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DISCRETE THICKNESS

SEBASTIAN SCHOLTES

Abstract. We investigate the relationship between a discrete version of thickness and its
smooth counterpart. These discrete energies are defined on equilateral polygons with n vertices.
It will turn out that the smooth ropelength, which is the scale invariant quotient of length divided
by thickness, is the Γ-limit of the discrete ropelength for n→∞, regarding the topology induced
by the Sobolev norm || · ||W1,∞(S1,Rd). This result directly implies the convergence of almost
minimizers of the discrete energies in a fixed knot class to minimizers of the smooth energy.
Moreover, we show that the unique absolute minimizer of inverse discrete thickness is the regular
n-gon.

1. Introduction

In this article we are concerned with the relationship of a discrete version of the thickness ∆
of a curve γ, defined by

∆[γ] := inf
x,y,z∈γ(S1)
x 6=y 6=z 6=x

r(x, y, z)

on C, the set of all curves γ : S1 → Rd that are parametrised by arc length, i.e., γ ∈ C0,1(S1,Rd) =
W 1,∞(S1,Rd) with |γ′| = 1 a.e., and have length

∫
S1 |γ

′| dt = 1. Here, S1 is the circle of length 1

and r(x, y, z) the radius of the unique circle that contains x, y and z, which is set to infinity if
the three points are collinear. This notion of thickness was introduced in [8] and is equivalent to
the Federer’s reach, see [5]. Geometrically, the thickness of a curve gives the radius of the largest
uniform tubular neighbourhood about the curve that does not intersect itself. The ropelength,
which is length divided by thickness, is scale invariant and a knot is called ideal if it minimizes
ropelength in a fixed knot class or, equivalently, minimizes this energy amongst all curves in this
knot class with fixed length. These ideal knots are of great interest, not only to mathematicians
but also to biologists, chemists, physicists, . . ., since they exposit interesting physical features
and resemble the time-averaged shapes of knotted DNA molecules in solution [25, 10, 11], see
[26, 24] for an overview of physical knot theory with applications. The existence of ideal knots
in every knot class was settled in [2, 9, 7] and it was found that the unique absolute minimizer
(in all knot classes) is the round circle. Furthermore, this energy is self-repulsive, meaning that
finite energy prevents the curve from having self intersections. By now it is well-known that thick
curves, or in general manifolds of positive reach, are of class C1,1 and vice versa, see [5, 22, 13, 21].
In [2] it was shown that ideal links must not be of class C2 and computer experiments in [28]
suggest that C1,1 regularity is optimal for knots, too. Still, there is a conjecture [2, Conjecture
24] that ropelength minimizers are piecewise analytic. Further interesting properties of critical
points for the ropelength as well as the Euler-Lagrange equation were derived in [22, 23, 1].

Another way to write the thickness of an arc length curve is

∆[γ] = min{minRad(γ), 2−1 dcsd(γ)},(1)

which by [22] holds for all arc length curves with positive thickness. The minimal radius of
curvature minRad(γ) of γ is the inverse of the maximal curvature maxCurv(γ) := ||γ′′||L∞ and
dcsd(γ) := min(x,y)∈dcrit(γ)|y − x| is the doubly critical selfdistance. The set of doubly critical
points dcrit(γ) of a C1 curve γ consists of all pairs (x, y) where x = γ(t) and y = γ(s) are
distinct points on γ so that 〈γ′(t), γ(t) − γ(s)〉 = 〈γ′(s), γ(t) − γ(s)〉 = 0, i.e., s is critical for
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u 7→ |γ(t)− γ(u)|2 and and t for v 7→ |γ(v)− γ(s)|2.

Appropriate versions of thickness for polygons derived from the representation in (1) are
already available. The curvature of a polygon, localized at a vertex y, is defined by

κd(x, y, z) :=
2 tan(ϕ2 )
|x−y|+|z−y|

2

and as an alternative κd,2(x, y, z) :=
ϕ

|x−y|+|z−y|
2

where x and z are the vertices adjacent to y and ϕ = ](y − x, z − y) is the exterior angle at
y, note κd,2 ≤ κd. We then set minRad(p) := maxCurv(p)−1 := mini=1,...,n κ

−1
d (xi−1, xi, xi+1) if

the polygon p has the consecutive vertices xi, x0 := xn, xn+1 := x1; minRad2 and maxCurv2

are defined accordingly. The doubly critical self distance of a polygon p is given as for a smooth
curve if we define dcrit(p) to consist of pairs (x, y) where x = p(t) and y = p(s) and s locally
extremizes u 7→ |p(t) − p(u)|2 and t locally extremizes v 7→ |p(v) − p(s)|2. Now, the discrete
thickness ∆n defined on Pn, the class of arc length parametrisations of equilateral polygons of
length 1 with n segments is defined analogous to (1) by

