
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

Institut für Mathematik

Elastic Catenoids

by

Sebastian Scholtes

Report No. 38 2009

Dezember 2009

Institute for Mathematics, RWTH Aachen University

Templergraben 55, D-52062 Aachen

Germany



Elastic Catenoids

Sebastian Scholtes

December 9, 2009

Abstract

We consider the Nitsche functional, which is a linear combination of the area, the

Willmore functional and the total Gauß curvature, on a class of surfaces of revolution

with Dirichlet boundary data. We give sufficient conditions on the boundary data

for the existence of a regular minimizer, and obtain thereby a solution of the corre-

sponding Euler-Lagrange equation. Moreover we prove that above some threshold

boundary value the optimal Nitsche energy is monotonically increasing as a function

of the boundary values. Considering symmetric profile curves, we find a minimizer,

whose profile curve is monotonically decreasing on the left half, and monotonically

increasing on the right half of the interval.

1 Introduction

In the modelling of lipid bilayers in biomembranes, surfactant films or thin elastic plates
the free energy per unit area is given by a symmetric functional Φ̂(κ1, κ2) in the principal
curvatures κ1 and κ2 of some surface Σ ⊂ R

3. Assuming some regularity for Φ̂ we can
rewrite as Φ̂(κ1, κ2) = Φ(H, K) with mean curvature H = (κ1+κ2)/2 and Gauß curvature
K = κ1κ2 (in the polynomial case this is a consequence of the fundamental theorem on
symmetric polynomials). Now we consider, as a (first) approximation to general nonlinear
functionals, only terms up to second order, which leads to an integrand of the form

Φ(H, K) = a + b(H − H0)
2 − cK,

for material constants a, b, c ≥ 0, and a spontaneous curvature H0 ∈ R. So the total
elastic energy, which we will call Nitsche functional, is given by

E(Σ) =

∫

Σ

(
a + b(H − H0)

2 − cK
)

dS, (1)

with surface element dS. This functional includes amongst others

(i) the area functional A for Φ(H, K) = 1,

(ii) the Willmore functional W for Φ(H, K) = H2,

(iii) the Helfrich functional for Φ(H, K) = b(H − H0)
2 − cK.
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While A is intimately connected to the by now classic theory of minimal surfaces, the
Willmore functional W, coined after T. Willmore [Wil65], gives rise to the very fruitful
and currently active study of Willmore surfaces [LY82, Bry84, Sim93, BK03, Scha07,
KLS08, KS08, Riv08] and their geometric gradient flows [Sim01, KS01, KS02, KS04, KS07,
Bla09, CFS09]. The Helfrich functional became an issue in the study of red blood cells
[Can70, Hel73], where it is studied under volume and area constraints. By introducing
Lagrange multipliers a for the area and µ for the volume constraint, one arrives at the
corresponding Euler-Lagrange equation, the membrane shape equation [ZH89] (with the
Laplace-Beltrami operator ∆ on Σ)

b(∆H + 2H(H2 − K)) − 2(a + bH2
0 )H + 2bH0K − µ = 0.

which coincides with the Euler-Lagrange equation for E with an additional volume con-
straint [Nit93a]. Explicit solutions of the Euler-Lagrange equation in the special case of
cylindrical surfaces are derived in [VDM08]. Some other special solutions, for example
the “anchor ring” [Zho90] are known, for more details we refer the reader to the introduc-
tion and the references of these two papers. Nonexistence results in specific classes were
proven in [vdM97]. Recent numerical work on the Helfrich flow can be found in [BGN08].
In [Nit93a, Nit93b] J.C.C Nitsche suggested to consider boundary value problems for the
more general functional E in (1) with and without volume constraints (further references
and historical details can also be found there). In these papers Nitsche derives the nat-
ural boundary conditions for different geometric boundary configurations. Moreover he
obtains solutions of the Euler-Lagrange equations with perturbation arguments, assuming
smallness of the boundary data and the parameters. Regarding the minimization problem
for the general Nitsche functional E with a, b > 0 the author is not aware of any result in
the literature.
The Nitsche functional models elastic properties of materials and is a generalisation of
the area and Willmore functional. Since in the rotationally symmetric case catenoids are
minimizers of both these functionals, we will call minimizers of the Nitsche functional
elastic catenoids in allusion to a – to the best of our knowledge unpublished – paper
referenced in [Nit92].

Our investigation, however, was inspired, by the recent work of A. Dall’Acqua, K. Deck-
elnick, S. Fröhlich, H.-Chr. Grunau and F. Schieweck [DDG08, DGFS08] on rotationally
symmetric Willmore surfaces, whose existence (and regularity) was established by mini-
mizing the Willmore functional W in the class of symmetric profile curves

Nα,β([−1, 1]) := {u ∈ C1,1([−1, 1]) | u even, u > 0, u(1) = α, u′(1) = β}

for given boundary data α > 0 and β ∈ R. For rotationally symmetric Willmore surfaces
satisfying natural boundary conditions see [BDF09].

In the present paper we will prove similar results for the Nitsche functional, but with
some restrictions on the parameters. That is, we will prove the following

Theorem 1.1.
Let c ≥ 0. There exists an explicit constant A = A(H0, α, a/b) > 0 depending only
on H0 ∈ R, the quotient a/b where a, b > 0, and on α ∈ (

√

a/(4b),∞), such that
for every l ∈ (0, A) there exists a smooth surface of revolution Σu with profile curve
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u ∈ C∞([−l, l]) ∩ Wα((−l, l)), such that Σu minimizes the Nitsche functional E in the
class of rotationally symmetric surfaces generated by the class

Wα((−l, l)) := {v ∈ W 2,2((−l, l)) | v > 0, v(±l) = α, v′(±l) = 0}

of (not necessarily symmetric) profile curves.

One of the main difficulties in combining the area and the Willmore functional for
this boundary value problem, is the antagonistic behaviour of the two functionals: In
[DDG08, DGFS08, BDF09] the Willmore energy is lowered, by replacing a part of u by a
concave part of a circle. This substitution, however, may lead to a simultaneous increase
of area. In fact, the addition of the area term destroys the nice structure of an underlying
elastica functional for curves in the hyperbolic plane which had motivated the choice of
comparison curves mentioned above. Another difficulty is that the crucial scaling prop-
erty [DDG08, Remark 1] is not true in our case a, b > 0 (cf. Lemma 3.1). We overcome
this problem by several comparisons with cylinders and in the case of symmetric profile
curves additionally by explicitly constructing comparison functions, see Section 4.2. We
would also like to emphasise, that we do not restrict ourselves to symmetric graphs, but
obtain more detailed information on the minimizer if we do.

