Institut für Mathematik

For which positive p is the integral Menger curvature \mathcal{M}_{p} finite for all simple polygons?
by
Sebastian Scholtes
Report No. 50

Institute for Mathematics, RWTH Aachen University
Templergraben 55, D-52062 Aachen
Germany

For which positive p is the integral Menger curvature \mathcal{M}_{p} finite for all simple polygons?

Sebastian Scholtes

November 24, 2011

Abstract

In this brief note ${ }^{1}$ we show that the integral Menger curvature \mathcal{M}_{p} is finite for all simple polygons if and only if $p \in(0,3)$. For the intermediate energies \mathcal{I}_{p} and \mathcal{U}_{p} we obtain the analogous result for $p \in(0,2)$ and $p \in(0,1)$, respectively.

Mathematics Subject Classification (2000): 28A75; 53A04 It is well known, and in fact, by finding similar triangles, pretty easy to prove, that any simple polygon that is not a straight line has infinite integral Menger curvature \mathcal{M}_{p} for $p \geq 3$, cf. [SvdM07, Example after Lemma 1] and [SvdM11, after Theorem 1.2] for similar energies. This note investigates the opposite question, namely:

Is there a $p \in(0, \infty)$, such that all simple polygons have finite integral Menger curvature \mathcal{M}_{p} ?

The answer to this question is:
Yes, for all $p \in(0,3)$.
Here the integral Menger curvature $\mathcal{M}_{p}(X), p \in(0, \infty)$ of a set $X \subset \mathbb{R}^{n}$ is defined by

$$
\mathcal{M}_{p}(X):=\int_{X} \int_{X} \int_{X} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}_{X}^{1}(x) \mathrm{d} \mathcal{H}_{X}^{1}(y) \mathrm{d} \mathcal{H}_{X}^{1}(z)
$$

where the integrand κ is the mapping

$$
\kappa: X^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto \begin{cases}r^{-1}(x, y, z), & x \neq y \neq z \neq x \\ 0, & \text { else },\end{cases}
$$

and $r(x, y, z)$ is the radius of the circumcircle of the three points x, y and z-if the points are on a straight line we set $r(x, y, z)=\infty$, so that in this case $\kappa(x, y, z)=0$.

In a similar manner we can define the energies

$$
\mathcal{I}_{p}(X):=\int_{X} \int_{X} \kappa_{i}^{p}(x, y) \mathrm{d} \mathcal{H}_{X}^{1}(x) \mathrm{d} \mathcal{H}_{X}^{1}(y) \quad \text { and } \quad \mathcal{U}_{p}(X):=\int_{X} \kappa_{G}^{p}(x) \mathrm{d} \mathcal{H}_{X}^{1}(x),
$$

[^0]where
$$
\kappa_{i}(x, y)=\sup _{z \in X} \kappa(x, y, z) \quad \text { and } \quad \kappa_{G}(x)=\sup _{y, z \in X} \kappa(x, y, z) .
$$

We also answer the analogous question for the intermediate energies \mathcal{I}_{p} and \mathcal{U}_{p}, where the appropriate parameter range is $p \in(0,2)$ and $p \in(0,1)$, respectively. To prove our result we show that it is enough to control the energy of all polygons E_{φ} with two edges of length 1 and angle $\varphi \in(0,2 \pi)$ and that these energies are controlled by the energy of $E_{\pi / 2}$.

Acknowledgement

The author wishes to thank H. von der Mosel for asking about this problem, reading the present note and improving it by making several suggestions.

Definition 1 (The set E_{φ}).
For $\varphi \in \mathbb{R}$ we define

$$
E_{\varphi}:=[[0,1) \times\{0\}] \cup(\cos (\varphi), \sin (\varphi))[0,1) .
$$

Lemma 2 (Estimate of κ for E_{φ}).
Let $\varphi \in(0,2 \pi)$. Then there is a constant $c(\varphi)>0$, such that for all

$$
x=(\xi, 0), y=(\eta, 0) \in(0,1] \times\{0\} \quad \text { and } \quad z=\zeta(\cos (\varphi), \sin (\varphi)) \in(\cos (\varphi), \sin (\varphi))(0,1] .
$$

we have

$$
\kappa(x, y, z) \leq c(\varphi) \frac{2 \zeta}{\left(\xi^{2}+\zeta^{2}\right)^{1 / 2}\left(\eta^{2}+\zeta^{2}\right)^{1 / 2}}
$$

Proof. As κ is invariant under isometries we only need to consider the case $\varphi \in(0, \pi)$. We compute

$$
\begin{aligned}
& \kappa(x, y, z)=\frac{2 \operatorname{dist}\left(z, L_{x, y}\right)}{|x-z||y-z|} \\
& \quad=\frac{2 \sin (\varphi) \zeta}{\left([\xi-\zeta \cos (\varphi)]^{2}+[\zeta \sin (\varphi)]^{2}\right)^{1 / 2}\left([\eta-\zeta \cos (\varphi)]^{2}+[\zeta \sin (\varphi)]^{2}\right)^{1 / 2}} \\
& \quad=\frac{2 \sin (\varphi) \zeta}{\left(\xi^{2}-2 \xi \zeta \cos (\varphi)+\zeta^{2}\right)^{1 / 2}\left(\eta^{2}-2 \eta \zeta \cos (\varphi)+\zeta^{2}\right)^{1 / 2}} .
\end{aligned}
$$

