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Abstract

A Finsler manifold is a smooth manifoldZ equipped with a family of
Minkowski normsF(x, -), X € .#, which varies smoothly over the tangent

bundleT.# = Uye.4 Tx.#. The fundamental tensars(x, y) = (%Fz)y‘wﬁ
induces a Riemannian metric on the sphere busdi c T.# \ 0, the
so-called Sasaki metric, which can be used to define the energy of a map
U:.# — v from (.#,F) into a Riemannian manifold 4", h) as follows:
1 au' oul
E(U) ;= —— B — —h Vs.z .
V)= o . 9700 o Ve o

Here, mis the dimension of#, u = (u',...,u") is a local representation
of U on then-dimensional target manifold/’, (g°) is the inverse matrix
of (gap), hij denote the cadicients of the Riemannian metricon .4/, and
dVs_y is the volume form with respect to the Sasaki meti2-solutions
of the corresponding Euler-Lagrange equation are called weakly harmonic.
In the following we show that weakly harmonic mappings with image
contained in a regular baB, (Q) are locally Hblder continuous. More pre-
cisely, we derive an interio€%?-estimate which generalizes a correspond-
ing estimate by Giaquinta, Hildebrandt [GH] and Hildebrandt, Jost, Widman
[HIW] for weakly harmonic mappings between Riemannian manifolds. As
an application of this estimate, we obtain a Liouville theorem for entire har-
monic mappings from Finsler manifolds. We also indicate how to extend
the a priori estimates up to the boundary, which together with higher order
estimates as in [GH] lead to an existence theorem for harmonic maps from
Finsler into Riemannian manifolds via the Leray-Schauder theory.

1 Introduction

Let .#™ be anm-dimensional oriented smooth manifold gpd Q — R™ a local
chart on an open subs@tc .# which introduces local coordinates'(. .., x™) =



(x*), @ =1,...,m We denote by

T =) Tt
xXe M

the tangent bundle consisting of pointsy), x € .#, y € Tx.#, which can be
identified ont~1(Q) c T.# by bundle coordinates(, y*), @ = 1,...,m where

n.TH - A, n(Xy).=X
is the natural projection of.# onto the base manifold7, and where

0
ox»

y=y" € Ty M.
X

Whenever possible, we will not distinguish between the poinj)(and its coordi-
nate representationxq, y*). Moreover, we employ Einstein’'s summation conven-

tion: Repeated Greek indices are automatically summed frommil Ye will also

frequently use the abbreviatioffis = %, fyop = P et

oy o
A Finsler structure Fon . is a function
F:T.# — [0, )
with the following properties:
() (Regularity) F € C*(T.# \ 0), where
THN\O:={(Xy)eT A, y+0}
denotes thslit tangent bundlg

(i) (Homogeneity)

(H) F(xty) =tF(x,y) forall (x,y)eT.#, t>0;
(iii) (Ellipticity) the matrix

op(x.1) = [(%FZ)W |

representing thundamental tensois positive definite for allX, y) € T.#Z \
0.
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The pair (#, F) is called aFinsler manifold

An explicit fundamental example is given by tiMinkowski spacégR™, F),
whereF = F(y) does not depend ane R™. A manifold (.#, F) is calledlocally
Minkowskian if for every x € .# there is a local neighbourhod@® of x such that
F = F(y) on TQ. Moreover, any Riemannian manifold/, g) with Riemannian

metricg is a Finsler manifold with=(x, y) := /gas(X)y*y?. A Finsler manifold
(A, F) with

(1.1) F(%y) i= Jgap(Qy** + by (Xy”, bl := {/gPbebp < 1,

is called aRanders space.

In the present paper we study harmonic mappldgy.#, F) — (.4, h) from
a Finsler manifold.¢, F) into ann-dimensional Riemannian target manifold"
with metrich, .4 = 0. What does it mean fod to be harmonic? While it is
common knowledge how to measure th&eatientialdU of U in the Riemannian
target by means of the metiigit is by no means obvious how to integrate the most
evident choice of energy density

i oul
QU)x1) = 5006 ) 5 oo (0

over the Finsler manifold. Herey is the local representation &f with respect

to coordinatesX*), « = 1,...,m, on .#, and (.Ii), i =1...,n,0on.4; hj are

the codficients of the Riemannian metric and ¢*¥) denotes the inverse matrix

of (g.5). In fact, the fundamental tensgps doesnot establish a well-defined

Riemannian metric on# since it depends not only ox e .# but also ony €

Tx.7 . In other words, on each tangent spalGe#, x € .#, one has a whole

m-dimensional continuum of possible choices of inner products formally written

as

Gap(X y)dX" ® A

fory € Ty.# \ {0}. We are going to describe in Sections 2 and 3 how to overcome
this conceptual problem by incorporating the “reference directiorgy]) :=
{(x,ty) : t > O} as base points for larger vector bundles sitting over the sphere
bundle

S ={(X%[y]) : (x.y) e T.Z \ {O}}.

The resulting general integration formula (Proposition 2.3) yields in particular the
integral energyE(U) whose critical points are harmonic mappings. It turns out
that for scalar mappingg(U) is proportional to the Rayleigh quotients studied



by Bao, Lackey [BL] in connection with eigenvalue problems on Finsler mani-
folds. For mappings into Riemannian manifol8J) coincides with Mo’s vari-

ant [Mo] of energy. Mo established a formula for the first variation of the energy,
and proved among other things that the identity map from a locally Minkowskian
manifold to the same manifold with a flat Riemannian metric is harmonic. Shen
and Zhang [SZ] generalized Mo’s work to Finsler target manifolds, derived the
first and second variation formulae, proved nonexistence of non-constant stable
harmonic maps between Finsler manifolds, and provided with the identity map an
example of a harmonic map defined on a flat Riemannian manifold with a Finsler
target thus reversing Mo’s setting. In contrast to these investigations focused on
geometric properties of harmonic maps whose existence and smoothness is gen-
erally assumed, Tachikawa [T] has studied the variational problem for harmonic
maps into Finsler spaces, starting from Centore’s [C] formula for the energy den-
sity, which can be regarded as a special case of Jost’s [J2, J3, J4] general setting of
harmonic maps between metric spaces. In particular, Tachikawa [T] has shown a
partial regularity result for energy minimizing and therefore harmonic maps from
R™ into a Finsler target manifold fan = 3, 4. More recently, Souza, Spruck, and
Tenenblat [SST] proved Bernstein theorems and the removability of singularities
for minimal graphs in Randers spaces (cf. (1.1) abovi|if< 1/ V3, since then

the underlying partial dierential equation can be shown to be of mean curvature
type studied intensively by L. Simon and many others. Forl/ V3 the equation
ceases to be elliptic, and there are minimal cones singular at their vertex.

