support condition on v,

ηkr,xv = 0, if k ≥ 1,
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so trivially for any k ∈ N0,

‖ηkr,xv‖L2(Rn) ≤ 2−k
n
4 ‖v‖L2(Rn).

Next, applying Proposition 2.26 and Lemma 2.21 for s = n
2 and p = 4, we have

‖(4n
4 ηkr,x)4−n4 v‖L2(Rn) ≤ ‖(4

n
4 ηkr,x)‖L4 ‖4−n4 v‖L4 ≺ 2−k

n
4 r−

n
4 r

n
4 ‖v‖L2 .

Thus, we have shown that

‖4n
4 (ηkr,x4−

n
4 v)‖L2(Rn) ≺ 2−k

n
4 ‖v‖L2(Rn) + ‖H(ηkr,x,4−

n
4 v)‖L2(Rn). (5.5)

By Lemma 4.3 we have that in the case n = 1, 2

‖H(ηkr,x,4−
n
4 v)‖L2(Rn) ≺ ‖

∣∣(4n
8 ηkr,x)∧

∣∣ ∗ ∣∣(4−n8 v)∧
∣∣‖L2(Rn),

and in the case n ≥ 3

‖H(ηkr,x,4−
n
4 v)‖L2(Rn)

≺ ‖
∣∣∣(4n−2

4 ηkr,x)∧
∣∣∣ ∗ ∣∣∣(4 2−n

4 v)∧
∣∣∣‖L2 + ‖

∣∣∣(4 1
2 ηkr,x)∧

∣∣∣ ∗ ∣∣∣(4− 1
2 v)∧

∣∣∣‖L2 .

That is, we have to estimate

‖
∣∣(4 s

2 ηkr,x)∧
∣∣ ∗ ∣∣(4− s2 v)∧

∣∣‖L2 ≤ Cs 2−ks‖v‖L2 (5.6)

where s = n
4 in the case n = 1, 2 and s = n−2

2 or s = 1 in the case n ≥ 3. In all
three cases we have that 0 < s < n

2 and Proposition 5.9 implies (5.6). Plugging
these last estimates into (5.5) we conclude.

Proposition 5.10

Lemma 5.11 (Estimate of the Harmonic Term). Let h ∈ L2(Rn), such that
ˆ

Rn

h 4n
4 ϕ = 0 for any ϕ ∈ C∞0 (BΛr(x)). (5.7)

for some Λ > 0. Then, for a uniform constant C > 0

‖h‖L2(Br(x)) ≤ C Λ−
1
8 ‖h‖L2(Rn).

Proof of Lemma 5.11.
It suffices to prove the claim for big Λ, say Λ > 8. Let k0 ∈ N, k0 ≥ 3, such that
Λ ≤ 2k0 ≤ 2Λ. Approximate h by functions hε ∈ S(Rn) such that ‖h−hε‖L2(Rn) ≤
ε. By Riesz’ representation theorem,

‖hε‖L2(Br(x)) = sup
v∈C∞0 (Br(x))
‖v‖

L2≤1

ˆ
hεv.
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For such a v we estimate
ˆ
hε v =

ˆ
(4n

4 hε)(4−
n
4 v)

=
∞∑
k=0

ˆ
(4n

4 hε) ηkr,x 4−
n
4 v

=
∞∑

k=k0−1

ˆ
hε 4

n
4 (ηkr,x4−

n
4 v) +

k0−2∑
k=0

ˆ
hε 4

n
4 (ηkr,x4−

n
4 v)

= I + II.

The second term II goes to zero, as for k ≤ k0−2 we have that supp ηkr,x ⊂ BΛr(x)
and thus

ˆ
hε 4

n
4 (ηkr,x4−

n
4 v)

(5.7)
=

ˆ
(hε − h) 4n

4 (ηkr,x4−
n
4 v)

≤ ‖hε − h‖L2(Rn) ‖(ηkr,x4−
n
4 v)‖

H
n
2 (Rn)

≤ ε‖(ηkr,x4−
n
4 v)‖

H
n
2 (Rn)

.

Hence,
II ≤ Ck0,r,x,vε.

For the remaining term we have, using crucially Proposition 5.10,

I =
∞∑

k=k0

ˆ
hε 4

n
4 (ηkr,x4−

n
4 v)

≤
∞∑

k=k0

‖4n
4 (ηkr,x4−

n
4 v)‖L2(Rn) ‖hε‖L2(Rn).

P.5.10
≤

∞∑
k=k0

2−k
1
8 ‖hε‖L2(Rn).

Because of
∞∑

k=k0

2−k
1
8 ≤ C2−k0

1
8 ≤ CΛ−

1
8 ,

we arrive at ˆ
hε v ≤ Cv,k0,x,r,Λε+ CΛ−

1
8 ‖h‖L2(Rn).

Letting ε→ 0, we conclude.

Lemma 5.11

The following theorem proves Theorem 1.6.

54



Theorem 5.12. There is a uniform Λ > 0 and a uniform constant C such that
the following holds: For any x ∈ Rn and any r > 0 we have for every v ∈ L2(Rn),
supp v ⊂ Br(x)

‖v‖L2(Br(x)) ≤ C sup
ϕ∈C∞0 (BΛr(x))

1
‖4n

4 ϕ‖L2(Rn)

ˆ

Rn

v4n
4 ϕ.

Proof of Theorem 5.12.
We have,

‖v‖L2(Br(x)) = sup
f∈L2(Rn)
‖f‖

L2≤1

ˆ
fv.

By Lemma 2.22 and Lemma 5.11, we decompose f = 4n
4 ϕ+h, ϕ ∈ H n

2 (Rn) and
suppϕ ⊂ BΛr(x), ‖h‖L2(Br(x)) ≤ C Λ−

n
8 . Thus, by the support condition on v,

‖v‖L2(Br(x)) ≤ C sup
ϕ∈C∞0 (BΛr(x))

‖4
n
4 ϕ‖

L2(Rn)≤1

ˆ
v4n

4 ϕ+
C

Λ
‖v‖L2(Br(x)).

Taking Λ big enough, we can absorb and conclude.

Theorem 5.12

5.4 Multiplication of lower order operators localize well

The goal of this subsection is Lemma 5.14, which essentially states that terms of
the form

4 s
2 a 4n

4−
s
2 b

“localize alright”, if s is neither of the extremal values 0 nor n
2 .

Proposition 5.13 (Lower Order Operators and L2). For any s ∈ (0, n2 ), M1,
M2 zero multiplier operators there exists a constant CM1,M2,s > 0 such that for
any u, v ∈ S(Rn),

‖M14
2s−n

4 u M24−
s
2 v‖L2(Rn) ≤ CM1,M2,s‖u‖L2(Rn) ‖v‖L2(Rn).

Proof of Proposition 5.13.
Set p := n

s ∈ (2,∞) and q := 2n
n−2s . As 2 < p, q < ∞, (using also Hörmander’s
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multiplier theorem, [Hör60])

‖M14
2s−n

4 u M24−
s
2 v‖L2

≤ ‖M14
2s−n

4 u‖Lp ‖M24−
s
2 v‖Lq

p,q∈(1,∞)
≺ ‖4

2s−n
4 u‖Lp ‖4−

s
2 v‖Lq

s∈(0, n2 )
P.2.10≺ ‖|·|

2s−n
2 u∧‖Lp′,p ‖|·|

−s
v∧‖Lq′,q

p,q>2
≺ ‖|·|

2s−n
2 u∧‖Lp′,2 ‖|·|

−s
v∧‖Lq′,2

≺ ‖u∧‖L2,2 ‖v∧‖L2,2

≈ ‖u‖L2 ‖v‖L2 .

Proposition 5.13

Lemma 5.14. Let s ∈ (0, n2 ) and M1,M2 operators defined by Fourier multipliers
of zero homogeneity. Then there is a constant CM1,M2,s > 0 such that the following
holds. For any u, v ∈ S and any Λ > 2,

‖4 s
2M1u 4

n
4−

s
2 M2v‖L2(Br(x))

≤ CM,s

(
‖4n

4 u‖L2(B2Λr(x)) + Λ−s
∞∑
k=1

2−ks‖ηkΛr,x4
n
4 u‖L2

)
‖4n

4 v‖L2 .

Proof of Lemma 5.14.
As usual

‖4 s
2M1u 4

n
4−

s
2 M2v‖L2(Br(x)) = sup

ϕ∈C∞0 (Br(x))
‖ϕ‖

L2≤1

ˆ
M14

s
2u M24

n
4−

s
2 v ϕ.

For such a ϕ we then divide 4 s
2u into the part which is close to Br(x) and the

far-off part:
ˆ
M14

s
2u M24

n
4−

s
2 v ϕ

=
ˆ
M14

s
2−

n
4 (ηΛr4

n
4 u) M24

n
4−

s
2 v ϕ

+
∞∑
k=1

ˆ
M14

s
2−

n
4 (ηkΛr4

n
4 u) M24

n
4−

s
2 v ϕ

= I +
∞∑
k=1

IIk.

We first estimate the I by Proposition 5.13

|I| ≺ ‖η2k0r4
n
4 u‖L2 ‖4n

4 v‖L2 .
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In order to estimate IIk, observe that for any ϕ ∈ C∞0 (Br(x)), ‖ϕ‖L2 ≤ 1,
s ∈ (0, n2 ), if we set p := 2n

n+2s ∈ (1, 2)

‖ϕ M24−
s
24n

4 v‖L1

≺ ‖ϕ‖Lp(Rn) ‖M24−
s
24n

4 v‖Lp′ (Rn)

≺ rs ‖4− s24n
4 v‖Lp′ (Rn)

p′>2
≺ rs‖|·|−s

(
4n

4 v
)∧‖Lp,p′ (Rn)

≺ rs ‖|·|−s
(
4n

4 v
)∧‖Lp,2(Rn)

≺ rs ‖|·|−s‖
L
n
s
,∞ ‖

(
4n

4 v
)∧‖L2

≺ rs‖4n
4 v‖L2 .