∆n[p] = min{minRad(p), 2−1 dcsd(p)}

if all vertices are distinct and ∆n[p] = 0 if two vertices of p coincide. This notion of thickness was
introduced and investigated by Rawdon in [16, 17, 18, 19] and by Millett, Piatek and Rawdon
in [14]. In this series of works alternative representations of smooth and discrete thickness were
established that were then used to show that not only does the value of the minimal discrete
inverse thickness converge to the minimal smooth inverse thickness in every tame knot class, but,
additionally, a subsequence of the discrete equilateral minimizers, which are shown to exist in
every tame knot class, converge to a smooth minimizer of the same knot type in the C0 topol-
ogy as the number of segments increases, at least if we require that all discrete minimizers are
bounded in L∞. Furthermore, it was shown that discrete thickness is continuous, for example on
the space of simple equilateral polygons with fixed segment length. In [3, 19] similar questions
for more general energy functions were considered.

In the present work we continue this line of thought and investigate the way in which the
discrete thickness approximates smooth thickness in more detail. It will turn out that the right
framework is given by Γ-convergence. This notion of convergence that was invented by DeGiorgi
is devised in such a way, as to allow the convergence of minimizers and even almost minimizers.
For the convenience of the reader we summarise the relevant facts on Γ-convergence in Section
2.

Theorem 1 (Convergence of discrete inverse to smooth inverse thickness).
For every tame knot class K holds

∆−1
n

Γ−→ ∆−1 on (C(K), || · ||W 1,∞(S1,R3)).

Here, the addition of a knot class K means that only knots of this particular knot class
are considered. The functionals are extended by infinity outside their natural domain. By the
properties presented in Section 2 together with Proposition 4, we obtain the following convergence
result of polygonal ideal knots to smooth ideal knots improving the convergence in [19, Theorem
8.5] from C0 to W 1,∞ = C0,1.

Corollary 2 (Ideal polygonal knots converge to smooth ideal knots).
Let K be a tame knot class, pn ∈ Pn(K) bounded in L∞ with |infPn(K) ∆−1

n − ∆−1
n (pn)| → 0.

Then there is a subsequence

pnk
W 1,∞(S1,R3)−−−−−−−−→

k→∞
γ ∈ C(K) with ∆−1[γ] = inf

C(K)
∆−1 = lim

k→∞
∆nk [pnk ].

The subsequent compactness result is proven via a version of Schur’s Comparison Theorem
(see Proposition 8) that allows to compare polygons with circles.

Proposition 3 (Compactness).
Let pn ∈ Pn(K) bounded in L∞ with lim infn→∞maxCurv(pn) < ∞. Then there is γ ∈
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C1,1(S1,Rd) and a subsequence

pnk
W 1,∞(S1,Rd)−−−−−−−−→

k→∞
γ ∈ C with maxCurv(γ) ≤ lim inf

n→∞
maxCurv(pn).

This result is then used to show another compactness result that additionally guarantees that
the limit curve belongs to the same knot class, if one assures that the doubly critical self distance
is bounded, too.

Proposition 4 (Compactness II).
Let and pn ∈ Pn(K) bounded in L∞ with lim infn→∞∆n[pn]−1 <∞. Then there is

γ ∈ C(K) ∩ C1,1(S1,Rd) with pnk → γ in W 1,∞(S1,Rd).

If the knot class is not fixed the unique absolute minimizers of ∆−1
n is the regular n-gon.

Proposition 5 (Regular n-gon is unique minimizer of ∆−1
n ).

Let p ∈ Pn and gn the regular n-gon. Then

∆n[gn]−1 ≤ ∆n[p]−1,

with equality if and only if p is a regular n-gon.

Acknowledgement The author thanks H. von der Mosel, for his interest and many useful
suggestions and remarks.

2. Prelude in Γ-convergence

In this section we want to acquaint the reader with Γ-convergence and repeat its (to us) most
important property.

Definition 6 (Γ-convergence).
Let X be a topological space, F ,Fn : X → R := R ∪ {±∞}. We say that Fn Γ-converges to F ,
written Fn

Γ→ F , if
• for every xn → x holds F(x) ≤ lim infn→∞Fn(xn),
• for every x ∈ X there are xn → x with lim supn→∞Fn(xn) ≤ F(x).

The first inequality is usually called lim inf inequality and the second one lim sup inequality.
Note, that if the functionals are only defined on subspaces Y and Yn of X and we extend the
functionals by plus infinity on the rest of X it is enough to show the lim inf inequality holds for
every xn ∈ Yn, x ∈ X and the lim sup inequality for x ∈ Y and xn ∈ Yn in order to establish
Fn

Γ→ F . In our application we have X = C(K), Y = C(K) ∩ C1,1(S1,Rd) and Yn = Pn(K).

