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Abstract

We prove Hoélder continuity for n/2-harmonic maps from subsets of R™ into a sphere. This extends a recent one-
dimensional result by F. Da Lio and T. Riviére to arbitrary dimensions. The proof relies on compensation effects
which we quantify adapting an approach for Wente’s inequality by L. Tartar, instead of Besov-space arguments
which were used in the one-dimensional case. Moreover, fractional analogues of Hodge decomposition and higher
order Poincaré inequalities as well as several localization effects for nonlocal operators similar to the fractional
laplacian are developed and applied.
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1 Introduction

In his seminal work [Hé190] F. Hélein proved regularity for harmonic maps from the two-dimensional unit disk B;(0) C
R? into the m-dimensional sphere S™~! C R™ for arbitrary m € N. These maps are critical points of the functional

Es(u) := / |Vul?, where u € W'2(B;(0),S™1).

B1(0)CR2

The importance of this result is the fact that harmonic maps in two dimensions are special cases of critical points of
conformally invariant variational functionals, which play an important role in physics and geometry and have been
studied for a long time: Hélein’s approach is based on the discovery of a compensation phenomenon appearing in
the Euler-Lagrange equations of Ey, using a relation between div-curl expressions and the Hardy space. This kind of
relation had been discovered shortly before in the special case of determinants by S. Miiller [Miil90] and was generalized
by R. Coifman, P.L. Lions, Y. Meyer and S. Semmes [CLMS93]. Hélein extended his result to the case where the
sphere S™~! is replaced by a general target manifold developing the so-called moving-frame technique which is used
in order to enforce the compensation phenomenon in the Euler-Lagrange equations [Hé191]. Finally, T. Riviere [Riv07]
was able to prove regularity for critical points of general conformally invariant functionals, thus solving a conjecture
by S. Hildebrandt [Hil82]. In his ingenious approach he applies a technique based on K. Uhlenbeck’s results in gauge
theory [Uhl82] in order to implement div-curl expressions in the Euler-Lagrange equations, a technique which can be
reinterpreted as an extension of Hélein’s moving frame method; see [Sch10a]. For more details and references we refer
to Hélein’s book [Hél02] and the extensive introduction in [Riv07] as well as [Riv09].

Naturally, it is interesting to see how these results extend to other dimensions: In the four-dimensional case, regularity
can be proven for critical points of the following functional, the so-called extrinsic biharmonic maps:

Ey(u) := / |Aul?, where u € W22(B;(0), R™).

B1(0)CR4

This was done by A. Chang, L. Wang, and P. Yang [CWY99] in the case of a sphere as the target manifold, and
for more general targets by P. Strzelecki [Str03], C. Wang [Wan04] and C. Scheven [Sch08]; see also T. Lamm and
T. Riviere’s paper [LRO8]. More generally, for all even n > 6 similar regularity results hold, and we refer to the work
of A. Gastel and C. Scheven [GS09] as well as the article of P. Goldstein, P. Strzelecki and A. Zatorska-Goldstein
[GSZG09].

In odd dimensions non-local operators appear, and only two results for dimension n = 1 are available. In [DLRO09],
F. Da Lio and T. Riviere prove Holder continuity for critical points of the functional

B (u) :/‘A%u
Rl

In [DLR10] this is extended to the setting of general target manifolds.

2
, defined on distributions u with finite energy and u € S™~! a.e.

In general, we consider for n, m € N and some domain D C R" the regularity of critical points on D of the functional

2 veHERMWR™), veS™ ! ae. in D. (1.1)

Here, A% denotes the operator which acts on functions v € L?(R") according to
(A%v)/\(f) = |¢]Z ™€) for almost every £ € R™,

where () denotes the application of the Fourier transform. The space H 2 (R") is the space of all functions v € L?(R™)
such that ATy € L2(R™). The term “critical point” is defined as usual:

Definition 1.1 (Critical Point). Let u € H=(R",R™), D C R". We say that u is a critical point of E,(-) on D if
u(x) € S™L for almost every x € D and

d
— E =
dt —o (ut#’) 0

for any ¢ € C(D,R™) where uy, € H? (R™) is defined as

II(u+ty) in D,
u =
A in R™\D.

z
|| -

Here, 1 denotes the orthogonal projection from a tubular neighborhood of S™~! into S™~1 defined as I1(x) =



If n is an even number, the domain of E,,(-) is just the classic Sobolev space H % (R") = W 3-2(R"), for odd dimensions
this is a fractional Sobolev space (see Section 2.2). Functions in H?% (R™) can contain logarithmic singularities (cf.
[Fre73]) but this space embeds continuously into BMO(R™), and even only slightly improved integrability or more
differentiability would imply continuity.

In the light of the existing results in even dimensions and in the one-dimensional case, one may expect that similar
regularity results should hold for any dimension. As a first step in that direction, we establish regularity of n/2-
harmonic maps into the sphere.

Theorem 1.2. For any n > 1, critical points u € H= (R?) of E,, on a domain D are locally Hélder continuous in D.

Note that here — in contrast to [DLR09] — we work on general domains D C R™. This is motivated by the facts that
Holder continuity is a local property and that A% (though it is a non-local operator) still behaves “pseudo-local”.
Thus, we can impose our conditions (here: being a critical point and mapping into the sphere) only in some domain
D C R”, and still get interior regularity within D.

Let us comment on the strategy of the proof. As said before, in all even dimensions the key tool for proving regularity
is the discovery of compensation phenomena built into the respective Euler-Lagrange equation. For example, critical
points u € W12(D,S™1) of Ey satisfy the following Euler-Lagrange equation [Hé190]

Aut = ! |Vul?, weakly in D, foralli=1...m. (1.2)

For mappings v € W12(R?,S™~1) this is a critical equation, as the right-hand side seems to lie only in L': If we had
no additional information, it would seem as if the equation admitted a logarithmic singularity (for examples see, e.g.,
[Riv07], [Fre73]). But, using the constraint |u| = 1, one can rewrite the right-hand side of (1.2) as

u'[Vul? = (u'Vu! — V') - Vol =3 (01By; 0yw? — 0,Bi; 1))

j=1 j=1

where the B;; are chosen such that 0, B;; = w O —u? Dout, and —09B;5 = uw'01u! —ul 01ut, a choice which is possible
due to Poincaré’s Lemma and because (1.2) implies div (uiVuj — ujVui) = 0 for every i,5 = 1...m. Thus, (1.2)
transforms into

Aui Z (alBij 82uj - 62Bij aluj), (13)
j=1

a form whose right-hand side exhibits a compensation phenomenon which in a similar way already appeared in the
so-called Wente inequality [Wen69], see also [BC84], [Tar85]. In fact, the right-hand side belongs to the Hardy space
(cf. [Miil90], [CLMS93]) which is a proper subspace of L' with enhanced potential theoretic properties. Namely,
members of the Hardy space behave well with Calderén-Zygmund operators, and by this one can conclude continuity
of u.

An alternative and for our purpose more viable way to describe this can be found in L. Tartar’s proof [Tar85] of
Wente’s inequality: Assume we have for a,b € L?(R?) a solution w € H'(R?) of

Aw = Ora Iab — Osa O1b weakly in R2. (1.4)

Taking the Fourier-Transform on both sides, this is (formally) equivalent to

\§|2wA(f) = C/QA(QJ) bN(E — ) (21(8a — x2) — 22(&1 — 71)) do, for £ € R?. (1.5)

R2

Now the compensation phenomena responsible for the higher regularity of w can be identified with the following
inequality:
1 1
|z1(§2 — 22) — 22(§1 — 21)| < [E[2|?|€ — =2, (1.6)

Observe, that |z| as well as [€ — x| appear to the power 1/2, only. Interpreting these factors as Fourier multipliers, this
means that only “half of the gradient”, more precisely A%, of a and b enters the equation, which implies that the right-
hand side is a “product of lower order” operators. In fact, plugging (1.6) into (1.5), one can conclude w” € L*(R?)
just by Holder’s and Young’s inequality on Lorentz spaces — consequently one has proven continuity of w, because the
inverse Fourier transform maps L' into C°. As explained earlier, (1.2) can be rewritten as (1.3) which has the form
of (1.4), thus we have continuity for critical points of Fs, and by a bootstraping argument (see [Tom69]) one gets
analyticity of these points.

As in Theorem 1.2 we prove only interior regularity, it is natural to work with localized Euler-Lagrange equations
which look as follows, see Section 7:



Lemma 1.3 (Euler-Lagrange Equations). Let u € H? (R™) be a critical point of E, on a domain D C R"™. Then, for
any cutoff function n € C§°(D), n =1 on an open neighborhood of a ball D C D and w = nu, we have

- /"u)Z A%wj A%Qﬂij = /A%wj H(wi,wij) - /aijwij, fO’I" any wij = _wji S Cgo([))’ (17)
R’!‘L Rfl ]Rn
where a;; € L?(R™), i, = 1,...,m, depend on the choice of n. Here, we adopt Einstein’s summation convention.

Moreover, H(-,-) is defined on H? (R™) x H% (R") as
H(a,b) :== A% (ab) — aA%b—bA%a,  fora,be H?(R"). (1.8)
Furthermore, u € S™ ! on D implies the following structure equation

w' - Afw' = —%H(wﬁuﬂ + %A%nQ a.e. in R™. (1.9)
Similar in its spirit to [DLR09] we use that (1.7) and (1.9) together control the full growth of A%w, though here we
use a different argument applying an analogue of Hodge decomposition to show this, see below. Note moreover that
as we have localized our Euler-Lagrange equation, we do not need further rewriting of the structure condition (1.9) as
was done in [DLR09].
While in (1.4) the compensation phenomenon stems from the structure of the right-hand side, here it comes from
the leading order term H(:,-) appearing in (1.7) and (1.9). This can be proved by Tartar’s approach [Tar85], using
essentially only the following elementary “compensation inequality” similar in its spirit to (1.6)

—1 —1 .
[P+ 1E1P ], if p > 1,

p P . (1.10)
lz|2[¢12, if p e (0,1].

[z = &7 = 7 =[] < Cp{

More precisely, we will prove in Section 4

Theorem 1.4. For H as in (1.8) and u,v € H= (R™) one has
n A n A
1H (u, 0)[[ L2 ey < C (A5 u) 2y 1(AT0) |20 ).

An equivalent compensation phenomenon was observed in the case n = 1 in [DLR09]!. Note that interpreting again
the terms of (1.10) as Fourier multipliers, it seems as if this equation (and as a consequence Theorem 1.4) estimates the
operator H (u,v) by products of lower order operators applied to u and v. Here, by “products of lower order operators”
we mean products of operators whose differential order is strictly between zero and % and where the two operators
together give an operator of ordern%. In fact, this is exactly what happens in special cases, e.g. H(u,v) = 2Vu - Vu
if we take the case n = 4 where A1 = A.

Another case we will need to control is the case where u = P is a polynomial of degree less than 5. As (at least
formally) A% P = 0 this is to estimate

H(P,v) = A% (Pv) — PA%w.

This case is not contained in Theorem 1.4 as a non-zero polynomial does not belong to H % (R™). Obviously, in the
one-dimensional case P is only a constant, and thus H(P,v) = 0. In higher dimensions, this term does not vanish.
However, we will show in Proposition 5.12 that H(P,v) is still a product of lower order expressions.

As we are going to show in Section 5.4, products of lower order operators (in the way this term is defined above)
“localize well”. By that we mean that the L?-norm of such a product evaluated on a ball is estimated by the product of
L?-norms of A% applied to the factors evaluated at a slightly bigger ball, up to harmless error terms. As a consequence,
one expects this to hold as well for the term H(u,v), and in fact, we can show the following “localized version” of
Theorem 1.4, proven in Section 6.

Theorem 1.5 (Localized Compensation Results). There is a uniform constant y > 0 depending only on the dimension
n, such that the following holds. Let H(-,-) be defined as in (1.8). For anyv € H= (R™) and & > 0 there exist constants
R >0 and Ay > 0 such that for any ball B,.(x) C R"™, r € (0, R),

| H (v, 9) |12, ) <€ |ATQ|2@ny  for any ¢ € C(Br(x)),

and
o0

IH (v, 0)l|22(B, (2)) < € [0]1Ba,n (@) + Conw D 2™ 0],y @0\Byw (0)-

k=—oc0

n fact, all compensation phenomena established in [DLR09] can be proven by our adaptation of Tartar’s method using simple
compensation inequalities, thus avoiding the use of paraproduct arguments (but at the expense of using the theory of Lorentz spaces).



Here, [[v]]a is a pseudo-norm, which in a way measures the L?>-norm of A%v on A C R™. More precisely,

2

n —n— n_1 n—1 2
([w]a == [[AT 0] L20a) + //|$—y| LIV u(a) -V T u(y)| dedy| , forn odd,
A A

and for even n we set [[v]]a == ||ATv||p2(a) + V20| 120a).

As mentioned before, by the structure of our Euler-Lagrage equations, these local estimates control the local growth of
the 7-operator of any critical point. This is true, as local growth of L2-functions is controlled by their local weak A%-
norm. More precisely, we will show the following result in Section 5.3 using an analogue of the Hodge decomposition,
see Lemma 2.9.