Hence, as for any k ≥ 1 we have dist(suppϕ, supp ηkΛr) � 2kΛr,
ˆ
M14

s
2−

n
4 (ηkΛr4

n
4 u) M24

n
4−

s
2 v ϕ

P.5.1
≺ (2kΛr)−n−s+

n
2 ‖ηkΛr4

n
4 u‖L1 ‖M24

n
4−

s
2 v ϕ‖L1

≺ (2kΛr)−n−s+
n
2 ‖ηkΛr4

n
4 u‖L1 rs‖4n

4 v‖L2

≺ (2kΛr)−s‖ηkΛr4
n
4 u‖L2 rs ‖4n

4 v‖L2

≈ 2−ksΛ−s‖ηkΛr4
n
4 u‖L2 ‖4n

4 v‖L2 .

Lemma 5.14

A different version of the same effect is the following Lemma.

Lemma 5.15. Let s ∈ (0, n2 ) and M1,M2 operators defined by Fourier multipliers
of zero homogeneity. Then there is a constant CM1,M2,s > 0 such that the following
holds. For any u, v ∈ S and for any Λ > 2

‖4 s
2M1u 4

n
4−

s
2 M2v‖L2(Br(x))

≤ CM1,M2,s ‖4
n
4 u‖L2(B2Λr) ‖4

n
4 v‖L2(B2Λr)

+CM1,M2,s Λ−s ‖ηΛr4
n
4 v‖L2

∞∑
k=1

2−sk‖ηkΛr4
n
4 u‖L2

+CM1,M2,s Λs−
n
2 ‖ηΛr4

n
4 u‖L2

∞∑
l=1

2(s−n2 )l‖ηlΛr4
n
4 v‖L2

+CM1,M2,s Λ−
n
2

∞∑
k,l=1

2−(ks+l(n2−s))‖ηkΛr4
n
4 u‖L2 ‖ηlΛr4

n
4 v‖L2 .
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Proof of Lemma 5.15.
We have

4 s
2M1u 4

n
4−

s
2 M2v

= 4 s
2−

n
4 M1

(
ηΛr4

n
4 u
)
4− s2 M2

(
ηΛr4

n
4 v
)

+
∞∑
k=1

4 s
2−

n
4 M1

(
ηkΛr4

n
4 u
)
4− s2 M2

(
ηΛr4

n
4 v
)

+
∞∑
l=1

4 s
2−

n
4 M1

(
ηΛr4

n
4 u
)
4− s2 M2

(
ηlΛr4

n
4 v
)

+
∞∑

k,l=1

4 s
2−

n
4 M1

(
ηkΛr4

n
4 u
)
4− s2 M2

(
ηlΛr4

n
4 v
)

= I +
∞∑
k=1

IIk +
∞∑
l=1

IIIk +
∞∑

k,l=1

IVk,l.

By Proposition 5.13,

‖I‖L2 ≺ ‖4n
4 u‖L2(B2Λr) ‖4

n
4 v‖L2(B2Λr).

As in the proof of Lemma 5.14,

‖IIk‖L2(Br) ≺ 2−skΛ−s‖ηkΛr4
n
4 u‖L2 ‖ηΛr4

n
4 v‖L2 ,

and
‖IIIl‖L2(Br) ≺ 2(s−n2 )lΛs−

n
2 ‖ηΛr4

n
4 u‖L2 ‖ηlΛr4

n
4 v‖L2 .

Finally,

‖IVl,k‖L2(Br) ≺
(
2kΛr

)−s ‖ηkΛr4n
4 u‖L2 ‖4− s2

(
ηlΛr4

n
4 v
)
‖L2(Br)

≺
(
2kΛr

)−s (
2lΛr

)s−n2 r
n
2 ‖ηkΛr4

n
4 u‖L2 ‖ηlΛr4

n
4 v‖L2

≺ Λ−
n
2 2−(ks+l(n2−s)) ‖ηkΛr4

n
4 u‖L2 ‖ηlΛr4

n
4 v‖L2 .

Lemma 5.15

5.5 Product rules for polynomials

Proposition 5.16 (Product Rule for Polynomials). Let N ∈ N0, s ≥ N . Then
for any M a multiplier operator defined by

(Mv)∧ = mv∧, for any v ∈ S(Rn),

for m ∈ C∞(Rn\{0}) and homogeneous of order 0, there exist for every multiindex
β ∈ (N0)n, |β| ≤ N , an operator Mβ ≡ Mβ,s,N , Mβ = M if |β| = 0, with
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multiplier mβ ∈ C∞(Rn\{0} also homogeneous of order 0 such that the following
holds. Let Q = xα for some multiindex α ∈ (N0)n, |α| ≤ N . Then

M4 s
2 (Qϕ) =

∑
|β|≤|α|

∂βQ Mβ4
s−|β|

2 ϕ. (5.8)

Consequently, for any polynomial P =
∑
|α|≤N

cαx
α,

M4 s
2 (Pϕ) =

∑
|β|≤N

∂βP Mβ4
s−|β|

2 ϕ.

Proof of Proposition 5.16.
The claim for P follows immediately from the claim of Q as left- and right hand
side are linear in the space of polynomials.
For M an operator as requested with multiplier m, for α ∈ (N0)n a multiindex
and s > 0 set

mα,s(ξ) :=
1

(2πi)|α|
|ξ||α|−s ∂α(|ξ|s m(ξ)),

and let Mα,s be the according operator with mα,s as multiplier. We have the
following relationship

(Mα,s)β,s−|α| = Mα+β,s. (5.9)

Observe furthermore that

x1v(x) = − 1
2πi

(∂1v
∧)∨(x),

so for s ≥ 1

(
M4 s

2 ((·)1v)
)∧

(ξ)

= − 1
2πi

m(ξ) |ξ|s∂1v
∧(ξ)

= − 1
2πi

∂1(M4 s
2 v)∧(ξ) +

1
2πi

∂1(m(ξ)|ξ|s)v∧(ξ)

= − 1
2πi

∂1(M4 s
2 v)∧(ξ) +M1,s4

s−1
2 v
∧

(ξ),

that is
M4 s

2 ((·)kv)(x) = xkM4
s
2 v +Mk,s4

s−1
2 v. (5.10)

So one could suspect that for Q = xα for some multiindex α, |α| ≤ s,

M4 s
2 (Qϕ) =

∑
|β|≤s

∂βQ
1
β!
Mβ,s 4

s−|β|
2 ϕ. (5.11)

where
β! := β1! . . . βn!.
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This is of course true if Q ≡ 1. As induction hypothesis, fix N > 0 and assume
(5.11) to be true for any monomial Q̃ of degree at most Ñ < N whenever s̃ ≥ Ñ
and M is an admissible operator. Let then Q be a monomial of degree at most
N , and assume s ≥ N . We decompose w.l.o.g. Q = x1Q̃ for some monomial Q̃ of
degree at most N − 1. Then,

M4 s
2 (Qϕ)

(5.10)
= x1M4

s
2

(
Q̃ϕ
)

+M1,s4
s−1

2

(
Q̃ϕ
)
. (5.12)

For a multiindex β = (β1, . . . , βn) ∈ (N0)n let us set

τ1(β) := (β1 + 1, β2, . . . , βn) and τ−1(β) := (β1 − 1, β2, . . . , βn).

Observe that
∂β(x1Q) = β1∂

τ−1(β)Q+ x1∂
βQ. (5.13)

Applying now in (5.12) the induction hypothesis (5.11) on M4 s
2 and M1,s4

s−1
2 ,

we have

M4 s
2 (Qϕ) = x1

∑
|β|≤s

∂βQ̃
1
β!
Mβ,s 4

s−|β|
2 ϕ

+
∑
|β̃|≤s−1

∂β̃Q̃
1
β̃!

(
M(1,0,...,0),s

)
β̃,s−1

4
s−(|β̃|+1)

2 ϕ

(5.9)
=

∑
|β|≤s

x1∂
βQ̃

1
β!
Mβ,s 4

s−|β|
2 ϕ

+
∑
|β̃|≤s−1

∂β̃Q̃
1
β̃!

(
Mτ1(β̃),s

)
4

s−|τ1(β̃)|
2 ϕ.

Next, by (5.13)

=
∑
|β|≤s

∂β
(
x1Q̃

) 1
β!
Mβ,s 4

s−|β|
2 ϕ

−
∑
|β|≤s

∂τ−1(β)Q̃
β1

β!
Mβ,s 4

s−|β|
2 ϕ

+
∑
|β̃|≤s−1

∂β̃Q̃
1
β̃!

(
Mτ1(β̃),s

)
4

s−|τ1(β̃)|
2 ϕ

=
∑
|β|≤s

∂β
(
x1Q̃

) 1
β!
Mβ,s 4

s−|β|
2 ϕ

−
∑
|β|≤s
β1≥1

∂τ−1(β)Q̃
1

τ−1(β)!
Mβ,s 4

s−|β|
2 ϕ

+
∑
|β̃|≤s−1

∂β̃Q̃
1
β̃!

(
Mτ1(β̃),s

)
4

s−|τ1(β̃)|
2 ϕ

=
∑
|β|≤s

∂β
(
x1Q̃

) 1
β̃!
Mβ,s 4

s−|β|
2 ϕ.
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Proposition 5.16

Proposition 5.17. There is a uniform constant C > 0 such that the following
holds: Let v ∈ S(Rn) and P any polynomial of degree at most N := dn2 e − 1.
Then for any Λ > 2, Br(x0) ⊂ Rn, ϕ ∈ C∞0 (Br(x0)), ‖4n

4 ϕ‖L2(Rn) ≤ 1,

‖4n
4 (Pϕ)− P4n

4 ϕ‖L2(Br(x0))

≤ C ‖4n
4 (ηΛr,x0(v − P ))‖L2(Rn) + ‖4n

4 v‖L2(B2Λr(x0))

+C Λ−1
∞∑
k=1

2−k‖ηkΛr,x0
4n

4 v‖L2(Rn).

Proof of Proposition 5.17.
By Proposition 5.16

4n
4 (Pϕ)− P4n

4 ϕ =
∑

1≤|β|≤N

cβ(∂βP )Mβ4
s−|β|

2 ϕ.