Here we address the basic question: Do harmonic maps with a Finslerian do-
main exist, and under what circumstances? To answer this question in the af-
firmative we draw from earlier results by Giaquinta, Hildebrandt, Jost, Kaul and
Widman, in particular [GH], [HIW], [HKW}, on harmonic maps between Rie-
mannian manifolds with image contained in so-called regular balls. A geodesic
ball

BL(Q) :={Pe ./ :dist(PQ) <L}

on.#" with centerQ € .4 and radiud. > 0 is calledregular, if it does not intersect

the cut-locus of) and ifL < ZLW where

(1.2) k= max0, sup K ,}
#.(Q)

is an upper bound on the sectional curvatkire of .4 within 2, (Q). Itis well-
known that on simply connected manifoldg with K 4 < 0 all geodesic balls are

1Using Jost's method [J5] to proveditier regularity of generalized harmonic mappings, Eells
and Fuglede later considered weakly harmonic maps fRi@mannian polyhedranto Riemannian
manifolds [EF], [F1], [F2]. A Finsler manifold, however, does not fall into the category of Rieman-
nian polyhedra.
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regular, and that for#” := S" all geodesic balls contained in an open hemisphere
are regular. 14" is compact, connected, and oriented with an even dimemsion
and 0< K 4 < g, then all geodesic balls of radils < # are regular, whereas
for simply connected manifolds with sectional curvature pinched betwgeand
k any geodesic ball with radius less thg% is regular; see e.g. [GKM, pp. 229,
230, 254].

Introducing also the lower curvature bound

1.3 w :=min{0, inf K ,},
(1.3) { s )

we can state our results eveakly harmonic maps.e. on boundedv:-?-solutions
of the Euler-Lagrange equation of the eneifJ) (for a detailed definition see
Section 3).

Theorem 1.1 (Interior C%?-estimate) Let (.#™, F) be a Finsler manifold, and
let (#", h) be a complete Riemannian manifold widbv” = . Suppose that
x : Q — Byg is a local coordinate chart af#Z which map«2 onto the open ball

Bag = Bsg(0) := {x e R™: |x < 4d},
and suppose that the components of the Finsler mgtgix, y) satisfy

(1.4) AEP < gap(X y)e"e < plél?

forall ¢ € RMand all (x,y) € TQ\ 0 = Byg x R™\ {0} with constantD <

A < u < +oo. Moreover, let B(Q) c .4 be a regular ball. Finally, assume that
U:.# — .+ is aweakly harmonic map with (@) c B, (Q). Let u denote the
local representation of U with respect foand a normal coordinate chart around
Q. Then U is Holder continuous, and we have the estimate

(1.5) Hol, g,u == sup M <Cd™“

X,y€Bqy [X = y|*
with constant® < @ < 1 and C> 0 depending only on mi, i, L, w andx, but not
on d> 0. Here,w andx are the bounds on the sectional curvature ¢fon B (Q)
from (1.2)and (1.3), respectively.

Lettingd — ~ in (1.5) we immediately obtain the following Liouville theorem for
harmonic maps from simple Finsler manifolds generalizing [HJW, Thm. 1]. Here,
a Finsler manifold (7, F) is calledsimpleif there exists a global coordinate chart
x . .# — R™for which the Finsler metric satisfies condition (1.4) forél R™,

(X y) € T \ {0} = RM"x R™M\ {0}, with constants &< 1 < u < +co.



Theorem 1.2 (Liouville Theorem) Suppose that #, F) is a simple Finsler man-
ifold and that(.#", h) is a complete Riemannian manifold with” = 0. Fur-
thermore, suppose that, BQ) is a regular ball in.4". Then any harmonic map
U:.#Z — & withU(#Z) c BL(Q) is constant.

Extending the l8lder estimates to the boundary, and combining them with
well-known gradient estimates and linear theory we obtain

Theorem 1.3 (GlobalC?®-estimates) Let (.#™, F) be a compact Finsler mani-
fold, ® : .# — BL(Q) c .+ of class G, B_(Q) a regular ball in the Riemannian
target manifold(_# ™", h), 3.4 = 0. Then there is a constant C depending only on
Kk, w,mn, A, u, a, and® such that

IVUllcze(z, 1y <C
for all harmonic maps U .#Z — 4 with U(.#) c 4.(Q) and Uls., = Dly.x.

Theorem 1.3 together with a uniqgueness theorem modelled after the correspond-
ing result of &ger and Kaul [JK] can be employed to prove the existence of har-
monic maps with boundary data contained in a regular ball by virtue of the Leray-
Schauder-degree theory:

Corollary 1.4 If for a given mappingb € C1¥(3.#,.4") there is a point Qs .4
such that®(9.#) is contained in a regular ball about Q i, then there exists
a harmonic mapping U .# — .4 with image U.#) contained in that regular
ball, and with Uy, = .

This result is optimal in the sense that the less restrictive ineqUalﬁyz%FK in the

definition of a regular ball admits an example of a boundary ap)(.#™) —
AN = S"with ®0.#) c BL(Q), L = 2%& n=m2> 7 and.#Z a Riemannian
manifold, such tha® cannotbe extended to a harmonic map of it#() into .4";
see [H, Sec. 2].

The proof of Theorem 1.1, which will be carried out in detail in Section 4,
consists of a local energy estimate and a subtle iteration procedure based on the
observation thaju|? is a subsolution of an appropriate linear elliptic equation. We
learnt about this approach from M. Pingen’s work [P1], [P2], who utilized ideas
of Caffarelli [Caf] and M. Meier [Me] to study not only harmonic maps between
Riemannian manifolds, but also parabolic systems and singular elliptic systems.
With this elegant method we can completely avoid the use of mollified Green’s
functions in contrast to [GH], or [EF], [F1].

In Section 5 we sketch the ideas how to extend tligdEr estimates to the
boundary. For the gradient estimate we refer to the Campanato method described
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in [GH, Sec. 7], again avoiding any arguments based on Green'’s functions. Once
having established these estimates, the higher order estimates in Theorem 1.3 fol-
low from standard linear theory, see e.g. [GT]. Finally, Corollary 1.4 can be proved
in the same way as the corresponding existence theorem in [HKW]. Therefore, de-
tails will be left to the reader.

Acknowledgement. The first author was partially supported by the Deutsche
Forschungsgemeinschaft. The second author was financially supported by the
Alexander von Humboldt foundation and the Centro di Ricerca Matematica Ennio
De Giorgi via a Feodor Lynen research fellowship. We also thank our colleagues
W. Reichel and A. Wagner for providing us an elegant shortcut in the proof of Part
(i) of Lemma 4.1.

2 Basic concepts from Finsler geometry and preliminary
results

Fundamental tensor and Cartan tensor. Properties (i)—(iii) of the Finsler struc-
ture F defined in the introduction imply th&(x,) : Tx.#Z — [0, ) defines a
Minkowski normon each tangent spa@g.#, x € .# . Moreover, from the homo-
geneity relation (H) together with Euler's Theorem on homogeneous functions we
infer

(2.1) F(x,y) >0 forall (x,y)e T.Z\O.
Indeed, we have
ya Fytt (X, y) = F(X, y) and
(2.2)
YPFup(xy) = 0 forall (xy)eT.#\0,
which implies the identity
(2.3)

Jap(X )Y Y = (FF e + FpeF o)y = F3(xy) forall (x,y) e T.#\O.