If $\varphi \in[\pi / 2, \pi)$ we have

$$
\xi^{2}-2 \xi \zeta \cos (\varphi)+\zeta^{2} \geq \xi^{2}+\zeta^{2}
$$

and otherwise, i.e. $\varphi \in(0, \pi / 2)$

$$
\begin{aligned}
\xi^{2}- & 2 \xi \zeta \cos (\varphi)+\zeta^{2}=[1-\cos (\varphi)]\left(\xi^{2}+\zeta^{2}\right)+\underbrace{\cos (\varphi)}_{\geq 0} \underbrace{\left[\xi^{2}-2 \xi \zeta+\zeta^{2}\right]}_{\geq 0} \\
& \geq[1-\cos (\varphi)]\left(\xi^{2}+\zeta^{2}\right) .
\end{aligned}
$$

Lemma 3 (Estimate of $\mathcal{E}_{p}\left(E_{\varphi}\right)$ in terms of $\mathcal{E}_{p}\left(E_{\pi / 2}\right)$).
Let $\varphi \in \mathbb{R}$. Then there is a constant $c(\varphi)>0$, such that for all $p \in(0, \infty), \mathcal{E}_{p} \in$ $\left\{\mathcal{U}_{p}, \mathcal{I}_{p}, \mathcal{M}_{p}\right\}$ we have

$$
\mathcal{E}_{p}\left(E_{\varphi}\right) \leq c(\varphi)^{p} \mathcal{E}_{p}\left(E_{\pi / 2}\right)
$$

Proof. Without loss of generality we might assume $\varphi \in[0,2 \pi]$ and as $\mathcal{E}_{p}\left(E_{0}\right)=\mathcal{E}_{p}\left(E_{2 \pi}\right)=$ $\mathcal{E}_{p}\left(E_{\pi}\right)=0$ for all $p \in(0, \infty)$ we might as well assume $\varphi \in(0,2 \pi) \backslash\{\pi\}$. Let us denote

$$
E_{\varphi}^{1}:=(0,1) \times\{0\} \quad \text { and } \quad E_{\varphi}^{2}:=(\cos (\varphi), \sin (\varphi))(0,1) .
$$

Define

$$
f: E_{\varphi} \rightarrow E_{\pi / 2}, x \mapsto \begin{cases}x, & x \in[0,1] \times\{0\} \\ \left(0, x_{2} / \sin (\varphi)\right), & x \in E_{\varphi}^{2}\end{cases}
$$

As κ is invariant under isometries we can without loss of generality assume the situation of Lemma 2 and hence have

$$
\begin{equation*}
\kappa(x, y, z) \leq c(\varphi) \kappa(f(x), f(y), f(z)) \tag{1}
\end{equation*}
$$

if $\#\left\{x, y, z \in E_{\varphi}^{1}\right\} \geq 1$ and $\#\left\{x, y, z \in E_{\varphi}^{2}\right\} \geq 1$. Since $\kappa(x, y, z)=0$ for $x, y, z \in E_{\varphi}^{1} \cup\{0\}$ or $x, y, z \in E_{\varphi}^{2} \cup\{0\}$ we have (1) for all $x, y, z \in E_{\varphi}$ and therefore by Lemma 10, note that f is bi-Lipschitz, proven the proposition.

Lemma 4 (Range of p where $\mathcal{E}_{p}\left(E_{\pi / 2}\right)$ is finite).
We have

$$
\begin{array}{cll}
\mathcal{U}_{p}\left(E_{\pi / 2}\right)<\infty & \text { if and only if } & p \in(0,1), \\
\mathcal{I}_{p}\left(E_{\pi / 2}\right)<\infty & \text { if and only if } & p \in(0,2), \\
\mathcal{M}_{p}\left(E_{\pi / 2}\right)<\infty & \text { if and only if } & p \in(0,3) .
\end{array}
$$

Proof. [Sch12, Theorem 1.1 and Proposition 1.2]
Lemma 5 (Energy of polygons is determined by E_{φ}).
Let $\varphi \in \mathbb{R}$, fix $p \in(0, \infty)$ and $\mathcal{E}_{p} \in\left\{\mathcal{U}_{p}, \mathcal{I}_{p}, \mathcal{M}_{p}\right\}$, such that for all $\varphi \in \mathbb{R}$ we have $\mathcal{E}_{p}\left(E_{\varphi}\right)<\infty$. Then if $P \subset \mathbb{R}^{n}$ is a simple polygon with finitely many vertices, we have $\mathcal{E}_{p}(P)<\infty$.