As we estimate the L2-norm on Br and there ηΛr ≡ 1, we will further rewrite

= −
∑

1≤|β|≤N

cβ∂
β(ηΛr(v − P ))Mβ4

n−2|β|
4 ϕ

+
∑

1≤|β|≤N

cβ(∂βv)Mβ4
n−2|β|

4 ϕ

=
∑

1≤|β|≤N

(Iβ + IIβ).

As 1 ≤ |β| ≤ N < n
2 , we have by Lemma 5.14

‖IIβ‖L2(Br) ≺ ‖4
n
4 v‖L2(B2Λr) + Λ−1

∞∑
k=1

2−k|β|‖ηkΛr4
n
4 v‖L2 .

and by Proposition 5.13 applied to 4n
4 (η2k0r(v − P ) and ϕ

‖Iβ‖L2(Rn) ≺ ‖4
n
4 (η2k0r(v − P ))‖L2(Rn).

Proposition 5.17

6 Proof of Theorem 1.5

Lemma 6.1. There is a uniform constant C > 0 such that for any ball Br(x0) ⊂
Rn, ϕ ∈ C∞0 (Br(x0)), ‖4n

4 ϕ‖L2 ≤ 1, and Λ > 4 as well as for any v ∈ S(Rn),

‖H(v, ϕ)‖L2(Br(x0))

≤ C
(

[v]B4Λr(x0),n4
+ ‖4n

4 v‖B2Λr(x0) + Λ−
1
2 ‖4n

4 v‖L2(Rn)

)
.

61



Proof of Lemma 6.1.
We have for almost every point in Br ≡ Br(x0),

H(v, ϕ) = 4n
4 (vϕ)− v4n

4 ϕ− ϕ4n
4 v

= 4n
4 (ηΛrvϕ)− ηΛrv4

n
4 ϕ− ϕ4n

4 (ηΛrv + (1− ηΛr)v)

= I − II − III.

Then we rewrite for a polynomial P of order dn2 e− 1 which we will choose below,
using again that the support of ϕ lies in Br,

I = 4n
4 (ηΛr(v − P )ϕ) +4n

4 (Pϕ),

II = ηΛr(v − P )4n
4 ϕ+ P4n

4 ϕ,

III = ϕ4n
4 (ηΛr(v − P )) + ϕ4n

4 (ηΛrP ) + ϕ4n
4 ((1− ηΛr)v).

Thus,
I − II − III = Ĩ + ĨI − ĨII,

where

Ĩ = H(ηΛr(v − P ), ϕ),

ĨI = 4n
4 (Pϕ)− P4n

4 ϕ,

ĨII = ϕ4n
4 (P + (1− ηΛr)(v − P )).

Theorem 4.4 implies

‖Ĩ‖L2(Rn) ≺ ‖4
n
4 (ηΛr(v − P ))‖L2 ,

Proposition 5.17 states that

‖ĨI‖L2(Br)

≺ ‖4n
4 ηΛr(v − P )‖L2(Rn) + ‖4n

4 v‖L2(BΛr) + Λ−1
∞∑
k=1

2−k‖ηkΛr4
n
4 v‖L2(Rn)

≺ ‖4n
4 ηΛr(v − P )‖L2(Rn) + ‖4n

4 v‖L2(BΛr) + Λ−1‖4n
4 v‖L2(Rn).

It remains to estimate ĨII. Choose P to be the polynomial such that v − P
satisfies the mean value condition (3.1) for N = dn2 e − 1 and in B2Λr.
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By Proposition 2.27 we have to estimate for ψ ∈ C∞0 (Br), ‖ψ‖L2 ≤ 1

∞∑
k=1

ˆ
ψ ϕ 4n

4 (ηkΛr(v − P ))

L.5.1
≺

∞∑
k=1

(2kΛr)−
3
2n ‖ϕ‖L2 ‖ηkΛr(v − P )‖L1

L.2.19
≺

∞∑
k=1

(2kΛ)−nr−
n
2 ‖ηkΛr(v − P )‖L2

≈ Λ−
n
2

∞∑
k=1

2−
n
2 k
(
2kΛr

)−n2 ‖ηkΛr(v − P )‖L2

P.3.18
≺ Λ−

n
2

∞∑
k=1

2−k
n
2 (1 + k) ‖4n

4 v‖L2(Rn)

≺ Λ−
n
2 ‖v‖L2(Rn).

One concludes by using Lemma 3.6 in order to estimate

‖4n
4 (ηΛr(v − P ))‖L2 ≺ [v]B4Λr,

n
2
.

Lemma 6.1

Lemma 6.2. For any v ∈ H n
2 (Rn), ε > 0, there exists Λ > 0, R > 0, γ > 0 such

that for all x0 ∈ Rn, r < R

‖H(v, v)‖L2(Br(x0))

≤ ε
(
[v]B4Λr,

n
2

+ ‖4n
4 v‖B4Λr

)
+C

Λ,‖4
n
4 v‖L2

( ∞∑
k=1

2−k‖4n
4 v‖L2(Ak) +

∞∑
k=−∞

2−γ|k|[v]Ak,n2 .

)

Here we set Ak := B2k+44Λr\B2k−1r.

Proof. Let δ > 0 to be chosen later. Choose Λ > 10 depending on δ such that

Λ−
1
2 ‖4n

4 v‖L2(Rn) ≤ δ. (6.1)

Depending on δ and Λ choose R > 0 so small such that

[v]B10Λr(x0),n2
+ ‖4n

4 v‖L2(B10Λr(x0)) ≤ δ, for all x0 ∈ Rn, r < R. (6.2)

From now on let r < R and x0 ∈ Rn be arbitrarily fixed and denote by Br ≡
Br(x0). Let ϕ ∈ C∞0 (Br). Set P ≡ PΛ ≡ PB2Λr (v) the polynomial of degree
N := dn2 e − 1 such that the mean value condition (3.1) holds on B2Λr. Then,

v = ηΛr(v − P ) + (1− ηΛr)(v − P ) + P =: vΛ + v−Λ + PΛ
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and consequently,

v2 = (vΛ)2 + (v−Λ)2 + (PΛ)2 + 2vΛ v−Λ + 2 (vΛ + v−Λ) PΛ. (6.3)

The next arguments will be at first only formally correct, as v−Λ is not in S(Rn).
But as we are later going to work with vk−Λ ≡ ηkΛr(v−P ) only, one can straighten
out these incomplete arguments by a suitable cutoff argument (as in the proof of
Proposition 2.29). For the sake of shortness of presentation, we are going to ignore
this flaw. In the same spirit, observe that although we introduced the operator
4n

4 only for H
n
2 -functions, and not for e.g. polynomials like P , by the same

suitable cutoff-function argument the following “formal” calculations are in fact
valid: We rewrite using in each step that by Proposition 2.27 formally 4n

4 PΛ = 0:

H(v, v)ϕ

=
(
4n

4 (v2)− 2v4n
4 v
)
ϕ

(6.3)
=

(
4n

4 (vΛ)2 +4n
4 (v−Λ)2 +4n

4 (PΛ)2

+24n
4 (vΛ v−Λ) + 24n

4 ((vΛ + v−Λ) PΛ)

−2vΛ4
n
4 vΛ − 2vΛ4

n
4 v−Λ − 2PΛ4

n
4 vΛ − 2PΛ4

n
4 v−Λ

)
ϕ

= H(vΛ, vΛ)ϕ

+2
(
4n

4 ((vΛ + v−Λ) PΛ)− 2PΛ 4
n
4 (vΛ + v−Λ)

)
ϕ

+
(
4n

4 (PΛ)2 − PΛ 4
n
4 PΛ

)
ϕ

+
(
4n

4 (v−Λ)2 + 24n
4 (vΛ v−Λ)− 2vΛ4

n
4 v−Λ

)
ϕ

=: (I + II + III + IV )ϕ.

By Theorem 4.4 and Lemma 3.6 we have

‖I‖L2(Br) ≺ ‖4
n
4 vΛ‖2L2(Rn) ≺

(
[v]B4Λr,

n
2

)2 (6.2)
≺ δ [v]B4Λr,

n
2
.

As for II, by Proposition 5.16, w ∈ S(Rn)

ϕ
(
4n

4 (w PΛ)− PΛ4
n
4 w
)

= ϕ

 ∑
1≤|β|≤N

∂βPΛ Mβ4
n−2|β|

4 w


suppϕ

= ϕ
∑

1≤|β|≤N

(
∂β(ηΛr(PΛ − v)) Mβ4

n−2|β|
4 w + ∂βv Mβ4

n−2|β|
4 w

)
,
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so
‖II‖L2(Br) ≺

∑
1≤|β|≤N

IIβ1,Λ + IIβ2,Λ + IIβ1,−Λ + IIβ2,−Λ,

where
IIβ1,Λ = ‖∂β(ηΛr(PΛ − v)) Mβ4

n−2|β|
4 vΛ‖L2(Br),

IIβ2,Λ = ‖∂βv Mβ4
n−2|β|

4 vΛ‖L2(Br),

IIβ1,−Λ = ‖∂β(ηΛr(PΛ − v)) Mβ4
n−2|β|

4 v−Λ‖L2(Br),

and
IIβ2,−Λ = ‖∂βv Mβ4

n−2|β|
4 v−Λ‖L2(Br).

Observe that all the operators involved are of order at most N , which is lower
than n

2 . Consequently, by Proposition 5.13 and Poincaré’s inequality, Lemma 3.6,

IIβ1,Λ ≺ ‖4n
4 (ηΛr(PΛ − v))‖L2(Rn) ‖4

n
4 vΛ‖L2(Rn)

≺
(
[v]B4Λr,

n
2

)2
(6.2)
≺ δ [v]B4Λr,

n
2
.