This together with property (iii) leads to (2.1).

The codficientsg,sz defined in (iii) constitute the so-callddndamental ten-
sor, and (2.3) shows how to recover the Minkowski norm from this tensor. The
coeficients of theCartan tensomre given by

F 69@[3

F
(2.4) Aapy(Xy) = Ea_yv(x’ y) = Z(Fz)y”yﬁy}/-

2We follow here the convention used in [BCC].



The Cartan tensor measures the deviation of a Finsler structure from a Riemannian
one in the following sense: The Finsler structure is Riemannian,A(&,y)> =
gop(Xy*yP, if and only if the codicients of the Cartan tensor vanish.

Lemma 2.1 The transformation laws for the fundamental tensor and the Cartan
tensor under coordinate chang&8 = XP(x%,....xM),p = 1,...,m on.# are
given by

. Ox* 9x8
(2.5) 9pgq = ﬁa_iqgaﬁe
and
~ X 08 OxXY
(26) Aoar = G55 o3 a1

respectively.
Proor:  The basis sections transform according to
o ox* 0

(2.7) 30 " a0 o
which yields

o X
(2.8) Y=o

for the induced coordinate change = y*(XP,5°),a = 1,...,m,onT.#. There-
fore

(9X“ 6X'8

X(l’

O%P

and consequently,

gpaXy) = (FFgega + FyeFja)(X y)
IX O¥B IxX® 9%P OX 9P
= (FReyassam * FrFv gz aga) 09 = 9as(X 0) 5o5 o5a

Similar calculations lead to the desired transformation law (2.6) of the Cartan ten-
sor. i

The Sasaki metric. Let#*T.# be the pull-back of .#Z and likewisen*T*.#
be the pull-back of the co-tangent bundle# undern. That is, e.g., one works
with the bundle

T = ) Tt
(Xy)eT.#\0
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with fibres given by
(T M ) xy) = Tapxy)# =Txtt  forall (x,y) e T.Z\O0.

The vector bundles*T.# andx*T*.# have two globally defined sections, namely
thedistinguished section

29) (1) = 000) 5 = e

and theHilbert form
oF
(2.10) w = we(X y)dxX* = a—a(x, y) dx*.
Y

(Here, with a slight abuse of notatiog% anddx® are regarded as sections of
o T.# andn*T* ., respectively.) The homogeneity condition (H) implies that
andw are naturally dual to each other, in fact, one has by (2.2)

yB H’B 5 yaFy”(X9y) _
F(X.y) F(X, )'3 F(x.y) @2

w(0) = Fp(X y) = — dX"(aXﬁ)—F «(X, )
By virtue of Lemma 2.1 the fundamental tensor and the Cartan tensor define sec-
tions

g%, y) = gap(X, y)dX* ® A

and
A%, y) = Ausy (X 1)dX* @ dX @ dX

of the pull-back bundles*T*.# ® n*T*.# and®3x*T*.# , respectively. Employ-
ing the homogeneity df once more one obtains

(2.11) Jop(X P =1, g*P(X, y)wews = 1,

where ¢*¥) denotes the inverse matrix of.). The first identity in (2.11) is a
direct consequence of (2.3), whereas the second one follows from (2.2) via

4

(2.12) 9B E 2.2) Fy = w,

so that y N
af — af y_ — éﬂy =F o _1/_ =1
g Waolp = Wa9g " gpy = Wy Y E vE )

Similarly one can also verify

=g (X Yws,  Wa = gap(X y) .
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Of course this is just the duality éfandw again.
We now introduce thérmal Christgfel symbols

(2.13) Y5, =

1‘ ao agﬂ"' + 690’ﬁ _ agﬁl’
29 o T o ox

and the cofficientsN? of a non-linear connection on# \ 0, the so-calledthres-
mann connectiardefined by

l a O pK a g
(2.14) NG =Ygl = AL

These cofficients give rise to the following local sectionsBfT.# \ 0) and
T(T.# \ 0):
S ._ 0 e
B o Poye

and
oy® = dy®* + Ngd)(f.

It is easily checked tha{m, a} and{dx", %"\ form local bases for the tangent
bundle and co-tangent bundle ©f# \ 0, respectively, which are naturally dual
to each other. In fact, the transformation matBxepresenting the change from
the basm{axa, o } {M, F2 } satisfies deB = F™ > 0 due to (2.1). For the
corresponding transformatlon matrX on the co-tangent bundle one calculates
detB* = F~™ > 0. The duality statement can be verified by calculations like e.g.

Sy _ (9 e d\_loiv.in N
()_ ( N )—F(dy+Nde")6 “Nio

F \6x8 e Py
9\ dy o\ 1
2.1 —Ny Nd N?Y— ] = = (N¥67 — N%67) = 0.
(2.15) d (axﬁ) F ( ﬁaya) 7 (N2of - Nj&z) = 0

The reason to introduce these new bases is their nice behaviour under coordi-
nate transformations as stated in the following lemma, whose proof we defer to the
appendix.

Lemma 2.2 LetXP = XP(xL,...,xM,p = 1,...,m be a local coordinate change
on.Z and letyP = 6Xpy” be the induced coordinate change oI Then

S x5 8§ ax 9

2.16 6 x5 4 o
(2.16) 5XP G0 oxT OgP . oRP X
and

P p
2.17) daxp = Par, spp = X
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As an important consequence we deduce from (2.5) and (2.17) that

8y’
F(X DY)

defines a Riemannian metric dn# \ 0, the so-calleGasaki metric It induces
a splitting of T(T.# \ 0) into horizontal subspaces spanned{ggg} and vertical

subspaces spanned %5/6 - } respectively. By a straightforward computation (see

Appendix) one deduces that with respect to this splitirig horizontally constant,
ie.,

G = gop(X y) dX* @ A + gop(X. 1)

oF
(2.18) oo =0

The sphere bundleS.#. We conclude with some remarks on scaling invari-
ance. Denote by

={(x[y]) : (xy) e T.Z\ 0}

the sphere bundlewhich consists of the rayx([y]) := {(X,ty) : t > 0}. Since the
obJecthaﬁ, , G, etc. are invariant under the scalingy) — (X, ty), t > 0, they
naturally make sense @/ . To be more precise, consider the indicatrix bundle

I '={(Xy) e T.Z\0:F(xy) =1}
| is a hypersurface of.# \ 0 which can be identified witB.# via the diffeomor-
phism

. _ y
LS%—) I, L(X,[y]) —(X,m).