This convergence is modeled in such a way that it allows the convergence of minimizers and
even almost minimizers of the functionals Fn to minimizers of the limit functional F .

Theorem 7 (Convergence of minimizers, [4, Corollary 7.17, p.78]).
Let Fn,F : X → R with Fn

Γ→ F . Let εn > 0, εn → 0 and xn ∈ X with | inf Fn −Fn(xn)| ≤ εn.
If xnk → x then

F(x) = inf F = lim
k→∞

Fn(xnk).

In order to use this result in our application where we want to show that minimizers of the
discrete functional Fn converge to minimizers of the “smooth” functional F we do need Fn

Γ→ F
as well as an additional compactness result that show that there is subsequence xnk → x with
x ∈ X.

3. Schur’s Theorem for polygons

In this section we want to estimate for how many vertices a polygon that starts tangentially at
a sphere stays out of this sphere if the curvature of the polygon is bounded in terms of the radius
of the sphere. It turns out that make such an estimate we need Schur’s Comparison Theorem for
a polygon and a circle. This theorem for smooth curves basically says that if the curvature of a
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Figure 1. The angle ϕk,k+1 in the proof of Proposition 8.

smooth curve is strictly smaller than the curvature of a convex planar curve then the endpoint
distance of the planar convex curve is strictly smaller than the endpoint distance of the other
curve. There already is a version of this theorem for classes of curves including polygons, see [29,
Theorem 5.1], however, with the drawback that the hypotheses there do not allow to compare
polygons and smooth curves.

Proposition 8 (Schur’s Comparison Theorem).
Let p ∈ C0,1(I,Rd), I = [0, L] be the arc length parametrisation of a polygon with maxCurv2(p) ≤
K and KL ≤ π. Let η be the arc length parametrisation of a circle of curvature K. Then

|η(L)− η(0)| < |p(L)− p(0)|.

Proof. Let p(ak) be the vertices of the polygon, a0 = 0. We write αi,j := ](p′(ti), p
′(tj)), where

tk is an interior point of Ik := [ak−1, ak]. From the curvature bound we get αi,i+1 ≤ K |Ii|+|Ii+1|
2

and hence for i ≤ j we can estimate αi,j ≤
∑j−1

k=i αk,k+1 ≤ K
2

∑j−1
k=i(|Ik|+ |Ik+1|). Now,

|p(L)− p(0)|2 =

∫
I

∫
I
〈p′(s), p′(u)〉 dsdu =

n∑
i,j=1

∫
Ii

∫
Ij

cos(αi,j)

=
n∑

i,j=1
i=j

|Ii||Ij |+ 2
n∑

i,j=1
i<j

|Ii||Ij | cos(αi,j).

Similarly,

|η(L)− η(0)|2 =

∫
I

∫
I
〈η′(s), η′(u)〉 ds du

=

n∑
i,j=1
i=j

∫
Ii

∫
Ij

〈η′(s), η′(u)〉ds du+ 2
n∑

i,j=1
i<j

∫
Ii

∫
Ij

〈η′(s), η′(u)〉dsdu

≤
n∑

i,j=1
i=j

|Ii||Ii|+ 2
n∑

i,j=1
i<j

〈η(aj)− η(aj−1), η(ai)− η(ai−1)〉.

Write ϕi,j := ](η(aj) − η(aj−1), η(ai) − η(ai−1)). Then ϕi,j =
∑j−1

k=i ϕk,k+1, because the points
η(ai) form a convex plane polygon. From Figure 1 we see that ϕk,k+1 = K

|Ik|+|Ik+1|
2 and hence
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Figure 2. The situation in the proof of Corollary 9.

αi,j ≤ ϕi,j . This allows us to continue our estimate

|η(L)− η(0)|2 ≤
n∑

i,j=1
i=j

|Ii||Ii|+ 2

n∑
i,j=1
i<j

|η(aj)− η(aj−1)||η(ai)− η(ai−1)| cos(ϕi,j)

<
n∑

i,j=1
i=j

|Ii||Ii|+ 2

n∑
i,j=1
i<j

|Ii||Ij | cos(ϕi,j) ≤
n∑

i,j=1
i=j

|Ii||Ij |+ 2

n∑
i,j=1
i<j

|Ii||Ij | cos(αi,j) = |p(L)− p(0)|2.

�

As we only need ϕ1,n = 2−1K
∑n−1

i=1 (|Ii| + |Ii+1|) ≤ π we can make do with KL ≤ π +
2−1K(|I1|+ |In|) instead of KL ≤ π.