By Lemma 5.14 and Poincaré’s inequality, Lemma 3.6,

IIβ2,Λ ≺ ‖4n
4 vΛ‖L2

(
‖4n

4 v‖L2(B2Λr) + Λ
n
2−|β|

∞∑
k=1

2−k‖ηk4Λr4
n
4 v‖L2

)

≺ [v]B4Λr,
n
2

(
‖4n

4 v‖L2(B4Λr) + Λ−
1
2 ‖4n

4 v‖L2

)
(6.2)
(6.1)

≺ δ ‖4n
4 v‖L2(B4Λr).

As for IIβ2,−Λ and IIβ1,−Λ, for any w ∈ S(Rn),

‖∂βw Mβ4
n−2|β|

4 v−Λ‖L2(Br)

≺
∞∑
k=1

‖∂β4−n4
(
η4r4

n
4 w
)
Mβ4

n−2|β|
4 ηkΛr(v − PΛ)‖L2(Br)

+
∞∑

l,k=1

‖∂β4−n4
(
ηl4r4

n
4 w
)
Mβ4

n−2|β|
4 ηkΛr(v − PΛ)‖L2(Br)

= A1 +A2.
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As before, by Lemma 5.1 and using that 1 ≤ |β| < n
2 , we first concentrate on A1,

‖∂β4−n4
(
η4r4

n
4 w
)
Mβ4

n−2|β|
4 ηkΛr(v − PΛ)‖L2(Br)

≺
(
2kΛr

)− 3
2n+|β|‖∂β4−n4

(
η4r4

n
4 w
)
‖L2 ‖ηkΛr(v − PΛ)‖L1

L.2.21
≺

(
2kΛr

)−n+|β|
(4r)

n
2−|β|‖η4r4

n
4 w‖L2 ‖ηkΛr(v − PΛ)‖L2

=
(

4
Λ

)n
2−|β|

‖η4r4
n
4 w‖L2 2(|β|−n)k (Λr)−

n
2 ‖ηkΛr(v − PΛ)‖L2 .

Thus, by Proposition 3.18 and as |β| < n
2 (making

∑
k>0 k 2−k(n2−|β|) convergent),

A1 ≺
(
λ

Λ

)n
2−|β|

‖ηλr4
n
4 w‖L2 ‖4n

4 v‖L2

≺ Λ−
1
2 ‖4n

4 w‖L2(B4Λr) ‖4
n
4 v‖L2(Rn)

(6.1)
≺ δ ‖4n

4 v‖L2(B4Λr).

For the estimate of A2 we observe

‖∂β4−n4
(
ηl4r4

n
4 w
)
Mβ4

n−2|β|
4 ηkΛr(v − PΛ)‖L2(Br)

≺ (2lr)−
n
2−|β|‖

(
ηl4r4

n
4 w
)
‖L1 ‖Mβ4

n−2|β|
4 ηkΛr(v − PΛ)‖L2(Br)

≺ (2lr)−
n
2−|β|‖

(
ηl4r4

n
4 w
)
‖L1

(
2kΛr

)− 3
2n+|β|‖ηkΛr(v − PΛ)‖L1r

n
2

≺ r−
n
2 (2l)−|β|‖

(
ηl4r4

n
4 w
)
‖L2

(
2kΛ

)−n+|β|‖ηkΛr(v − PΛ)‖L2 .

Summing first over k and then over l, using again Proposition 3.18,

A2 ≺ Λ−
n
2 +|β|

∞∑
l=1

2−l‖ηl4r4
n
4 w‖L2 ‖4n

4 v‖L2

(6.1)
≺ δ

∞∑
l=1

2−l‖ηl4r4
n
4 w‖L2 .

So we have shown that

‖∂βw Mβ4
n−2|β|

4 v−Λ‖L2(Br)

≺ δ

∞∑
l=1

2−l‖ηl4r4
n
4 w‖L2

≺ δ‖4n
4 w‖L2 .

Setting w = v in the case of IIβ2,−Λ and w = vΛ in the case of IIβ1,−Λ, this implies

IIβ1,−Λ ≺ δ‖4
n
4 vΛ‖L2 ≺ [v]B4Λr,

n
2
,
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and

IIβ2,−Λ ≺ CΛ

∞∑
l=1

2−l‖4n
4 v‖L2(Al).

As for III, again by Proposition 5.16 (remember that N = dn2 e − 1), we have to
estimate quantities of the type

∂βPΛ Mβ4
n−2|β|

4 PΛ,

where 1 ≤ |β| < N . We rewrite

∂βPΛ Mβ4
n−2|β|

4 PΛ

= −∂β(v − PΛ) Mβ4
n−2|β|

4 PΛ + ∂βv Mβ4
n−2|β|

4 PΛ

= ∂β(v − PΛ) Mβ4
n−2|β|

4 (v − PΛ)− ∂βv Mβ4
n−2|β|

4 (v − PΛ)

−∂β(v − PΛ) Mβ4
n−2|β|

4 v − ∂βv Mβ4
n−2|β|

4 v.

Next we apply Lemma 5.15 and use that 4n
4 v = 4n

4 (v − PΛ) to get

‖III‖L2(Br) ≺ ‖4n
4 v‖2L2(B2Λr) + ‖4n

4 v‖L2

∞∑
k=1

2−k‖ηkΛr4
n
4 v‖L2

(6.2)
≺ δ ‖4n

4 v‖L2(B4Λr) + C
Λ,‖4

n
4 v‖L2(Rn)

∞∑
k=1

2−k‖4n
4 v‖L2(Ak).

Finally, we have to estimate IV . Set

Ãk := B2k+4Λr\B2k−4Λr.

Using Lemma 5.1 the first term is done as follows (setting Pk to be the polynomial
of order N where v − Pk satisfies (3.1) on B2k+1Λr\B2k−1Λr)

‖4n
4
(
ηkΛr(1− ηΛr)(v − P )2

)
‖L2(Br)

≤ 2−k
3
2nΛ−

3
2nr−n‖

√
ηkΛr(v − P )‖2L2

≤ 2−k
3
2nΛ−

3
2nr−n

(
‖
√
ηkΛr(v − Pk)‖2L2 + 2nk(Λr)n‖

√
ηkΛr(P − Pk)‖2L∞

)
L.3.11
≺ 2−k

3
2nΛ−

3
2nr−n

(
(2kΛr)n[v]2

Ãk,
n
2

+ 2nk(Λr)n‖
√
ηkΛr(P − Pk)‖2L∞

)
L.3.16
≺ Λ−

n
2 2−k

n
2

(
[v]2

Ãk,
n
2

+ k‖
√
ηkΛr(P − Pk)‖L∞ ‖4

n
4 v‖L2

)
≺ Λ−

n
2 2−k

n− 1
4

2

(
[v]2

Ãk,
n
2

+ ‖
√
ηkΛr(P − Pk)‖L∞‖4

n
4 v‖L2

)
.
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As n
2 −

1
8 > d

n
2 e − 1, Lemma 3.17 is applicable and as by Proposition 2.33

∞∑
k=1

2−k
n− 1

4
2 [v]2

Ãk,
n
2
≺ ‖4n

4 v‖L2(Rn)

∞∑
k=1

2−k
n− 1

4
2 [v]Ãk,n2 ,

we have for some γ > 0,

‖4n
4 (v2
−Λ)‖L2 ≺

(
1 + ‖4n

4 v‖L2

) ∞∑
k=−∞

2−γ|k|[v]Ãk,n2

≺ C
Λ,‖4

n
4 v‖L2

∞∑
k=−∞

2−γ|k|[v]Ak,n2 .

For the next term in IV , using the disjoint support as well as Lemma 3.6, Lemma
3.11 and Lemma 3.16, and as

vΛv−Λ =
3∑
k=1

vΛ

(
ηkΛr(v − P )

)
,

we can estimate

‖4n
4 (vΛ v−Λ)‖L2(Br) ≤

3∑
k=1

(
2kΛr

)− 3
2n‖vΛ‖L2 ‖ηkΛr(v − P )‖L2 r

n
2

≺ Λ−
n
2 [v]B2Λr,

n
2
‖4n

4 v‖L2(Rn)

(6.1)
≺ δ [v]B4Λr,

n
2
.

Last but not least,

‖vΛ4
n
4 ηkr (v − P )‖L2(Br)

≺ (2kΛr)−n‖vΛ‖L2 ‖ηkΛr(v − P )‖L2

≺ 2−nk(Λr)−
n
2 [v]B4Λr,

n
2
‖ηkΛr(v − P )‖L2

(6.2)
≺ 2−k

n
2 δ
((

2kΛr
)−n2 ‖ηkΛr(v − Pk)‖L2 + ‖ηkΛr(P − Pk)‖L∞

)
≺ δ

(
2−

n
2 k [v]Ak,n2 + 2−

n
2 k‖ηkΛr(P − Pk)‖L∞

)
.

Again, as n
2 > N , Lemma 3.17 implies that for some γ > 0.

‖vΛ4
n
4 v−Λ‖L2(Br) ≺ C‖4n

4 v‖L2 ,Λ

∞∑
k=−∞

2−γ|k|[v]Ak,n2 .

We conclude by taking δ small enough to absorb all the remaining constants which
do not depend on Λ or ‖4n

4 v‖L2 .
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7 Euler-Lagrange Equations

As in [DLR09a] we will have two equations controlling the behavior of a critical
point of En. First of all, we are going to use a different structure equation:
Obviously, for any u ∈ H n

2 (Rn,Rm) with u(x) ∈ Sm−1 almost everywhere on a
domain D ⊂ Rn, we have for w := ηu, η ∈ C∞0 (D),

m∑
i=1

wi · 4n
4 wi = −1

2

m∑
i=1

H(wi, wi) +4n
4 η,

or in the contracted form

w · 4n
4 w = −1

2
H(w,w) +4n

4 η. (7.1)

The Euler-Lagrange Equations are calculated as in [DLR09a]:

Proposition 7.1 (Localized Euler-Lagrange Equation). Let η ∈ C∞0 (D) and
η ≡ 1 on an open neighborhood of some ball D̃ ⊂ D.
Let u ∈ H

n
2 (Rn) be a critical point of E(u) on D. Then w := ηu satisfies for

every ψij ∈ C∞0 (D̃), such that ψij = −ψji,

−
ˆ

Rn

wi 4n
4 wj 4n

4 ψij = −
ˆ

Rn

aijψij +
ˆ

Rn

4n
4 wj H(wi, ψij). (7.2)

Here a ∈ L2(Rn) depends on the choice of η.