Also note that carries an orientation, since:= y* 5% 9_is a globally defined unit

normal vector field alond). Indeed, by (2.11)y has unlt length,

syf yy .
G 107 o] 6 6(‘2' = 1
(v) = gapy™y” = (ay) = (5y ) JBEF % o1y

Furthermore, sincé& is horizontally constant by (2.18), thefiirential ofF is
given by

gF = g pdt”
OX¥ oy® F
OF
— 5!/0”
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and therefore, for any tangent veche X“& + Y“F# onT.# \ O we find

oF

dF(X) = 5 ZFY".
Using (2.12) this leads to
dF(X
dtogF)(%) = X = 6,40 ) L7 = G %)

In particular, ifX is tangent td at (X,y) € 1, i.e.,X = %’(0) for some smooth
curvec : (—&,&) — | with c(0) = (X, y), we obtain

G0 X) = d(og F)(X) = <0G F)(cO)lco = 0.

where we have used in the last equation that 1 onl.

Hence, we can think o6.# c T.# \ 0 as being an oriented 12— 1)-
dimensional submanifold of .# \ 0 to which the above objects pull back. In
particular, the Sasaki metric induces a Riemannian m&gig, with a volume
form dVs_, on S.#. dVs_, will be of particular importance in the definition of
harmonic mappings from Finsler manifolds.

Orthonormal frames. For later purposes let us write down some of the pre-
ceding formulas in orthonormal frames: l{e}} be an oriented local-orthonormal
frame forr*T.# (i.e. g(e,, e;) = 8,1), such thaey, = £ is the distinguished section
defined in (2.9). Letw”} be the dual frame fot*T*.# such thatw™ = w is the
Hilbert form (2.10). Then we have local expansions of the form

= u‘li
& = Y g

and
w” =v7dx".

Sinceey, = ¢ andw™ = w we findug, = ¢* = yf andv) = F. Also note the
relations
(2.19) Tl =55, U and  WWCgas(% 1) = Sor.

Hence,

(2.20) det(]) = + \[det@os) (X, 1),
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where the positive sign is due to the specific orientation of the frame.
We can now introduce loc#&b-orthonormal base&,, &y} for T(T.# \ 0)
and{w?, ™7} for T*(T.# \ 0) which are dual to each other:

1) 0
2.21 3. =u? ., G = UF , =1...,
( ) € T SX Em+ o aya o m,
and
(2.22) w? =dx, ™7 = U”éi, oc=1....m
a a F

In these frames, the Sasaki metric takes the form
G = 050" @ W + 0gr ™7 @ W™T

and its volume form ol .# \ O is given by

(2.23) dVr. o0 = WA OMA O™ A LA M
SinceF is horizontally constant by (2.18), anfl = F,., one easily verifies the
relation

w’™ = d(log F).

Thus, v vanishes on the indicatrix bundle which means tha&n, is a unit
normal tol andé,...,&my 1 are tangential. Note thaby, coincides with the
above defined normal vector field In particular, we may specify the orientation
of | such thaté,...,&m 1} is positively oriented. It follows thadVs_, is given

by
dVsy = W A ™A W™ A LA WL

In other wordsdVs_, can be obtained by plugginginto the last slot oVt 0,
i.e.,

(2.24) st(//[(Xl, e X2m_1) = dVT(///\o(X]_, ey X2m_1, V)

for all vectorfieldsXj, ..., Xom-1 tangential tdS.# c T.# \ O.

The volumedVs_, in local coordinates. For local computations, in particular
for the derivation of the Euler-Lagrange equations for weakly harmonic mappings,
we need to derive an expression for the volume elem¥gi, in local coordinates.
Lety : Q — RMbe alocal coordinate chart of with coordinatesx’, ..., x™).
We consider the mapping

cD:QxS"Fl—HcT.///\O, CDX,@Z(X,L),
00 =% £y
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where

(2.25) y =y(x.60) =y"(6)

B

aX{Z X

andy® are Cartesian coordinates®g sm™1je.,

(2.26) 0= ("), ....y™0)).
Let (0%, ...,0™1) be local coordinates f@™ . Then we compute

0 0 1 0F 5,0
)= oo

2.27 do | — -=—y" —,
(2.27) ( oxe  F29xe” oyf

_1.
ax @ m

and

0 10y 1 0F oy’ ,\ 0
2.28 d0|— | ==L - =2 8 2 A=1....m-1
(2.28) (aeA) (F 90~ F2 oy oA ) P

Here note carefully that, on the left hand sig%, anda% are considered as tangent
vectors taQ andS™ ! with respect to x*) and ¢*), respectively, whereas on the
right hand sidea% and# are tangent vectors df.# associated with the bundle
coordinatesxX®, y®).

Also notice thatya := (%,...,?T:) andnm := (y*(0),...,y™®)) are nothing
but the realizations og‘;—A andd as vectors irR™. In particular we may without loss
of generality assume théts, .. ., nm} forms a positively oriented basis Bf.

We recall that the normal of the indicatrix bundle at

y(x, 6) )
D(x,0) = [x, =22
(x.6) ( Fx y(x.0)
is given by
Ay 9
(2.29) v=8m= o R

Combining (2.27), (2.28) and (2.29) we obtain:

0 0
dVT///\O(,d(D(a?),,dq)(%),,V)

_ 4V 0 lawe gy
= T.#\0 ...,axa,...,FaeAayﬁ,...,Fayy

From (2.23), (2.20), and (2.21) we infer the relation

de,\o|®(x’0) = det@ap(% y))dX A ... AdXT A Syt A LA SY™,
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sinceF(®(x,0)) = 1forallxe Q, 6 € S™1,
Hence, we find

9 0 det@os(X, ) RTSTE)
dVT///\o( dq)(axa) ..,d@(%),...,v)—+ F(X )m det(O'
with

AB -= Z 90~ 508 A - 11B.
Note that the sign is due to the specific orientatiofwef. .., nm}. We recall from
(2.24) thatdVs , is obtained by plugging into the last slot oflVr_,\0. Hence we

arrive at
NP KA R KA
- vt of 0 22) o).
_ de;(iiﬁ(jmy» JED.

That is

det@.s(X,
*dVs 4 = M\/det(o;\g AL AdAdEE AL A de™L

Finally, observe that
Jdetag) do* A ... A de™ !

is the standard volume forgv- on S™ 1. Thus we have shown:
det@.z(X,
0056 9) 40
F(X y)
Let us summarize this as follows:

o*dVs 4 = A...AdX"Adoe onQxS™?