The paper is organized as follows. After introducing the necessary notation at the be-
ginning of Section 2 we rewrite the Nitsche functional in a suitable form for surfaces of
revolution in our context. In Section 3.1 we compute the Euler-Lagrange equation, and
analyze, along the lines of [DDG08, Theorem 3.9], the form of the functional E in Section
3.2 to show that for the existence of a regular minimizer it suffices to have a minimizing
sequence that is bounded in C1([−l, l]) and uniformly bounded away from zero. We inves-
tigate in Section 4.1 under which conditions on the parameters cylinders are E-minimizers
or at least E-critical. In Section 4.2 we explain how to obtain the aforementioned bounds
for a minimizing sequence under suitable restrictions on the parameters. Moreover we es-
tablish the existence of a minimizer in the class of symmetric profile curves, such that the
profile curve is monotonically decreasing on the left half, and monotonically increasing on
the right half of the interval. In Section 4.3 we will show, that the optimal Nitsche energy
is not bounded in α, but at least it does not blow up for α → 0. Subject of Section 4.4
is the proof that above some threshold boundary value α̂ the optimal Nitsche energy is
monotonically increasing as a function of the boundary values α ∈ (α̂,∞). In Section 4.5
the pieces of information are assembled to prove Theorem 1.1. In addition, we prove that
for given interval length and material parameters a, b > 0 we find a threshold boundary
value ᾱ above which we can prove existence of smooth minimizers.
We do not claim that the constant A of Theorem 1.1, and the threshold boundary value ᾱ
are sharp in regard to separating the regimes of existence and nonexistence of minimizers,
and in fact, at this point, it is unclear if such a sharp threshold exists. But our exis-
tence result at least for sufficiently large boundary values α seems to indicate that such a
threshold exists, which would reflect the influence of area A in the Nitsche functional E –
in contrast to the Willmore functional W, that admits minimizers for arbitrary boundary
values α > 0, see [DDG08, Theorem 3.9].

Acknowledgement
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in my effort to publish my results. I would also like to thank Dr. M. Bergner for a hint,
which lead to Lemma 4.2.

2 The Nitsche functional for rotationally symmetric sur-

faces

We want to start, by recapitulating the formulas for the mean curvature H and the Gauß
curvature K, for surfaces of revolution Σu generated by rotating the graph of a positive,
sufficiently smooth function u : [−a, a] → (0,∞) as given for example by [dC76], with
the same sign convention on the mean curvature as in [DDG08], namely positive sign for
mean convex and negative sign for mean concave surfaces with respect to the interior
normal

HΣu ≡ H(u) =
1

2

(

− u′′(x)

(1 + u′(x)2)3/2
+

1

u(x)(1 + u′(x)2)1/2

)

,

KΣu ≡ K(u) = − u′′(x)

u(x)(1 + u′(x)2)2
.

(2)

The Euclidean curvature κe, and the hyperbolic curvature κh of u are given by

κe(u) =
u′′(x)

(1 + u′(x)2)3/2
=

[
u′(x)

(1 + u′(x)2)1/2

]′
,

κh(u) =
u(x)u′′(x)

(1 + u′(x)2)3/2
+

1

(1 + u′(x)2)1/2
.

(3)

In this paper the hyperbolic curvature κh(u) is used only as an abbreviation, but it arises
quite naturally in connection with the Willmore functional as observed by R. Bryant
[BG86] and U. Pinkall, for further details see also [LS84, DDG08]. We now introduce for
α, l > 0, I := (−l, l) and β ∈ R the following function spaces

Wα,β(I) := {u ∈ W 2,2(I) | u > 0, u(±l) = α, u′(±l) = ±β},
Sα,β(I) := {u ∈ Wα,β(I) | u(−x) = u(x)}.

If β = 0 we set Wα,0(I) = Wα(I) and Sα,0(I) = Sα(I). We define H, K, κe, κh for
u ∈ Wα,β(I) pointwise almost everywhere as in (2), (3). For such rotationally symmetric
surfaces Σu with profile curve u, the surface element dS is given by

dS ≡ dS(u) = u(x)(1 + u′(x)2)1/2.

Now we want to take a closer look at the Nitsche functional for rotationally symmetric
surfaces Σu with profile curve u ∈ Wα,β(I)

E(Σu) =: F(u) = 2π

∫

I

(
a + b(H(u) − H0)

2 − cK(u)
)
dS(u).

4



Rewriting the last two summands we obtain
∫

I

(H − H0)
2 dS =

∫

I

(

− u′′

2(1 + u′2)3/2
+

1

2u(1 + u′2)1/2
− H0

)2

dS

=

∫

I

[
1

4

(

− u′′

(1 + u′2)3/2
+

1

u(1 + u′2)1/2

)2

− 2H0

(

− u′′

2(1 + u′2)3/2
+

1

2u(1 + u′2)1/2

)

+ H2
0

]

u(1 + u′2)1/2 dx

=

∫

I

[
1

4
κ2

e dS − 1

2
κe dx +

1

4u(1 + u′2)1/2
dx + H0κe dS − H0 dx + H2

0 dS

]

,

and
∫

I

K dS =

∫

I

− u′′

u(1 + u′2)2
u(1 + u′2)1/2 dx = −

∫

I

u′′

(1 + u′2)3/2
dx

= −
∫

I

κe(u) dx = −
[

u′

(1 + u′2)1/2

]l

−l

.

All in all we now have

F(u) = 2π

∫

I

[

a dS +
b

4
κ2

e dS − b

2
κe dx +

b

4u(1 + u′2)1/2
dx + bH0κe dS

− bH0 dx + bH2
0 dS + cκe dx

]

= 2π

∫

I

[

a dS +
b

4

1

u(1 + u′2)1/2
dx +

b

4
(κ2

e + 4H0κe + 4H2
0) dS

]

+ 2π

∫

I

(

c − b

2

)

κe dx − 2π

∫

I

bH0 dx.

If b 6= 0 we define

C := C(b, c, H0, l, β) :=
4

b

(∫

I

(

c − b

2

)

κe dx −
∫

I

bH0 dx

)

=
4

b

((

c − b

2

)[
u′

(1 + u′2)1/2

]l

−l

− 2lbH0

)

=
(

4
c

b
− 2
) 2β

(1 + β2)1/2
− 8lH0,

by virtue of (3), which gives us

F(u) = 2π

∫

I

[

a dS +
b

4

1

u(1 + u′2)1/2
dx +

b

4

(
κ2

e + 4H0κe + 4H2
0

)
dS

]

+ 2π
b

4
C

=
πb

2

(∫

I

[

4
a

b
dS +

1

u(1 + u′2)1/2
dx + (κe + 2H0)

2 dS

]

+ C

)

.