Theorem 1.6. There are uniform constants Ao > 0 and C > 0 such that the following holds: For any x € R™ and
any r > 0 we have for every v € L*(R"™), suppv C B,.(z),

1 n
lvllz2(B(2)) < C sup S /,U At
0€C° (Bayr(2)) AT @l L2®n)

Then, by an iteration technique adapted from the one in [DLR09] (see the appendix) we conclude in Section 9 that
the critical point u of E, lies in a Morrey-Campanato space, which implies Holder continuity.

As for the sections not mentioned so far: In Section 2 we will cover some basic facts on Lorentz and Sobolev spaces.
In Section 3 we will prove a fractional Poincaré inequality with a mean value condition of arbitrary order. In Section 5
various localizing effects are studied. In Section 8 we compare two pseudo-norms [[A%v||r2(4) and [v]n 4 of H 7, and
finally, in Section 9, Theorem 1.2 is proved.

Finally, let us remark the following two points: As we cut off the critical points u to bounded domains, the assumption
u € L2(R™) is not necessary, one could, e.g., assume u € L>(R"), A%y € L2(R"), thus regaining a similar “global”
result as in [DLR09]. Observe moreover, that the application of a cut-off function within D to the critical point u is
a rather brute operation, which nevertheless suffices our purposes as in this note we are only interested in interior
regularity. For the analysis of the boundary behavior of u one probably would need a more careful cut-off argument.

We will use fairly standard notation:

As usual, we denote by S = S(R™) the Schwartz class of all smooth functions which at infinity go faster to zero than
any quotient of polynomials, and by s=s (R™) its dual. For a set A C R™ we will denote its n-dimensional Lebesgue
measure by |4|, and 74, r > 0, will be the set of all points ra € R™ where z € A. By B,(z) C R™ we denote the
open ball with radius r and center 2z € R™. If no confusion arises, we will abbreviate B, = B,(xz). When we speak
of a multiindex o we will usually mean o = (avq,..., ;) € (NU{0})" = (Ng)" with length |a| := >""" ; o;. For such
a multiindex o and z = (z1,...,2,)7 € R™ we denote by z* = [}, (x;)* where we set (z;)° := 1 even if ; = 0.
For a real number p > 0 we denote by |p] the biggest integer below p and by [p] the smallest integer above p. If
p € [1, 0] we usually will denote by p’ the Holder conjugate, that is % + % = 1. By f * g we denote the convolution
of two functions f and g. As mentioned before, we will denote by f* the Fourier transform and by fV the inverse
Fourier transform, which on the Schwartz class S are defined as

1) = [ fa) e )= [ e e

R™ Rn

By i we denote here and henceforth the imaginary unit i> = —1. R is the Riesz operator which transforms v € S(R")
according to (Rv)"(§) := i%vA (€). More generally, we will speak of a zero-multiplier operator M, if there is a function
m € C(R™\{0}) homogeneous of order 0 and such that (Mwv)"(£) = m(&) v"(€) for all £ € R™\{0}. For a measurable
set D C R™, we denote the integral mean of an integrable function v : D — R to be (v)p = fD v = ﬁ fD v. Lastly,
our constants — usually denoted by C' or ¢ — can possibly change from line to line and usually depend on the space
dimensions involved. Further dependencies will be indicated by a subscript, though we will make no effort to pin down
the exact value of those constants. If we consider the constant factors to be irrelevant with respect to the mathematical
argument, for the sake of simplicity we will omit them in the calculations, writing <, >, ~ instead of <, > and =.

Acknowledgment. The author would like to thank Francesca Da Lio and Tristan Riviere for introducing him to
the topic, and Pawel Strzelecki for suggesting to extend the results of [DLR09] to higher dimensions. Moreover, he is
very grateful to his supervisor Heiko von der Mosel for the constant support and encouragement, as well as for many
comments and remarks on the drafts of this work. The author is supported by the Studienstiftung des Deutschen
Volkes.



2 Lorentz-, Sobolev Spaces and Cutoff Functions

2.1 Lorentz Spaces

In this section, we recall the definition of Lorentz spaces, which are a refinement of the standard Lebesgue-spaces. For
more on Lorentz spaces, the interested reader might consider [Hun66], [Zie89], [Gra08, Section 1.4], as well as [Tar07].

Definition 2.1 (Lorentz Space). Let f : R® — R be measurable and set dp(A\) := [{x € R™ : |f(z)| > A}|. The
decreasing rearrangement of f is the function f* defined on [0,00) by f*(t) :=inf{s > 0: d;(s) <t}. For1l <p < oo,
1 < q < oo, the Lorentz space LP1 = LP1(R™), is the set of measurable functions f : R™ — R such that || f||pr.« < 00,

where )
<T<t;f*(t))q”?>q , if g < o0,
o= N0 0, .
sup;o 7 f*(t), if ¢ =00, p < o0,
Hf”L‘X’(R")a ’qu:OO,p:OO
Observe that || - ||Lr.a does not satisfy the triangle inequality.

There is another definition of Lorentz spaces by interpolation between L' and LP, cf. [Tar07]. Note that we have not
defined the space L° for g € [1,00). For simplicity, whenever a result on Lorentz spaces is stated in a way that
LP9 for p = 00, ¢ € [1,00] is admissible, we in fact only claim that result for p = oo, ¢ = co. Next, we state some
basic properties of Lorentz spaces. The proofs are either easy exercises or they are contained in the above mentioned
articles and monographs (cf. also [Sch10b]).

Proposition 2.2. Let f € LP*% and g € LP>%, 1 < p1,p2, q1,q2 < 0.
(i) If p% + 17 =
. 1
(ii) If o T ]7
(#ii) For py € (1,00), f belongs to LP? (R”) if and only if f € LP*P1. The "norms“ of LP*'P* and LP' are equivalent.

% [0,1] and —|— - % then fg € LP? and || fgllpra < || fllzriar ||g| p2iaz.
1=

> 0 and Jr L= % then fxg € LP? and || f * gllLra < || fllLrrar ||g]lLrziaz -

(iv) If p1 € (1,00) and q € [q1,00] then also f € LP1,

(v) ﬁ € Lx>°, whenever A € (0,n).
(m) o e (172)’ o [1700] we have ”f/\”Lpl o < 1||f||LP1 a1 and ||fv||Lp1 a > 1||fHLp1 ai .

(vii) Let X > 0. If we denote f(-) := f(\-), then ||fl|pprar = X710 || f]|zoroar -

(viii) Let supp f C D, where D C R™ is a bounded measurable set. Then, whenever co > py > p > 1, q¢ € [1,00], we
1_1
have || fllLra < Cppr g D177 [ f]lLe

2.2 Fractional Sobolev Spaces

Definition 2.3 (Fractional Sobolev Spaces by Fourier Transform). Let f € L?(R™). We say that for some s > 0 the
function f € H® = H*(R™) if and only if A% f € L2(R™). Here, the operator A% is deﬁned as A%f = (|-|SfA)v. The
norm, under which H*(R™) becomes a Hilbert space is Hf||Hs(Rn) = ||f||L2 rr) T |Az f||L2 R™)

In Section 2.3 we will state an integral representation for the fractional laplacian A2. Observe, that the definition of
A% coincides with the usual laplacian only up to a multiplicative constant, but this saves us from the nuisance to deal
with those standard factors in every single calculation.

Our next goal is Poincaré’s inequality. As we want to use the standard blow up argument to prove it, we premise a
(trivial) uniqueness and a compactness result:

Lemma 2.4 (Uniqueness of solutions). Let f € H*(R"), s > 0. If A2 f =0, then f = 0.

Lemma 2.5 (Compactness). Let D C R™ be a smoothly bounded domain, s > 0. Assume that there is a constant
C >0 and fr € H(R™), k € N, such that for any k € N the conditions supp fr, C D and || fx||gs < C hold. Then

there exists a subsequence fi,, such that fy, imeo, f € H?® weakly in H*, strongly in L?>(R™), and pointwise almost

everywhere. Moreover, supp f C D.

Proof of Lemma 2.5.
Fix D C R™ and let n € C§°(2D), n = 1 on D. One shows that the operator S : v +— nv is compact as an operator
H*(R") — L?(R"), by interpolation [Tar07, Lemma 41.4] and the fact that it is compact for any s € N.

Lemma 2.5 [



With the compactness lemma, Lemma 2.5, at hand we can prove the following Poincaré inequality by the usual
blowup proof (for details see [Sch10b]). As in [DLRO09, Theorem A.2] we will use a support-condition in order to

ensure compactness of the embedding H*(R") into L?(R™). This support condition can be seen as saying that all

derivatives up to order |5 | are zero at the boundary, therefore it is not surprising that such an inequality should hold.

Lemma 2.6 (Poincaré Inequality). For any smoothly bounded domain D C R™, s > 0, there exists a constant Cp s > 0
such that ‘ -
Hf”LQ(]Rn) S CD,s ||A§f||L2(Rn), f07’ all f S HS(Rn)} suppf C D (21)

If D=rD for somer >0, then Cp s = Cpsr°

One checks as well, that Cp s = Cp , if D is a mere translation of some smoothly bounded domain D. This is clear,

as the operator A% commutes with translations.
A simple consequence of the “standard Poincaré inequality” is the following

Lemma 2.7 (Slightly more general Poincaré inequality). For any smoothly bounded domain D C R™, 0 < s < t, there
exists a constant Cp ¢ > 0 such that

A% fll 2@y < Cpy [|A% fllz2@ny, for all f € HY(R™), supp f C D.

If D=1rD for some r >0, then Cp; = Cprt=>.
Proof of Lemma 2.7.
This follows by the following estimate and scaling:
E S A t pA A t Lz2.6 k3
(A2 fllz = I[-]" f ez < I f 2@ sy + 1 z2sio)) S NA2 fllee +[[fllzz < Cpu |A2 f[ 1.
Lemma 2.7 [

The following lemma can be interpreted as an existence result for the equation AZw = v - or as a variant of Poincaré’s
inequality:

Lemma 2.8. Let s € (0,n), p € [2,00) such that

n—s 1 n — 2s
>

2.2
n p - 2n (22)

Then for any smoothly bounded set D C R™ there is a constant Cp s, such that for any v € S(R™), suppv C D, we
have A=%v € LP(R") and
IA72v]|Lr@r) < Cpp,s (0]l L2

Here, A™2v is defined as (|-|”*v")V. In particular, if s € (0,2),
IA™2 0]l p2zn) < Cps [0l

If D=rD, then Cpp, =1°"5"% Cp

P8 °

Proof of Lemma 2.8.
We want to make the following reasoning rigorous:

L. pe ) . =1 wgs
1A720lle < Cp 177 v e < Cp M2 107 [20r < G [0llzwre < Cog O (0] L2

To do so, we need to find ¢ € [2,00) such that (x) holds ]% = % + 2, which is possible by virtue of (2.2). Then the
validity of (x) follows from Proposition 2.2 and we conclude with scaling.

Lemma 2.8 [

The next lemma can be interpreted as an adaption of Hodge decomposition to the setting of the fractional laplacian:

Lemma 2.9 (Hodge Decomposition). Let f € L*(R™), s > 0. Then for any smoothly bounded domain D C R™ there
are functions p € H*(R™), suppp C D, and h € L?>(R") such that f = A% + h almost everywhere in R™ and

/h Az =0, for allp € C(D).

RW,

Moreover, Hh||L2(R") + ||A%<p||L2(Rn) < 5||fHL2(Rn)



Proof of Lemma 2.9.
Set

2, for v € H*(R™) with suppv C D.

E(v) = ‘A%v—f
R[

One can prove via Poincaré’s inequality, Lemma 2.6, and the compactness lemma, Lemma 2.5, that E is coercive and
that consequently there exists a minimizer ¢ of E(-) in H*(R™) with the support condition suppy C D. If we call
h := A%y — f, Euler-Lagrange-Equations and the minimization process itself imply the claimed properties.

Lemma 2.9 J

In fact, h will satisfy enhanced local estimates, similar to estimates for harmonic function, see Lemma 5.8.

2.3 An Integral Definition for the Fractional Laplacian

A further definition of the fractional laplacian for small order without the use of the Fourier transform are based on
the following proposition.

Proposition 2.10 (Fractional Laplacian - Integral Definition). (i) Let s € (0,1). For some constant ¢, and any
ve SR,

Az u(p) _CR/M dz  for any ij € R"™.
r—=y

(ii) Let s € (0,2). Then,

cf/%ﬂ—@+v@+@—2m@d$
ol
(#ii) For any s € (0,2), v,w € S(R™)
S0 w=c (v(z) —v(y)) (wly) —w(@))
/A B n// dz dy.

|z —y|" "

R R R

(iv) Let s € (0,1). For a constant ¢, > 0 and for any v € S(R™)

s |'U
S hrer Cay
R’!L Rn

We will introduce the pseudo-norm [v]p s, a quantity which for s € (0,1) actually is equivalent to the local, homoge-
neous H*-norm, see [Tar07], [Tay96]. But we will not use this fact as we will work with s = & for n € N, including
n € N greater than 2. Nevertheless, we will see in Section 8 that [v]p, 2 is “almost” comparable to [|A%v||2(py.