Corollary 9 (Tangential polygon stays outside of sphere).
Let p be an equilateral polygon of length L with maxCurv2(p) ≤ K and KL ≤ π

2 . If p touches a
sphere of curvature K at an endpoint then all other vertices of p lie outside the sphere.

Proof. Without loss of generality we might assume that the sphere is centred at the origin and
that p touches the sphere at p(0) = −re2 with u1 = e1, where r = K−1 and ui ∈ Sd−1 are the
directions of the edges. We have to show that |p(ak)| > r for k = 1, . . . , n. Let η be the arc
length parametrisation of the circle of radius r about the origin in the e1, e2 plane, starting at
η(0) = p(0) with η′(0) = u1 = e1. On the unit sphere equipped with the great circle distance,
i.e., angle, we have π

2 = d(e1, e2) ≤ d(e1, u1) +
∑k−1

i=1 d(ui, ui+1) + d(uk, e2) and hence u1 = e1

and the curvature bound imply

d(η′(ak−1), e2) = d(e1, e2)− d(e1, η
′(ak−1)) =

π

2
− d(η′(0), η′(ak−1)) =

π

2
−
∫ ak−1

0
|η′′|dt

=
π

2
−Kak−1 =

π

2
−K

k−1∑
i=1

|Ii|+ |Ii+1|
2

≤ π

2
−
k−1∑
i=1

d(ui, ui+1) ≤ d(uk, e2),

since η′|[0,L] is a parametrisation of the unit circle in the e1, e2 plane from e1 to e2 with constant
speed |η′′| = K. Now, we can estimate

〈
p(ak)− p(0), p(0)

〉
=
〈 k∑
i=1

|Ii|ui,−re2

〉
= −r

k∑
i=1

|Ii| cos(d(ui, e2)

≥ −r
k∑
i=1

|Ii| cos(d(η′(ai−1), e2) ≥ −r
k∑
i=1

∫
Ii

cos(d(η′(t), e2)) dt

=

∫ ak

0
〈η′(t),−re2〉dt =

〈
η(ak)− η(0), η(0)

〉
,

(2)
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as d(η′(t), e2) ≤ d(η′(ai−1), e2) for t ∈ Ii. Using Schur’s Comparison Theorem, Proposition 8,
and (2) we conclude

|p(ak)|2 = |p(ak)− p(0) + p(0)|2 = |p(ak)− p(0)|2 + 2〈p(ak)− p(0), p(0)〉+ |p(0)|2

> |η(ak)− η(0)|2 + 2〈η(ak)− η(0), η(0)〉+ |η(0)|2 = |η(ak)|2 = r2.

�

4. Compactness

Note, that since the domain is bounded we have C0,1(S1,Rd) = W 1,∞(S1,Rd).

Proposition 3 (Compactness).
Let pn ∈ Pn(K) bounded in L∞ with lim infn→∞maxCurv(pn) < ∞. Then there is γ ∈
C1,1(S1,Rd) and a subsequence

pnk
W 1,∞(S1,Rd)−−−−−−−−→

k→∞
γ ∈ C with maxCurv(γ) ≤ lim inf

n→∞
maxCurv(pn).

Proof. Step 1 Without loss of generality, by taking subsequences if necessary, we might assume
maxCurv(pn) ≤ K < ∞ for all n ∈ N. As pn is bounded in W 1,∞ there is a subsequence (for
notational convenience denoted by the same indices) converging to γ ∈W 1,2(S1,Rd) strongly in
C0(S1,Rd) and weakly in W 1,2(S1,Rd). First we have to show that γ is also parametrised by arc
length, i.e., |γ′| = 1 a.e.. Since |p′n| = 1 a.e. testing with ϕ = γ′ · χ{|γ′|>1}, χA the characteristic
function of A, yields

0←
∫
S1
〈p′n − γ′, ϕ〉 dt =

∫
{|γ′|>1}

〈p′n − γ′, γ′〉dt

≤
∫
{|γ′|>1}

(|p′n||γ′| − |γ′|
2) dt =

∫
{|γ′|>1}

|γ′| (1− |γ′|)︸ ︷︷ ︸
<0

dt

and thus |γ′| ≤ 1 = |p′n| a.e.. Additionally, we know from Schur’s Theorem, Proposition 8, that
if η is the arc length parametrisation of a circle of curvature K, then for a.e. t holds

|γ′(t)| = lim
h→0

∣∣∣γ(t+ h)− γ(t)

h

∣∣∣
≥ lim

h→0
lim
n→∞

(∣∣∣pn(t+ h)− pn(t)

h

∣∣∣− ∣∣∣(γ(t+ h)− pn(t+ h))− (γ(t)− pn(t))

h

∣∣∣)
= lim

h→0
lim
n→∞

∣∣∣pn(t+ h)− pn(t)

h

∣∣∣ ≥ lim
h→0

∣∣∣η(t+ h)− η(t)

h

∣∣∣ = |η′(t)| = 1.