Proof of Proposition 7.1.
Let ϕ ∈ C∞0 (D,Rm). Recall that in Definition 1.1 we have set

ut =

{
u+ tdπu[ϕ] + o(t) in D,
u in Rn\D.

Then ut belongs to H
n
2 (Rn,Rm) and ut ∈ Sm−1 a.e. in D. Hence, Euler-Lagrange

equations of the functional En defined in (1.1) look like
ˆ

Rn

4n
4 u · 4n

4 dπu[ϕ] = 0, for any ϕ ∈ C∞0 (D).

In particular, for any v ∈ H n
2 (Rn,Rm) such that supp v ⊂ D and v ∈ TuSm−1

a.e. (i.e. dπu[v] = v in D) ˆ

Rn

4n
4 u · 4n

4 v = 0. (7.3)

Let ψij ∈ C∞0 (D̃,R), 1 ≤ i, j ≤ m, ψij = −ψij . Then vj := ψiju
i ∈ H n

2 (Rn,Rm).
Moreover, u · v = 0. As for x ∈ D the vector u(x) ∈ Rm is orthogonal to the tan-
gential space of Sm−1 at the point u(x), this implies v ∈ TuSm−1. Consequently,
(7.3) holds for this v.
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Let η be the cutoff function from above, i.e. η ∈ C∞0 (D), η ≡ 1 on an open
neighborhood of the ball D̃ ⊂ D and set w := ηu.
Because of suppψ ⊂ D̃ we have that vj = wiψij . Thus, by (7.3)ˆ

Rn

4n
4 wj 4n

4 (wiψij) =
ˆ

Rn

4n
4 (wj − uj) 4n

4 (wiψij). (7.4)

Observe that wi ∈ L∞(Rn)∩H n
2 (Rn) and by choice of η and D̃, there exists d > 0

such that dist supp((wj − uj), D̃) > d. Hence, Lemma 5.8 implies that there is
ãj ∈ L2(Rn) such thatˆ

Rn

4n
4 (wj − uj) 4n

4 ϕ =
ˆ

Rn

ãjϕ for all ϕ ∈ C∞0 (D̃).

Consequently, for aij := ãjw
i ∈ L2(Rn),ˆ

Rn

4n
4 (wj − uj) 4n

4 (wiϕ) =
ˆ

Rn

aijϕ for all ϕ ∈ C∞0 (D̃).

Moreover, ‖a‖L2(Rn) ≤ Cu,B . Hence, (7.4) can be written asˆ

Rn

4n
4 wj 4n

4 (wiψij) =
ˆ

Rn

aijψij , (7.5)

which is valid for every ψij ∈ C∞0 (D̃) such that ψij = −ψji.
Moving on, we have just by the definition of H(·, ·),

4n
4 (wiψij) = 4n

4 wi ψij + wi 4n
4 ψij +H(wi, ψij). (7.6)

Hence, putting (7.5) and (7.6) together

−
ˆ

Rn

wi 4n
4 wj 4n

4 ψij

= −
ˆ

Rn

aijψij +
ˆ

Rn

4n
4 wj 4n

4 wi ψij +
ˆ

Rn

4n
4 wj H(wi, ψij)

ψij=−ψji= −
ˆ

Rn

aijψij +
ˆ

Rn

4n
4 wj H(wi, ψij).

Proposition 7.1

8 Homogeneous Norm for the Fractional Sobolev
Space

We recall from Section 2.5 the definition of the “homogeneous norm” [u]D,s: If
s ≥ 0, s 6∈ N0,

([u]D,s)
2 :=

ˆ

D

ˆ

D

∣∣∇bscu(z1)−∇bscu(z2)
∣∣2

|z1 − z2|n+2(s−bsc) dz1 dz2.
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Otherwise, [u]D,s is just ‖∇su‖L2(D).

8.1 Comparison results for the homogeneous norm

Lemma 8.1. There is a uniform γ > 0 such that for any ε > 0, n ∈ N, there
exists a constant Cε > 0 such that for any v ∈ S(Rn), Br ≡ Br(x) ⊂ Rn

[v]Br,n2 ≤ ε[v]B4r,
n
2

+ Cε

[
‖4n

4 v‖L2(B4r)

+
∞∑
k=1

2−nk‖ηk4r4
n
4 v‖L2

+
∞∑

j=−∞
2−γ|j| [v]Ãj ,n2

]
where Ãj = B2j+3r\B2j−3r.

Proof of Lemma 8.1.
For simplicity, we assume Br ≡ Br(0). Set N := dn2 e − 1 and let P2r be the
polynomial of degree N such that the mean value condition (3.1) holds for N and
B2r. Let at first n be odd. For

ṽ := η2r(v − P2r),

we calculate

(
[v]Br,n2

)2 =
(
[ṽ]Br,n2

)2
≤

∑
|α|=N

ˆ

Rn

ˆ

Rn

(∂αṽ(x)− ∂αṽ(y))(∂αṽ(x)− ∂αṽ(y))
|x− y|n+2s dx dy

P.2.32
≈

∑
|α|=N

ˆ

Rn

4 s
2 ∂αṽ 4 s

2 ∂αṽ.

Thus, (
[v]Br,n2

)2 ≺ ‖4n
4 ṽ‖L2 sup

ϕ∈C∞0 (B2r(0))

‖4
n
4 ϕ‖

L2≤1

ˆ

Rn

4n
4 ṽ M4n

4 ϕ,

where M is a zero-multiplier operator. One checks that by a similar argument
this also holds for n even. Using Young’s inequality,

(
[v]Br,n2

)
≺ ε‖4n

4 ṽ‖L2 +
1
ε

sup
ϕ∈C∞0 (B2r(0))

‖4
n
4 ϕ‖

L2≤1

ˆ

Rn

4n
4 ṽ M4n

4 ϕ

L.3.6
≺ ε[v]B4r,

n
2

+
1
ε

sup
ϕ∈C∞0 (B2r(0))

‖4
n
4 ϕ‖

L2≤1

ˆ

Rn

4n
4 ṽ M4n

4 ϕ.
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For such a ϕ we divide
ˆ

Rn

4n
4 ṽ M4n

4 ϕ

P.2.27=
ˆ

Rn

4n
4 v M4n

4 ϕ

−
∞∑
k=1

ˆ

Rn

4n
4
(
ηk2r(v − P2r)

)
M4n

4 ϕ

=
ˆ

Rn

(
4n

4 v
)
η4rM4

n
4 ϕ

+
∞∑
k=1

ˆ

Rn

(
4n

4 v
)
ηk4rM4

n
4 ϕ

−
∞∑
k=1

ˆ

Rn

4n
4
(
ηk2r(v − P2r)

)
M4n

4 ϕ

= I +
∞∑
k=1

IIk −
∞∑
k=1

IIIk.

Obviously,
|I| ≤ ‖4n

4 v‖L2(B4r).

Moreover, for any k ∈ N by Proposition 5.1 and Poincaré-Inequality, Lemma 2.19,

|IIk| ≺
(
2kr
)−n‖ηk4r4n

4 v‖L2 rn

=
(
2k
)−n‖ηk4r4n

4 v‖L2 .

As for IIIk, let for k ∈ N, P k2r the Polynomial which makes v − P k2r satisfy the
mean value condition (3.1) on B2k+1r\B2k−1r. If k ≥ 2,

|IIIk| ≺ r−
n
2
(
2k
)− 3

2n ‖ηk2r(v − P2r)‖L2

≺ r−
n
2
(
2k
)− 3

2n
(
‖ηk2r(v − P k2r)‖L2 + 2k

n
2 r

n
2 ‖ηk2r(P2r − P k2r)‖L∞

)
L.3.11
≺

(
2k
)−n (

[v]Ãk,n2 + ‖ηk2r(P2r − P k2r)‖L∞
)
.

This and Lemma 3.17 imply for a γ > 0,
∞∑
k=2

IIIk ≺
∞∑

j=−∞
2|j|γ [v]Ãj ,n2 .

It remains to estimate III1 (where we can not use the disjoint support-Lemma,
Lemma 5.1). By Lemma 3.11

‖4n
4 η1

2r(v − P 1
2r)‖L2 ≺ [v]Ã1,

n
2
,
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so

III1 ≤ ‖4n
4 η1

2r(v − P 1
2r)‖L2 + ‖4n

4 η1
2r

(
P 1

2r − P2r

)
‖L2

≺ [v]Ã1,
n
2

+ ‖4n
4 η1

2r

(
P 1

2r − P2r

)
‖L2 .

The following will be similar to the calculations in the proof of Lemma 3.6 and
Proposition 3.5. Set

wα,β := ∂αη1
2r∂

β
(
P 1

2r − P2r

)
.

We calculate

‖4n
4 η1

2r

(
P 1

2r − P2r

)
‖2L2 ≺

∑
|α|+|β|=n−1

2

[wα,β ]2Rn, 12 .

Note that suppwα,β ⊂ B23r\B2r, so

[wα,β ]2Rn, 12

≺ ‖wα,β‖2L∞
ˆ

Ã1

ˆ

Rn\B10r

1
|x− y|n+1 dx dy

+‖∇wα,β‖2L∞
ˆ

Ã1

ˆ

B 1
2 r

1
|x− y|n−1 dx dy

+‖∇wα,β‖2L∞
ˆ

Ã1

ˆ

B10r\B 1
2 r

1
|x− y|n−1 dx dy

≺ ‖wα,β‖2L∞rn−1 + rn+1‖∇wα,β‖2L∞

≺ sup
|β|≤n+1

2

r|β|‖∂β(P2r − P 1
2r)‖L∞(supp η1

2r)

≈ sup
|β|≤n−1

2

r|β|‖∂β(P2r − P 1
2r)‖L∞(supp η1

2r).