Proposition 2.3 Lety : Q — R™ be a local coordinate chart of#Z, and let f:
S.# c T.# \ 0 — R be an integrable function with support #T1(Q). Then we
have

_ y '\ det@.s(X y))
fs(/z f(X,y)dVs. 4 = fg(fsmf(X, F(X,y)) Fox ) do-) dx

Here, dr is the standard volume form oS!, dx = dx*A...AdX™, andy = y(x, 6)
for (x, 6) € Q x S™1, as defined irf2.25), (2.26).
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The Riemannian case — an example.Let a1,...,am > 0 be positive real
numbers. Then we have the identity

2.30 do(6) = vol(S™D),
(2.30) Jons @R+ gz 7O =volET)

In fact, if we parametrize the boundary of an ellipséids
A& = AS™Y) = {(@164, ..., ambm) : 0 = (61,...,0m) € S™1,
where
1
A — .. c Rmxm
am

by the mappingk : S™?1 — R™with X(6) := Af, then we can express its exterior

unit normalv by
_ Ae AL AAen

V= s
|Aer A ... A A1)

Where{ez}i”;“l1 is an orthonormal basis @fS™ 2. In particular, one has

Ael A ... ANA61

'|Ael/\.../\AeTF1|
detA(elA"'Ae‘M)'g

|Aer A ... A Aen1|
detA

|Ael A ... A Aen1|

X-v =

With dX(g) = Ag fori =1,...,m- 1, one obtains for the metric cfiients

gij :=dX(&) - dX(ej) = Aq - Agj,

and hence
detgi; = det(Aq - Ag)
= (A A...ANAan1) (AerA...AAen1)
= |JAeLA... AAenils
and hence

dV = /detgjjdo = |Aey A ... A Agn-1]do,
wheredo denotes the standard volume form®#. This yields

X-vdV =a;---amdo,
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which implies

do = f dVv.
fsm @R+ + anfoy ™2 oo IXIT

The right-hand side may be written as

f gradpm f(X) - vae do™ 1
9&
with the harmonic function
log|x| for m= 2,
fO:=3 1 om
5==IX for m> 3.

Cutting out the singularity at @ R™ we can apply the Gaul? divergence theorem to
the set®” \ B(0) and lete tend to 0 to prove (2.30).
As a consequence we find that

f det@aﬁ(x))
57 (Gup (R Y2

for any positive definite symmetric matrix(X).
Hence, if the Finsler structure is Riemannian, iF€(x, y) = gop(Xy*yP, then
we have the relation

1
D, (e

do-(6) = vol(S™1)

f (%) \/det@ap(x) dx
Q

(2.31) f(x)dV 4

M

for all integrable functiond : .# — R with support inQ and trivial extension to
S .

3 Harmonic mappings from Finsler manifolds

In this section we introduce the energy density and present the weak Euler-Lagrange
equation for harmonic mappings from Finsler manifolds.

The energy functional. LetU : .#™ — 4" be a smooth mapping from the
m-dimensional Finsler manifold 4, F) into ann-dimensional Riemannian man-
ifold (.#/, h). Following [Mo], [SZ], we define an energy densi{U) : S.7Z —
[0, ) as follows:

au oul

@) QU)X o) = 30 x 5) 5 i 1)
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Here, u is the local representation &f with respect to coordinates) and (')
on.# and./’, respectively, andhj; are the cofficients of the Riemannian target
metrich. Moreover, we extend our summation convention: Repeated Latin indices
are automatically summed from 1o

The energye(V) is then given by

(3.2) EU) = Wlm—l) L/// eU)dVs 4.

Here, integration is with respect to the Sasaki metricSo##’. We also need the
localized energiegq(U) := E(U|Q) for the restriction ofU to an open subset

Q c /. In particular, for mappings between Riemannian manifolds the above def-
inition of energy coincides with the usual one by virtue of our observation (2.31),
ie.,

S Y

As in the Riemannian case, € Wo2(Q, .4) N L¥(Q, 4) is said to beveakly
harmonicon Q cc .Z if the first varlatlon ofEq vanishes au, i.e.,
d

de
for all variationsU, of U of the form

EQ(Us) =0
&=0

U. = expy(eV + 0(€)),

whereV is a smooth vectorfield alondg with compact support iif2. Here, exp
denotes the exponential map or'(h). We say that) is (weakly) harmonic on
A, if itis (weakly) harmonic orf) for all Q cc .Z.

The weak Euler-Lagrange equation. Let y : Q — R" be a local coordinate
chart of.# and putD := x(Q). In view of the preceeding discussion, in particular
(3.1), (3.2) and Proposition 2.3, the enefgyis locally given by the quadratic
functional
au aul

OX 6Xf8h”()dx’

EalV) = 5 [ APIES
where

Q _ 1 Q det@“ﬁ(x’ y))
(3.3) AB(X) = T fswl g®B(x, y)W

By a standard computation we can now derive the weak Euler-Lagrange equa-
tion of E. The result is:

wgyn OU 0P wgy OU U
ca) [ Areyge B ax= [ hWATRES S5 ax
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forall ¢ € CZ(D,R"). Here,l‘}j denote the Christeel symbols of the Riemannian
metrich.

Suppose now that the cheientsg,g of the Finsler metric satisfy condition
(1.4),i.e.,

AEP < gop(x, )€€ < plél?

for all ¢ e R™and all f,y) € TQ \ 0 with constants G 1 < u < +o0. Then the
following structure conditions hold for equation (3.4):

(3.5) AJEP < AP(X)EEp < pualél?

for all £ e R™and allx € D with

(3.6) A = e

- ﬂ.l+% ’

4 Interior regularity of harmonic mappings

Jacobi field estimates.According to Jost [J1], any two poinB;, P, of a regular
ball B (Q) can be connected by a geodesic completely contain®&i (i@). This
geodesic is shortest among all curves joinfygand P, within B_(Q). Moreover,
it contains no pair of conjugate points.

In particular, around each poift € B (Q) one may introduce a normal co-
ordinate charty : B_(Q) — R". Denote by ) = (v1,...,0") the corresponding
coordinates. TheR has coordinates (0..,0) and, ifP" € B_(Q) has coordinates
v, then

T
dist(P,P) = |v] < —.
P.P) =l W=

Moreover, the following estimates hold for the metric and the Chifistgymbols;
see e.g. [H, Section 5]:

4.1)  {6ij — au(eDhij (') < T (' < {6ij — alohhij (0))'¢,

(4.2) bZ(lu)I¢? < hij(@)g'¢) < B2 ()i
for all £ € R". Here, the functionsa,, andb,- are defined as follows:

tvoctgt Vo) ifO'>0,OSt<\/LE,

aa(t)={ tv-octght v-o) if 0 <0,0<t< oo,
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and

tyo Vo’

S":':g:" ifr<0,0<t<oo.

As a consequence of (4.1) and (4.2) we obtain for every positive semi-definite
matrix (A%?) e R™™, and for every matrixg,) € R™M

ST 5 0,0<t < £
b(r(t)z

APl bl — au (APl phi () < T (o) A%l p}
(4.3) < A%, p; - ad) A% P, pyhij (),
(4.4) b2(o)) A pl, By < A o, b (v) < b2 () A%, pl.

Moreover, if we use normal coordinates centered ard@nthen by (4.2) in con-
nection with our assumptioh < ﬁ we can estimate the distance of two points
P, P> € BL(Q) with coordinatess, p, by®

(4.5) be(L)Ip1 — p2| < dist (P1, P2) < by(L)Ip1 — pal.