Step 2 Denote by p′− and p′+ the left and right derivative of a polygon. From the curvature
bound and Corollary 9 we know that any sphere of curvature K attached tangentially to the
direction p′+n (t) at a vertex pn(t), and thus a whole horn torus, cannot contain any vertex of pn
restricted to (t, t+ π

2K ), and the same is true for p′−n (t) with regard to (t− π
2K , t). Let

tnk → t such that pnk(tnk) is a vertex and p′±nk(tnk)→ u± ∈ Sd−1.(3)

Then u+ = u− since

d(u+, u−) ≤ d(u+, p′+nk(tnk)) + d(p′+nk(tnk), p′−nk(tnk)) + d(p′−nk(tnk), u−)

≤ d(u+, p′+nk(tnk)) +
K

nk
+ d(p′−nk(tnk), u−)→ 0.

For every t we can find a sequence of tnk with (3) and thanks to pnk → γ in C0 the (two) horn
tori belonging to pnk(tnk) converge to a horn torus at γ(t) in direction u+ = u− such that γ does
not enter the torus on the parameter range B π

4K
(t). Then according to [6, Satz 2.14, p.26] holds

γ ∈ C1,1(S1,Rd) and maxCurv(γ) ≤ K. Especially, γ′(t) = u±.
Step 3 If we had ||p′n−γ′||L∞ → 0 then for every ε > 0 there is an N such that for n ≥ N holds

|p′+n ( in)− γ′( in)| = |p′n(t)− γ′( in)| ≤ |p′n(t)− γ′(t)|+ |γ′(t)− γ′( in)| ≤ ε+
K

n
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for all i ∈ {0, . . . , n− 1}, t ∈ ( in ,
i+1
n ). Hence,

sup
i=0,...,n−1

|p′+n ( in)− γ′( in)| −−−→
n→∞

0.(4)

If on the other hand (4) holds then for every t where pn(t) is not a vertex we find i = i(n) and
for every ε > 0 an N such that for n ≥ N one has

|p′n(t)− γ′(t)| ≤ |p′+n ( in)− γ′( in)|+ |γ′( in)− γ′(t)| ≤ ε+
K

n
→ 0.

Thus, (4) is equivalent to ||p′n − γ′||L∞ → 0. Assume that ||p′nk − γ
′||L∞ 6→ 0. Then there is a

sequence of parameters tnk as in (3) with p′+nk(tnk) → u+ 6= γ′(t), which contradicts the results
of Step 1. Hence pnk → γ in W 1,∞. �

Proposition 4 (Compactness II).
Let pn ∈ Pn(K) bounded in L∞ with lim infn→∞∆n[pn]−1 <∞. Then there is

γ ∈ C(K) ∩ C1,1(S1,Rd) with pnk → γ in W 1,∞(S1,Rd).

Proof. Without loss of generality let ∆n[pn]−1 ≤ K <∞ for all n ∈ N. Note, that ∆n[pn]−1 <∞
means that pn is injective. From Proposition 3 we know that there is a subsequence converging to
γ ∈ C∩C1,1(S1,Rd) inW 1,∞(S1,Rd). It remains to be shown that γ ∈ K. In order to deduce this
from Proposition 10 we must show that γ is injective. Assume that this is not the case. Then there
are s 6= t with γ(s) = γ(t)=x. Let rn := ||γ−pn||L∞(S1,Rd) + 1

n , i.e., pn(s), pn(t) ∈ Brn(x), and let
n be large enough to be sure that there are u, v with pn(u), pn(v) 6∈ B4rn(x). The singly critical
self distance scsd(p) of a polygon p is given by scsd(p) := min(y,z)∈crit(p)|z − y|, where crit(p)

consists of pairs (y, z) where y = p(t) and z = p(s) and s locally extremizes w 7→ |p(t)− p(w)|2.
In [14, Theorem 3.6] it was shown that for p ∈ Pn holds ∆n[p] = min{minRad(p), scsd(p)}. Since
the mapping f(w) = |pn(t)− pn(w)| is continuous with f(s) ≤ 2rn and f(u), f(v) ≥ 3rn we have

scsd(pn) ≤ min
α
f ≤ f(s) = |pn(t)− pn(s)| ≤ 2rn → 0,

where α is the arc on S1 from u to v that contains s. This contradicts ∆n[pn]−1 ≤ K. Thus, we
have proven the proposition. �

Proposition 10 (Convergence of polygons does not change knot class).
Let γ ∈ C ∩ C1,1(S1,Rd) be injective and pn ∈ Pn(K) with pn → γ in W 1,∞. Then γ ∈ K.