Now, in the proof of Lemma 3.17, more precisely in (3.6), it was shown that
∞∑
k=1

2−nk‖∂β(P2r − P 1
2r)‖L∞(Ã1)

=
∞∑
k=1

2−nk‖∂β(Q|β|2r −Q
|β|
Ã1

)‖L∞(Ã1)

(3.6)
≺ r−|β|

∞∑
j=−∞

2−γ|j|[v]Ãj ,n2 .

Thus, in particular,

[wα,β ]2Rn, 12 ≺
∞∑

j=−∞
2−

1
2 |j|[v]Ãj ,n2 .

Lemma 8.1
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8.2 Localization of the homogeneous Norm

For the convenience of the reader, we will repeat the proof of the following result
in [DLR09a].

Lemma 8.2. (cf. [DLR09a, Theorem A.1])
For any s ∈ (0, 1) there is a constant Cs > 0 such that the following holds. For
any v ∈ S(Rn), r > 0, x ∈ Rn,

(
[v]Br(x),s

)2 ≤ Cs −1∑
k=−∞

([v]Ak,s)
2
.

Here Ak denotes B2k+1r(x)\B2k−1r(x).

Proof of Lemma 8.2.
Denote by

Ãk := B2k+1r(x)\B2kr(x),

and set
(v)k :=

 

Ak

v, and (v)k̃ :=
 

Ãk

v,

as well as
[v]k := [v]Ak,s, and [v]r := [v]Br,s.

With these notations,

[v]r ≤
−1∑

k,l=−∞

ˆ

Ãk

ˆ

Ãl

|v(x)− v(y)|2

|x− y|n+2s dx dy

≤ 3
−1∑

k=−∞

[v]2k

+2
−1∑

k=−∞

k−2∑
l=−∞

ˆ

Ãk

ˆ

Ãl

|v(x)− v(y)|2

|x− y|n+2s dx dy.

For x ∈ Ãk and y ∈ Ãl and l ≤ k − 2,

|v(x)− v(y)|2

|x− y|n+2s

≺
(
2kr
)−n−2s|v(x)− v(y)|2

≺
(
2kr
)−n−2s

(∣∣v(x)− (v)k̃
∣∣2 +

∣∣v(y)− (v)l̃
∣∣2 +

∣∣(v)l̃ − (v)k̃
∣∣2)

≺
(
2kr
)−n−2s

(∣∣v(x)− (v)k̃
∣∣2 +

∣∣v(y)− (v)l̃
∣∣2 + |l − k|

k−1∑
i=l

∣∣∣(v)ĩ − (v)̃
i+1

∣∣∣2).
= I + II + III.
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As for I and II, we have
ˆ

Ãk

∣∣u− (u)k̃
∣∣2 ≺ 1∣∣Ak̃∣∣ (2kr)n+2s

[u]2k

and ˆ

Ãl

∣∣u− (u)l̃
∣∣2 ≺ 1∣∣Al̃∣∣ (2lr)n+2s

[u]2l .

Consequently,
−1∑

k=−∞

k−2∑
l=−∞

ˆ

Ãk

ˆ

Ãl

I

≤
0∑

k=−∞

k−2∑
l=−∞

∣∣∣Ãl∣∣∣∣∣∣Ãk∣∣∣ [u]2k

≺
0∑

k=−∞

[u]2k
k−2∑
l=−∞

2l−k

≺
0∑

k=−∞

[u]2k.

Similarly,
−1∑

l=−∞

−1∑
k=l+1

ˆ

Ãk

ˆ

Ãl

II

≺
−1∑

l=−∞

−1∑
k=l+1

22(k+l)s[u]2l

≺
−1∑

l=−∞

[u]2l .

As for III, we have ∣∣∣(v)ĩ − (v)̃
i+1

∣∣∣2
≺

(
2ir
)−2n

2i(n+2s)rn+2s [v]2i

≺ 2(−n+2s)i r−n+2s [v]2i .

This implies that we have to estimate

−1∑
k=−∞

k−2∑
l=−∞

k−1∑
i=l

(k − l)2−k(n+2s)r−n−2s|Al||Ak|2(−n+2s)ir−n+2s[v]2i

=
−1∑

i=−∞
2(−n+2s)i [v]2i

−1∑
k=i+1

i∑
l=−∞

(k − l) 2−2ks 2ln.
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Now,
0∑

k=i+1

(k − l) 2−2ks

= 2−2ls
∞∑

k=i+1

(k − l) 2−2(k−l)s

= 2−2ls
∞∑

k̃=i+1−l

k̃ 2−2k̃s

≺ 2−2ls

∞̂

i+1−l

t 2−2st dt

≺ 2−2ls(i− l + 2) 2−2s(i−l)

= 2−2si (i− l + 2),

and
i∑

l=−∞

2ln(i− l + 2)

= 2ni
i∑

l=−∞

2(l−i)n(i− l + 2)

≤ 2ni
0∑

l=−∞

2lnl + 2

≈ 2ni.

Thus,
−1∑

i=−∞
2(−n+2s)i [v]2i

−1∑
k=i+1

i∑
l=−∞

(k − l) 2−2ks 2ln ≺
−1∑

i=−∞
[v]2i .

Lemma 8.2

Remark 8.3. By the same reasoning as in Lemma 8.2, one can also see that
for two Annuli-families of different width, say Ak := B2k+λr\B2k−λr and Ãk :=
B2k+Λr\B2k−Λr we can compare

[v]Ak,s ≤ Cλ,Λ,s
k+Nλ,Λ∑
l=k−Nλ,Λ

[v]Ãl,s.

In particular we don’t have to be too careful about the actual choice of the width
of the family Ak for quantities like

∞∑
k=−∞

2−γ|k|[v]Ak,s,

76



as long as we can afford to deal with constants depending on the change of width,
i.e. if we can afford to have e.g.

CΛ,λ,γ,s

∞∑
l=−∞

2−γ|l|[v]Ãl,s;

In fact this is because of

∞∑
k=−∞

2−γ|k|[v]Ak,s

≤
2N−1∑

k=−2N+1

[v]Ak,s +
−2N∑
k=−∞

2γk [v]Ak,s +
∞∑

k=2N

2−γk [v]Ak,s

≺
2N−1∑

k=−2N+1

k+N∑
l=k−N

[v]Ãl,s +
−2N∑
k=−∞

k+N∑
l=k−N

2γk [v]Ãl,s

+
∞∑

k=2N

2−γk
k+N∑
l=k−N

2γk [v]Ãl,s

≺ 4N23γN
3N∑

l=−3N

2−γ|l| [v]Ãl,s + 2γN
−2N∑
k=−∞

k+N∑
l=k−N

2γl [v]Ãl,s

+2γN
∞∑

k=2N

k+N∑
l=k−N

2−γl [v]Ãl,s

≺
3N∑

l=−3N

2−γ|l| [v]Ãl,s + 2N
−N∑
l=−∞

2γl [v]Ãl,s + 2N
∞∑
l=N

2−γl [v]Ãl,s

≤ CΛ,λ,γ

∞∑
l=−∞

2−γ|l| [v]Ãl,s.

Of course, the same argument holds for [v]Ak,s replaced by ‖4 s
2 v‖L2(Ak), too.

9 Growth Estimates

Lemma 9.1. Let w ∈ H n
2 (Rn,Rm) be a solution of (7.1). Then for any ε > 0,

there exists a constant Λ > 0, R > 0, γ > 0, all depending on w, such that for
any x0 ∈ Rn, r ∈ (0, R)

‖w · 4n
4 w‖L2(Br(x0))

≤ ε
(
‖4n

4 w‖L2(B4Λr) + [w]B4Λr,
n
2

)
+CΛ,w

(
r
n
2 +

∞∑
k=1

2−γk‖4n
4 w‖L2(Ak) +

∞∑
k=−∞

2−γ|k|[w]Ak

)
.

Here, Ak = B2k+1r(x0)\B2k−1r(x0).
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Proof of Lemma 9.1.
By (7.1),

‖w · 4n
4 w‖L2(Br) ≤ ‖H(w,w)‖L2(Br) + ‖4n

4 η‖L2(Br).

As 4n
4 η is bounded (similar to the proof of Proposition 2.26),

‖4n
4 η‖L2(Br) ≤ Cηr

n
2 .

We conclude by applying Lemma 6.2, using also Remark 8.3.

Lemma 9.1

The next Lemma is a simple consequence of Hölder and Poincarè inequality,
Lemma 2.19.

Lemma 9.2. Let a ∈ L2(Rn). Then
ˆ

Rn

a ϕ ≤ C r
n
2 ‖a‖L2(Rn) ‖4

n
4 ϕ‖L2(Rn)

for any ϕ ∈ C∞0 (Br(x0)), r > 0.

Lemma 9.3. Let w ∈ H n
2 (Rn) ∩ L∞(Rn) be a solution of (7.2). Then for any

ε > 0 there is Λ > 0, R > 0 such that for any Br(x) ⊂ D̃, r < R and any
skew-symmetric α ∈ Rn×n, |α| ≤ 2,

‖wiαij4
n
4 wj‖L2(Br) ≤ ε‖4

n
4 w‖BΛr(x) + Cε,D̃,w

(
r
n
2 +

∞∑
k=1

2−nk ‖4n
4 w‖Ak

)
.

Here, Ak = B2k+1r(x0)\B2k−1r(x0).

Proof of Lemma 9.3.
Let δ > 0 to be chosen later. Moreover let D̃, D, η as in (7.2). Set Λ1 > 0 the
scaling constant from Theorem 5.12. Set Λ2 > Λ1 such that

(Λ2 − 10Λ1)−
1
2 ‖4n

4 w‖L2(Rn) ≤ δ. (9.1)

Choose then R > 0 such that

whenever Br(x) ⊂ D̃ then B4Λr(x) ⊂ {y ∈ D : η(y) = 1}, for all r ∈ (0, R)

and such that moreover

[w]B10Λ2r,
n
2

+ ‖4n
4 w‖L2(B10Λ2r) ≤ δ for any x ∈ Rn, r ∈ (0, R).