The constant C depends only on the parameters and the boundary values for the deriva-
tive, which are constant in the considered function spaces. In case b 6= 0 it suffices to
restrict our attention to the functional

F(u) :=

∫

I

[(

γu(1 + u′2)1/2 +
1

u(1 + u′2)1/2

)

dx +
(
κe(u) + 2H0

)2
dS

]

for u ∈ Wα,β(I), where γ := 4a

b
> 0.
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3 Sufficient conditions for existence and regularity

3.1 Scaling and the Euler-Lagrange equation

A straightforward computation yields

Lemma 3.1 (Scaling-Property).
Fix l, α > 0 and γ ≥ 0, as well as β, H0 ∈ R. For r > 0 let

lr :=
l

r
, αr :=

α

r
, γr := γr2 and H0,r := H0r.

For each u ∈ Wα,β((−l, l)) there exists ur ∈ Wαr ,β((−lr, lr)), namely

ur :

[

− l

r
,
l

r

]

→ R, x 7→ 1

r
u(rx),

such that

F l,α,β
γ,H0

(u) = F lr,αr,β
γr,H0,r

(ur).

This means in contrast to the crucial scaling property [DDG08, Remark 1], that the energy
may change under the scaling u(rx)/r.

Lemma 3.2 (Euler-Lagrange equation).
Let u ∈ C4(I), such that

d

dt

∣
∣
∣
t=0

F l,α,β
γ,H0

(u + tϕ) = 0 for all ϕ ∈ C∞
0 (I).

Then u satisfies the following Euler-Lagrange equation on I = (−l, l)

κh(u)3 1

u2
− 2κh(u)

1

u2
+ 2

1

u(1 + u′2)1/2

d

dx

(
u

(1 + u′2)1/2
κh(u)′

)

+ (4H2
0 + γ)

(
2

(1 + u′2)1/2
− κh(u)

)

+ 4H0
2u′′

(1 + u′2)2
= 0.

(4)

Proof. The better part of this has already been established in [DDG08, Lemma 2.1]. We
only have to consider the additional terms stemming from the area functional and the
spontaneous curvature H0. For the area functional we obtain

d

dt

∣
∣
∣
t=0

A(u + tϕ) =

∫

I

(
1

(1 + u′2)1/2
− uκe(u)

)

ϕ dx.

The functional
∫

I
κe(u) dS contributes

d

dt

∣
∣
∣
t=0

∫

I

κe(u + tϕ) dS(u + tϕ) =

∫

I

2u′′

(1 + u′2)2
ϕ dx.

We have

κ2
h(u)

(1 + u′2)1/2

u
=

(

uκe(u) +
1

(1 + u′2)1/2

)2
(1 + u′2)1/2

u

=

(

u2κ2
e + 2κe(u)

u

(1 + u′2)1/2
+

1

(1 + u′2)

)
(1 + u′2)1/2

u

= κ2
e(u) dS + 2κe(u) +

1

u(1 + u′2)1/2
,
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so that

F l,α,β
γ,H0

(u) = (γ + 4H2
0 )A(u) +

∫

I

κh(u)2 (1 + u′2)1/2

u
dx

︸ ︷︷ ︸

=Ŵ(u) from [DDG08]

−2

∫

I

κe(u) dx + 4H0

∫

I

κe(u) dS.

If we take the Euler-Lagrange equation for Ŵ from [DDG08, Lemma 2.1] we have to
consider in addition the summand 2κe. Luckily

2

∫

I

κe(u) dx = 2

[
u′

(1 + u′2)1/2

]l

−l

,

so that this summand is constant under the considered variations and does not contribute
to the Euler-Lagrange equation.

3.2 Bounded minimizing sequences imply the existence of a clas-

sic minimizer

First of all we want to prove, that it suffices to find a minimizing sequence, which is
uniformly bounded in C1(Ī , R) and uniformly bounded away from zero, to establish the
existence of a smooth minimizer:

Theorem 3.3 (Existence).
Let l, α > 0, γ > 0 and β, H0 ∈ R. If there exists a minimizing sequence (un)n∈N ⊆
Wα,β(I) for F l,α,β

γ,H0
in Wα,β(I) and constants c1, c2, c3 > 0, such that

0 < c1 ≤ un ≤ c2 and |u′
n| ≤ c3 on [−l, l] for all n ∈ N, (5)

then there exists a u ∈ Wα,β(I) with

0 < c1 ≤ u ≤ c2, |u′| ≤ c3, and F l,α,β
γ,H0

(u) = inf
Wα,β(I)

F l,α,β
γ,H0

. (6)

An analogous statement is true if we substitute Wα,β(I) by Sα,β(I).

Proof. We argue as in [DDG08, Theorem 3.9]. We want to establish an upper bound in
the W 2,2(I)-norm for the minimizing sequence. By the bounds in (5) we know

Fa,α,β
γ,H0

(un) ≥
∫

I

(
κe(un) + 2H0

)2
dS =

∫

I

(
u′′

n

(1 + u′2
n )3/2

+ 2H0

)2

un

(
1 + u′2

n

)1/2
dx

=

∫

I

(
u′′

n + 2H0(1 + u′2
n )3/2

)2 un

(1 + u′2
n )5/2

dx ≥ c1

(1 + c2
3)

5/2

∥
∥
∥u′′

n + 2H0

(
1 + u′2

n

)3/2
∥
∥
∥

2

L2(I)
,

so that by passing to a subsequence we have

u′′
n + 2H0(1 + u′2

n )3/2 −⇀ v in L2(I).

By the same argument there exists a w ∈ L2(I) with

2H0(1 + u′2
n )3/2 −⇀ w in L2(I).
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This implies

u′′
n = (u′′

n + 2H0(1 + u′2
n )3/2) − 2H0(1 + u′2

n )3/2 L2(I)−−−⇀
n→∞

v − w,

so that together with (5) we have

‖un‖W 2,2(I) ≤ C for all n ∈ N and some C > 0.

Hence there exists a positive – and in the symmetric case even – function u ∈ Wα,β(I)
satisfying (6), and a subsequence, such that

un −→ u in C1(Ī).

The theorem now follows from

inf
Wα,β(I)

F l,α,β
γ,H0

= lim
n→∞

F l,α,β
γ,H0

(un)

= lim
n→∞

∫

I

[

(γ + 4H2
0 )u(1 + u′2)1/2 +

1

u(1 + u′2)1/2
+

u′′2
n u

(1 + u′2)5/2
+ 4H0

u′′u

1 + u′2

]

dx

≥
∫

I

[

(γ + 4H2
0 )u(1 + u′2)1/2 +

1

u(1 + u′2)1/2
+

u′′2u

(1 + u′2)5/2
+ 4H0

u′′u

1 + u′2

]

dx

= F l,α,β
γ,H0

(u).