Proof. Let $P \subset \mathbb{R}^{n}$ be a simple polygon with $N \geq 3$ vertices $x_{i}, i=1, \ldots, N-1$, and denote by $\lambda>0$ the length of the shortest edge. Then there is $\varepsilon_{0} \in(0, \lambda / 4)$, such that for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ the set $E_{i}:=P \cap B_{\varepsilon}\left(x_{i}\right)$ is some rescaled, rotated and translated version of a set $E_{\varphi_{i}}$, because else the polygon would not be simple. By X_{i} we denote the edges of P connecting x_{i} and x_{i+1}. Then the $N-1$ sets $Y_{i}:=X_{i} \backslash\left[E_{i} \cup E_{i+1}\right]$ are compact and Y_{i} is disjoint to $Z_{i}:=\operatorname{cl}\left(P \backslash X_{i}\right)$, which is also compact. Therefore

$$
d_{1}:=\min _{i=1, \ldots, N-1}\left\{\operatorname{dist}\left(Y_{i}, Z_{i}\right)\right\} / 4>0
$$

and for all $y \in Y_{i}$ we have

$$
\begin{equation*}
\kappa(y, a, b) \leq d_{1}^{-1} \quad \text { if } a \in Z_{i} \text { or } b \in Z_{i} . \tag{2}
\end{equation*}
$$

As $P \backslash Z_{i} \subset X_{i}$, which is contained in a straight line, we even have (2) for all $a, b \in P$. Now it remains to deal with the situation $y, a, b \notin \bigcup_{i=1}^{N-1} Y_{i}$, since we can permute y, a, b as arguments of κ at will. This leads us to the two cases where either $y, a, b \in E_{i}$ or, without loss of generality, $y \in E_{i}$ and $a \in E_{j}$ for $i \neq j$. If we denote

$$
d_{2}:=\min _{\substack{i, j=1, \ldots, N-1 \\ i \neq j}}\left\{\operatorname{dist}\left(\operatorname{cl}\left(E_{i}\right), \operatorname{cl}\left(E_{j}\right)\right)\right\} / 4>0
$$

then the second case yields

$$
\kappa(y, a, b) \leq d_{2}^{-1}
$$

and the first case is already controlled by Lemma 3 , that is $\mathcal{E}_{p}\left(E_{i}\right)=\alpha_{i} \mathcal{E}_{p}\left(E_{\varphi_{i}}\right)$, where $\alpha_{i} \geq 0$ is the scaling constant. Now we can put all the cases together to estimate depending on which energy \mathcal{E}_{p} we chose -

$$
\begin{aligned}
\mathcal{U}_{p}(P) & =\int_{\bigcup_{i=1}^{N-1} Y_{i}} \kappa_{G}^{p}(x) \mathrm{d} \mathcal{H}^{1}(x)+\int_{\bigcup_{i=1}^{N} E_{i}} \kappa_{G}^{p}(x) \mathrm{d} \mathcal{H}^{1}(x) \\
& \leq \mathcal{H}^{1}(P) d_{1}^{-p}+\int_{\bigcup_{i=1}^{N} E_{i}} \kappa_{G}^{p}(x) \mathrm{d} \mathcal{H}^{1}(x)
\end{aligned}
$$

with

$$
\begin{aligned}
& \int_{E_{i}} \kappa_{G}^{p}(x) \mathrm{d} \mathcal{H}^{1}(x) \leq \int_{E_{i}}\left[\sup _{(y, z) \in \cup_{j=1}^{N-1} Y_{j} \times P} \kappa^{p}(x, y, z)\right. \\
& \left.\quad+\sup _{(y, z) \in \bigcup_{j \neq i} E_{j} \times P} \kappa^{p}(x, y, z)+\sup _{(y, z) \in E_{i} \times E_{i}} \kappa^{p}(x, y, z)\right] \mathrm{d} \mathcal{H}^{1}(x) \\
& \leq \mathcal{H}^{1}(P)\left(d_{1}^{-p}+d_{2}^{-p}\right)+\mathcal{U}_{p}\left(E_{i}\right) \leq \mathcal{H}^{1}(P)\left(d_{1}^{-p}+d_{2}^{-p}\right)+\alpha_{i} c\left(\varphi_{i}\right)^{p} \mathcal{U}_{p}\left(E_{\pi / 2}\right)<\infty
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathcal{I}_{p}(P)=2 \int_{P} \int_{\bigcup_{l=1}^{N} Y_{l}} \kappa_{i}^{p}(x, y) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \\
& \quad+\sum_{l \neq k} \int_{E_{l}} \int_{E_{k}} \kappa_{i}^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y)+\sum_{l=1}^{N} \int_{E_{l}} \int_{E_{l}} \kappa_{i}^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \\
& \leq\left[\mathcal{H}^{1}(P)\right]^{2}\left(2 d_{1}^{-p}+N^{2} d_{2}^{-p}\right)+\sum_{l=1}^{N} \int_{E_{l}} \int_{E_{l}} \kappa_{i}^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y),
\end{aligned}
$$