Definition 2.11. For a domain D C R™ and s > 0 we set

VLSJ u(z1) VLSJU(ZQ)Q
//| n2(s—Ls]) | le dZQ (23)

— 2|

if s # Ng. If s € Ng we just define [u]p s = ||Voul 2(p)-
Observe that by the definition of [-]p s it is obvious that for any polynomial P of degree less than s,

[U"‘P]D,s = [U]D,s~

2.4 Annuli-Cutoff Functions

We will have to localize our equations, so we introduce as in [DLR09] a decomposition of unity as follows: Let
n=n"¢€ C§(B2(0)), n=11in B1(0) and 0 <7 < 1 in R™. Let furthermore n* € C§°(Bar+1(0)\Bar—1(0)), k € N, such
that 0 < n¥F <1, 372 n* =1 pointwise in R" and ’V’h’ﬂ < C;27F for any i € Ng. We call nf’w :=n"(=%), though
we will often omit the subscript when x and r should be clear from the context.

We want to estimate some LP-Norms of A27¥ . In order to do so, we will need the following Proposition which can
be proven similar to [Gra08, Exercise 2.2.14, p.108].

Proposition 2.12. For every g € S(R™), p € [1,2], s >0, —0o < a < n22 < 3 < oo, we have

s A
1(259) o) < Capp (1A gllrzgeny + 1A gl ) -



Proposition 2.13. For any s > 0, p € [1,2], there is a constant Cs , > 0, such that for any k € Ng, z € R", r >0
denoting as usual p' := P,
P
sk A\ k,\—s+2r
1(A505,) llpen) < Cop (257) 7457, (2.4)
In particular, .,
||A§777]f,z”Lp/(]Rn) < Csp (2kr>—s+?. (2.5)

Proof of Proposition 2.13.
Fixr >0, k € Nand z € R"™. Set ij(-) := nf . (z+2*r-). By scaling it then suffices to show that for a uniform constant
Csp>0

s AN
H (AQ”]) HLP(R") S Cs7p- (26)

Scaling back we conclude the proof of (2.4). Equation (2.5) then follows by the continuity of the inverse Fourier-
transform from LP to LP whenever p € [1,2], see Proposition 2.2.

Proposition 2.13 [

Remark 2.14. One can show, that
||A%(7]r7oxa)||Lp(Rn) <Csp postlal+3 for any p € [2,00], |a] < s, r > 0.

This is done similar to the proof of Proposition 2.13: First one proves the claim for r = 1, then scaling implies the
claim, using that
Mro(@)x® = vl o(r~ 1) (r ),

As a consequence, Az P vanishes for a polynomial P, if s is greater than the degree of P - in a weak sense:

Proposition 2.15. Let a be a multiindex o = («1,...,ay), where a; € Nog, 1 < ¢ < n. If s > 0 such that

n
lal = D7 || < s then
i=1

Rlirn nrr® A3 =0, for every p € S(R™).
— 00
R’n,
Here, x® := (1)t -+ (zp)".
We will use Proposition 2.15 in a formal way, by saying that formally A%x® = 0 whenever |a| < s. Of course, as we
defined the operator A% on L2-Functions only, this formal argument should be verified in each calculation by using

that limp oo A% (nrx®) = 0, where the limit will be taken in an appropriate sense. For the sake of simplicity, now
and then we will omit this recurring argument.

3 Mean Value Poincaré Inequality of Fractional Order

By the Fundamental Theorem of Calculus one can prove the following

Proposition 3.1 (Estimate on Convex Sets). Let D be a convex, bounded domain and v < n + 2, then for any

v € C®(R"),
//W dz dy < Cp /|Vv(z)|2 dz.

yl”
D D D

If v =0, the constant Cp ., = C,, |D|diam(D)?.
An immediate consequence for v = 0 is the classic Poincaré inequality for mean values on convex domains.
Lemma 3.2. There is a uniform constant C' > 0 such that for any v € C®°(R"™) and for any convex, bounded set
D CR”
[ 10 @l <€ (@mn(D)? Vol
D

In the following two sections we prove in Lemma 3.5 and Lemma 3.6 higher (fractional) order analogues of this Mean-
Value-Poincaré-Inequality, on the ball and on the annulus, respectively. More precisely, for 7* from Section 2.4 we will
only show that ‘

”A%(nrkv)”LQ(]R") < A% 0] L2 (),



if v satisfies a mean value condition, similar to the following: For some N € Ny and a domain D C R” (in our example
e.g. D =suppn’ and N = [s] — 1)

][80‘1) =0, for any multiindex a € (Ng)", |a] < N. (3.1)

The necessary ingredients can be paraphrased as follows: For any s > 1 we can decompose A? into A% o T for some
t € (0,1) and where T is a classic differential operator possibly plugged behind a Riesz-transform. So, we first focus
in Proposition 3.4 on the case A2 where s € (0,1). There we first use the integral representation of A% as in Section
2.3 and then apply in turns the fundamental theorem of calculus and the mean value condition.

3.1 On the Ball
Proposition 3.3. Let v € [0,n+2), N € N. Then for a constant Cn ~ and for any v € C*(R™) satisfying (3.1) on

some D = B, C R",
// [v(@ y|7 dy dr < Oy 12N~ 7//WN ) = V()| de dy.

B B,

Proof of Proposition 3.3.
It suffices to prove this proposition for B;(0) and then scale the estimate. So let » = 1. By Proposition 3.1,

[ [ gy e / Vo(o)P

B1 B1

(2D /|Vv — (Vo),|* dz

//|Vv — Vu(z)|? dz dz,

B1 B;
Iterating this procedure N times with repeated use of Proposition 3.1 for v = 0, we conclude.
Proposition 3.3 [

Proposition 3.4. For any N € Ny, s € [0,1) there is a constant Cn s > 0 such that the following holds. For any
v € C®(R™), r >0, 29 € R™ such that (3.1) holds on D = By,(x¢) we have for all multiindices o, § € (Ng)",
lal + (8| =N ,

||A§ ((aanr,xo)(aﬁv))Hm(Rn) <Cns [U]B4r($0)7N+S'

Proof of Proposition 3.4.
The case s = 0 follows by the classic Poincaré inequality, so let from now on s € (0,1). Set

w(y) = (91 (1)) (0 v(y))-
Note that suppw C Bs,.. Moreover, by the definition of 7,., we have
|w] < Cq r_‘a||85v| < CNTW_N|8BU|. (3.2)

By Proposition 2.10 we have to estimate

2
NN Z’SZ' dr dy
R”L R'L y|
- |w D gy dy v o Jw( L Gay=1+o00
= — n+25 Y w |9:—y|n+25 ray =:1+ .
R"\ By,

To estimate I, we use the fact that suppw C Bs,. to get

(3.2)
i < / lw(y)]® dy < r21P=N=9) / 0%0(y)|” dy

Buy

B,
(3_'<1) r2UBl=N—s) n/ / |8ﬁ (x)‘Q dy dz.

By Bar

10



As 0Pv satisfies (3.1) for N — |3, by Proposition 3.3 for v = 0,

[ [ 1000w - v dy do <20 [ [ [9%0t0) - 90t de

B47- B47- B4r B4r

n=2s 2y — y|_"_28 which altogether implies that

Furthermore, for x,y € By, we have r~
(1] < [v] By, ,N+s-
In order to estimate I, note that

lw(z) —w(y)| < r 10 v(z) — 0%u(y)| + r~ 1217 o — y| |07 v(y)|.

Thus, we can decompose |I| < |I1]| + |I2| where

& 3
L= [ /‘M — 0l 4y 4
—

Bar Bar
and
OPv(y s<1
I, = 2(181-N— 1)/ /| | = 2+25 dr dy = r2(|ﬁ|*N)*2s/|aﬁU(y)

x —

3.1

(4) p2(BI=N)=(n+2s) /‘8ﬁv(y)—8ﬁv(2)‘2 dy dz.

Byr Byr

Using again that 9°v satisfies (3.1) for N — || on By,., by Proposition 3.3 for v = n + 2s

nl < [ 9uta) - vV dwdw//'VN ~ VP gy,

-y

Byy Bar Byr Bar
and the same for I5. This concludes the case s > 0.

Proposition 3.4 [

Lemma 3.5 (Poincaré inequality with mean value condition (Ball)). For any N € Ng, s € [0, N+1),t € [0, N+1—3s)
there is a constant Cn s such that the following holds. For any r > 0, zo € R"™ and any v € C*°(R") satisfying (3.1)
for N and on D = By, (x0), we have

s st
[A2 7,200l L2@n) < Cot 7 [V]By, (20)s4¢ < Cot T IATZ 0] 2gny.
Proof of Lemma 3.5.
We have A% ~ ATASAK for y = s — |s] € [0,1), 6 = |s] — 2 L%J € {0,1}, and K = L%J € Np. As the Riesz

Transform R; is a bounded operator from L? into L? we can estimate

[Af )l < S0 IAF (@)@ ) x =X (1) os)

«,Be (M)
lal+18]=2K +5

If t = 0 this gives the claim. So let now ¢ > 0. For every s > 0 we have (using possibly the mean value condition if
s€N)

[’U} 2B4T(m0)75 dx dy

/ (VLSJu(m) — VLSJu(y))2

_ L mt2(s—Ls])
Byy Bar |I y|

If [s| = |s+t], this implies using |« — y| > r for z,y € Bay,
[7‘}]2347‘(.%0),8 = T2t[v]2B4T(xo),s+t'

Possibly using Proposition 3.3 one concludes.
Lemma 3.5 [J

By obvious modifications of the proofs, one checks that the result of Lemma 3.5 is also valid if v satisfies (3.1) on a
ball By, for A € (0,4). The constant then depends also on A.

11



3.2 On the Annulus

By similar methods, covering an Annulus by Family of convex sets without enlarging it too much, we can prove the
following lemma. For a proof we refer to [Sch10b].

Lemma 3.6 (Poincaré’s Inequality with mean value condition (Annulus)). For any N € Ng, s € [0,N + 1), t €
[0, N 4+ 1 —s) there is a constant Cn s+ such that the following holds. For any v € C*°(R"™), xo € R™, r > 0 such that
v satisfies (3.1) for N on D = Ay, = Bar+1,.(20)\Bar-1,.(x0) or D = Ay, = Bok+1,.(20)\Bar,.(z0) we have

s t
||A2(Uf,zov)||L2(Rn) < Csy (2k7‘) [U}Ak,sﬂa

where 5
Ak = ng+2r(xo)\B2k72r(Io).

Again, one checks that the claim is also satisfied if v satisfies (3.1) on a possibly smaller annulus, making the constant
depending also on this scaling.

3.3 Comparison between Mean Value Polynomials on Different Sets

For a bounded domain D C R™ and N € Ny and for v € S(R™) we define the polynomial P(v) = Pp n(v) to be the
unique polynomial of order N such that

][80‘(1) — P(v)) =0, for every multiindex o € (Np)™, || < N. (3.3)

The goal of this section is to estimate in Proposition 3.10 and Lemma 3.12 the difference
PBT(m),N(U) — Pszr(m)\szfh(w),N(UL for k € Z

in terms of A2v. To do so, we adapt the methods applied in the proof of [DLR09, Lemma 4.2], the main difference
being that we have to extend their argument to polynomials of degree greater than zero. We will need an inductive
description of P(v). As stated in the introduction, for a multiindex o = (v, ..., a,) we set al :== aq!. .. a,! = 0%
For i € {0,..., N} we denote

Qox(®) = QEAW+ Y L a0 f«?“ Qi ),

lee|=i

(3.4)
Q) = 3 e faa

le|=N

One checks that ‘
0°Q" = 0“P, whenever |a| > i, (3.5)

and in particular Q° = P. )
Moreover we will introduce the following sets of annuli (Note that in other sections A;, A; might denote different

annuli): ~ ~
Aj = Aj(’l‘) = BQj7-\B2j—17.7 Aj = Aj(?“) = AJ‘ U Aj+1.

Proposition 3.7. For any N € N, s € (N,N + 1], D C Dy C R"™ smoothly bounded domains there is a constant
Cp, p,n,s such that the following holds: Let v € C*°(R™). For any multiindex o € (No)™ such that |a| =i < N — 1,

/

D>

0*(0 - QiAW) - (900~ QEX D), | < Couv ('ﬁ')édiamwa%“w 012

where [v]p,s is defined as in (2.3). If D = rD, Dy = rDs, then Cp,.D,N,s = TNfiCDbD’N)S.