In the same way we can argue in the symmetric case if we replace Wα,β(I) by Sα,β(I).

Theorem 3.4 (Regularity).
Let l, α > 0, γ > 0 and β, H0 ∈ R, then the minimizer u of the functional F l,α,β

γ,H0
obtained

in Theorem 3.3 is smooth, i.e. u ∈ C∞(Ī).

Proof. Again we follow the lines of the proof of [DDG08, Theorem 3.9]. We have to
change the test function ϕ slightly (replace the argument x by x/l) to accommodate the
fact, that I = (−l, l) 6= (−1, 1) for l 6= 1. But other than that everything works exactly
in the same way, since the additional summands caused by the area functional and the
spontaneous curvature H0 account for

(4H2
0 + γ)

∫

I

(
1

(1 + u′2)1/2
− uκe(u)

)

ϕ dx + 4H0

∫

I

2u′′

(1 + u′2)2
ϕ dx

in the Euler-Lagrange equation and play nicely along with the argument.

4 Minimizers for the Nitsche functional

In this chapter we restrict ourselves to γ > 0 and denote by u0 ≡ α ∈ Wα(I) the cylinder
for given boundary data α > 0.

4.1 Trivial and nontrivial minimizers

First we want to observe that for the special boundary data α = 1/
√

γ and H0 = 0 the
unique absolute minimizers are cylinders.
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Lemma 4.1 (Existence of trivial minimizers for α = 1/
√

γ).
For α∗ = 1/

√
γ, H0 = 0 and arbitrary l > 0 the cylinder u0 ≡ α∗ is the unique minimizer

of F l,α∗

γ,0 in Wα∗(I), and for all α > 0 we have

F l,α∗

γ,0 (u0) < F l,α
γ,0(u) for all u ∈ Wα(I), u 6= u0.

In particular

F l,α∗

γ,0 (u0) = inf
Wα∗(I)

F l,α∗

γ,0 = inf
Sα∗(I)

F l,α∗

γ,0 ≤ inf
Wα(I)

F l,α
γ,0 ≤ inf

Sα(I)
F l,α

γ,0.

Proof. For each u ∈ Wα(I) we have 0 = κe(u0)
2 ≤ κe(u)2. The mapping

g : (0,∞) → R, z 7→ γz +
1

z

is strictly monotonically increasing on (0, 1/
√

γ), strictly monotonically decreasing on
(1/

√
γ,∞), and possesses a unique minimum at z = 1/

√
γ. For all α > 0 and all

u ∈ Wα(I) we infer

F l,α
γ,0(u) =

∫

I

[(

γu(1 + u′2)1/2 +
1

u(1 + u′2)1/2

)

︸ ︷︷ ︸

≥g(1/
√

γ)=2
√

γ

dx + κe(u)2

︸ ︷︷ ︸
≥0

dS
︸︷︷︸
≥0

]

≥ 2
√

γ|I| = F l,α∗

γ,0 (u0).

For u0 6= u ∈ Wα(I) for some α > 0 we find x0 ∈ I and by continuity of u, u′ a whole
neighbourhood U of x0 in I such that u(x)(1 + u′(x)2)1/2 > α∗ for all x ∈ U . This proves
F l,α∗

γ,0 (u0) < F l,α
γ,0(u).

In the preceding lemma the condition H0 = 0 was important. The following lemma shows,
that for H0 6= 0 and α = 1/

√

4H2
0 + γ there are cylinders, that are at least critical.

Lemma 4.2 (Cylinders u0 ≡ 1/
√

4H2
0 + γ are critical).

For γ > 0, H0 ∈ R, α = 1/
√

4H2
0 + γ and arbitrary l > 0 the cylinders

u0 ≡
1

√

4H2
0 + γ

∈ Wα(I)

are solutions of the Euler-Lagrange equation (4) from Lemma 3.2.

Proof. Inserting a constant function u0 ≡ α in the Euler-Lagrange equation leads to

1

α2
− 2

1

α2
+ 0 + (4H2

0 + γ)(2 − 1) + 0 = − 1

α2
+ (4H2

0 + γ) = 0.

Which is true for α > 0 if and only if α = 1/
√

4H2
0 + γ.

The computation in the preceding proof directly gives

Corollary 4.3 (Nontrivial minimizers).
Let γ > 0, H0 = 0, l > 0 and α 6= 1/

√
γ. If u ∈ Wα(I) [Sα(I)] is a minimizer of F l,α

γ,0 in
Wα(I) [Sα(I)], then u 6= u0 ≡ α, moreover no such minimizer can be constant on some
interval, except when the constant is 1/

√
γ.

9



4.2 A-priori bounds for minimizing sequences

Now we want to show the existence of a minimizing sequence respecting the bounds in
Theorem 3.3. As a first step we show, that for functions u with too large a maximum or
too small a minimum the area term combined with the fixed boundary data make sure,
that the Nitsche energy is larger than that of the cylinder u0 ≡ α.

Lemma 4.4 (Comparison with cylinders I).
Let α, γ > 0, H0 ∈ R and l > 0 be given. If u ∈ Wα(I) satisfies

max
Ī

u =: M ≥ l

γα

(

γα +
1

α
+ 4H2

0α

)

+ α,

then

F l,α
γ,H0

(u0 ≡ α) < F l,α
γ,H0

(u).

Proof. We have

F l,α
γ,H0

(u) =

∫

I

γu(1 + u′2)1/2 dx +

∫

I

[
1

u(1 + u′2)1/2
dx + (κe(u) + 2H0)

2 dS

]

︸ ︷︷ ︸
>0

>

∫

I

γu(1 + u′2)1/2 dx ≥ αγ

∫

{u≥α}
(1 + u′2)1/2 dx

︸ ︷︷ ︸
length of curve above α

> αγ2(M − α)
cond. for l

≥ 2l(γα +
1

α
+ 4H2

0α) = F l,α
γ,H0

(u0 ≡ α).

Note that {x ∈ I | u(x) ≥ α} 6= ∅, because of the boundary data and the assumption on
the maximum.

Lemma 4.5 (Comparison with cylinders II).
Let α, γ > 0, H0 ∈ R and 0 < c < α be given. If u ∈ Wα(I) with minĪ u ≤ c satisfies

γαc(α − c)

(γ + 4H2
0 )α2 + 1

≥ l > 0, (7)

then

F l,α
γ,H0

(u0 ≡ α) < F l,α
γ,H0

(u).