with

$$
\begin{aligned}
& \int_{E_{l}} \int_{E_{l}} \kappa_{i}^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \leq \int_{E_{l}} \int_{E_{l}} \sup _{z \in \cup_{j} Y_{j}} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \\
& \quad+\int_{E_{l}} \int_{E_{l}} \sup _{z \in \cup_{j \neq l} E_{j}} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y)+\int_{E_{l}} \int_{E_{l}} \sup _{z \in E_{l}} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \\
& \leq\left[\mathcal{H}^{1}(P)\right]^{2}\left(d_{1}^{-p}+d_{2}^{-p}\right)+\mathcal{I}_{p}\left(E_{l}\right) \leq\left[\mathcal{H}^{1}(P)\right]^{2}\left(d_{1}^{-p}+d_{2}^{-p}\right)+\alpha_{l} c\left(\varphi_{l}\right)^{p} \mathcal{I}_{p}\left(E_{\pi / 2}\right)<\infty
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathcal{M}_{p}(P)=3 \int_{P} \int_{P} \int_{\bigcup_{i=1}^{N} Y_{i}} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \mathrm{d} \mathcal{H}^{1}(z) \\
& \quad+\sum_{\#\{, j, k\} \geq 2} \int_{E_{i}} \int_{E_{j}} \int_{E_{k}} \kappa^{p}(x, y, z) \mathrm{d} \mathcal{H}^{1}(x) \mathrm{d} \mathcal{H}^{1}(y) \mathrm{d} \mathcal{H}^{1}(z)+\sum_{i=1}^{N} \alpha_{i} \mathcal{M}_{p}\left(E_{\varphi_{i}}\right) \\
& \leq\left[\mathcal{H}^{1}(P)\right]^{3}\left(3 d_{1}^{-p}+N^{3} d_{2}^{-p}\right)+\left(\sum_{i=1}^{N} \alpha_{i} c\left(\varphi_{i}\right)^{p}\right) \mathcal{M}_{p}\left(E_{\pi / 2}\right)<\infty .
\end{aligned}
$$

By $\mathcal{P} \subset \operatorname{Pot}\left(\mathbb{R}^{n}\right)$ we denote the set of all simple polygons with finitely many vertices.
Lemma 6 (Polygons have finite \mathcal{U}_{p} iff $p \in(0,1)$).
Let $p \in(0, \infty)$. The following are equivalent

- $p \in(0,1)$,
- $\mathcal{U}_{p}(P)<\infty$ for all $P \in \mathcal{P}$,
- there is a non-degenerate closed polygon P, such that $\mathcal{U}_{p}(P)<\infty$.

Proof. This is clear by Lemma 4 and Lemma 5 together with [Sch12, Theorem 1.1] and the information that any vertex of a polygon with angle in $(0,2 \pi) \backslash\{\pi\}$ has no approximate 1 -tangent at this vertex.

Lemma 7 (Polygons have finite \mathcal{I}_{p} iff $p \in(0,2)$).
Let $p \in(0, \infty)$. The following are equivalent

- $p \in(0,2)$,
- $\mathcal{I}_{p}(P)<\infty$ for all $P \in \mathcal{P}$,
- there is a non-degenerate closed polygon P, such that $\mathcal{I}_{p}(P)<\infty$.

Proof. See the proof of Lemma 6.
Lemma 8 (Polygons have finite \mathcal{M}_{p} iff $p \in(0,3)$).
Let $p \in(0, \infty)$. The following are equivalent

- $p \in(0,3)$,
- $\mathcal{M}_{p}(P)<\infty$ for all $P \in \mathcal{P}$,
- there is a non-degenerate closed polygon P, such that $\mathcal{M}_{p}(P)<\infty$.

Proof. See the proof of Lemma 6.

A Appendix: Some remarks on integration

In this section we give some remarks on how to get estimates for the change of variables formula. Suppose we have a homeomorphism $g: X \rightarrow Y$ between two metric spaces and an integrand $f: X \cup Y \rightarrow \overline{\mathbb{R}}$ for which we know that $f \leq f \circ g$ on X. Under which circumstances can we estimate in the following way

$$
\int_{X} f \mathrm{~d} \mathcal{H}_{X}^{s} \leq \int_{X} f \circ g \mathrm{~d} \mathcal{H}_{X}^{s} \leq C \int_{Y} f \mathrm{~d} \mathcal{H}_{Y}^{s} \quad ?
$$

Lemma 9 (Estimate for change of variables formula).

Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces. Let $s \in(0, \infty), f: Y \rightarrow \overline{\mathbb{R}}$ be $\mathcal{B}(Y)-\mathcal{B}(\overline{\mathbb{R}})$ measurable, $f \geq 0$ and $g: X \rightarrow Y$ be a homeomorphism, with $d_{X}\left(g^{-1}\left(y_{1}\right), g^{-1}\left(y_{2}\right)\right) \leq c d_{Y}\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$. Then

$$
\int_{X} f \circ g d \mathcal{H}_{X}^{s} \leq c^{s} \int_{Y} f d \mathcal{H}_{Y}^{s}
$$

Proof. Step 1 Let $V \subset Y$ and $\left(V_{n}\right)_{n \in \mathbb{N}}$ be a δ covering of V. Then $U_{n}=g^{-1}\left(V_{n}\right)$ cover $U=g^{-1}(V)$ with

$$
\operatorname{diam}\left(g^{-1}\left(V_{n}\right)\right) \leq c \operatorname{diam}\left(V_{n}\right) \leq c \delta
$$