Pick r ∈ (0, R), x ∈ D such that Br(x) ⊂ D̃. For sake of brevity, we set v :=
wiαij4

n
4 wj . By Theorem 5.12

‖ηrv‖L2 ≤ C sup
ϕ∈C∞0 (BΛ1r

(x))

‖4
n
4 ϕ‖

L2≤1

ˆ
ηr v 4

n
4 ϕ.
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We have for such a ϕ

ˆ

Rn

ηrv 4
n
4 ϕ

=
ˆ
v 4n

4 ϕ+
ˆ

(ηr − 1)v 4n
4 ϕ

= I + II.

In order to estimate II, we use the compact support of ϕ in BΛ1r and apply
Corollary 5.2 and Poincaré’s inequality, Lemma 2.19:

II =
ˆ

(ηr − 1)v 4n
4 ϕ

C.5.2
L.2.19
≤ CΛ1

∞∑
k=1

2−nk ‖ηkr v‖L2 ‖4n
4 ϕ‖L2(Rn)

≤ CΛ1

∞∑
k=1

2−k ‖ηkr v‖L2

≤ CΛ1‖w‖L∞
∞∑
k=1

2−k ‖ηkr4
n
4 w‖L2

In fact, this inequality is first true for k ≥ KΛ (when we can guarantee a disjoint
support of ηkr and ϕ). By choosing a possibly bigger constant CΛ1 it holds also
for any k ≥ 1. The remaining term I is controlled by the PDE (7.2).

I
(7.2)
=

ˆ

Rn

aij αij ϕ+
ˆ

Rn

4n
4 wj H(wi, ϕ)

= I1 +
ˆ

Rn

η4Λ1r 4
n
4 wj H(wi, ϕ) +

∞∑
k=1

ˆ

Rn

ηk4Λ1r 4
n
4 wj H(wi, ϕ)

= I1 + I2 +
∞∑
k=1

I3,k.

By Lemma 9.2,
I1 ≤ CΛ1r

n
2 ‖a‖L2 .

By Lemma 6.1 and choice of Λ2 > Λ1, (9.1),

I2 ≺ δ ‖η4Λ2r4
n
4 w‖L2 .
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As for I3,k, because the support of ϕ and ηk4Λ1r
is disjoint, by Lemma 5.1,

ˆ

Rn

ηk4Λ1r4
n
4 wjH(wi, ϕ)

=
ˆ

Rn

ηk4Λ1r4
n
4 wj

(
4n

4 (wiϕ)− wi4n
4 ϕ
)

≺ CΛ1

(
2kr
)−n‖ηk4Λ1r4

n
4 wj‖L2‖w‖L∞ rn

≈ ‖w‖L∞ 2−nk ‖ηk4Λ1r4
n
4 wj‖L2 .

Lemma 9.3

Lemma 9.4. Let w ∈ H n
2 (Rn) ∩ L∞ satisfy (7.2) and (7.1), and w(y) ∈ Sm−1

for y ∈ D. Then for any ε > 0 there is Λ > 0, R > 0 and γ > 0 such that for all
r ∈ (0, R), x ∈ Rn such that Br(x) ⊂ D̃,

[w]Br,n2 + ‖w‖L2(Br)

≤ ε
(
[w]BΛr,

n
2

+ ‖v‖L2(BΛr)

)
+Cε

∞∑
k=−∞

2−γ|k|
(
[w]Ak,n2 + ‖4n

4 w‖L2(Ak)

)
+Cεr

n
2 .

Here, Ak = B2k+1r(x0)\B2k−1r(x0).

Proof of Lemma 9.4.
Let δ1, δ2 > 0 to be chosen later. Let R > 0 (later possibly chosen smaller) such
that whenever Br(x) ⊂ D̃, r < R, then also B10r(x) ⊂ {y : η(y) = 1}.
Pick any Br(x) ≡ Br ⊂ D̃, r < R. By Lemma 8.1 we have for some γ > 0

[w]Br,n2 + ‖w‖L2(Br)

≤ δ1[w]B4r + Cδ1

(
‖4n

4 w‖L2(B4r) +
∞∑

k=−∞

2−γ|k|
(
[w]Ak,n2 + ‖4n

4 w‖L2(Ak)

))
.

Choose depending on δ2 from Lemma 9.1 and Lemma 9.3 a possibly smaller radius
R > 0 and Λ > 0 such that for any skew symmetric matrix α ∈ Rn×n, |α| ≤ 2

‖w · 4n
4 w‖L2(B4r) + ‖wiαij4

n
4 wj‖L2(B4r)

≤ δ2
(
‖4n

4 v‖L2(BΛr) + [w]BΛr,
n
2

)
+Cδ2,w

(
r
n
2 +

∞∑
k=−∞

2−γ|k|
(
‖4n

4 w‖L2(Ak) + [w]Ak,n2
))
.
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As by the choice of R > 0 we know that |w| = 1 on B4r, we have for any vector
v ∈ Rn,

|v| ≤ |w(y) · v|+ sup
α

∣∣wi(y)αijvj
∣∣, for any y ∈ B4r,

where αij = −αij and |α| = 1. Thus,

‖4n
4 w‖L2(B4r) ≺ ‖w · 4

n
4 w‖L2(B4r) + ‖wiαij4

n
4 wj‖L2(B4r).

Taking for given ε > 0 first δ1 > 0 small enough, and then δ2 small enough to
absorb Cδ1 , we conclude.

Lemma 9.4

Finally we can prove Theorem 1.2, which is an immediate consequence of the
following

Theorem 9.5. Let w ∈ H n
2 (Rn)∩L∞ satisfy (7.2) and (7.1). Then w ∈ C0,α(D̃)

for some α > 0.

Proof of Theorem 9.5.
Squaring the estimate of Lemma 9.4, we have

(
[w]Br,n2

)2 +
(
‖w‖L2(Br)

)2
≤ 4ε2

(
[w]2BΛr,

n
2

+ ‖4n
4 w‖2L2(BΛr)

)
+Cε

∞∑
k=−∞

2−γ|k|
(

[w]2Ak,n2 + ‖4n
4 w‖2L2(Ak)

)
+Cεrn.

Set
ak ≡ ak(r) := [w]2Ak,n2 + ‖4n

4 w‖2L2(Ak).

Then, for some uniform C1 > 0 and c1 < 0

‖4n
4 w‖2L2(BΛr) ≤ C1

KΛ∑
k=−∞

ak,

and by Lemma 8.2 also

[w]2BΛr,
n
2
≤ C1

KΛ∑
k=−∞

ak,

and of course,

[w]2Br,n2 + ‖4n
4 w‖2L2(Br) ≥ c1

−1∑
k=−∞

ak.
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Choosing ε > 0 sufficiently small to absorb the effects of the independent constants
c1 and C1, this implies

−1∑
k=−∞

ak ≤
1
2

KΛ∑
k=−∞

ak + C

∞∑
k=−∞

2−|γ|kak + Crn

This is valid for any Br ⊂ D̃, where r ∈ (0, R). Let now for k ∈ Z,

bk := [w]2
Ak(R2 ),n2

+ ‖4n
4 w‖2

L2(Ak(R2 ))
.

Then for any N ≤ 0,

N∑
k=−∞

bk ≤
1
2

KΛ∑
k=−∞

bk + C

∞∑
k=−∞

2−|γ|kbk + C2nNRn.

Consequently, by Lemma A.2, for a N0 < 0 and a β > 0 (not depending on x),

N∑
k=−∞

bk ≤ C 2βN , for any N ≤ N0.

This implies in particular

‖4n
4 v‖L2(Br) ≤ C rβ for all r < R̃ and Br(x) ⊂ D̃.

Consequently, Dirichlet Growth Theorem, Theorem A.6, implies that v ∈ C0,β(D̃).

Theorem 9.5

A Ingredients for the Dirichlet Growth Theorem

A.1 Iteration Lemmata

In [DLR09a, Proposition A.1] the following Iteration Lemma is proven.

Lemma A.1. Let ak ∈ l1(Z), ak ≥ 0 for any k ∈ Z and assume that there is
α > 0 such that for any N ≤ 0

N∑
k=−∞

ak ≤ Λ

( ∞∑
k=N+1

2γ(N+1−k)ak + 2αN
)
. (A.1)

Then there is β ∈ (0, 1), Λ2 > 0 such that for any N ≤ 0

N∑
k=−∞

ak ≤ 2βNΛ2.
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Proof. For the convenience of the reader we repeat the arguments of [DLR09a]
for this Lemma:
Set for N ≤ 0

AN :=
N∑

k=−∞

ak.

Then obviously,
ak = Ak −Ak−1.

Equation (A.1) then reads as (note that AN ∈ l∞(Z))

AN ≤ Λ

( ∞∑
k=n+1

2γ(N+1−k)Ak −Ak−1 + 2αN
)

= Λ

( ∞∑
k=N+1

2γ(N+1−k)Ak −
∞∑

k=N+2

2γ(N−(k−1))Ak−1 −AN + 2αN
)

= Λ

( ∞∑
k=N+1

2γ(N+1−k)Ak −
∞∑

k=N+1

2γ(N−k)Ak −AN + 2αN
)

= Λ

( ∞∑
k=N+1

2γ(N+1−k)Ak − 2−γ
∞∑

k=N+1

2γ(N−k+1)Ak −AN + 2αN
)

= Λ

(
(1− 2−γ)

∞∑
k=N+1

2γ(N+1−k)Ak −AN + 2αN
)
.

This calculation is correct as
(
2γk
)∞
k=N

∈ l1([N,N + 1, . . . ,∞]) because of the
condition γ > 0. Otherwise we could not have used linearity for absolutely con-
vergent series.
We have shown that (A.1) is equivalent to

AN ≤
Λ

1 + Λ
(
1− 2−γ

) ∞∑
k=N+1

2γ(N+1−k)Ak +
Λ

1 + Λ
2αN .

Set τ := Λ
Λ+1 (1− 2−γ). Then, for all N ≤ 0,

AN ≤ τ
∞∑

k=N+1

2γ(N+1−k)Ak + 2αN . (A.2)

Set

τk :=


1 if k = 0,
τ if k = 1,
τ(τ + 2−γ)k−1 if k ≥ 1.