Proof. We have

F l,α
γ,H0

(u) =

∫

I

γu(1 + u′2)1/2 dx +

∫

I

[
1

u(1 + u′2)1/2
dx + (κe(u) + 2H0)

2 dS

]

︸ ︷︷ ︸
>0

>

∫

I

γu(1 + u′2)1/2 dx ≥ cγ

∫

{u≥c}
(1 + u′2)1/2 dx

︸ ︷︷ ︸

length of curve above c

min u≤c
> cγ2(α − c)

cond. for l
≥ 2l(γα +

1

α
+ 4H2

0α) = F l,α
γ,H0

(u0 ≡ α).
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Remark 4.6.
By replacing the members v ∈ {un | n ∈ N, minĪ un < c} of a minimizing sequence with
u0 we obtain a minimizing sequence (ũn)n∈N with ũn ≥ c for all n ∈ N if the premises of
the preceding Lemma are met.

For the proof of Proposition 4.8 we will need the following corollary, which is proved
analogously to Lemma 4.5. Note that we denote the length of u by L(u).

Corollary 4.7 (Comparison with cylinders III).
Let α, γ > 0, H0 ∈ R and 0 < c < α be given. If u ∈ Wα(I) with u ≥ c and L(u) ≥ 2(α−c)
satisfies

γαc(α − c)

(γ + 4H2
0 )α2 + 1

≥ l > 0,

then

F l,α
γ,H0

(u0 ≡ α) < F l,α
γ,H0

(u).

In the symmetric case it is possible, for vanishing spontaneous curvature H0 = 0 and some
configurations of parameters, to construct minimizing sequences consisting exclusively of
functions, which are monotonically decreasing on (−l, 0). We denote by crit(u) the set of
critical points of u.

Lemma 4.8 (Restriction to monotonically decreasing functions on (−l, 0)).
Let γ > 0, H0 = 0 and α > 1√

γ
, as well as

γαc(α − c)

γα2 + 1
≥ l > 0 for some given constant c ∈ (1/

√
γ, α).

For a member u ∈ Sα(I) of a minimizing sequence for F l,α
γ,0 in Sα(I) with #crit(u) < ∞

there exists an ũ ∈ Sα(I) such that

• ũ = u0(≡ α), or

• #crit(ũ) ≤ #crit(u), and ũ′ ≤ 0 on [−l, 0]

and, in both cases,

F l,α
γ,0(ũ) ≤ F l,α

γ,0(u).

Proof. Step 1 We start our construction at the left boundary, continuing to the middle,
by inductively constructing a first candidate ū as follows:

(i) Divide the interval [−l, 0] in (finitely many, from the left boundary to the middle
numbered) non-degenerate subintervals Ii = [ai, bi], i ≥ 1 (i.e. ai = bi−1) and
I0 = [a0, b0] = {−l}, such that the boundary of each interval consists of critical
points and the interior is free of critical points (this is possible, since #crit(u) < ∞).
The sign of the derivative u′ is constant on the interior of these intervals.

(ii) Fix ū|I0 = u|I0, i.e. ū(−l) = u(−l) = α.

(iii) Let ū|I0, . . . , ū|Ii−1
be already constructed.
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(iv) If u is monotonically increasing on Ii = [ai, bi], we reflect u|Ii
across the parallel to

the x-axis passing through u(ai) (the corresponding part is “folded downward”) and
translate the obtained function u∗

i by

−u∗
i (ai) + ū(bi−1) = −u(bi−1) + ū(bi−1) = −u(ai) + ū(ai)

in y-direction (“defer the folded part in such a way in y-direction, that we get a
C1,1-connection with the already constructed part”).

(v) If u is monotonically decreasing on Ii = [ai, bi], we translate the section under
consideration by −u(ai) + ū(bi−1) in y-direction.

(vi) By this construction we obtain a function ū on [−l, 0], which is reflected across the
y-axis to obtain an even ū : [−l, l] → R with ū(l) = α and ū′(l) = 0.

This gives us an ū ∈ W 2,2(I) with the same boundary data as u, as well as |ū′| = |u′| on
I and |ū′′| = |u′′| almost everywhere on I. Furthermore we have ū ≤ u. To see this we
argue by induction. For i = 0 we clearly have ū|Ii

≤ u|Ii
. The translation

vi := −u(bi−1) + ū(bi−1),

which must be done to transform u∗
i ≤ u|Ii

into ū|Ii
, therefore satisfies the inequality

vi ≤ 0 due to the inductive hypothesis ū|Ii−1
≤ u|Ii−1

. This implies ū|Ii
≤ u|Ii

.
Step 2 By Remark 4.6 (note the condition concerning l) we can restrict ourselves to
u ≥ c. Suppose there exists a x0 ∈ I, such that ū(x0) < c, then the above mentioned
properties imply

L(u) = L(ū) > 2(α − c).

This means, considering Corollary 4.7 for H0 = 0, because of u ≥ c we also have

F l,α
γ,0(u0 ≡ α) ≤ F l,α

γ,0(u).

In this case we set ũ ≡ α, which possesses the required properties.
Step 3 If there is no such x0 as in Step 2, we set ũ := ū. Then we also have ũ ≥ c > 0
and therefore ũ ∈ Sα(I) (only ũ > 0 remained to prove). Furthermore (in case ũ 6≡ α)

1√
γ
≤ c ≤ ũ(1 + ũ′2)1/2 = dS(ũ) ≤ u(1 + u′2)1/2 = dS(u),

since g(z) = γz + 1/z is monotonically increasing for z ≥ 1/
√

γ this leads to

γũ(1 + ũ′2)1/2 +
1

ũ(1 + ũ′2)1/2
≤ γu(1 + u′2)1/2 +

1

u(1 + u′2)1/2

and

κe(ũ)2 =
ũ′′2

(1 + ũ′2)3
=

u′′2

(1 + u′2)3
= κe(u)2 almost everywhere on I.

Altogether we have

F l,α
γ,0(ũ) ≤ F l,α

γ,0(u).
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Proposition 4.9 (Comparison with cylinders IV).
Let α, γ > 0, H0 ∈ R and α > c ≥ 1√

γ
be given. If

0 < l <
1

2
√

1
c
(γ(α − c) + ( 1

α
− 1

c
) + 4H2

0α)
(8)

and if for a member u ∈ Wα(I) [Sα(I)] of a minimizing sequence for F l,α
γ,H0

in Wα(I)
[Sα(I)] we have

F l,α
γ,H0

(u) ≤ F l,α
γ,H0

(u0 ≡ α)

as well as u(1 + u′2)1/2 ≥ c, then

|u′| ≤ K√
1 − K2

with

K :=
2l√
c

[

γ(α − c) +

(
1

α
− 1

c

)

+ 4H2
0α

]1/2

.