Consequently we have $g_{*}\left(\mathcal{H}_{X}^{s}\right)(V)=\mathcal{H}_{X}^{s}\left(g^{-1}(V)\right) \leq c^{s} \mathcal{H}_{Y}^{s}(V)$.
Step 2 As $f \geq 0$ is Borel measurable, i.e. $\mathcal{B}(Y)-\mathcal{B}(\overline{\mathbb{R}})$ measurable, Lemma 12 gives us non-negative Borel measurable simple functions $u_{n}: Y \rightarrow \overline{\mathbb{R}}, u_{n} \uparrow f$. According to the Monotone Convergence Theorem this gives us

$$
\int_{Y} f \mathrm{~d} g_{*}\left(\mathcal{H}_{X}^{s}\right)=\lim _{n \rightarrow \infty} \int_{Y} u_{n} \mathrm{~d} g_{*}\left(\mathcal{H}_{X}^{s}\right) \leq \lim _{n \rightarrow \infty} \int_{Y} c^{s} u_{n} \mathrm{~d} \mathcal{H}_{Y}^{s}=c^{s} \int_{Y} f \mathrm{~d} \mathcal{H}_{Y}^{s} .
$$

The previous estimate and use of Monotone Convergence Theorem is only justified, because

$$
\mathcal{B}(Y) \subset \mathcal{C}\left(\mathcal{H}_{Y}^{s}\right) \quad \text { and } \quad \mathcal{B}(Y) \subset g\left(\mathcal{C}\left(\mathcal{H}_{X}^{s}\right)\right)=\mathcal{C}\left(g_{*}\left(\mathcal{H}_{X}^{s}\right)\right)
$$

by Lemma 14 together with the fact that g is a homeomorphism and hence maps $\mathcal{B}(X)$ onto $\mathcal{B}(Y)$.
Step 3 Now we can use Lemma 13 to write

$$
\int_{X} f \circ g \mathrm{~d} \mathcal{H}_{X}^{s}=\int_{Y} f \mathrm{~d} g_{*}\left(\mathcal{H}_{X}^{s}\right) \leq c^{s} \int_{Y} f \mathrm{~d} \mathcal{H}_{Y}^{s}
$$

Lemma 10 (Estimate for change of variables formula in multiple integrals).
Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces. Let $s \in(0, \infty), f: Y^{n} \rightarrow \overline{\mathbb{R}}$ be lower semicontinuous, $f \geq 0$ and $g: X \rightarrow Y$ be a homeomorphism, with $d_{X}\left(g^{-1}\left(y_{1}\right), g^{-1}\left(y_{2}\right)\right) \leq$ $c d_{Y}\left(y_{1}, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$. Then

$$
\begin{aligned}
\int_{X} & \ldots \int_{X} f\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) d \mathcal{H}_{X}^{s}\left(x_{1}\right) \ldots d \mathcal{H}_{X}^{s}\left(x_{n}\right) \\
& \leq c^{s n} \int_{Y} \ldots \int_{Y} f\left(y_{1}, \ldots, y_{n}\right) d \mathcal{H}_{Y}^{s}\left(y_{1}\right) \ldots d \mathcal{H}_{Y}^{s}\left(y_{n}\right)
\end{aligned}
$$

Proof. Step 1 For fixed $v_{1}, \ldots, v_{n} \in Y$ and $a_{k}, a \in Y$ with $a_{n} \rightarrow a$ we have

$$
f\left(v_{1}, \ldots, v_{l-1}, a, v_{l+1}, \ldots, v_{n}\right) \leq \liminf _{k \rightarrow \infty} f\left(v_{1}, \ldots, v_{l-1}, a_{k}, v_{l+1}, \ldots, v_{n}\right)
$$

and hence by Fatou's Lemma

$$
\begin{aligned}
& \int_{Y} f\left(y_{1}, v_{2} \ldots, v_{l-1}, a, v_{l+1}, \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \\
& \leq \int_{Y} \liminf _{k \rightarrow \infty} f\left(y_{1}, v_{2}, \ldots, v_{l-1}, a_{k}, v_{l+1}, \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \\
& \leq \liminf _{k \rightarrow \infty} \int_{Y} f\left(y_{1}, v_{2}, \ldots, v_{l-1}, a_{k}, v_{l+1}, \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right),
\end{aligned}
$$

so that $y \mapsto \int_{Y} f\left(y_{1}, v_{2}, \ldots, v_{l-1}, y, v_{l+1}, \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right)$ is lower semi-continuous. Hence

$$
\begin{aligned}
\int_{Y} & \int_{Y} f\left(y_{1}, y_{2}, v_{3}, \ldots, v_{l-1}, a, v_{l+1} \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{2}\right) \\
& \leq \int_{Y} \liminf _{k \rightarrow \infty} \int_{Y} f\left(y_{1}, y_{2}, v_{3}, \ldots, v_{l-1}, a_{k}, v_{l+1} \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{2}\right) \\
& \leq \liminf _{k \rightarrow \infty} \int_{Y} \int_{Y} f\left(y_{1}, y_{2}, v_{3}, \ldots, v_{l-1}, a_{k}, v_{l+1} \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{2}\right)
\end{aligned}
$$

and by a straightforward inductive argument we can show that for all $l \in\{2, \ldots, n\}$ the mappings

$$
Y \rightarrow \overline{\mathbb{R}}, y \mapsto \int_{Y} \ldots \int_{Y} f\left(y_{1}, \ldots, y_{l-1}, y, v_{l+1}, \ldots, v_{n}\right) \mathrm{d} \mathcal{H}^{s}\left(y_{1}\right) \ldots \mathrm{d} \mathcal{H}^{s}\left(y_{l-1}\right)
$$