Proof. Step 1 For ||p−γ||W 1,∞ ≤ ∆[γ]
2 [7, Lemma 4] together with Lemma 11 and [5, 4.8 Theorem

(8)] allows us to estimate

|γ−1(ξγ(γ(s)))− γ−1(ξγ(p(s)))| ≤ c̃−1|ξγ(γ(s))− ξγ(p(s))| ≤ 2c̃−1|γ(s)− p(s)|.(5)

Here, ξγ is the nearest point projection onto γ. This means

|p′(s)− γ′(γ−1(ξγ(p(s))))| ≤ |p′(s)− γ′(s)|+ |γ′(s)− γ′(γ−1(ξγ(p(s))))|
≤ ||p′ − γ′||L∞ + ∆[γ]−1|s− γ−1(ξγ(p(s)))|
= ||p′ − γ′||L∞ + ∆[γ]−1|γ−1(ξγ(γ(s)))− γ−1(ξγ(p(s)))|
≤ ||p′ − γ′||L∞ + ∆[γ]−12c̃−1|γ(s)− p(s)| ≤ C||p− γ||W 1,∞ .

(6)

Note that although we have a fixed parameter s we still can estimate |p′(s)−γ′(s)| ≤ ||p′−γ′||L∞
since p′−γ′ is piecewise continuous. If p(s) is a vertex the estimate still holds if we identify p′(s)
with either the left or right derivative.
Step 2 Let sn, tn ∈ I, sn < tn with ξγ(pn(sn)) = ξγ(pn(tn)). We want to show that this situation
can only happen for a finite number of n. Assume that this is not true. Let un ∈ [sn, tn] such that
pn(un) is a vertex and maximizes the distance to γ(yn) + γ′(yn)⊥ for yn = γ−1(ξγ(p(sn))). For
the right derivative p′+(un) holds d(p′+(un), γ′(yn)) ≥ π

2 . As in (5) we have |pn(sn)− pn(tn)| ≤
4c̃−1||pn − γ||W 1,∞ and hence for some subsequence sn → s0, tn → t0 and pn(sn) → γ(s0),
pn(tn) → γ(t0) so that s0 = t0, since γ is injective. Therefore also pn(un) → γ(t0). But on
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Figure 3. The situation in the proof of Proposition 10.

the other hand (6) for s = un, γ−1(ξγ(pn(un))) = zn and d the distance on the sphere gives a
contradiction via

π

2
− π

2
C||pn − γ||W 1,∞

(6)
≤ d(p′+(un), γ′(yn))− d(p′+(un), γ′(zn))

≤ d(γ′(yn), γ′(zn)) ≤ π

2
∆[γ]−1|yn − zn|

(5)
≤ π

2
∆[γ]−12c̃−1|pn(sn)− pn(un)| → 0.

Step 3 Now we are in a situation similar to [9, Proof of Lemma 5], [27, Theorem 4.10] and as
there we can construct an ambient isotopy by moving the point pn(s) to γ(γ−1(ξγ(pn(s)))) along
a straight line segment in the circular cross section of the tubular neighbourhood about γ. �

Lemma 11 (Injective locally bi-L. mappings on compact sets are globally bi-L.).
Let (K, d1), (X, d2) be non-empty metric spaces, K compact and f : K → X be an injective
mapping that is locally bi-Lipschitz, i.e., there are constants c, C > 0 such that for every x ∈ K
there is a neighbourhood Ux of x with

c d1(x, y) ≤ d2(f(x), f(y)) ≤ Cd1(x, y) for all y ∈ Ux.

Then there are constants c̃, C̃ > 0 with

c̃ d1(x, y) ≤ d2(f(x), f(y)) ≤ C̃d1(x, y) for all x, y ∈ K.(7)

Proof. By Lebesgue’s Covering Lemma we obtain a diam(K) > δ > 0 such that (Bδ(x))x∈K is
a refinement of (Ux)x∈K . Then Kδ := {(x, y) ∈ K2 | d1(x, y) ≥ δ} is compact and non-empty.
Hence

0 < ε := min
(x,y)∈Kδ

d2(f(x), f(y)) ≤ max
(x,y)∈Kδ

d2(f(x), f(y)) =: M <∞,

since diag(K) ∩Kδ = ∅ and f is continuous and injective. Thus

d2(f(x), f(y)) ≤M = C ′δ ≤ C ′d1(x, y) for all x, y ∈ Kδ

holds for C ′ := Mδ−1 and

c′d1(x, y) ≤ c′diam(K) = ε ≤ d2(f(x), f(y)) for all x, y ∈ Kδ

for c′ := εdiam(K)−1. Choosing c̃ := min{c, c′} and C̃ := max{C,C ′} yields (7), because
(x, y) 6∈ Kδ implies y ∈ Bδ(x) ⊂ Ux. �

5. The lim inf inequality

Using Schur’s Theorem for curves of finite total curvature, see for example [29, Theorem 5.1],
we can prove Rawdon’s result [16, Lemma 2.9.7, p.58] for embedded C1,1 curves. Note, that
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especially the estimate from [12, Proof of Theorem 2] that is implicitly used in the proof of [16,
Lemma 2.9.7, p.58] holds for C1,1 curves.