Proof. Step 1 One can check, that for the considered parameter range, the upper bound
in (8) is well-defined.
Step 2 For x, y ∈ I, such that x < y the fundamental theorem of calculus gives us

u′(y)

(1 + u′(y)2)1/2
+ 2H0y − u′(x)

(1 + u′(x)2)1/2
− 2H0x =

∫ y

x

([
u′(z)

(1 + u′(z)2)1/2

]′
+ 2H0

)

dz

=

∫ y

x

(κe + 2H0) dz.

This implies for arbitrary x, y ∈ Ī
∣
∣
∣
∣

u′(y)

(1 + u′(y)2)1/2
+ 2H0y − u′(x)

(1 + u′(x)2)1/2
− 2H0x

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ y

x

(κe + 2H0) dz

∣
∣
∣
∣

≤
∫ min{x,y}

max{x,y}
|κe + 2H0| dz ≤

∫

I

|κe + 2H0| dx ≤ |I|1/2

[∫

I

|κe + 2H0|2 dx

]1/2

.

(9)

For z ∈ Ī we define

f(z) := fu(z) :=
|u′(z)|

(1 + u′(z)2)1/2
.

Now we choose y in such a way that

f(y) = max
z∈I

f(z).

By eventually reflecting u across the horizontal axis (without changing the Nitsche energy)
we can guarantee u′(y) ≥ 0. Choosing x = − sign(H0)l gives us

∣
∣
∣
∣

u′(y)

(1 + u′(y)2)1/2
+ 2H0y − u′(x)

(1 + u′(x)2)1/2
− 2H0x

∣
∣
∣
∣

= |max
z∈I

f(z) + 2 H0(y + sign(H0)l)
︸ ︷︷ ︸

≥0

| ≥ max
z∈I

f(z).
(10)
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Step 3 The inequalities (9) and (10) imply

1

|I|

[

max
z∈I

f(y)

]2

≤
∫

I

|κe + 2H0|2 dx,

which combined with u(1 + u′2)1/2 ≥ c provides the estimate

c

|I|

[

max
z∈I

f(y)

]2

≤
∫

I

|κe + 2H0|2 dS. (11)

Step 4 Again monotonicity of g(z) = γz + 1
z

for z ≥ 1√
γ

(cf. the proof of Lemma 4.1)

leads to

|I|
(

γc +
1

c

)

≤
∫

I

(

γu(1 + u′2)1/2 +
1

u(1 + u′2)1/2

)

dx. (12)

Combining the inequalities (11) and (12) we obtain

|I|
(

γc +
1

c

)

+
c

|I|

[

max
z∈I

f(y)

]2

≤
∫

I

(

γu(1 + u′2)1/2 +
1

u(1 + u′2)1/2

)

dx +

∫

I

|κe + 2H0|2 dS

= F l,α
γ,H0

(u)
prem.

≤ F l,α
γ,H0

(u0 ≡ α) = |I|
(

γα +
1

α
+ 4H2

0α

)

,

which implies

max f ≤ |I|√
c

[

γ(α − c) +

(
1

α
− 1

c

)

+ 4H2
0α

]1/2

.

Step 5 If

max
z∈I

fu(z) = max
z∈I

u′(z)

(1 + u′(z)2)1/2
≤ K < 1,

for all z ∈ I we have

u′(z) ≤ K(1 + u′(z)2)1/2 ⇒ (1 − K2)u′(z)2 ≤ K2 K<1⇒ |u′(z)| ≤ K√
1 − K2

.

Step 6 This gives us the proposition, since

2l√
c

[

γ(α − c) +

(
1

α
− 1

c

)

+ 4H2
0α

]1/2
!
< 1

leads to the constraint for l.
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4.3 Upper bounds for the infimum

We will show, that infWα(I) F l,α
γ,H0

and infSα(I) F l,α
γ,H0

are unbounded in α (if γ > 0). This
behaviour is caused by the area functional.

Lemma 4.10 (Infimum is unbounded in α).
Let l > 0, γ > 0 and H0 ∈ R be fixed, then we have

lim
α→∞

inf
Wα(I)

F l,α
γ,H0

= lim
α→∞

inf
Sα(I)

F l,α
γ,H0

= ∞.

Proof. Choose α0(l, γ, H0), such that condition (7) in Lemma 4.5 is fulfilled for all α ≥ α0

and c := α/2 (note that this is always possible). For α ≥ α0 we can, by means of Remark
4.6, choose a minimizing sequence with un ≥ α/2. This gives us

F l,α
γ,H0

(un) ≥
∫

I

γun (1 + u′2
n )1/2

︸ ︷︷ ︸
≥1

dx ≥ α

2
γ|I|.

Now we want to prove, that the infimum is bounded from above, at least for small α.

Lemma 4.11 (Upper bound on the infimum for small α).
For all l > 0, γ > 0, H0 = 0 and α ≤ l we have

inf
Wα(I)

F l,α
γ,H0

≤ inf
Sα(I)

F l,α
γ,0 ≤

16√
3
π + 2γl2

(

10π + 2

(
4

3

)1/2
)

.

Proof. We first show the proposition for l = 1. We will use the test functions from
[DDG08, Lemma 3.2], where the Willmore part already has been estimated. The area
part of the hyperbolic geodesic circle, of which the middle segment consists, is bounded
by half the surface area of a sphere with the same radius R = (1 + 4α2)1/2 − α, i.e.

2π
(
(1 + 4α2)1/2 − α

)2 ≤ 10π. For the two outer segments u1 one can estimate

A(u1) =

∫ 1

1− α

(1+4α2)1/2

(
2α − (4α2 − (|x| − 1)2)1/2

)

︸ ︷︷ ︸
≤2α

(

1 +
(|x| − 1)2

4α2 − (|x| − 1)2

)1/2

dx

≤ 2α
α

(1 + 4α2)1/2

(

1 +
α2

(1 + 4α2)(4α2 − α2

(1+4α2)
)

)1/2

= 2α
α

(1 + 4α2)1/2

(

1 +
1

4 + 42α2 − 1

)1/2

≤ 2

(
4

3

)1/2

.