Proof of Proposition 3.7.
Let us denote

I .=

(v - Qi) — (9°(0 - QN ) |
Do

A first application of Holder’s and classic Poincaré’s inequality yields

I<Cpp, |D2\ IVO*(v — QF M)llL2(py)-

12



Next, (3.5) and the definition of P in (3.3) imply that we can apply classic Poincaré inequality N — i — 1 times more,
to estimate I by

1 3.4 1
< Cpy.oN |D2|? |V (v = Pp n(0))ll22(D) = Cpa.p.N |D2|? VN0 = (V) S ll2(ps)-

If s = N + 1, yet another application of Poincaré’s inequality yields the claim. In the case s € (N, N 4 1), we estimate

further )
D : 2 ’
I < Cp,pnN <|2|> (D//|VN (y)| de dy |

D
2 D2

which is bounded by

1 2
| | 2 n+2(s N) VN (y)
Cp,,p,N ( ‘DQ‘ diam (Do | ~ n+2(s ) ’ dx dy

The scaling factor for D = D then follows by the according scaling factors of Poincaré’s inequality.
Proposition 3.7 [

Proposition 3.8. For any N € Ny, s € (N, N + 1], there is a constant C s > 0 such that the following holds: For
any j € Z, any multiindez |o| < i < N and v € C*°(R"™)

Proof of Proposition 3.8.
Assume first that i = N. Then if s € (N, N + 1),

0" (@ = Q)| S Ona @I ]

Leo(Aj)

[} (3-4) «@ o\ —|a|—2+s
19°@2, = @Y, ey < @Y //!VN Nuy)| da dy < (7)1

If s=N+1andi= N, one uses classic Poincaré inequality to prove the claim.
Now let i < N —1, s € (N, N + 1], and assume we have proven the claim for i + 1. By (3.4),

j i _ z+1 i+1
Qu Q. = QF'-Qil
1 .
— B &) 1+1 B i+1
+ i x ][6 (v— A+1 ][ 07 ( Aj+1)
|B1=i A; Ajya

1 i i
3 5o | fr@it -
A

|Bl=i ;
Consequently,
i—|a ﬁ i+1 ﬁ 7+1
(27 \IZ][a (- QL) - ][a Qi)
|5|_1A Aji1
+(@2r) TN 0MQE = QYL (ay)-
|B|=i

Then the claim for 7 + 1 and Proposition 3.7 conclude the proof.
Proposition 3.8 [

Proposition 3.9. For any N € Ny, s € (N, N + 1] there is a constant Cn s such that the following holds. For any
multiindexr o € (No)", |af <i <N, for anyr >0, k € Z and anyv € S(R") if s — 5 & {i,..., N},

||304(Q33T _ Q%k)”LOC(Ak) < CN,s ps—lal=% (2k(s lal—%) _|_2k(z |a|)) [U]an&

13



and if s — 5 € {i,..., N},
10°(@h, = @)l (4, < s 771178 210D (5] 414 25C78)) oo

Here as before, Ay = Bor,.(2)\Bak-1,(2) and Ay = Borsr,(2)\Bor—1,(x).

Proof of Proposition 3.9.
For the sake of shortness of presentation, let us abbreviate

4 = 110%(Qp, — Q= (4,)-

Assume first i = N.

3.4) 5 B
Ve % * ][aﬂv—][aﬁ
lﬁl N Lee(Ay,)
A
< (rir-)N7|O‘| ][vNU _ ][vN,U ~ (2kr)N7‘a| ||Bl|| ][VN ][vN
N A
0
As |‘§l ‘| =2/"(1-27") and thus )7 I‘gl‘l =1, for k > 0 we estimate further
- = 1B

d < (2Fr)NTlel Z 21”7[va7][va < (2Fp)N=lel Z 21”27[ vav

l=—00 A, l=—o0 i Ajir

(:) (2kr)N =l Z 2Z”Z (277) //’VNU(.Q?)—VNU(Q)|2 dx dy

l=—00
k N || in o\ — 5 +5— 5
SCERD wED w R T

Of course, if s = N + 1, one replaces the estimate in () and uses instead Poincaré’s inequality. If k& < 0 one has by
virtually the same computation,

k—1 0 -1
div,a ) (2k)N7\a| s—2—|a] ( Z 211122] ois— N) ]Aj,8+22m22j(7g+571v) [U]Aj,s)-
l=—o00 1=k j=k

Now we have to take care, whether s — 5 — N = 0 or not. Let

o {Qk(SN) ifs—3-N#£0, {zl<s”£N>, ifs—2—N#0,
k= ’ =

Ik, ifs—2—N=0, 1], ifs—2—N=0.

Then, applying Holder’s inequality for series, dg’o‘ is estimated independently of whether £ > 0 or not, by

1
2

0
(2k)N—|a|Ts—\a|—% Z 2ln (a}c"‘bl) Z [v]%‘S ) ,’,s—%—\cd <2k(N—|a)ak+(2k)N—|a Z 2lnbl> [U]R”,s

l=—00

< i Emlel g, (2k(N_|a|)ak + Qk(N_laD) ’

This concludes the case i = N. Next, let i < IV and assume the claim is proven for i + 1.

d* = 0%(Q%, — Qu )4y
(3_<) ditte | Z 2%7) i—|al ][85 — Qi - ][55 z+1
|B8]=1
' _ 0
< d;ﬂ,aJr Z (ri)lfla\ e Z oln ][3B v—Q 7+1 ][36 z+1 ,
|B]=1 l=—o0 4,



where ¢, 2" = ||§l|‘7 so Y 2" =1 as we have done in the case i = N above. We estimate further,

l=—00

dza _<dz+1a+ Z 2]{: i—|af Z 2ln dZJrl,ﬁ_’_ faﬁ QZJrl faﬁ Z+1

|8]=i

As above in the case i = N we use a telescoping series to write

][ 36 Qerl ][ aﬁ 1+1

6[3 _ i+l ][ aﬁ 1+1
’LOQ(Aj) +][ (v Ayi1) — Q)

Aj J+1

8( z+1 i+1
< 3@ et
!

Jj=
k—1

= Y (I +11)).
j=l

Again we should have taken care of whether ] < k£ —1 or k — 1 <[, but as in the case i = N both cases are treated
the same way. The term I; is estimated by Proposition 3.8,

1 < ()" 7% [V, = (27r)" 2 [v]4;

And by Proposition 3.7, 4 , , 4
Iy < (207) 7"t o] g o= (207)°77F o]y,

38"
Hence,
1
k—1 k—1 2
][85(1} _ i+1 ][85 z+1 =< Ts—i—g Z(Qj)s—i—g [U]Aj,s =< rs—i—% (ak + bl) Z[’U]i}j)s 7
A j=l j=l

for a and by similar to the case i = N above defined as

ap = ok(s—5 =) ifs—%—i#0,7 by l(s=5 =) ifs— 5 —i#0,
|k, ifs—%5 —i=0, ], ifs— 5 —i=0.

Plugging all these estimates in, we have achieved the following estimate

i < d;€+1,a i Z (21@7,)2 lex| Z and;+1,ﬂ+rsf|a\*5 ok(i—|al) (ar +1) [v]gn s
|81= I=—c0

In either case, whether s — 2 — i = 0 for some ¢ > i or not, using the claim for i + 1 we have

2
ol N~ o i
Z (ri)z a Z 21nd;+17[‘3<CN75 TSigila‘[(U]R”,S)
|B]=i l=—0o0

and thus can conclude.
Proposition 3.9 [

As an immediate consequence of Proposition 3.9 for i = 0, || =0, and s = Z, we get the following two results.

27
Proposition 3.10. For a uniform constant C > 0, for any v € S(R™), r >0, k € N
177 (Pp,r27-1(v) = Pay 21-1(0)) Iz @n) < C (1 + [R)IAT0]| L2 gn).
Here, Ay, = Bors1,.(x)\Bor,(x) and Ay = Borr1,.(2)\Bor—1,().
Proposition 3.11. There exists a constant C' > 0 such that for any r > 0, xg € R™, k € Ny, v € S(R™) we have
17 4y (0 = P)ll 2y < C (257) % (14 [K]) |AT 0| 2rn),

where P is the polynomial of order N := {%] —1 such that v — P satisfies the mean value condition (3.1) in D := Ba,.

Here, in a slight abuse of notation for k=0, n* =n, — N, for m from Section 2.4.
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Proof of Proposition 3.11.
Let Py be the polynomial of order N = {%1 — 1 such that v satisfies the mean value condition (3.1) in Bgk,.\ Bok-1,..
We then have,

195 (v = P)[ 2y < [0 (v = Po)llzgny + (2°7) % 08 (P = Pi) L~

As Proposition 3.10 estimates the second part of the last estimate, we are left to estimate

||77,,, (’U — Pk)HLZ(R”) < C (2k ) ||A4U||L2 (R™) -

But this is rather easy and can be proven by similar arguments as used in the proof of Lemma 3.6: as by classic

Poincaré inequality and the fact that by choice of P, the mean values over Byk+1,.\Byx, of all derivatives up to order

| 5] of v — P are zero, so

. %] n
195 (v — Po)llp2ny =< (28r)27 | VLE (0 - Po)llL2(By i1, \Bor—1,)-

If n is an even number, this proves the claim. If n is odd, we use again the mean value condition to see

2
VY@= Py < 1 [ V@) - V) dody
Bokt1,\Bak, Bykt1,\Bsk-1,

< (25)" T AT 2 .

Taking the square root of the last estimate, one concludes.
Proposition 3.11 []

We will need the following a little bit sharper version of Proposition 3.10, too. The interested reader might compare
what follows to [DLR09, Lemma 4.2] which is a special case of the next result.

Lemma 3.12. Let N := [§] —1 and v > N. Then for ¥ = —N + min(n,~) and for any v € S(R"), B,(zo) C R,
r >0,

D 27 (PN (v) = Pag N ()l gz SCv D 2777 o] 4,
k=1

322
Jj=—00

Here, Ay = Bors1,(2)\Bak, () and Ay, = Boks1,.(x)\Bor—1,.(z).

More precisely, we will prove for ¢ € {0,..., N}, that whenever v > N, |a| <4, for ¥ := min(n — N,y — N)

> 2 M0%(@, — Qi i < Co |71 30 270 ]

k=—o00 j=—o0

This more precise statement will be used in the estimates for the homogeneous norm [-];, Lemma 8.1.
Proof of Lemma 3.12. '
As in the proof of Proposition 3.9, set d;" := [[0%(Q%, — Q)| Lo (4, Moreover, we set

o) 0
1,00, —k i, oo vk g0
S7 .—E 2 d.” and va = g 27% d.".
k=1 k=—o00

We will only treat the case Sf'y’o‘, the case of S,"Y"l is done analogously. By the computations in the proof of Proposi-
tion 3.9, for any |a| < N,

N,«
S’Y
oo 0 k—1
] —jN+In—vk+kN—Ek|a
=< r\lzz 9—JN+in—vk+ H[”]Aj,g
k=1l=——oo j=I
0
_ —|af In ok(N la]) || N ~ In ok(N o
SRS SERU IS ol LTSl SE N ol DELE Lt
j=—o00 l=—00 k=1 l=—0c0 k=j+1
2N el 20: 29 =N) [u]; , + rlo ZQJ( y=lal)
_ g i3’
j=—o0
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For 0 <i < N — 1, using the computations done for the proof of Proposition 3.9,

[e%s} [e%s} 0 k—1
S,iy’a ) S’Z’YJrLa + ri—lal Z ZQk(iﬂaFW)SitllﬂJr rlal ZQ’C(FM*W Z anZQ*ji [U]Aj,g
[B]=i k=1 k=1 l=—o00 =l
. 0 0o
r>1 i i i —|a i(n—1 —|a i(—v—|o
= S’IYJFLO[—’_ pi=lal Z SHLE el Z 97 (n—1) MAJ,%"‘ rlal 223( y=lal) ij,g
|8|=i j=—o00 j=1
0 00
<N . . . . .
- i+1,00 i—|al i+1,08 —|e] j(n—N) - —|af J(=v—lal) -
< ST+ Z ST 4+ Z 2 [’U]Aj’% +r 22 [v]Aj’%.

|6|=i j=—o0 =1

Consequently, one can prove by induction for ¢ € {0,..., N}, that (3.6) holds whenever v > N, |a| < i, for ¥ :=
min(n — N,y — N), i.e.
Si’a—ﬁ-sif: <Cyn ol Z o—lil% [U]Aj,g 7

j=—00
Taking i = 0, « = 0, we conclude.

Lemma 3.12 [

4 Integrability and Compensation Phenomena: Proof of Theorem 1.4
We will frequently use the following operator
H(u,v) = A% (uw) — (ATu)v —ulAFv, for u,v € S(R™). (4.1)

In general there is no product rule making H(u,v) = 0, or H(u,v) an operator of lower order, as would happen if
n € 4N. But in some way this quantity still acts like an operator of lower order, as Lemma 4.1 shows.

This was observed in [DLR09]. As remarked there, the compensation phenomena that appear are very similar to the
ones in Wente’s inequality (see the introduction of [DLR09] for more on that). In fact, in this note we would like to
stress that even an argument very similar to Tartar’s proof in [Tar85] still works.

It is easy to see that for any z,y € R™ and any p > 0, 6 € [0,1] we have for a uniform constant C), > 0

2|7 |y Pt if p e (0,1],

lz =yl = |yl” — |2l < C - o
TPl el i p > 1

Consequently,

Lemma 4.1. For any u,v € S(R™) we have in the case n = 1,2

v

[H (u,0)" < C [(AFu)" |+ [(AF0)"](6),

and in the case n > 3

n—2

(H (u,v))"| < C ‘(ATu)A «|(Aato)n (A" o).

+Cfatuy

Theorem 4.2. (Compare to similar results in [Tar85], [DLR09, Theorem 1.2, Theorem 1.3])
Let u,v € S(R™) and set
H(u,v) = A% (uv) — vATu — uA%v.