Lemma 12 (Approximation of curves with dcsd(γ)
2 < minRad(γ)).

Let γ ∈ C(K) ∩ C1,1(S1,Rd) and p ∈ Pn for some n such that

minRad(γ)− dcsd(γ)

2
= δ > 0 and ||γ − p||L∞ < ε

for ε < δ/4. Then

dcsd(p) ≤ dcsd(γ) + 2ε.

Proof. Let minRad(γ)− dcsd(γ)
2 = δ > 0, ε < δ/4 and set d := 1

2(minRad(γ) + dcsd(γ)
2 ). By [16,

Lemma 2.9.7 2., p.58] there are (s0, t0) ∈ Aγπd := {(s, t) | d(s, t) ≥ πd}, see notation in [16], such
that

|p(s0)− p(t0)| < dcsd(γ) + 2ε.

Now, let (s, t) ∈ Aγπd such that

|p(s)− p(t)| = min
(s,t)∈Aγπd

|p(s)− p(t)| ≤ |p(s0)− p(t0)| < dcsd(γ) + 2ε.(8)

Then either (s, t) lie in the open set Aγπd := {(s, t) | d(s, t) > πd} or by [16, Lemma 2.9.7 1.,
p.58] holds

|p(t)− p(s)| ≥ minRad(γ) +
dcsd(γ)

2
− 2ε = dcsd(γ) + δ − 2ε > dcsd(γ) + 2ε,

which contradicts (8). Hence (s, t) lie in the open set Aγπd. This means we can use the argument
from [16, Lemma 2.9.8, p.60] to show that p(s) and p(t) are doubly critical for p and therefore

dcsd(p) ≤ |p(s)− p(t)| ≤ dcsd(γ) + 2ε.

�

Proposition 13 (The lim inf inequality).
Let γ ∈ C(K), pn ∈ Pn(K) with pn → γ in W 1,∞ for n→∞. Then

∆[γ]−1 ≤ lim inf
n→∞

∆n[pn]−1.

Proof. By Proposition 4 we might assume without loss of generality that γ ∈ C1,1(S1,Rd). In
case ∆[γ]−1 = maxCurv(γ) the proposition follows from Proposition 3 and in case ∆[γ]−1 =

2
dcsd(γ) > maxCurv(γ) Lemma 12 gives lim supn→∞ dcsd(pn) ≤ dcsd(γ), so that

∆[γ]−1 =
2

dcsd(γ)
≤ lim inf

n→∞

2

dcsd(pn)
≤ lim inf

n→∞
∆n[pn]−1.

�

Clearly, the previous proposition also holds for subsequences pnk .

6. The lim sup inequality

Proposition 14 (The lim sup inequality).
For every γ ∈ C(K) ∩ C1,1(S1,Rd) there are pn ∈ Pn(K) with pn → γ in W 1,∞ and

lim sup
n→∞

∆n[pn]−1 ≤ ∆[γ]−1.

Proof. In [20, Proposition 10] we showed that if n is large enough we can find an equilateral
inscribed closed polygon p̃n of length L̃n ≤ 1 with n vertices that lies in the same knot class
as γ. By rescaling it to unit length via pn(t) = LL̃−1

n p̃n(L̃nL
−1t), L = 1, we could show in

addition that pn → γ in W 1,2(S1,Rd), as n→∞. It is easily seen, exploiting γ′ Lipschitz, that
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Figure 4. Quantities for the computation of discrete curvature.

for γ ∈ C1,1(S1,Rd) this convergence can be improved to convergence in || · ||W 1,∞(S1,Rd).
Step 1 From Figure 4 we see r = r(x, y, z) and

κd(x, y, z) =
4 tan(ϕ2 )

|x− y|+ |z − y|
=

2 tan(α+β
2 )

sin(α) + sin(β)

1

r
.