are lower semi-continuous for all $v_{1}, \ldots, v_{n} \in Y$ and hence also $\mathcal{B}(Y)-\mathcal{B}(\overline{\mathbb{R}})$ measurable. Step 2 Now we can successively use Lemma 9 to obtain

$$
\begin{aligned}
\int_{X} & \ldots \int_{X} f\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right) \mathrm{d} \mathcal{H}_{X}^{s}\left(x_{1}\right) \ldots \mathrm{d} \mathcal{H}_{X}^{s}\left(x_{n}\right) \\
& \leq \int_{X} \ldots \int_{X} c^{s} \int_{Y} f\left(y_{1}, g\left(x_{2}\right) \ldots, g\left(x_{n}\right)\right) \mathrm{d} \mathcal{H}_{Y}^{s}\left(y_{1}\right) \mathrm{d} \mathcal{H}_{X}^{s}\left(x_{2}\right) \ldots \mathrm{d} \mathcal{H}_{X}^{s}\left(x_{n}\right) \\
& \leq \ldots \leq c^{s n} \int_{Y} \ldots \int_{Y} f\left(y_{1}, \ldots, y_{n}\right) \mathrm{d} \mathcal{H}_{Y}^{s}\left(y_{1}\right) \ldots \mathrm{d} \mathcal{H}_{Y}^{s}\left(y_{n}\right)
\end{aligned}
$$

Warning 11 (For Lemma 10 the hypothesis f Borel measurable is not enough).

 For the argument used in the proof of Lemma 10 it would not suffice to have $f: Y^{n} \rightarrow \overline{\mathbb{R}}$ Borel measurable, because then we would not be able to show that $f\left(\cdot, v_{2}, \ldots, v_{n}\right): Y \rightarrow \overline{\mathbb{R}}$ is Borel measurable - as Suslin showed that there are Borel sets, whose projections are not Borel sets - which was a hypothesis of Lemma 9.Lemma 12 (Approximation of measurable functions with simple functions). Let (X, \mathcal{A}) be a measurable space, $f:(X, \mathcal{A}) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}})), f \geq 0$. Then f is measurable if and only if there is a sequence of simple, non-negative, measurable functions $u_{n}:(X, \mathcal{A}) \rightarrow$ $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$, with $u_{n} \uparrow f$.

Lemma 13 (Change of variables).

Let \mathcal{V} be a Borel regular outer measure on X, Y be a set and $g: X \rightarrow Y$ a bijective map. Further let $f:\left(Y, \mathcal{C}\left(g_{*}(\mathcal{V})\right)\right) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ measurable, $f \geq 0$. Then

$$
\begin{equation*}
\int_{Y} f d g_{*}(\mathcal{V})=\int_{X} f \circ g d \mathcal{V} \tag{3}
\end{equation*}
$$

Proof. As we have a setting that the reader might find to be slightly confusing, we will proof this lemma. It is essentially the proof that can be found in [Els05, V §3 3.1, p.191]. Step 1 Let $h:\left(Y, \mathcal{C}\left(g_{*}(\mathcal{V})\right)\right) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ be measurable and $B \in \mathcal{B}(\overline{\mathbb{R}})$. Then

$$
(h \circ g)^{-1}(B)=g^{-1}(\underbrace{h^{-1}(B)}_{\in \mathcal{C}\left(g_{*}(\mathcal{V})\right)^{\mathrm{L} .14}=g^{-1}(\mathcal{C}(\mathcal{V}))}) \in \mathcal{C}(\mathcal{V}),
$$

so that $h \circ g$ is $\mathcal{C}(\mathcal{V})-\mathcal{B}(\overline{\mathbb{R}})$ measurable.
Step 2 For all $E \in \mathcal{C}\left(g_{*}(\mathcal{V})\right)$, i.e. $g^{-1}(E) \in \mathcal{C}(\mathcal{V})$ by Lemma 14, we have

$$
\int_{Y} \chi_{E} \mathrm{~d} g_{*}(\mathcal{V})=\mathcal{V}\left(g^{-1}(E)\right)=\int_{X} \chi_{g^{-1}(E)} \mathrm{d} \mathcal{V}=\int_{X} \chi_{E} \circ g \mathrm{~d} \mathcal{V}
$$

because $\chi_{E} \circ g$ is $\mathcal{C}(\mathcal{V})-\mathcal{B}(\overline{\mathbb{R}})$ measurable by Step 1 . Consequently we have the change of variables formula (3) with u instead of f, for all simple, non-negative, measurable functions $u:\left(X, \mathcal{C}\left(g_{*}(\mathcal{V})\right)\right) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$.
Step 3 As $f \geq 0$ is $\mathcal{C}\left(g_{*}(\mathcal{V})\right)-\mathcal{B}(\overline{\mathbb{R}})$ measurable we know from Lemma 12, that there is a sequence of simple, non-negative, measurable functions $u_{n}:\left(X, \mathcal{C}\left(g_{*}(\mathcal{V})\right)\right) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$, with $u_{n} \uparrow f$. By the Monotone Convergence Theorem [EG92, 1.3, Theorem 2, p.20] together with Step 2 we obtain