Subsolutions of elliptic equations and a local energy estimate.

Lety : BL(Q) — R" be a normal coordinate chart around some p&irg
BL(Q). We denote by = (v, ...,u") the representation &f with respect tay and
X, e,

vi=goUoy L

Abbreviated,, = a%- The weak Euler-Lagrange equation then takes the form
(4.6) f [A%(x)3,0'0p¢' - 1'(0)¢'} dx=0  forall ¢ € CY(Baa, R,
Bad

and hence by approximation for alle W?(Bag, R") N L™ (Bsg, R"). Here we have
set

f'(0) == I (0) A ()9 I,

Denoting o
E(v) = A% (X)0a0'dgv i (v),

3For the right inequality compare the length of the geodesic conneBting, with the length
of the image of the straight line under exp using (4.2) in the Riemannian length functional together
with b, (l]) < b,(L). For the left inequality conned?; and P, by a minimizing geodesic and use
b (lof) = be(L).
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P() = A% (X)8,0'dp0' — f'(0)0.
We infer from (4.3)

(4.7) a(IW)E() < P(v).

Lemma 4.1 (Subsolution & local energy estimate)* Letv be the representation
of U with respect to normal coordinates aroundePB; (Q). Then the following
holds true:

() (Subsolution) Ify| < 2LW on a domain G- R™ then
3o (AP(X)pl0l?) = 0 on G.
(i) (Local energy estimate) Jf| < L on Bir(Xo) € Bag then
(4.8) RZ-m f E(v) dx < C[M?(4R) - M¥(R)|,
Br(x0)

where

M(r) := suplo], 0<r<4R
Br (xo)

Here, the constant C depends only onayy, « and L.

Proor: (i) Usingy =vn, n € CZ(G), n > 0, as a testfunction in (4.6) we obtain:

(4.9) —% f A (X)0|v|205m dx = f P(v)7 dx.
G G

Since
on G

T
M) -0
we infer from (4.7) thaP(v) > 0 onG. This gives the desired result.
(i) By virtue of Part (i) the functiore := M2(4R) — |v]? > O is a supersolution
of the linear elliptic operatods(A®8,) in G = Br(Xo). Hence Moser's weak
Harnack inequality [M, Thm. 3], [GT, Thm. 8.18] implies the existence of a
constanCy = C1(m, A, u.) such that

ac(lvl) > a«(

1
410 — zdx< Ci(m A, 1) Iinf z
(4.10) R oo 1( 0 )BR(XO)

“4In the Euclidean context Part (i) of this lemma is due to M. Meier [Me, p. 5], for Part (ii)
compare with [GH, Proof of Prop. 1].
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Letw € Wa*(Bar(X0)) be a solution of
(4.11)

1
AP3ptpudx= g5 [ xempgwdx forall o e WEHBiRO0)

B4r(X0) Byr(X0)

Then one has # 0, and according to [GT, Thm. 8.1]

inf w> inf (min{w,0}) =0,
Bar(x0) OB4r(X0)

and therefore, by the weak Harnack inequality, there is a corStaatCo(m, A., u.)
such that
1 .
(4.12) 0< — f wdx < Co(m, A, ) inf w.
B2r(X0) Br(x0)

To estimate the left-hand side from below we chogse w in (4.11) and obtain
from (3.5)

1
(4.13) /l*f |Vw|2dxs—2f wdx
Bar(x0) R* JBax(x)

On the other hand, we infer from (4.11) and (3.5) by meansaiflét’s inequality

1
= @ AX < LIVl 2B IV ENL2 (0 TOT @I @ € Wa(Bar(X0)),
B2r(%0)

which together with (4.13) yields

2
1 1 Al
(414) = f wdx> = — L) forall ¢ € WEA(Bar(x0)),

To estimate the right-hand side we chogde be the radially symmetric functién

@15) (9 =lX) 1= 5o (X~ (4RP) € WEA(Bur(o))

which leads to an explicit lower bound for the left-hand side of (4.12) depending
only onm, 4., i, but not onR. Hence, we find a consta@ = C3(m, 1., u.) such
that

(4.16) 0<Cs<w in Br(X).

5The specific function in (4.15) solves the equatiafiy = 1 on Bg(X) thus maximizing the
quotient||¢||i1/||V¢||Lz on Byr(Xo) related to the classical problem wirsional rigidity of isotropic
beams; see [PS, Ch. 5], [P]. Note, however, thatltheorm in the quotient in (4.14) is taken over
the smaller balBar(Xo).-
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On the other hand, a quantitative version of Stampacchia’s maximum principle (see
[HW, Lemma 2.1]) yields a constafty = C4(m, A, 1) such that

(4.17) O<sw<Cyq in Bgr(Xo).
Insertingy := wz € W *(Bar(x0)) as a testfunction in (4.11) leads to

1
= f AP, z05(w?) dx
2 Bar(x0)

1
< = f A9, 20p(w?) dX+ f AP20,wdpw dx
2 JBar(x) Bar(0)
1
(4.18) = = wz dx
R? B2r(%0)

where we used ellipticity (3.5) and the fact tlzat 0 to obtain the inequality on
the left.
On the other hand, using (4.9) together with (4.7) and the fact that

a() > a(L) > ak(ziﬁ) _o

we obtain

1
0< f E@)ndx< ——— A"ﬁal,za,m dx
Bar(x0) 2a,(L) Bar(X0)

for anyn € W%(Bar(X0)) N L= (Bar(X0)). Applying this toy := w? in combination
with (4.16), (4.18), (4.17), and (4.10) we arrive at

1
c? f E@dx < f E@uw?dx < ——— A, z05(w?) dx
3 Br(%0) (4.16) Bar(X0) 2a,(L) Bar(x0)

< ; f wzdx < Ca f zdx
@18)  a(L)R? JBor(xo) @17) a(L)R? Jyp(xo)
C1C4Rm_2 . _ C1C4Rm_2

2 2
@100 alL) Ba) a(L) [M (4R) =M (R)]'

o
As a starting point for our iteration argument we will use (cf. [Me, p. 5])

Lemma 4.2 Let Gc R™ be a domain irR™ and suppose that € W2(Br(X0) N
G) is a weak solution of

O (A (X3pw) 2 0 in Bar(¥o) NG,
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where the cogicients A? ¢ L™ (Bsr(X) N G) satisfy
LIEP < AP(NEEs < pulél? forall £€R™, x e Bar(X) NG
with constant® < A, < u. < +co.

(i) If G = Bsr(x0) € R™then

supw < (1-6p) sup w+5of wdx
Br(X0) Bar(X0) Br(x0)

with a constantg € (0, 1) depending only on mi,,. and ..

(i) If ZM(Br(x0) \ G) = y-Z™(Br(Xo)) for some constant > 0, then

sup w<(1-6p) SuUp w+dp SUp w
Br(%0)NG Bar(X0)NG Br(X0)NdG

with a constantg € (0, 1) depending only on M., u.., andy.