Thus, we can estimate

0 ≤
2 tan(α+β

2 )

sin(α) + sin(β)
− 1 ≤ tan(α+ β)

sin(α) + sin(β)
− 1 ≤ tan(α+ β)

sin(α+ β)
− 1 =

1− cos(α+ β)

cos(α+ β)
≤ (α+ β)2

(9)

for α, β ∈ [0, π6 ], since

sin(α) + sin(β) = 2
(

sin(α2 ) cos(α2 ) + sin(β2 ) cos(β2 )
)
≤ 2
(

sin(α2 ) + sin(β2 )
)

≤ 2
sin(α2 ) cos(β2 ) + sin(β2 ) cos(α2 )

cos(α+β
2 )

= 2 tan(α+β
2 ),

2 tan(x2 ) ≤ 2 tan(x
2

)

1−tan2(x
2

)
= tan(x) and 1

2 ≤ cos(α + β), as well as 1 − (α+β)2

2 ≤ cos(α + β). Let

x = γ(s), y = γ(t) and z = γ(u) for s < t < u with |t− s|, |u− t| ≤ 2L
n . Now, again by Figure 4,

we have

2Ln−1 ≥ |t− s| ≥ |y − x| = 2 sin(α)r ≥ 4π−1αr ≥ 4π−1α∆[γ] ≥ α∆[γ],

or in other words α ≤ 2L∆[γ]−1n−1 and the same is true for β. According to (9) we can estimate

κd(x, y, z) ≤
1 + (α+ β)2

r
≤ (1 + 16L2∆[γ]−2n−2)∆[γ]−1.

This means for the sequence of inscribed polygons p̃n that

lim sup
n→∞

maxCurv(p̃n) ≤ ∆[γ]−1.

Step 2 According to [16, Lemma 2.8.2, p.46] the total curvature between two doubly critical
points of polygons must be at least π. Let p̃n(sn) and p̃n(tn) be doubly critical for pn. Using
the curvature bound from the previous step we obtain π ≤ 2∆[γ]−1|tn − sn|, so that sn and tn
cannot converge to the same limit. From Lemma 15 we directly obtain

dcsd(γ) ≤ lim inf
n→∞

dcsd(p̃n) ⇒ lim sup
n→∞

2

dcsd(p̃n)
≤ 2

dcsd(γ)
≤ ∆[γ]−1.

Step 3 Noting that LL̃−1
n → 1 the previous steps yield

lim sup
n→∞

∆n[pn]−1 = lim sup
n→∞

max
{

maxCurv(pn),
2

dcsd(pn)

}
≤ ∆[γ]−1.

�
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Lemma 15 (Limits of double critical points are double critical).
Let γ ∈ C(K) ∩ C1,1(S1,Rd), pn ∈ Pn with pn → γ in W 1,∞(S1,Rd). Let sn 6= tn be such that
sn → s, tn → t and s 6= t. If pn(sn) and pn(tn) are double critical for pn. Then γ(s) and γ(t)
are double critical for γ.

Proof. Denote by p′+ and p′− the right and left derivative of a polygon p. Since the piecewise
continuous derivatives p′n converge in L∞ to the continuous derivatives γ we have

0 ≥ 〈p′+n (sn), pn(tn)− p(sn)〉 · 〈p′−n (sn), pn(tn)− p(sn)〉 → 〈γ′(s), γ(t)− γ(s)〉2.

The analogous result is obtained if we change the roles of s and t, so that γ(t) and γ(s) are
double critical for γ. �

7. Discrete Minimizers

Lemma 16 (Computation of ∆n for regular n-gon gn).
For n ≥ 3 holds

1

∆n[gn]
= 2n tan(πn).

Proof. From Figure 5 we see that for the regular n-gon gn of length 1 holds

dcsd(gn) ≥ 1

n tan(πn)

and as maxCurv(gn) = 2n tan(πn) by Figure 4 we have shown the proposition. �

Figure 5. Computation of dcsd for regular n-gons of length 1.

Proposition 5 (Regular n-gon is unique minimizer of ∆−1
n ).

Let p ∈ Pn then

∆n[gn]−1 ≤ ∆n[p]−1,

with equality if and only if p is a regular n-gon.

Proof. According to Fenchel’s Theorem for polygons, see [15, 3.4 Theorem], the total curvature
is at least 2π, i.e.,

∑n
i=1 ϕi ≥ 2π for the exterior angles ϕi = ](xi−xi−1, xi+1−xi). This means

there must be j ∈ {1, . . . , n} with ϕj ≥ 2π
n . Thus

∆n[p]−1 ≥ maxCurv(p) ≥ 2n tan(
ϕj
2 ) ≥ 2n tan(πn) = ∆n[gn]−1.(10)

Equality holds in Fenchel’s Theorem if and only if p is a convex planar curve. If ϕj < 2π
n there

must be ϕk > 2π
n and thus ∆n[p]−1 > ∆n[gn]−1. Since the regular n-gon gn is the only convex

equilateral polygon with ϕi = 2π
n for i = 1, . . . , n we have equality in (10) if and only if p is a

regular n-gon. �
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