Then for any K ≥ 0, N ≤ 0,

AN−K ≤ τK+1

∞∑
k=N+1

2γ(N+1−k)Ak +
K∑
k=0

τk2α(N−K+k). (A.3)
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In fact, this is true for K = 0, N ≤ 0 by (A.2). Moreover, if we assume that (A.3)
holds for some K ≥ 0 and all N ≤ 0, we calculate

AN−K−1

= A(N−1)−K

(A.3)

≤ τK+1

∞∑
k=N

2γ(N−k)Ak +
K∑
k=0

τk2α(N−1−K+k)

= τK+1

(
AN + 2−γ

∞∑
k=N+1

2γ(N+1−k)Ak

)

+
K∑
k=0

τk2α(N−1−K+k)

(A.2)

≤ τK+1

(
τ

∞∑
k=N+1

2γ(N+1−K)Ak + 2αN + 2−γ
∞∑

k=N+1

2γ(N+1−k)Ak

)

+
K∑
k=0

τk2α(N−1−K+k)

= τK+1(τ + 2−γ)
∞∑

k=N+1

2γ(N+1−k)Ak + τK+12αN

+
K∑
k=0

τk2α(N−(K+1)+k)

= τK+2

∞∑
k=N+1

2γ(N+1−k)Ak +
K+1∑
k=0

τk2α(N−(K+1)+k).

This proves (A.3) for any K ≥ 0 and N ≤ 0. Hence, as τK ≤ 1

AN−K ≤ CγτK+1A∞ + 2αNCα.

So for any Ñ ≤ 0

AÑ = A
(Ñ+

—
|Ñ|
2

�
)−

—
|Ñ|
2

�

≤ Cγτ—
|Ñ|
2

� + 2
α(Ñ+

—
|Ñ|
2

�
)

≤ Cγ,α

(
τ—
|Ñ|
2

� + 2−α
|N|
2

)
.

Using now that τk ≤ 2−θk for all k ≥ 0, have shown that

AÑ ≤ Cγ,αA∞2µÑ .

for some small µ > 0.

As a consequence the following Iteration Lemma holds, too.
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Lemma A.2. For any Λ1,Λ2, γ > 0, L ∈ N there exists a constant Λ3 > 0 and
an integer N̄ ≤ 0 such that the following holds. Let (ak) ∈ l1(Z), ak ≥ 0 for any
k ∈ Z such that for every N ≤ 0,

N∑
k=−∞

ak ≤
1
2

N+L∑
k=−∞

ak+Λ1

N∑
k=−∞

2γ|k−N |ak+Λ2

∞∑
k=N+1

2γ(N−k)ak+Λ22N . (A.4)

Then for any N ≤ N̄ ,

N∑
k=−∞

ak ≤ Λ3

∞∑
k=N+1

2γ(N−k)ak + Λ32γN

and consequently for some β ∈ (0, 1), Λ4 > 0 (depending only on ‖ak‖l1(Z), Λ3)
and for any N ≤ N̄

N∑
k=−∞

ak ≤ Λ42βN .

Proof of Lemma A.2.
Firstly, (A.4) implies

N∑
k=−∞

ak

≤ 2
N+L∑
k=N+1

ak + 2Λ1

N∑
k=−∞

2γ(k−N)ak

+2Λ2

∞∑
k=N+1

2γ(N−k)ak + Λ22γN

≤ 2γL+1
N+L∑
k=N+1

2γ(N−k)ak + 2Λ1

N∑
k=−∞

2γ(k−N)ak

+2Λ2

∞∑
k=N+1

2γ(N−k)ak + Λ22γN

≤ 2Λ1

N∑
k=−∞

2γ(k−N)ak +
(
2γL+1 + 2Λ2

) ∞∑
k=N+1

2γ(N−k)ak + Λ22γN .
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Next, choose K ∈ N such that 2−γK ≤ 1
4Λ1

. Then,

N∑
k=−∞

ak

≤ 2Λ1

N−K∑
k=−∞

2γ(k−N)ak + 2Λ1

N∑
k=N−K+1

2γ(k−N)ak

+
(
2γL+1 + 2Λ2

) ∞∑
k=N+1

2γ(N−k)ak + Λ22γN

≤ 1
2

N−K∑
k=−∞

ak + 2Λ1

N∑
k=N−K+1

ak

+
(
2γL+1 + 2Λ2

) ∞∑
k=N+1

2γ(N−k)ak + Λ22γN .

Consequently,

N−K∑
k=−∞

ak

≤ 4Λ1

N∑
k=N−K+1

ak +
(
2γL+2 + 4Λ2

) ∞∑
k=N+1

2γ(N−k)ak + 2Λ22γN

≤ 4Λ12γK
N∑

k=N−K+1

2γ(N−K−k)ak

+2γK
(
2γL+2 + 4Λ2

) ∞∑
k=N+1

2γ(N−K−k)ak + 2Λ22γN

≤
(
4Λ12γK + 2γK

(
2γL+2 + 4Λ2

)) ∞∑
k=N−K+1

2γ(N−K−k)ak + 2Λ22K 2γN−K

=: Λ3

( ∞∑
k=N−K+1

2γ(N−K−k)ak + 2γN−K
)
.

This is valid for any N ≤ 0, so for any Ñ ≤ −K

Ñ∑
k=−∞

ak ≤ Λ3

 ∞∑
k=Ñ+1

2γ(Ñ−k)ak + 2γÑ

.
We conclude by Lemma A.1.

Lemma A.2

A.2 A fractional Dirichlet Growth Theorem

In this section we will state and prove a Dirichlet Growth-Type theorem using
mainly Poincaré’s inequality. For an harmonic analysis approach to similar, yet

86



more general results, we refer to [Ada75].
Let us introduce some quantities related to Morrey- and Campanato spaces as
treated in [Gia83] for some domain D ⊂ Rn, λ > 0

JD,λ,R(v) := sup
x∈D

0<ρ<R

ρ−λ ˆ

D∩Bρ(x)

|v|2


1
2

and

MD,λ,R(v) := sup
x∈D

0<ρ<R

ρ−λ ˆ

D∩Bρ(x)

∣∣v − (v)D∩Bρ(x)

∣∣2


1
2

.

Moreover, let us denote by C0,α(D), α ∈ (0, 1) all Hölder continuous functions to
the exponent α. Then the following relations hold:

Lemma A.3 (Integral Characterization of Hölder continuous functions). (cf.
[Gia83, Theorem III.1.2])
Let D ⊂ Rn be a smoothly bounded set, and λ ∈ (n, n + 2), v ∈ L2(D). Then
v ∈ C0,α(D) for α = λ−n

2 if and only if for some R > 0

MD,λ,R(v) <∞.

Lemma A.4 (Relation between Morrey- and Campanato spaces). (cf. [Gia83,
Proposition III.1.2])
Let D ⊂ Rn be a smoothly bounded set, and λ ∈ (1, n), v ∈ L2(D). Then for a
constant CD,λ > 0

JD,λ,R(v) ≤ CD,λ,R
(
‖v‖L2(D) +MD,λ,R(v)

)
.

As a consequence of Lemma A.4 we have

Lemma A.5. Let D ⊂ Rn convex, smoothly bounded domain. Set N := bn2 c.
Then if v ∈ L2(D), λ ∈ (n, n+ 2),

MD,λ,R(v) ≤ CD,λ,R

‖v‖HN (D) +
∑
|α|=N

MD,λ−2N,R(∂αv)

.
Proof of Lemma A.5.
For any r ∈ (0, R), x ∈ D set Br ≡ Br(x). As D is convex, also Br ∩D is convex,
so by classical Poincaré inequality on convex sets, Lemma 3.2,

ˆ

D∩Br

|v − (v)D∩Br |
2 L.3.2
≤ C diam(D ∩Br)2

ˆ

D∩Br

|∇v|2

≺ r2

ˆ

D∩Br

|∇v|2.
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Consequently,
MD,λ,R(v) ≤ Cn JD,λ−2,R(∇v).

As λ ∈ (n, n+ 2), λ− 2 < n, by Lemma A.4,

JD,λ−2,R(∇v) ≤ CD,R,λ
(
‖∇v‖L2(D) +MD,λ,R(∇v)

)
.

Iterating this estimate N times, using that λ− 2N > 0, we conclude.

Lemma A.5

Finally, we can prove a sufficient condition for Hölder continuity on D expressed
by the growth of 4n

4 v:

Lemma A.6 (Dirichlet Growth Theorem). Let D ⊂ Rn be a smoothly bounded,
convex domain, let v ∈ H n

2 (Rn) and assume there are constants Λ > 0, α ∈ (0, 1),
R > 0 such that

sup
r∈(0,R)
x∈D

r−α[v]Br(x),n2
< Λ. (A.5)

Then v ∈ C0,α(D).

Proof of Lemma A.6.
We only treat the case where n is odd, the even dimension case is similar. Set
N := bn2 c. We have for any x ∈ D, r ∈ (0, R), Dr := Br(x) ∩D, using that the
boundary of D is smooth and thus |Dr| ≥ cD|Br|

ˆ

Dr

∣∣∣∇Nv(x)−
(
∇Nv

)
Dr

∣∣∣2
≺ (diam(Dr))

2(n−N)

|Dr|

ˆ

Dr

ˆ

Dr

∣∣∇Nv(x)−∇Nv(y)
∣∣2

|x− y|2(n−N)
dx dy

≺ rn−2N
(

[v]Br(x),n2

)2

(A.5)
≺ rn−2N+2αΛ2.

Thus, for λ = n+ 2α ∈ (n, n+ 2)

MD,λ−2N,R(∇Nv) ≺ Λ.

By Lemma A.5 this implies

MD,λ,R(v) ≺ Λ + ‖v‖HN (D),

which by Lemma A.3 is equivalent to v ∈ C0,α(D).

Lemma A.6
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une surface et une variété riemannienne. C.R. Acad. Sci. Paris 312,
Série I, pages 591–596, 1991.
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