$$
\int_{Y} f \mathrm{~d} g_{*}(\mathcal{V})=\lim _{n \rightarrow \infty} \int_{Y} u_{n} \mathrm{~d} g_{*}(\mathcal{V})=\lim _{n \rightarrow \infty} \int_{X} u_{n} \circ g \mathrm{~d} \mathcal{V}=\int_{X} f \circ g \mathrm{~d} \mathcal{V}
$$

as $u_{n} \circ g$ are simple, non-negative $\mathcal{C}(\mathcal{V})-\mathcal{B}(\overline{\mathbb{R}})$ measurable functions with $u_{n} \circ g \uparrow f \circ g$.
Lemma 14 (What is $\mathcal{C}\left(g_{*}(\mathcal{V})\right)$?).
Let \mathcal{V} be an outer measure on X, Y be a set and $g: X \rightarrow Y$ a bijective map. Then

$$
\mathcal{C}\left(g_{*}(\mathcal{V})\right)=g(\mathcal{C}(\mathcal{V})) .
$$

Proof. Step 1 Let $E \in \mathcal{C}\left(g_{*}(\mathcal{V})\right)$ and $U \subset X$. Then

$$
\begin{aligned}
& \mathcal{V}\left(g^{-1}(E)\right)=g_{*}(\mathcal{V})(E)=g_{*}(\mathcal{V})(E \cap g(U))+g_{*}(\mathcal{V})(E \backslash g(U)) \\
& \left.\left.\quad=\mathcal{V}\left(g^{-1}(E \cap g(U))\right)+\mathcal{V}\left(g^{-1}(E \backslash g(U))\right)=\mathcal{V}\left(g^{-1}(E) \cap U\right)\right)+\mathcal{V}\left(g^{-1}(E) \backslash U\right)\right),
\end{aligned}
$$

so that $g^{-1}(E) \in \mathcal{C}(V)$ and hence $E \in g(\mathcal{C}(\mathcal{V}))$.
Step 2 Let $E \in g(\mathcal{C}(\mathcal{V}))$ and $V \subset Y$. Then

$$
\begin{aligned}
& g_{*}(\mathcal{V})(E)=\mathcal{V}\left(g^{-1}(E)\right)=\mathcal{V}\left(g^{-1}(E) \cap g^{-1}(V)\right)+\mathcal{V}\left(g^{-1}(E) \backslash g^{-1}(V)\right) \\
& \quad=\mathcal{V}\left(g^{-1}(E \cap V)\right)+\mathcal{V}\left(g^{-1}(E \backslash V)\right)=g_{*}(\mathcal{V})(E \cap V)+g_{*}(\mathcal{V})(E \backslash V),
\end{aligned}
$$

which gives us $E \in \mathcal{C}\left(g_{*}(\mathcal{V})\right)$.

References

[EG92] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
[Els05] Jürgen Elstrodt, Maß- und Integrationstheorie, fourth ed., Springer-Lehrbuch. [Springer Textbook], Springer-Verlag, Berlin, 2005.
[Sch12] Sebastian Scholtes, Tangency properties of sets with finite geometric curvature energies, Preprint 52, RWTH Aachen University, Institut f. Mathematik, 2012.
[SvdM07] Paweł Strzelecki and Heiko von der Mosel, On rectifiable curves with L^{p}-bounds on global curvature: self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007), no. 1, 107-130.
[SvdM11] , Integral Menger curvature for surfaces, Adv. Math. 226 (2011), no. 3, 2233-2304.

Sebastian Scholtes
Institut für Mathematik
RWTH Aachen University
Templergraben 55
D-52062 Aachen, Germany
sebastian.scholtes@rwth-aachen.de