Then,
HH(U,U)AHLz,l(Rn) <C, ||Azu||L2(Rn) ||AX'UHL2(R")-

and
[H (u, 0) || L2 @y < Cn [[(ATu)" | L200@n) [AT0]|2@0)-

In particular,
HH(’U,,U)HLz(Rn) <C, ||Azu||L2(Rn) ||ATU|\L2(R7,).
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Proof of Theorem 4.2.
Lemma 4.1 implies, in the case n = 1,2

(H () < C (17 F[@F0) ) « (1 |at))
and in the case n > 3
(H o) <€ (F7@F )« (17 (a3 ) + o (117 [atu)) « (7@ %))
Now we use Hélder’s inequality: By Proposition 2.2 we have that

H*Z c L4’O°(Rn), I2. 4> ¢ L%,Q’ L2 . [400 L%,oo7
et n,00 (RN 2 . rn,00 2n 2 2,00 | TM,00 2n. 0o
|-|7" € L™ (R"™), L*-L C L»+2*] L L C Ln+2°°)
_n-2 2n_ 2n_ _n_ 2n_ _n_
H T e Ln2(R"), L?. [7n-—2> C Ln71’2’ L% . [n-2° C [#7-1,
Moreover, convolution acts as follows
L32 % [32 C L2 L5« L32C L2

2 3 2 3 2 3
Litz s [»T2 ¢ [21, L[wi2? 4 L7 T® 4 Luiz® ¢ L7102 ¢ [2,

We can conclude.

Theorem 4.2 J

5 Localization Results for the Fractional Laplacian

Even though A? is a nonlocal operator, its “differentiating force” concentrates around the point evaluated. Thus, to
estimate A2 at a given point  one has to look “only around” z. In this spirit the following results hold.

5.1 Multiplication with disjoint support

In [DLRO9] a special case of the following Lemma is used many times. As a consequence of lower order effects
appearing when dealing with dimensions and orders greater than one, we will need it in a more general setting, namely
for arbitrary homogeneous multiplier operators.

Lemma 5.1. Let M be an operator with Fourier multiplier m € S (R, C), m € C>°(R™\{0},C), i.e.
Mv := (mv™)Y  for anyv € S.

If m is homogeneous of order § > —n, for any a,b € S(R™,C) such that for some v,d > 0, x € R™, suppa C B,(z)
and suppb C R™\ Byt~ (),

[ w1 < Car a7 sy I8l

n
. . . s+t .
An immediate consequence, taking m := |-|"", is

Corollary 5.2. Let s,t > —n, s+t > —n. Then, for all a,b € S(R",C), such that for some d,vy > 0, suppa C B, (x)
and suppb C R™\ Byt~ (),

/A%a AZb| < Cry d=FF Jla] o 1Bl 1.

Lemma 5.1 follows from the following proposition, as the commutation of translations and multiplier operators allows
us to assume supp a C B,(0) and suppb C R™\B,,4(0).

Proposition 5.3. Let m € C®(R"\{0},C) NS . If for some § > —n we have that m(Az) = ANom(x) for any
z € R™\{0} and any A > 0,

/m N < Cpy d0 llellLimny, for any v € C°(R™\B4(0),C), d > 0.

Proposition 5.3 again follows from some general facts about the Fourier Transform on tempered distributions:

18



Proposition 5.4 (Fourier Transform and Homogeneity).

(i) (See [Gra08, Proposition 2.4.8]) Let f € S’(R”,(C) and f € C*(R™"\{0},C). If moreover f is weakly homoge-
neous of order § € R, i.e. flp(A\)] = A" f[¢], for all p € S(R™,C), then f", f¥ € S (R™,C) also belong to
C>(R™\{0},C).

(i) Let f € S (R",C). If f is weakly homogeneous of order § € R, then f € 8 (R",C) and f¥ € S (R",C) are
weakly homogeneous of order v = —n — .

(iii) Let g € S (R, C), g € C®(R™\{0},C). If g is weakly homogeneous of order ~, then also pointwise g(Ax) =
XN g(x), for every x € R"\{0}, A > 0.

() Let g € S (R™,C), g € C®(R™\{0},C). If there is v < 0 such that g(A\x) = Ng(z) for every z € R™\{0}, A >0
then

[ 56| < Pl el for every ¢ € CRABLD), a0,

5.2 Equations with disjoint support localize

As a consequence of Corollary 5.2 we can de facto localize our equations, i.e. replace multiplications of nonlocal
operators applied to mappings with disjoint support (which would be zero in the case of local operators) by an
operator of order zero:

Lemma 5.5 (Localizing). Let b € H%(R"). Assume there is d,y > 0, * € R™ such that for E = B,.4(),
suppb C R™\E. Then there is a function a € L>(R™) such that for D := B, ()

/A%b Aty = /a w, for every ¢ € C§°(D)
R™ R"

and ||a|| 2wn) < Cp,E||bllL2®n)-

Proof of Lemma 5.5.
We are going to show that

|f(o)| = /A%b A < Cp gllellrzmny for every ¢ € C§°(D). (5.1)

Then f(:) is a linear and bounded operator on the dense subspace C§°(D) C L?(D). Hence, it is extendable to all of
L?(D). Being a linear functional, by Riesz’ representation theorem there exists a € L?(D) such that f(¢) = (a,¢)r2(p)
for every p € L?(D).

It remains to prove (5.1), which is done as in the proofs of [DLR09]. Set r := (v + d), so that E = Bs,(z) D D.

Applying Corollary 5.2
JESOSTES S INIUIONS o= L

Rn k=1 Rn

If k > 3, using that the support of n* and ¢ are disjoint, more precisely by Corollary 5.2,

C.5.2
I =0 27 kb e 1ol ey < 272 I0fbll e e

lollr@ny <27 2kn||b||L2(R" lellz2(py-
For 1 < k < 3 we use that the support of a and ¢ are disjoint, to get also by Corollary 5.2
I, < d732n||b||L2(R")||S0||L2(D)~

Consequently,

> I, < Cp plbllz2@n el o)
k=1

Lemma 5.5 [
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5.3 Hodge decomposition and Local Estimates of s-harmonic Functions: Proof of The-
orem 1.6

r
P
for 0 < r < p. The goal of this subsection is to prove in Lemma 5.8 a similar estimate, for the nonlocal operator A% .

2
If for an integrable function ~ we have weakly Ah = 0 in a, say, big ball, we can estimate ||h||z2(5,) < C ( ) Ihllz2(B,),

Proposition 5.6. Let s € (0,%). Then for any x € R™, r > 0 and v € S, such that suppv C B,.(z), and any k € Ny,

1Az )" [+ [(A720)" [ z2@ny < Cs27[[v]l L2 (gn).

Proof of Proposition 5.6.
By convolution rule we have

I[(AZnE )" [(AT20) [l 2ny < (AT ) o @n) (AT20) [ L2gen). (5-2)

By Lemma 2.8,
[(A720)" | p2(rny = |AT 20| 20y < Cor®[|v]| L2(gn)- (5.3)

Furthermore, Proposition 2.13 implies
I(AZE ) M @ny < Cs(257)7°. (5.4)
Together, (5.2), (5.3) and (5.4) give the claim.
Proposition 5.6 [
As a consequence we have

Proposition 5.7. There is a uniform constant C > 0 such that for any v > 0, x € R™, v € S, such that suppv C
B.(x), and for any k € Ny
n _n — ki
A% () A5 0)||L2@n) < C 2755 ||v]| 2 ().

Proof of Proposition 5.7.
We have according to (4.1) A% (nf A~ %v) = (ASnF )A 5v + nf v+ H(nk,,A~%v). By the support condition
on v for k > 1 we have nf v = 0 so trivially for any k € No, |9} vllL2mn) < 22 27%%]Jv||p2(gn). Next, applying

Proposition 2.13 for s = § and p = 4 and Lemma 2.8 for s = § and p’ = 4, we have

(A0 AT T 0| poeny < [(AT0E ) [le AT Fol|lpa < 275577 50T [Ju]] 2.
Thus, we have shown that

1A% (07, AT F0) || p2geny < 270%

|| L2(®n) + ||H(Tlf,xaA7%U)||L2(Rn)~ (5.5)
By Lemma 4.1 we have that in the case n = 1,2
1H (07 5y A™F0) | 2ny < [(AF0E)" | * [(ATF0) || 12@n),

and in the case n > 3

n n—2 2—n 1 _1
VG o A~ F0) 2y < [(AF 080" (A% 0)Y g2 + (AR )" ¢ | (A7 H0)" e
That is, in order to prove the claim we need the estimate
(A% )+ [(A720) [l < O 275 Jv]| 2 (5.6)
where s = % in the case n = 1,2 and s = ”T_2 or s = 1 in the case n > 3. In all three cases we have that 0 < s < %
and Proposition 5.6 implies (5.6). Plugging these estimates into (5.5) we conclude.
Proposition 5.7 [
Lemma 5.8 (Estimate of the Harmonic Term). Let h € L?(R"), such that
/h ATp=0 for any ¢ € C(Ba,(2)). (5.7)

R

for some A > 0. Then, for a uniform constant C >0, ||h|12(B,(z)) < C A_%”hHL?(]R{")-
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Proof of Lemma 5.8.
It suffices to prove the claim for large A, say A > 8. Let ky € N, kg > 3, such that A < 2% < 2A. Approximate h
by functions h. € C§°(R™) such that for any € > 0 the distance ||h — he||r2®n) < € and ||he||z2mn) < 2[|h]|L2(rn). By
Riesz’ representation theorem, ||he||z2(p, (z)) = sup, [ hev, where the supremum is over all v € C§°(B,(x)) such that
[lv]|r2 < 1. For such a v, by Proposition 5.7

|AT (nf AT 0)||p2geny < C 275 (5.8)

In order to apply (5.7), we rewrite
ko—2

/hev = Z /hA (nf A Z/hA (nf A 5v) = T+ 11

The second term 11 goes to zero as ¢ — 0. In fact, for k£ < ky — 2 we have that supp nf@ C Bar(z) and thus

Rn

For the remaining term I we have, using again Proposition 5.7,

(5.8) e :
I < |Blle@ny Y 275

k=ko—1
We arrive at [ he v < Ce + CA— 1% Al 2y, which converges to the claim if ¢ — 0.
Lemma 5.8 J

Now we are able to prove Theorem 1.6.

Proof of Theorem 1.6.

As usual we have [|v]|12(B, (2)) = sup; [ v f, where the supremum is taken over all f € L?(R™) such that | f| 72 < 1. By
Lemma 2.9 and Lemma 5.8, we decompose f = ATy + h, ¢ € H? (R") and supp ¢ C Bar(z), ||hllr2(5,. ) < C A3
for arbitrarily large A > 0. Thus, by the support condition on v,

n _1
lollesey <C sup /vAw+0A4||vHLz<Bm>-

PECE (B, (2))

n
a4 el 2gny<t
Taking A large enough, we can absorb and conclude.

Theorem 1.6 [J

5.4 Products of lower order operators localize well

The goal of this subsection are Lemma 5.10 and Lemma 5.11, which essentially state that terms of the form A2a A%~2b

“localize alright”, if s is neither of the extremal values 0 nor 3.

Proposition 5.9 (Lower Order Operators and L?). For any s € (0, %), My, M, zero multiplier operators there exists
a constant Cpr, ar,,s > 0 such that for any u,v € S,

HM1 4_ u MQA_%UHLQ(Rn) S CMl,Mg,s

|ull L2@ny vl L2(Rn).-

Proof of Proposition 5.9.

Set p:=2 and ¢ := -2%-. As 2 < p,q < oo (using also Hérmander’s multiplier theorem, [H6r60]),
s—n s P,q€(1,00) n s
M AST u MayA™ 50| 12 T e [|AT 50| L
S e 20-n 2.
= 7w Mgz < llullez vllze.

Proposition 5.9 [

Lemma 5.10. Let s € (0, g) and My, My zero multiplier operators. Then there is a constant Chr, p,,s > 0 such that

the following holds. For any u,v € S and any A > 2,

o0
IM1AZu MyAT ™50 2, (2)) < Ohty M s <|AZU||L2(BQAT(I)) +A_322_ksnlk\r,mAZuL2> ATl
k=1
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Proof of Lemma 5.10.
As usual

JAT My AR5 Mol oy = sup ./AﬁAsuﬂgAzsth
PECES (Br(x),0)
ol 2 <1

For such a ¢ we then decompose A3 into the part which is close to B,.(x) and the far-off part:

/MA%Mﬁ%%w::/MA?%WMMMﬁ%%w+Z/Mﬁ?%mMMMﬁ%ﬁv¢
k=1
= I+ ) II.
k=1

We first estimate the I by Proposition 5.9

1] < lInar A ul e AT ]|,

In order to estimate I1, observe that for any ¢ € C§°(B,(z),C), |[¢[/z2 <1, s € (0, §), if we set p := ni’gs € (1,2)

’

_s ,an s _s am P22 —s n A
lo MaATHAT vl < [ATEAT ol ey "X I (A F0) amagen -
. — n A . n '
< I 2 e (AT V) e <7 |AT ] 2.
Hence, as for any k > 1 we have dist(supp ¢, suppn%,) = 2~Ar,
s_n, L n n__ s L.5.1 k —n—st2 k n n__ s
MiA>T 4 (ni, Atu) MoAT72 v @ < (2%Ar) 2||na, Adul|pr |M2AS7™2 v |11
(5.9) n n
< 27RSATS IR ATl |ATY| e
Lemma 5.10 [J

By a similar argument, one can prove the following Lemma.