Proor: (i) We can assume that# 0, and apply Moser’s weak Harnack inequal-
ity [GT, Thm. 8.18] to the non-negative supersolution

vi= Sup w—w
B4r(%0)

of the elliptic operatod, (A%d;) in Bar(Xo) to obtain a constar@ = C(m, A, u.) >
0, such that

1 1
Sn vdX< — pdx<C inf v<(C+ly) inf v
R™ JBr(x0) R™ fBZR(xo) Br(X0) (C+lm) Br(X0)

for Im := £™(B1(0)), which implies
m
w sup w—f wdx]s(CHm)
Bar(X0) Br(x0)

== sup w— Sup w

Bar(X0) Br(Xo)

’

and therefore

SUpw < sSup w -
Br(X0) Bar(x0) C+lm

sup w— f wdx] .
Bar(X0) Br(x0)

Setdg = do(M, As, 1) = Im(C + 1)L € (0, 1).
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(i) Moser’'s weak Harnack inequality [GT, Thm. 8.26] applied to the non-
negative supersolution:= sups,x,)nc w — w Yields

1

sup w- sup w)dx+f inflo, inf v}dx
R™ JBx(xo)\G (Bm(ane Bar(X0)NIG Bar(X0)NG Bar(X0)N0G

C inf v=C( sup w-— sup w)
Br(x0)NG Bar(X0)NG Br(X0)NG

IA

IA

(C+ ylm)[ sup w-— sup w).
B4r(X0)NG Br(x0)NG
The second term on the left-hand side is non-negative and the first is bounded from
below by
Yim( sup w- sup w),
B4r(X0)NG B4r(X0)NIG

which gives the desired result fé§ := ylm(C + ylm)™* € (0, 1). O

Iteration procedure. As before suppose th&8ur(Xo) < Bag. Choosel € N so
large that

4.19 L1+J Y < 1,

(4.19) ( ) Ik

and set

(4.20) - L (0,1)
' RS I

with a constanK = K(w, L) > 1 yet to be specified. Defineto be the smallest
integer such that (2 6p)' < &2, wheredy is the constant from Lemma 4.2, and put
s:=47,

Claim 1. If v is the representation of U with respect to normal coordinates
around P in B (Q) with |v] < L, then there existgi= ig(L, J, w, k, M, A, 1) € N such
that

(4.21) f v— R dx< L24S™  for Ry = 479R,
Br, (X0)

UR, = J( vdx
Br, (X0)

0 < Cs = Cs(m, A, 1, L, &) := A.b2(L) < A.b2([o]),

where

Proor: We have
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and therefore by (3.5), (4.4), and Part (ii) of Lemma 4.1 applie@40(X0) c
Bsr(Xo), ri :=4"'R i €N,

Cs f IVoPdx < f 0210 Vol? dx
Br; (x0) By, (x0)

f b2(jv)) A% 0! 90" dx
) ri (X0

i(

<

(35

< f A3, Bt (o) dx
Br; (%o

(4.22) & C(m. A, 1, L ))r-2 [ M2(4r;) — M2(r})]

which implies by the Poincérinequality

fBri(Xo) -, [Pdx< C [|\/|2(4ri) - Mz(ri)] -C [M2(4I_|1) _ M2(4_F\I>)] |

Choosing the integer

o] 1
we findig € {1, ..., p} such that
o {s) e ()] < [ () - )] e -

IA

2
M2(R) = ( sup Ivl) <2
Br(%o)

so that forRy := rj, we find by our choice op

_ CL?
f I — vR P dx < =—— < L2e*s™,
Bry(%0) p

Fork=0,1,...,J let
k_
Rc=$Rp, and Py =expy (juRo),
i.e., Px € BL(Q) corresponds t&ug,/J under normal coordinates arouq and

let v® be the representation &f with respect to normal coordinates arouRgd
Finally, letLo := L and

1 k
Lk::(3+1—3)L <L for k=1,...,J
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Claim 2. We have
(4.23) WM < Lg inBr(x) for k=0,1,...,J

Proor. Clearly, (4.23) holds fok = 0.
Suppose now that (4.23) has been shown up+d,k > 1. Then

®) = dist (U o L, Py) dist (U o y %, Pr_1) + dist (Pi_1, Py)
(4.24) = 0% + dist (Pe_1, Py)
L +J7 <@+ 3L in Br (%)

IA

IA

In particular we havé®| <
4.1 and obtain

2{ by (4.19). Thus we can apply Part (i) of Lemma

Aa(AP(x)3slo¥%) > 0 in Br, ,(X0).
Applying Lemma 4.2-times tow := [v]? yields

sup 9P < (1-60) sup |v(k>|2+z f oY dx
Bsr_; (X0) Br,_; (X0) BRk ; (%0)

wherer; := 60(1 - 6p)'~ > 0 satisfies

|
Zrizl—(l—éo)'.

i=1

ForR € {R_1/4" :i=1,...,1} with

we can deduce by our choicelahe estimate

sup b2 < € sup p®)? + 1 (1- (50)]Jr ™2 dx
BsR_4 (%) Br_1 (%) Br+ (%0)
< € sup M+ [1-(1-60) f ®2 dx
Br_; (X0) Br+(X0)
(4.25) < 2¢% sup NP+ (1-€) ®2 dx

Bre 1 (%0) Bre (X0)
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Observe that by (4.5)

WO =distU oy L, P) < dist(U oyt Py)+dist(P3, Py)
— distUox Py +{1- §)|JRO|
< b,(Lu LT|+1kL

@5 Ro J)

which by virtue of Young's inequality leads to
k 2
(426) WM < (L+ e 2RA(LIU - Tr,P + (1+ &) (1_ 3) 2.

If we use (4.24) to estimate the first term in (4.25), and (4.26) for the second term
in (4.25), then we obtain in combination with (4.21) applied te u

k 2
sup pM)2 = sup [P < 28221+ I D2+ (1- &% [1 - —} L2
Br, (X0) Bs 4 (X0) J
1-¢&* _
e (—f) b2(L) U — U, 2 dx
€ Br+ (Xo)

k2
< 22212+ I+ (1-eM|1-=| LP+(1-HE(LL2
oy 2 L+I)+(1-¢) 3 +(1-£%)eb (L)
8e2 +

(4.27) < L2 1- ‘3(

2
+ szbg(L)l :

where we also used that IsyRy < sS'Ry = sR.1 < R* < Ry

_ 1 _
f u— U, dx < — f lu— Ug,|* dx
Br- (%) sm Bry (%0)

Hence, if we specifK := /2 + %‘-)Z, we arrive at
k% K
sup |v(k)|2 < L? {[ZKS +1- 3} —4Ke [l— j] _4K22 + 852 + 82b5)(L)}
Br, (%0)
K\2
< L2(2Ke+ 1-_) = 12
J] (420

This proves Claim 2. ]
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In particular we obtain the estimate

. L .
dist (U, Py) = o) < 5 i Br, (X0) = Byior(X0):

wheres = s(L, Jw,m 4,u), andig = ig(L, J,w,k,m A, ). In view of (4.5) this
leads to the foIIowing estimate for the oscillationwof

2 . 1 2L
< b D BRSlEIXQ)dISt(U ox T, Py < Bu(L)J
forJ=1,2,.... SinceRy = s’470R = 473-oR - 0 asJ — « we can conclude
thatU is continuous.