For arbitrary l > 0, γ > 0 and α ≤ l we use the scaling property of Lemma 3.1 for
l̃ = 1, α̃ = α/l ≤ 1, γ̃ = l2γ and H̃0 = 0. By scaling with r = 1/l and the fact that the
optimal Nitsche energy is invariant under this scaling, if the parameters are transformed
accordingly, we infer the proposition.
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4.4 Monotonicity of the optimal Nitsche energy

Proposition 4.12 (Increasing monotonicity for α ≥ α̂).
Fix l > 0, γ > 0, H0 ∈ R and let ᾱ be given by

l =
1
4
γᾱ3

(γ + 4H2
0 )ᾱ2 + 1

,

(i.e. the right-hand side is (7) in Lemma 4.5 for c = ᾱ/2). We define α̂ := max{ᾱ, 2/
√

γ}.
The mappings

α 7→ inf
Wα(I)

F l,α
γ,H0

and α 7→ inf
Sα(I)

F l,α
γ,H0

are monotonically increasing on (α̂,∞).
If α̂ < α̃ < α and if there exists a minimizer for the value α, we even have

inf
Wα̃(I)

F l,α̃
γ,H0

< inf
Wα(I)

F l,α
γ,H0

, and inf
Sα̃(I)

F l,α̃
γ,H0

< inf
Sα(I)

F l,α
γ,H0

.

Proof. We first note, that ᾱ is well-defined. Let α, α̃ ∈ (α̂,∞), such that α̃ < α and
(uk)k∈N ⊂ Wα(I) be a F l,α

γ,H0
-minimizing sequence. For ũk = uk − (α − α̃), we have

(ũk)k∈N ⊂ Wα̃(I).
Step 1 We start by considering the case α̃ ≥ α/2 + 1/

√
γ. By means of Remark 4.6 we

can assume uk ≥ α/2 without loss of generality, such that

ũk = uk − (α − α̃) ≥ α

2
− (α − α̃) = α̃ − α

2
≥ 1√

γ
.

Furthermore ũk < uk, u′
k = ũ′

k on I and u′′
k = ũ′′

k almost everywhere in I, which gives us

1√
γ
≤ ũk(1 + ũ′2

k )1/2 < uk(1 + u′2
k )1/2,

and since z 7→ γz + 1/z is strictly increasing for z ≥ 1/
√

γ (cf. the proof of Lemma 4.1),
this leads to

F l,α
γ,H0

(uk) =

∫

I

[(

γuk(1 + u′2
k )1/2 +

1

uk(1 + u′2
k )1/2

)

︸ ︷︷ ︸

>γũk(1+ũ′2
k )1/2+ 1

ũk(1+ũ′2
k

)1/2

dx +
(
κe(uk)
︸ ︷︷ ︸

=κe(ũk)

+2H0

)2
dS
︸︷︷︸

>dS̃

]

> F l,α
γ,H0

(ũk).

Step 2 For arbitrary α, α̃ ∈ (α̂,∞) with α̃ < α we recursively define the sequence
(αn)n≥0 ⊂ R by

α0 := α and αn+1 :=
αn

2
+

1√
γ
.

Since α > α̃ > α̂ ≥ 2/
√

γ we know, by means of Lemma A.1 in the appendix, that
for each n ∈ N the two members αn and αn+1 satisfy the conditions αn > αn+1 and
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αn+1 ≥ αn/2 + 1/
√

γ in Step 1, and there exists an N ∈ N0, such that αN ≥ α̃ and
α̃ ≥ αN+1 = αN/2 + 1/

√
γ. We now define

v1
k := uk − (α0 − α1)

vi
k := vi−1

k − (αi−1 − αi) = uk − (α0 − αj) for i = 2, . . . , N

vN+1
k := vN

k − (αN − α̃) = uk − (α0 − αN) − (αN − α̃) = uk − (α − α̃) = ũk.

By repeatedly using Step 1 this implies

F l,α
γ,H0

(uk) > F l,α1

γ,H0
(v1

k) > . . . > F l,αN

γ,H0
(vN

k ) > F l,α̃
γ,H0

(ũk).

Step 3 The preceding step gives us

inf
Wα(I)

F l,α
γ,H0

= lim
k→∞

F l,α
γ,H0

(uk) ≥ lim
k→∞

F l,α̃
γ,H0

(ũk) ≥ inf
Wα̃(I)

F l,α̃
γ,H0

.

Step 4 If the existence of a minimizer u of F l,α
γ,H0

in Wα(I) is verified, Step 2 accounts for
the strict inequality.

The proof in the symmetric case is literally the same, if Wα(I) is substituted by Sα(I).

4.5 Existence of classic minimizers

We start by introducing some abbreviations.

Notation 4.13 (F, G).
We denote the upper bounds on a in the premises of Lemma 4.5 and Proposition 4.9 by
F and G, i.e.

F (α, γ, c, H0) :=
γαc(α − c)

(γ + 4H2
0)α

2 + 1
,

G(α, γ, c, H0) :=
1

2
√

1
c
(γ(α − c) + ( 1

α
− 1

c
) + 4H2

0α)
.

We now put the pieces together and obtain the following

Theorem 4.14 (Existence of classic minimizers of the Nitsche functional for
γ > 0).
Let γ > 0, H0 ∈ R and α > 1√

γ
be given. For

0 < l < sup
1/

√
γ≤c<α

min{F (α, γ, c, H0), G(α, γ, c, H0)} =: A(H0, α, γ)

there exists a minimizer u ∈ C∞(Ī) ∩ Wα(I) [C∞(Ī) ∩ Sα(I)] of F l,α
γ,H0

in Wα(I) [Sα(I)].
In this case there exists c ∈ [1/

√
γ, α), such that

l < min{F (α, γ, c, H0), G(α, γ, c, H0)}, (13)

and

0 < c ≤ u ≤ l

γα

(

γα +
1

α
+ 4H2

0α

)

+ α, (14)

|u′| ≤ K√
1 − K2

, (15)
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where

K :=
2l√
c

[

γ(α − c) +

(
1

α
− 1

c

)

+ 4H2
0α

]1/2

.

In the symmetric case u is monotonically decreasing on [−l, 0] and u ≤ α.

Furthermore u satisfies the Dirichlet problem (corresponding to Euler-Lagrange equation
and function space)







κh(u)3 1

u2
− 2κh(u)

1

u2
+ 2

1

u(1 + u′2)1/2

d

dx

(
u

(1 + u′2)1/2
κh(u)′

)

+(4H2
0 + γ)

(
2

(1 + u′2)1/2
− κh(u)

)

+ 4H0
2u′′

(1 + u′2)2
= 0. in (−l, l)

u(±l) = α, u′(±l) = 0.

Proof. The mapping

c 7→ min{F (α, γ, c, H0), G(α, γ, c, H0)}

is continuous and therefore attains it supremum on [1/
√

γ, α]. Because of F, G ≥ 0 and
F (α, γ, α, H0) = 0 there is a c0 ∈ [1

√
γ, α), such that

min{F (α, γ, c0, H0), G(α, γ, c0, H0)} = sup
1/

√
γ≤c<α

min{F (α, γ, c, H0), G(α, γ, c, H0)}.