Lemma 5.11. Let s € (0,%) and My, My be zero-multiplier operators. Then there is a constant Car, ar, s > 0 such
that the following holds. For any u,v € S and for any A > 2, r > 0, B, = B,.(z) C R",

IMLAZu MpAETE 0| 25, ()

oo
< OmyMyys <||77AT,:DAZU||L2 HUATJA%UHL? +ATT ||77AT,93A%UHL2 ZQ_Sk”n/k\r,wAzuHLQ)

k=1
oo
+Cy ps A7F ImaraATullre Y 267Dk, At
=1
00
+CM17M2,5 Ai% Z 27(ks+l(%75))Hn/k\:r,:cA%uHLz ||n5\r,mA%rU”L2‘
k=1

5.5 Fractional Product Rules for Polynomials

It is obvious, that for any constant ¢ € R and any ¢ € S, s > 0, A% (cp) = cA2p. In this section, we are going to
extend this kind of product rule to polynomials of degree greater than zero, which in our application will be mean
value polynomials as in (3.1). As we have to deal with dimensions greater than one, our mean value polynomials will
be in general also of arbitrary degree, making such calculations necessary.

Proposition 5.12 (Product Rule for Polynomials). Let N € Ny, s > N. Then for any multiplier operator M defined
by

(Mv)" =mv”,  for anyv € S,
for m € C°°(R™\{0},C) and homogeneous of order zero, there exists for every multiindex 8 € (Ng)", |3] < N, a
multiplier operator Mg = Mg s N, Mg = M if || = 0, with multiplier mg € C>°(R™"\{0},C) also homogeneous of
order zero such that the following holds. Let Q = x® for some multiindez o € (Ng)", |a| < N. Then

MA3(Qy) = Z 9%Q MﬂA#ga for any ¢ € S. (5.10)
1BI<]e
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Consequently, for any polynomial P = Y. caz?%,
la|<N

MAZ(Pyp Z o°p MgA cp for any ¢ € S.
IBI<N

Proof of Proposition 5.12.

The claim for P follows immediately from the claim about @ as left- and right-hand side are linear in the space of
polynomials. We will prove the claim for @) by induction on N, but first we make some preperatory observations. For
an operator M with multiplier m as requested, for a € (Ng)™ a multiindex and s € R set

€117 92 (1¢]* m(€)), € e R"\{o},

1
ma,s(&) = (27Ti)‘a|

and let M, s be the according operator with m, s as Fourier multiplier. In a slight abuse of this notation, for
multiindices with only one entry we will write

Mg s=M,, s forke(l,...,n),

where a = (0,...,0,1,0...,0) and the 1 is exactly at the kth entry of ay. Note that m, (-) is homogeneous of order
zero. Also, we have the following relation for any s € R,

(Ma,s)g)s_|a| = Ma+,8,s~ (511)
Observe furthermore that .
rr0(@) = 5= (00" (2),
so for s >'1 ) .
5((. Ny — __+ £ONA . sy A
(MAF(()10)) " (€) = =5 A(MAF)NE) + 5= di(m(€)[&]") v(€),
that is »
MAZ(()0)(z) = s MAZY + My A7 v, (5.12)

So one could suspect that for @ = x® for some multiindex a, |a| < s,

ﬁ |

MA3 => 9°Q 3 Mﬂ s 0. (5.13)

1Bl<s

where ! := (1!...5,!. This is of course true if Q = 1. As induction hypothesis, fix N > 0 and assume (5.13) to be
true for any monomial Q of degree at most N < N whenever s > N and M is an operator with the desired properties.
Let then @ be a monomial of degree at most N, and assume s > N. We decompose w.l.o.g. Q = z1Q for some
monomial Q of degree at most N — 1. Then,

(5.12)

MA3(Qp) =" 1 MAZ (Q@) + My AT (Qap). (5.14)
For a multiindex 8 = (31,...,0n) € (No)" let us set

Tl(ﬁ) = (ﬁl + 17/627 v 7ﬁn) and Tfl(ﬁ) = (ﬁl - 17ﬁ2a o 757’7,)

Observe that
% (21Q) = 0P Q + ,0°Q. (5.15)

Applying now in (5.14) the induction hypothesis (5.13) on M A3 and MLSA%, we have

s 5.11 -18 5~ s=|m1(3)]
MaiQp) 2 Y mo'Q ﬁlMﬁsA Por Y 55@5( i) AT e
|B]<s |B]<s—1
Next, by (5.15)
- 3 —18 s—[m1(8)]
= 3 9 (uQ) ﬁ'MgSA - S 0 0Q ﬂlMﬁ, o Y aﬁQ M5 AT
1p1<s WISy |3|<s—1
~ 18|
- Zaﬁ(le) ﬂ'MgsA .

1Bl<s
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Proposition 5.12 [J

Proposition 5.13. There is a uniform constant C' > 0 such that the following holds: Let w € S and P any polynomial
of degree at most N := [2] —1. Then for any A > 2, B,(z¢) C R", ¢ € C§°(B,(20)), |AT@||lr2@n) <1,

||A% (Pyp) — PA%%)HL?(BT(m))

< C <||A2(77Ar,zo(u — P))lz2@n) + 1A T Ul L2(Bap, o) + AT 2_k||nﬁr,z0AZU|L2(Rn)> :
k=1
Proof of Proposition 5.13.

By Proposition 5.12 (where we take M the identity and s = 2) A% (Pp) — PAip = Y 0°P MgA ™~ . As

we estimate the L?-norm on B, and there 15, = 1, we will further rewrite

- Z aﬁ(nAr(U_P))MﬁAniiwg@—f— Z 88w MBA"’?‘”@
1<|BI<N L n
= Y (Is+1Iz)  on By(x).

I<[BISN

As 1 <|B] < N < §, we have by Lemma 5.10 for v = ¢

1 Tgll 25,y << ATl L2(my0,) + AT 275 Ik, AT ul| 2.
k=1

We can write
208l-n | m _ 18l

Ig = MgA™ T Af(np(v — P)) MpA™ 2 Aty
and by Proposition 5.9 applied to A% (na,(u — P)) and A% ¢ for s = |3
1]l L2ny < 1A% (nar(u — P))|| 2 @n)-

Proposition 5.13 [

6 Local Estimates and Compensation: Proof of Theorem 1.5

Theorem 1.5 is essentially a consequence of the following two results.
Lemma 6.1. There is a uniform constant C > 0 such that for any ball B,.(z¢) C R", ¢ € C5°(B,(z0)), ||AT |12 <1,
and A > 4 as well as for any v € S(R™),
n _1 n
1H (v, )28, (z0)) < C ([U]me),% + 1A% [ By (o) + A2 HA“UIILz(Rn)) :

Proof of Lemma 6.1.
We have for almost every point in B, = B, (),

H(v,p) = A%(wp) —vATp— pATy = A%(m\rvgp) — ArvATE — pAT (arv + (L —npp)v) =T — 11 —111I.

Then we rewrite for a polynomial P of order [4] — 1 which we will choose below, using again that the support of ¢
lies in B,., so ¢nar = ¢ on R”,
I'=A%(nar(v = P)p) + A% (Py),

IT = s (v — P)A%p + PAT g,
ITT = A% (nar (v — P)) 4+ @A (nar P) + A% ((1 = nar)v).
Thus [ — IT — 1T = I + IT — III, where

I = H(nAr(U 7P)v§0)7
I = A% (Pyp) — PA%p,
IIT = @A%(P+(1—nar)(v—P)).
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Theorem 4.2 implies HfHLz(Rn) < [|A% (nar(v — P))| 12, Proposition 5.13 states for « = v and s = 2 that
1Tz = AT nAr(© = P)lzan) + 1A% 02, + A7 327 s A% vllpaan
k=1
< ||A%77AT(U — P)||L2(R") + ||A%/U||L2(BQAT) + A_1||A%/U||L2(Rn).
It remains to estimate II1. Choose P to be the polynomial such that v — P satisfies the mean value condition (3.1)

for N = [5§] —1 and in Baa,(z0).
We have to estimate for ¢ € C§°(B,), [|[¥| 2 <1,

/fm _ /W AF(P+ (1—np) (v — P)).

Note that
P+ (1 —nar)(v = P) =narP + (1 = narv) € S(R™),

SO we can write
[T = [atwe) P -mo-P)= lm [ Af@eiP+ [ A0 - )0 P).
By Remark 2.14 we have
/A%(wgo)nRP =o(l) for R — oo,
so in fact we only have to estimate for any R > 1

oo
L.5.1

Z/w o AT, (v=P)) = DA T e [k, (v = Pl
k=1

E
I
—

(2°A) 7" k(v = P)l|2

h

Abo

[}
[]e

B
Il
—

o0

ATE Y 2N k) AT vl < ATE AT .
k=1

In order to finish the whole proof it is then only necessary to apply Lemma 3.5.

Lemma 6.1 [

Lemma 6.2. For any v € H3(R"), e € (0,1), there exists A >0, R >0, v > 0 such that for all 1o € R", r < R

n 1 = — n = _
[H (0,0) |28, (w0)) < €([U]Ban,,z + 1AT 0] L2(B,,,)) +C A2 (ZQ HAT V] 2an + Y 2 W'k'[U]AkJ;)

k=1 k=—o00
Here we set Ay, := Bgr+agp, \Bak-1,.

Proof. Let § = b>0¢ (0,1), where 4 is a uniform constant whose value will be chosen later. Pick A > 10 depending
on ¢ and v such that )
A2 ||A%'UHL2(R”) < 4. (6.1)

Depending on 4 and A choose R > 0 so small such that
[v]BloAr(zo),% + HA%UHLQ(&OAT@O)) <4, forallzg e R" r < R. (6.2)

We can assume that v € C§°(R™). In fact, by [Tar07, Lemma 15.10] we can approximate v in H 2 (R™) by v;, € C§°(R™),
and one checks that the approximation process does not destroy the argument.

From now on let » € (0,R) and zyp € R™ be arbitrarily fixed and denote B, = B,(zg). Set P = Py = Pg,,,(v)
the polynomial of degree N := [§] — 1 such that the mean value condition (3.1) holds on Baa,(z9). We denote
NAar = NAr,z, a0d 7, :=1,0.

As P is not a function in S(R™), we “approximate” it by P* :=7),P, p > po where we choose py > 2 max{2Ar+|zo|, 1}
such that B oo (0) D suppv. Note that in particular, we only work with p > 0 such that

Np =1 on suppnoara, Jsuppv, forall p > pg.

Then,
v="1,0=nar(v = P) +7,(1 = nar)(v — P) + P? =t vp +0” , + P*. (6.3)
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Observe that all three terms on the right-hand side are functions of S(R™). We have
02 = (0a)? + (07 )% + (PP)* + 20 v, +2 (va +07,) P’ (6.4)

As we want to estimate H(v,v) on B, = B,(xg), we are going to rewrite H(v,v)y for an arbitrary ¢ € C§°(B,), such
that ||| z2®n) < 1. For any p > po (with the goal of letting p — oo in the end), we will use the following facts

©P? = P, wpAPP =uv)\P, ¢@v”, =0.
Now we start the rewriting process:

H(vv)p

H(vp,vn)e
+2 (A% ((UA + va) Pp) — P A% (’UA + v’iA)) ©
+(a% (P)?)y
+ (AT )7 +2AF (v 07 ) — 20aAT07 )
—2(P ATP? + 0AATPP)
Now we add and substract terms, that vanish for p — oo, and arrive at

= H(va,va)p

+2 (A% ((va +07,) P)—PA% (va +22,)) ¢

+(a% (@PP) - PAT((3,)°P) )¢
(

+ (AT ()2 +2A% (va v”) —2UAA%va)<p
( ( )—2PA%PP—2UAA%PP)¢
+2 A% (0 (G, ~1)P) ¢

= (I4+II+III+1IV+V+VI)p

First we treat the terms V and VI which will be the parts vanishing for p — co. As for V', we have by Remark 2.14,
1

1A% () P) + 1% Pl e an) < Crnso 0778 < Crinpmgp ™.

Consequently,

_1
2.