Reports des Instituts für Mathematik der RWTH-Aachen

[1] Bemelmans J.: Die Vorlesung "Figur und Rotation der Himmelskörper" von F. Hausdorff, WS 1895/96, Universität Leipzig, S 20, März 2005
[2] Wagner A.: Optimal Shape Problems for Eigenvalues, S 30, März 2005
[3] Hildebrandt S. and von der Mosel H.: Conformal representation of surfaces, and Plateau's problem for Cartan functionals, S 43, Juli 2005
[4] Reiter P.: All curves in a C^{1}-neighbourhood of a given embedded curve are isotopic, S 8, Oktober 2005
[5] Maier-Paape S., Mischaikow K. and Wanner T.: Structure of the Attractor of the Cahn-Hilliard Equation, S 68, Oktober 2005
[6] Strzelecki P. and von der Mosel H.: On rectifiable curves with L^{p} bounds on global curvature: Self-avoidance, regularity, and minimizing knots, S 35, Dezember 2005
[7] Bandle C. and Wagner A.: Optimization problems for weighted Sobolev constants, S 23, Dezember 2005
[8] Bandle C. and Wagner A.: Sobolev Constants in Disconnected Domains, S 9, Januar 2006
[9] McKenna P.J. and Reichel W.: A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains, S 25, Mai 2006
[10] Bandle C., Below J. v. and Reichel W.: Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions, S 32, Mai 2006
[11] Kyed M.: Travelling Wave Solutions of the Heat Equation in Three Dimensional Cylinders with Non-Linear Dissipation on the Boundary, S 24, Juli 2006
[12] Blatt S. and Reiter P.: Does Finite Knot Energy Lead To Differentiability?, S 30, September 2006
[13] Grunau H.-C., Ould Ahmedou M. and Reichel W.: The Paneitz equation in hyperbolic space, S 22, September 2006
[14] Maier-Paape S., Miller U.,Mischaikow K. and Wanner T.: Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square, S 67, Oktober 2006
[15] von der Mosel H. and Winklmann S.: On weakly harmonic maps from Finsler to Riemannian manifolds, S 43, November 2006
[16] Hildebrandt S., Maddocks J. H. and von der Mosel H.: Obstacle problems for elastic rods, S 21, Januar 2007
[17] Galdi P. Giovanni: Some Mathematical Properties of the Steady-State Navier-Stokes Problem Past a ThreeDimensional Obstacle, S 86, Mai 2007
[18] Winter N.: $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations, S 34, July 2007
[19] Strzelecki P., Szumańska M. and von der Mosel H.: A geometric curvature double integral of Menger type for space curves, S 20, September 2007
[20] Bandle C. and Wagner A.: Optimization problems for an energy functional with mass constraint revisited, S 20, März 2008
[21] Reiter P., Felix D., von der Mosel H. and Alt W.: Energetics and dynamics of global integrals modeling interaction between stiff filaments, S 38, April 2008
[22] Belloni M. and Wagner A.: The ∞ Eigenvalue Problem from a Variational Point of View, S 18, Mai 2008
[23] Galdi P. Giovanni and Kyed M.: Steady Flow of a Navier-Stokes Liquid Past an Elastic Body, S 28, Mai 2008
[24] Hildebrandt S. and von der Mosel H.: Conformal mapping of multiply connected Riemann domains by a variational approach, S 50, Juli 2008
[25] Blatt S.: On the Blow-Up Limit for the Radially Symmetric Willmore Flow, S 23, Juli 2008
[26] Müller F. and Schikorra A.: Boundary regularity via Uhlenbeck-Rivière decomposition, S 20, Juli 2008
[27] Blatt S.: A Lower Bound for the Gromov Distortion of Knotted Submanifolds, S 26, August 2008
[28] Blatt S.: Chord-Arc Constants for Submanifolds of Arbitrary Codimension, S 35, November 2008
[29] Strzelecki P., Szumańska M. and von der Mosel H.: Regularizing and self-avoidance effects of integral Menger curvature, S 33, November 2008
[30] Gerlach H. and von der Mosel H.: Yin-Yang-Kurven lösen ein Packungsproblem, S 4, Dezember 2008
[31] Buttazzo G. and Wagner A.: On some Rescaled Shape Optimization Problems, S 17, März 2009
[32] Gerlach H. and von der Mosel H.: What are the longest ropes on the unit sphere?, S 50, März 2009
[33] Schikorra A.: A Remark on Gauge Transformations and the Moving Frame Method, S 17, Juni 2009
[34] Blatt S.: Note on Continuously Differentiable Isotopies, S 18, August 2009
[35] Knappmann K.: Die zweite Gebietsvariation für die gebeulte Platte, S 29, Oktober 2009
[36] Strzelecki P. and von der Mosel H.: Integral Menger curvature for surfaces, S 64, November 2009
[37] Maier-Paape S., Imkeller P.: Investor Psychology Models, S 30, November 2009
[38] Scholtes S.: Elastic Catenoids, S 23, Dezember 2009
[39] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of an Elastic Body Moving Freely in a Navier-Stokes Liquid under the Action of a Constant Body Force, S 67, Dezember 2009
[40] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable, S 25, Dezember 2009
[41] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Around a Rotating Body: Leray Solutions are Physically Reasonable, S 15, Dezember 2009
[42] Bemelmans J., Galdi G.P. and Kyed M.: Fluid Flows Around Floating Bodies, I: The Hydrostatic Case, S 19, Dezember 2009
[43] Schikorra A.: Regularity of n/2-harmonic maps into spheres, S 91, März 2010
[44] Gerlach H. and von der Mosel H.: On sphere-filling ropes, S 15, März 2010
[45] Strzelecki P. and von der Mosel H.: Tangent-point self-avoidance energies for curves, S 23, Juni 2010
[46] Schikorra A.: Regularity of n/2-harmonic maps into spheres (short), S 36, Juni 2010
[47] Schikorra A.: A Note on Regularity for the n-dimensional H-System assuming logarithmic higher Integrability, S 30, Dezember 2010
[48] Bemelmans J.: Über die Integration der Parabel, die Entdeckung der Kegelschnitte und die Parabel als literarische Figur, S 14, Januar 2011
[49] Strzelecki P. and von der Mosel H.: Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in \mathbb{R}^{n}. Part I: Smoothing and self-avoidance effects, S 47, Februar 2011
[50] Scholtes S.: For which positive p is the integral Menger curvature \mathcal{M}_{p} finite for all simple polygons, S 9 , November 2011
[51] Bemelmans J., Galdi G. P. and Kyed M.: Fluid Flows Around Rigid Bodies, I: The Hydrostatic Case, S 32, Dezember 2011
[52] Scholtes S.: Tangency properties of sets with finite geometric curvature energies, S 39, February 2012
[53] Scholtes S.: A characterisation of inner product spaces by the maximal circumradius of spheres, S 8, February 2012

[^0]: ${ }^{1}$ which is designated to be an addendum to [Sch12]