Let c ∈ [1
√

γ, α) be given, such that (13) is true. By means of Lemmata 4.4 and 4.5 we
can w.l.o.g. assume the bounds in (14) for some minimizing sequence (un)n∈N ⊂ Wα(I).
This is true, since we can replace members un of the sequence with min un ≤ c, by ũn ≡ α
with lower energy, so that we have un(1 + u2

n)1/2 ≥ c for all n ∈ N. Proposition 4.9
gives us the bounds in (15). Hence the premises for existence and regularity in Theorem
3.3 and Theorem 3.4 are met, which gives us the proposition. The fact, that u satisfies
the Dirichlet problem is a consequence of Lemma 3.2. In the symmetric case we argue
analogous, and can by means of Lemma 4.8 even demand a minimizing sequence, which is
monotonically decreasing on [−l, 0] (i.e. un ≤ α), and thereby (C1(Ī)-convergence) obtain
a minimizer with the same properties. Since

Pα,β(I) := {u ∈ Sα,β(I) | u |[−l,0] is polynomial} is dense in (Sα,β(I), ‖·‖W 2,2(I))

and

F l,α
γ,H0

: (Sα,β(I), ‖·‖W 2,2(I)) → (R, |·|) is continuous ,

one can show that we can always find a minimizing sequence, such that for each member
the set of critical points is finite, which was required for Lemma 4.8.

Remark 4.15.
Since F is bounded in c, for fixed α and γ there is an l0, such that our method cannot show
existence for l ≥ l0. Although our restrictions on the parameter space are far from being
sharp, one potentially might expect some behaviour like this, considering the behaviour of
the area functional in the rotationally symmetric case, in which the minimizing catenoid
ceases to exist for increasing l (and fixed boundary data).
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We will now show that in the case of vanishing spontaneous curvature H0 = 0 it is possible,
for fixed l > 0, γ > 0 to choose an ᾱ = ᾱ(l, γ), such that for all α ≥ ᾱ existence and
regularity is assured.

Lemma 4.16.
For fixed γ > 0 there exists a constant α0(γ) > 0 and a mapping

cγ : (α0(γ),∞) → R, α 7→ cγ(α)

with 1√
γ

< cγ(α) < α, such that

F (α, γ, cγ(α), 0) = G(α, γ, cγ(α), 0)

and

lim
α→∞

min{F (α, γ, cγ(α), 0), G(α, γ, cγ(α), 0)} = ∞.

Proof. Step 1 We start by searching 1/
√

γ < c = c(α) < α, for which

F (α, γ, c, 0) =
γαc(α − c)

γα2 + 1
!
=

1

2
√

1
c
(γ(α − c) + ( 1

α
− 1

c
))

= G(α, γ, c, 0)

=

√
c

2
√

γαc(α−c)
αc

+ c−α
αc

=
c
√

α

2
√

(α − c)(γαc − 1)
,

which gives us

4(γαc − 1)γ2α(α − c)3 !
= (γα2 + 1)2.

This means, we are looking for zeros of

f(α, c) = −4(γαc − 1)γ2α(α − c)3 + (γα2 + 1)2.

Step 2 We have

lim
cրα

f(α, c) = (γα2 + 1)2 > 0.

Step 3 For fixed 2 > δ > 0 and α ≫ 1 it is true, that d(α) := α − (α
γ
)(1+δ)/3 > 1√

γ
, such

that

f(α, d(α)) = −4γ2α(α − d(α))3(γαd(α) − 1) + (γα2 + 1)2

= −4 γ2α

((
α

γ

)(1+δ)/3
)3

︸ ︷︷ ︸

=γ1−δα2+δ

(

γα2 − γα

(
α

γ

)(1+δ)/3

− 1

)

+
(
γα2 + 1

)2

= −4γ2−δα4+δ + 4γ2−δ−1/3−δ/3α3+δ+1/3+δ/3 + 4γ1−δα2+δ + γ2α4 + 2γα2 + 1
α→∞−−−→ −∞,

since the factor before α4+δ, which is the highest occurring power of α, has negative sign.
Step 4 According to Step 2 and Step 3 f(α, ·) has a zero for large α, say α ≥ α0(γ), i.e.
for all α ≥ α0(γ) there exists a cγ(α) ∈ ( 1√

γ
, α)

1√
γ

< α −
(

α

γ

)(1+δ)/3

< cγ(α) < α,
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such that F (α, γ, cγ(α), 0) = G(α, γ, cγ(α), 0).
Step 5 We will show, that G is strictly monotonically increasing in c (for arbitrary H0). In
the representation in Notation 4.13 only the following part of the denominator is relevant

N(c) :=
1

c

[

γ(α − c) +

(
1

α
− 1

c

)]

.

We have

N ′(c) = − 1

c2

[

γ(α − c) +

(
1

α
− 1

c

)]

+
1

c

[

−γ +
1

c2

]

=
1

c2

[

−γα − 1

α
+

2

c

]
!
< 0,

which is true, if and only if

c >
2α

1 + γα2
.

For c > 1√
γ

this is always the case, since

1√
γ

>
2α

1 + γα2
⇔ 1 + γα2 > 2α

√
γ ⇔ γα2 − 2α

√
γ + 1 = (α

√
γ − 1)2 > 0,

due to the premise α > 1/
√

γ.
Step 6 We now have

F (α, γ, cγ(α), 0) = G(α, γ, cγ(α), 0) ≥ G

(

α, γ, α −
(

α

γ

)(1+δ)/3

, 0

)

=

(

α −
(

α
γ

)(1+δ)/3
)√

α

2

√
(

α
γ

)(1+δ)/3
(

γα

(

α −
(

α
γ

)(1+δ)/3
)

− 1

)

α→∞−−−→ ∞,

because for large α the numerator shows the same behaviour as α3/2, since 0 < δ < 2, and
because the denominator behaves as α((1+δ)/3+2)(1/2) = α(7+δ)/6. This means, the whole
fraction behaves as

α1/3−δ/6 α→∞−−−→ ∞.

A Appendix

Lemma A.1 (Recursive sequence).

Let γ > 0, α > 2/
√

γ and a recursive sequence (αn)n≥0 ⊂ R be defined by

α0 := α and αn+1 :=
αn

2
+

1√
γ
.

Then each member of the sequence has the representation

αn =
α

2n
+

1√
γ

n−1∑

i=0

1

2i
with lim

n→∞
αn =

2√
γ
, as well as αn > αn+1.

Proof. Easily proved by induction.
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