HV”LZ(BT) < Cr,zg,v,Ap

Next, as for VI, the product rule for polynomials, Proposition 5.12 for M = Id, ¢ = v” , (7, — 1) € S(R™), implies
that for some zero-multiplier operator Mg,

A% (ng(ﬁp - 1 Z 55]3 MﬁAn i ( gA(ﬁP - 1))
IBI<N

As a consequence, using that P is a polynomial with coefficients depending on A, r, v, xg,

IVIllz2(8,) < Cormon Y, [IMpA (v AT = D) 22,
IBISN

n—2|8|
4

Now we use the disjoint support lemma, Lemma 5.1, to estimate for some ky = ko(p, 29, A) > 1 tending to co as
p — 00,

n=21p] ~ > n—2|5| _ _
[MpA (7= D)2y < D IMeA 5 (0,0 (v = P)(ip(1 = 71))) | 23,
k=ko
= Cra Z 2 lﬁl)H nAr,mo(U - P))||L2(]R")
k=ko
Cra Z 2” Y1+ k) A% ]| L2y
k=ko
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As N < 5, we have proven that
IVllz2(B, (o)) + IVIlL2(B, (20)) = 0(1)  for p— oc.
Next, we treat I. By Theorem 4.2 and Lemma 3.5 we have

1|28,y < IATvAlT2@ny < ([W]Banrz)” < 6 [V]Bis, -
As for I, by Proposition 5.12, for any w € S(R")

@(A%(w P)— PA%w) = Z o’ P M[;Anizww
1<|8|<N
supp ¢ 0 Z (aﬁ(nAr(P—U)) MﬂAniwa—i—aﬁv M@Anffww),
1<|B|<N
SO
I\ pop,) < > II)\+ 105+ 117 +11) 4,
1<|B|<N
where
3 3 n—2|4| 8 n—2|8|
Iy, = [[07(ar(P = v)) MgA™% " vpllr2p,) = [[07va MgA ™% " val|r2(8,),
n—2|8|
II2B,A = 0% MgA™F vAllz2(B,),
3 8 n—2[B| P 8 n—2|8] p
Iy )y = (|07 (ar(P —v)) MgA™ 5 07 \[|p2(B,) = [[07va MgA7 02 \ | 12(8,),
n—2|8]|
IIQﬁ,—A = Ha’% MpA ™ UﬁA”L?(Br)'

Observe that all the operators involved are of order strictly between (0,%). Consequently, by Proposition 5.9 and
Poincaré’s inequality, Lemma 3.5,

2 (

6.2)
17y < ([)Baa.2)” < 0 [W]Baa.2-

By Lemma 5.10 and Poincaré’s inequality, Lemma 3.5,

n _1 n
1 < Wleieg (1850120, + A5 AT ol

(6.2)
(6.1)

< 8 (A% vllLe(maa,) + []Ban,.3)-
As for IIg_A and IIf__A, we estimate for any w € S(R"),

n—218]
10°w MgA™5 0"\ || 12(5,)

n—=2|8|

= Z ”8’8A7%(774TA%U’) MBA 4 nﬁr(v *P)ﬁp”L?(BT)
k=1

= n n n-2lp] N
+ Y 10°ATE (nh, AT w) MpA™T X, (v = P)ijll2(s,) = T1 + Zo.
l,k=1

We first concentrate on X;. As before, by Lemma 5.1 and using that 1 < |3] < 7,

n—23|

n n - L.2.8 o n o T
107 A™% (nar AT w) MgA™ 5 0k, (v = P)ilpll 2,y < A% nae A% w] gz 20717 (Ar) =3 |0}, (v — P)|| 2.

Thus, by Proposition 3.11 and as |3| < § (making >, .,k 2-k(z =18 convergent),

_1 n n (6.1) n
L1 = AT AT wl|rz(,,) [AT0|L2@e) <6 [[ATW][L2(BypL-
For the estimate of Y5 we observe

n—=2|8]

||aﬂA_% (nfer%w) MﬁA 4 UKT(U - P)ﬁp”Lz(Br)

L5.1 Cn n n—28| -
<0 @) P (AR w) | (IMaATE 0k, (v = Pl 2 (s,)
L.5.1

—3n+8]|

< @) P AT w) [ (2¢Ar) Inke (v = P2 %

_n n —n+\ﬁ|
< 8 27 (g, AT w) |2 (2°A) [k (v = P)|l 2
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Summing first over k and then over I, using again Proposition 3.11 and that |3| € [1, N],

00 )
_n _ n n (6.1) _ n
So < ATEN N o gl Atw|| e [|AT v <78 Y 27 Ik At wl| e
=1 =1

So we have shown that

n— 2IBI

0%w MzA 0P 2,y <0 Zz Nnhe AT w2 + S| AT w]|p2 (B < OllAT W] L2(@ny.-

=1

Setting w = v in the case of IIg_A and w = v, in the case of IIf,_A, this implies

o0
I}y < 6| A%vpllp2 <6 [v]Byy,,2, and II) _, < > 27 AT |2 (a,) + S AT 0| L2y, -
=1

As for 111, using yet again (6.3), we have P,7j, = v —va —v” ,7],. As a consequence, we can rewrite

117 = (A% ((ﬁp)2PP) _ PA% ((ﬁp)2P))cp = (A%
Thus, the only part we have not estimated already in I (or which is estimated exactly as in I, as the term containing

v” \7,) is A% (vP) — PA%v. Again by Proposition 5.12, this is decomposed into terms of the following form (for
L <5l < N)

PR

((v—va —v2,7,) )_PA%(”_UA — 02 A7) ) -

n= Z\ﬁ\

P MyA" Ty = 0 (v~ P)(1 —nar)) MpA™ 5" v — 0% ((v — P)nay)

n— 2\B\

v+85v M[;A
= Il +1II,+ 11I5.

Of course, |[I11||12(p,) = 0. By Lemma 5.10,

n n _1 > _k n
L8,y < ||A4(v—P>nM||Lz<|A4v||m<BM+A 2y 2 2||A4v||L2<Ak>>

k=1
L.3.5 n > _k n
< [v]gAAr(|A4U||L2(BQM>+Z2 2||A“1|L2<Ak>>
k=1
(6.2) = i =
=< (5’0]%,4Ar+(522 2HA4U||L2(A;C)-

And by Lemma 5.11 and (6.2),

n > _k n
11113) 25,y < SIAT 0l 24,y + D27 21 AT V] L2(a0)-
k=1

Finally, we have to estimate I'V. Set

Ak: = B2k+4Ar\BQk*4Ar-

Using Lemma 5.1 the first term is done as follows (setting Py to be the polynomial of order N where v — Py, satisfies
(31) on BQk+1AT\BQk—1Ar)

~ \2
1A% (0, (1= mar) () (0 = P)?)l22(3,)
< 2RI ok (0 - P2
< 2k3“A3”r"(| nk, (v = P72 + 2 (Ar)"| nﬁr(PPk)I%oc>
371 n —n n 2 n. n
e (A () 2 A" I (P - RO )
2 . n
1) R P = ROl 1A% o]0

n L 2 n
< a2 () I P - POl AT ol ).

A
=
w3
"
x>~
|3
e
g
=
o
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Note that as § — % > [5] — 1, on the one hand Lemma 3.12 is applicable and on the other hand we have by

Proposition 2.10

S | 2 n S
S (g, ) < IATvllnen D27 T 4, 5
k=1 k=1
Consequently, we have for some v > 0
(0 )2 2 S gl SR Y
1A ey < (1 l8Felz) > 27 WMels, =A% D 27l

For the next term in IV, using the disjoint support as well as Poincaré’s inequality, Lemma 2.6 and Lemma 3.5, and
the estimate on mean value polynomials, Proposition 3.11, and as

3

ont?y = s (i, p (0= P)),
k=1

we can estimate

3
" L.5.1 —3n n
1A% (va v () 22y < Z (2°Ar) " oallL> (1K, (v = P)|lz2 v
L.2.6 k§1 _3 n
= (25Ar) 2" (M) 2 | AT olle 4, (0 = P)llz2 r#
k=1
P51 . _n n (6.1)
< AT,z |ATV][L2@e) <0 [U]Bya,,z-
Last but not least,
n _ L.5.1 .
loaAT 0k, (v = P)iiplleas,y < (28Ar)"lualle> [0k, (v = P)|l 2
L.2.6
L.3.5 —-n —_n
=T 27(Ar) T2 o]y, e IR, (v — P)| L2
(6.2) n _n
<027k ES((2Ar) E Ik (0 = Po)lles + Ik, (P — Pl )
L.3.6

<0627 lag s +27 5 0k, (P — Po)llnes).

Again, as § > N, Lemma 3.12 implies that for some v > 0.

o0
loadFonllzas,) < Y 27" Mula, g

k=—o0

We conclude by taking & = d¢ for a uniformly small 6 > 0 which does not depend on A or [|[A% | 2. O

7 Euler-Lagrange Equations

As in [DLR09] we will have two equations controlling the behavior of a critical point of F,. First of all, we are going
to use a different structure equation: Obviously, for any v € H? (R”, R™) with u(z) € S™~! almost everywhere on a
domain D C R™, we have for w := nu, n € C§°(D),
n 1 1 on o
w-A4w=—§H(w,w)+§A4n. (7.1)
The Euler-Lagrange Equations are computed similar as in [DLR09], [Hél02]. As we want to localize them, we apply
also Lemma 5.5.

Proposition 7.1 (Localized Euler-Lagrange Equation). Let n € C§°(D) and n = 1 in a neighborhood of some ball
D cD.

Let u € H% (R",R™) be a critical point of E,(-) on D, cf. Definition 1.1. Then w := nu satisfies for every 1;; €
CSO(D), such that 1/}ij = 71,[1]‘1‘,

7/11.)1 A%w] A%QZJU = f/awwar/A%w] H(wl,z/}w) (72)
R’Vl Rn Rn

Here a € L*(R™) depends on the choice of 1.
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Note that this result holds also if u € L>°(R™) and A%u € L?(R™), the setting of [DLR09], by adapting the proof of
Lemma 5.5.

Proof of Proposition 7.1.

By the standard argument (cf. [DLR09]), for any v € H 3 (R™,R™) such that suppv C D and v € T,,S™" ! a.e.

/A%sz%v:O. (7.3)
RTL

Let v, € C’(‘)X’(D7R), 1 <i,j <m, i; = —;j. Then v/ 1= ;u’ € H?%(R"), 1 < j <m. Moreover, u-v = 0. As for
x € D the vector u(z) € R™ is orthogonal to the tangential space of S™~1 at the point u(z), this implies v € T,,S™ L.
Consequently, (7.3) holds for this specific v. Let n be the cutoff function from above, i.e. n € C§°(D), n =1 on an
open neighborhood of the ball D C D and set w := nu. Because of suppy C D we have that v/ = wp;j. Thus,

/A%wj AT (withy;) & /A%(wj —ul) AT (w'thj). (7.4)

Rn R

Observe that w* € L>°(R") N Hz (R") and by choice of n and D, the distance dist (supp(wj —ul), [)) > 0. Hence,
Lemma 5.5 implies that there is a;; := a;w’ € L*(R") such that

/A%(wj —ul) AT (wlp) = /aijap for all p € C3°(D). (7.5)
Rn Rn
As a consequence, (7.4) can be written as
/A%wj AT (wiy) = /aijwm for every v;; € C5°(D) such that th;; = —1j;. (7.6)
R™ R™
Moving on, we have just by the definition of H(-,"),
A%(wi’(/}ij> = A%wz wij + U}i A%’d)w + H(’LUZ,’(/)”) (77)

Hence, putting (7.6) and (7.7) together

—/wi ATw? ATy = —/aijwij—l—/A%wj Aty wij—l—/A%wj H(w',1bij)
R» R» Rn Rn
= 7/aij¢ij+/A%wj H(w', ).
R» R

Proposition 7.1 [

8 Homogeneous Norm for the Fractional Sobolev Space

Recall from Section 2.3 the definition of the “homogeneous norm” [u]p s. The goal of this section is the following
lemma which compares for balls B the size of [u]p,» to the size of [|A%ul|;2(5). Obviously, these two semi-norms are
not equivalent. In fact, take for instance any nonzero u € H 2 (R") with support outside of B. Then [u] B,z vanishes,

but A% u can not be constantly zero (cf. Lemma 2.4). Anyway, these two semi-norms can be compared in the following
sense:

Lemma 8.1. There is a uniform ~v > 0 such that for any € > 0, n € N, there exists a constant C. > 0 such that for
any v € S(R"), B, = B.(z) CR"

e oS
Y —nk|,k A2 —~ 1]
[l5,.3 < elt]Ba,g +Ce|1AT V2B + Y 27 Ink AT vllre + Y0 277 o], 4
k=1 j=—00
where AJ = BQj+5T\sz757_,

Proof of Lemma 8.1.
Set N:=[5]—-1,s:=5—-N¢ {%, 1}, and let Pa, be the polynomial of degree N such that the mean value condition
(3.1) holds for N and Bs,.. Let at first n be odd. Set ¥ := ny,.(v — Pa,-). Note that

v=v— P, on B,. (8.1)
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Consequently,

—~
=
ool
3
3
SN—
o
®©
H;:
—~
@z
IN H

“0(z) — 9%0(y))(9%0(x) — 0°0(y))
Z n+2s T ay
N o —y|""
P2. s s
20 [ aters atove.
|a|=N gn
Thus,
(vs.5)° <1A%00: s [ Aloaty,
PECE® (Bar(0))
1a% ol o<1
where M is a zero-multiplier operator. By a similar argument this also holds for n even. Using Young’s inequality,
n 1 n . n L35 1 n n
[v]g,,z <e||A4D| 2+ -  sup /AM}MAM,@ < ev]pg,2 +—  sup /A4UMA4<p
2 ¢€C°°(B4r) 2 € ¢€C°°(B4r)

R™
1A%y, <1 16 o), 251

For such a ¢ € C§°(By,), |A%T¢|/z: <1 we decompose

/A%MA% PRI /A4vn8rMA4<P+Z /A v, MA%p Z/ (5, (v — Poy)) MAT g
RTL

k=1 gn k=1 pn
= I+ZIIk—ZIIIk.
k=1 k=1

In fact, to apply Proposition 2.15 or Remark 2.14 correctly, we should have used a similar argument as in the proof
of Lemma 6.2. Obviously, using Hérmander’s theorem [Hor60],

1] < ”A%U”LQ(Bsr)'
Moreover, for any k € N by Lemma 5.1 and Poincaré’s inequality, Lemma 2.6,
Ik < (28) " g A ollge ™ = 277 |l A% o] e

As for II1y, let for k € N, P¥ the polynomial which makes v — P§. satisfy the mean value condition (3.1) on
B2k+2T\B2kr. If k Z 3,

L.5.1 n o ~_3, n n
(1L < (2 ol (0~ Pa)llze < 272 (gl (0 — PE)ze + 253 E (P — PRI

L.3.6 n
<" o k(u Ly 0 (Par = PR 1<)

This and Lemma 3.12 imply for a v >0, Y 7o s [TT, < Y 9~ lily [v] 5. 2 It remains to estimate I1Iy, IT15 (where
j=—o0 B
we can not use the disjoint support lemma, Lemma 5.1). Let from now on k = 1 or kK = 2. By Lemma 3.6

Iy < ||A% (5, = P3)) g2 + AT (05, (Ps — Por)) |22
< Wi + AT (b (PE = Po))llee.
The following will be similar to the calculations in the proof of Lemma 3.5 and Proposition 3.4. Set
wk g = 9°nh, 9° (P2kr — Py,).

We calculate for odd n € N,

1A% (05, (P = Pae)) 72 < > [wh sl s
la|+]8|="5

< maxg cnps r200° (Pay — P )13

Note that supp wk 5 C Bakt2,\Bas,, so one can check that [wy, ﬁ]R” 1

e (suppn,)’
Taking the square root, we have shown that

max il Z |0° (Py, — PE)

Z ||A n2r(P2r 1327”))HL2 = i61<

k=1

H L~ (suppn5,.)"
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Of course, the same holds true if n € N is even. Now, in the proof of Lemma 3.12, more precisely in (3.6), it was
shown that

2 00
DN (Por = Pill gy < 227N (Por = Po) e (4
k=1 k=

= 5 5 (B6) s = s
=2 2@ = @ may < T 3D 2 el g

j=—o0

This concludes the proof.
Lemma 8.1 [
Moreover, the following decomposing result holds:

Lemma 8.2. ([DLR0Y, Theorem A.1])
For any s > 0 there is a constant Cs > 0 such that the following holds. For any v € S(R™), r > 0, z € R",

([ }B(ms <O Z Ak,

k=—oc0
Here Ay, denotes Bor+1,.(x)\Bor—1,.(z).

Remark 8.3. By the same reasoning as in Lemma 8.2, one can also see that for two Annuli-families of different

width, say Ay, := Borir,\Box—xr and Ay := Bgria,\Bor-ar we can compare [v]a, s < CAASZ;C:NX]\?AA[ V)4, In

particular we don’t have to be too careful about the actual choice of the width of the family Ay for quantities like
Yore 2 —lkl[y la,.s, as long as we can afford to deal with constants depending on the change of width, i.e. if we can

afford to have e.g. Cax s Yoo oo 271 0] 4,

9 Growth Estimates: Proof of Theorem 1.2

In this section, we derive estimates from equations (7.1) and (7.2), similar to the usual Dirichlet-Growth estimates.

Lemma 9.1. Let w € H%(R”7Rm), € > 0. Then there exist constants A > 0, R > 0, v > 0 such that if w is a
solution of (7.1), then for any x € R™, r € (0, R)

- At wlre(p, ey < e(IATW]L2(Bir + [0]Bir2)
+cAw(r2+zz Al + 5 2 )
k=1 k=—o00
Here, Ay = Bokt1,(20)\Bak-1,.(x0).

Proof of Lemma 9.1.
By (7.1),
Jw - Atwl| g2,y < |[H(w,w)l|2(8,) + 12507 L2(5,)

As A%in? is bounded (by a similar argument as the one in the proof of Proposition 2.13), [|A%n?||2(p,) < Cyr2. We
conclude by applying Lemma 6.2, using also Remark 8.3.

Lemma 9.1 O
The next Lemma is a simple consequence of Hblder and Poincaré inequality, Lemma 2.6.

Lemma 9.2. Let a € L*(R™). Then
/a p<C

R

(R™) ”A%@HLZ(R")

for any ¢ € C§°(By(xo)), > 0.

Lemma 9.3. For any w € Hz N L>®(R",R™) and any ¢ > 0 there are constants A > 0, R > 0 such that if w
is a solution to (7.2) for some smoothly bounded domain D C R™ then for any Baq(z) € D, r € (0,R) and any
skew-symmetric o € R™*" |a| < 2,

oo
[w'aiyAtw!|| 28,y < el|ATw]| gy, @) + C. (Tg +y 2k ||A2’w||L2(Ak)>~
k=1

Here, Ak = sz+lr($0)\32k—lr(l‘o).
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Proof of Lemma 9.3.
Let 6 = Ce > 0 for a uniform constant C' which will be clear later. Set A; > 1 ten times the uniform constant A from
Theorem 1.6 and choose Ay > 10 such that

_1 n
(A2) 2 [[ATwl|p2(gny < 6. (9.1)
We then define A := 10A;As. Choose R > 0 such that
[w]BloAm% + ||A%w||L2(B10Ar) <o for any r € R", re (07R) (92)

Fix now any r € (0,R), z € R™ such that Ba,(z) C D. For the sake of brevity, we set v := wa;;ATw/. By
Theorem 1.6
vl < C sup /nr v Atp.
PECE (Ba p(2)

n
4
1A% ol 2 <1

We have for such a ¢ € C§°(Ba, (), [|[AT |2 <1,

/TIMI A%gaz/v A%<p+/(77r—l)vA%cp::I+II.

R™

In order to estimate I1, we use the compact support of ¢ in By,, and apply Corollary 5.2 and Poincaré’s inequality,
Lemma 2.6. First for all big k > Kj,, then also for any other k € N we have
C 2 o0
L.2.6 _ n — n
Cay 3027 ol e A% @l ageny < Cn llwllze 327 [nEATw]lys.
k=1 k=1

1= /(nr — v Aty

oo

The remaining term I is controlled by the PDE (7.2), setting 1;; := a;¢ which is an admissible test function:

IS /am‘ Qi+ oy /A%wj H(w', p)
Rn Rn .
= Il+0‘ij/n41\1r Afw! H(w', @) + iy Y /7754“/\17« Atw’ H(w',p)
i k=1 o
= L+DL+ Zfzs,k-
k=1

By Lemma 9.2, I[; < Cp, 7% |lal/z2. By Lemma 6.1 (taking r = A;r and A = Ay) and the choice of Ay and R, (9.1)
and (9.2), Iy < 6 ||nan,rATw| 2. As for I3, because the support of ¢ and nffAlr is disjoint, by Lemma 5.1,

[rbeatonwe) = [aby At (A w) - w'at)
]Rn R”

L5.1 0
< Ony wllze 27 (Infs, A% w!|| 2.
Using Remark 8.3 we conclude.

Lemma 9.3 [J

Lemma 9.4. Let w € H2 N L>(R",R™) satisfy (7.1) and (7.2) (for some smoothly bounded domain D, and some
n). Assume furthermore that w(y) € S™~! for almost every y € D. Then for any € > 0 there is A > 0, R > 0 and
v > 0, such that for all v € (0, R), x € R"™ such that Ba,(z) C D,

oo

[wB, 2 + [lwllL2s,) < (w2 + [vllL2(Ba,)) + Ce( > 2 ([w]a, g + IIAzwlw(Ak))?‘g)-

k=—oc0
Here, Ak = B2k+1r(f£0)\32k—lr(f£0).

Proof of Lemma 9.4.
Let € > 0 be given and § := . to be chosen later. Take from Lemma 9.1 and Lemma 9.3 the smallest R to be our
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R > 0 and the biggest A to be our A > 10, such that the following holds: For any skew symmetric matrix o € R"*",
|a| <2 and any Ba,(x) = By C D, r € (0, R) and for a certain v > 0

[w - AT wl|p2(py,) + [0’ @iy ATw!|| L2(p,,)
o0
< 5(I|Azw||L2<BA,,.)+[w]BM,g)+06,w<7“g+ > 2_”(IIAZwILQ(Ak)Jr[w]Ak,g))

k=—oc0

Then, by Lemma 8.1 we have for a certain v > 0 (possibly smaller than the one chosen before)

[w]B, = + ||A%”LUHL2(BT)

L.8.1 n > _ n
< elwlp,, +C <|A4WI|L2(38,.)+ > 2 ”'kl([w]Ak,g+||A4w||L2(Ak))>

k=—oc0
< elulp, +0C: (1A% w2z, + [w]By, 3) + Ceg ( + >0 2 M ([wlang + ||A2wm<Ak>)> :
k=—oc0
Thus, if we set § := (CE)_le, the claim is proven.

Lemma 9.4 [

Finally, we can prove Theorem 1.2, which is an immediate consequence of the following theorem and the Euler-
Lagrange-Equations, Lemma 7.1.

Theorem 9.5. Let w € H> (R") N L™ as in Lemma 9.4. Then for any E C D with positive distance from dD there
is 3 > 0 such that w € C%8(E).

Proof of Theorem 9.5.
Squaring the estimate of Lemma 9.4, we have for a certain A > 0, R > 0 and v > 0 and any B,.(z) C R™ where
Baq(z) C D, r € (0,R)

2 2 n > — n n
([wls,2)" + (lwll2(5,)) §452<[w]QBAT,% + ||A4w||iz(BM)) +Cs< > 2 ”"“'([w]ik,g + ||A4wH%2(Ak)> +C.r )
k=—oc0

Set aj, = ag(r,x) := [w]ik% + ||A%w||2L2(Ak). Then, for some uniform C; > 0 and ¢; > 0 and some K = K5 € N

K K
A2 <c §Aj d w? . e }A:
[ wHLQ(BM)— 1 ag, an [w]BM,% s O ag,
k=—00 k=—oc0

and of course, [w]QBm%—i—HA%wHQLQ(Br) > 21::1700 ag, as well as [|ag ;1 (z) < ||A%w\|%2(w). Choosing € > 0 sufficiently
small to absorb the effects of the independent constants ¢; and Cq, this implies

—1 K o0
Z ap < % XA: ap +C Z 2kl g, + Cr™ (9.3)

k=—oc0 k=—oc0 k=—oc0

This is valid for any B,(z) C Ba,(x) C D, where r € (0, R). Let E be a bounded subset of D with proper distance
to the boundary dD. Let Ry € (0, R) such that for any « € E the ball Bapg,(z) C E. Fix some arbitrary « € E. Let
now for k € Z,

n R
_ ]2 R _ 0
b = bu(@) = [l gy g TNAT L4, 20y = (-
Then for any N <0,
—v|k—N n oniN
k; b < k; bk+C27k_§;27 b+ C Ry 2

Consequently, by Lemma A.1, for a Ny < 0 and a 8 > 0 (not depending on ),

N

Z by < C 2%V for any N < Nj.

k=—o0
This implies in particular for Ry = 2NoRy.
||A%’UHL2(BT) < Cg, r? forall r < Ryand z € E.
Consequently, Dirichlet Growth Theorem, Theorem A.2, implies that v € C%%(E).
Theorem 9.5 [
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A Appendix: Ingredients for the Dirichlet Growth Theorem

As a consequence of [DLR09, Proposition A.1] one checks that the following Iteration Lemma holds, too. For a proof
we refer to [Sch10b, Appendix].

Lemma A.1. For any Ai,As,v > 0, L € N there exists a constant A3 > 0 and an integer N < 0 such that the
following holds. Let (ay) € I*(Z), ap > 0 for any k € Z such that for every N <0,

N 1 N+L N (e’
Z ar < 5 Z ag + A; Z 27BN g 4+ Ay Z 2YIN=K) g, + Ax27N.
k=—o00 k=—o0 k=—00 k=N+1

Then for some B € (0,1), Ay > 0 (depending only on ||ax|/;(z), Az) and for any N < N

N
Z Qg S A42’6N.

k=—oc0

Next, we will state a Dirichlet Growth-Type theorem whose proof uses mainly Poincaré’s inequality. For more details
we refer to [Sch10b, Appendix]. For an approach by potential analysis, we refer to [AdaT75], in particular [AdaT75,
Corollary after Proposition 3.4].

Lemma A.2 (Dirichlet Growth Theorem). Let D C R™ be a smoothly bounded, convex domain, let v € H% (R™) and
assume there are constants A >0, a € (0,1), R > 0 such that

sup T_a[U]BT(z),g < A.
r€(0,R)
xeD

Then v € C%(D).
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