Proof of Theorem 1.1. In view of the preceeding discussion there exists an
integeriy = i1(n,m A, u, w, k, L) such that for all ballBsr(Xg) < Bag and for
R:= 41Rwe have

0SGg, (xo)U 0SGs, (x)U o x

>b(L)

L
(4.28) 0S@4(x)U < b
Let U’ be the representation &f with respect to normal coordinates aroudcd
¥ 1(x0), and define
W'(p):= supul’, O0<p<R
Bo(x0)

Using (4.5) and (4.28) we find dB,(xo) for all 0 < p < R
dist U o x 1, U o xy " Y(x0)) A bw(L)Iu — u(xo)|

b, (L) osc u<b,(L) oscu s L.
By (x0) Bx(x0) (4.28)

U

IA

(4.29)

Thus (4.22) in the proof of Claim 1 far:= v and withr; replaced by /4 yields

(4.30) 2" f VU Rdx < C(m, A, L, ) [w'(p) - w’(e)] . 0<p<R
/4(X0) 4

Next, letP € B_(Q) be the point which corresponds tg,, under exp, and let

v be the representation &f with respect to normal coordinates aroudd Then,
again by (4.5) and (4.28)

4.31) v = dist o‘1P<bLuu <by(L)oscu < L< :
( ) | | (U X ) w( )| p/4| w( )Bp(xo) (428) 2&
which by iterated application of Lemma 4.2 implies for 0 ands := 47, where
| = I(m, A, 1., €) is the smallest integer with (& 6q)' < €2 (69 = do(m, A.ut.) as in
Lemma 4.2) the estimate

(4.32) sup [v]? < 2€® sup [v]? +(1—62)Jf o2 dx
Bso(x0) By (X0) B,+(X0)
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for somep* € [s0,p/4], 0 < p < R (compare with the proof of Claim 2 above).
Using (4.31) and the Poind@ainequality one can show

f pPPdx < bi(l.)f lu—0,a2dx<s me(L)J( lu— T,al? dx
Bp* (XO) (4'31) Bp*( p/4 XO)

S C(ma /1*’/1*’63 (,L), L)p _mf |Vu|2dxa
Bo/a(X0)

sinces = S(¢, o). Thus by (4.32) for < p < R,

(4.33)  sup|vf? < 2¢% sup [v]? + C(M, A, s, €, w, LYp?~ f IVul? dx
Bs,(X0) B, (%0) Bo/a(X0)

With |u] < L, (3.5) and (4.4) one has
LBZ(L)IVU? < AP (x)d,U dpulhij(u) < b2 (L)IVUl?

for all x € Br(Xg). Replacingu by u’ (also with|u’| < L by (4.29)) one obtains the
analogous estimate f¢¥u’|?> and thus by the invariance of the energy den(ty)
(see (3.1)) under change of coordinates

A.b2(L)
pb3(L)

()

VU2 < |VUl? <
P < v < B2

Together with (4.30) this can be used in (4.33) to infer

sup v]? < 2€2 sup o]? + C(m, Ay, s, €, w, , L) [0/ (0) — ' (50)]
Bs(%0) By (%0)

sinces < 1/4. We note that (4.5), (4.31), and (4.29) also imply

bw(L)

_wLuu < 2b,(L) supju—u < sup |U'| in B
Jo] S (D)lu = Uyyal (L) p(x(l?l (XO)| b(L) B(xfl | 5 (X0),
becauséw’| = dist (U o y ™1, U o y (o)), and

b, (L)

Ul < by(L)u-u(x) < 2b,(L) sup [u—U,l <2 sup |v] in Bg,(Xo
650y DI~ U0 < 20(1) SUp u =Gyl < 215 sup 5(%0)

sincely| = dist (U o/\/_l,eX[.'b Uy/4). Therefore from (4.32)

w'(sp) < Clk, w, L)szw'(p) + C(m, Ay Py €, W, K, L) [0 (0) — ' (90)],
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which becomes foe := /(2C(k, w, L)1

_ C+1
W' () < 0w’ (p) With 0 =| = <1l
C+1

A standard iteration lemma [GT, Lemma 8.23] then gives the growth estimate
0 2 o ~
W' (p) < C(E) W®) forall 0<p<R

and according to (4.29) we have

Vo) s Clw L) 0scu< 2C(k . L) vV’ (o),

(4-29)
hence
a @ (AR @ a
0SC U < ZC(Q) oscu<C’ (ﬁ) (T) oscu<C” (ﬁ) osc u
B, (x0) R/ Ba(x) 4R R/ Br(x) 4R/ Br(x0)

with @ = a(m 4,4, L, w,«) andC” = C”’(m 4,u,L,w,«). A standard covering
argument now leads to the estimate

Hbla’BdU <C

with C depending om, 4, i, L, w, k and also ord, and from this the desired esti-
mate (1.5) follows by a simple scaling argument. |

5 Boundary estimates

LetU : .# — .4 be aharmonic mapping which maps a coordinate neighbourhood
Q c ./ of apointP € .7 into a regular balB (Q) c ./, and lety : Q — Zsr
be a coordinate chart that ma@shomeomorphically onto the closure of the set

Tsri= (X=X, XM eR™: |X| <5R 0< x" < 5R}
with _
XOAM N Q) =322 = {x=(X,0)e R™: |X| < 5R}.
Forxo € =2 set
Sr(X0) := Br(x0) N {x™ > 0}.

The a priori estimate for thedider semi-norm up to the boundary follows by com-
bining the interior estimate (1.5) with the following oscillation estimate, Theorem
5.1, near the boundary to obtain the global oscillation estimate

_osc u<Cp”
ZRﬁBp(y)
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for anyy € Xg, whereC = C(4,u, L, w, k, Uls.r,m) andy = y(4,u, L, ,Ula.z) €
(0,1). Here, as in Theorem 5.1, = (ul,...,u") denotes the normal coordinate
representation dff centered a@. Setting

o(t) := oscu
=

we formulate
Theorem 5.1 If o(R) < L/b,(L) and if

T
(5.1) A +b,(L)o(R) < ?(
then there is R= R*(1, u, L, w, k, M) € (0, R] such that for allp € (0, R*]

o\
5.2 oscusC(—) osc U+ o(voR)|,
(52) Sp(%0) [ R*/ Sr(x0) o(VPR)
where C= C(4,u, L, w, x,m) andB = B(1, u, m) € (0, 1).

Proor:  Setting

M, (t) := supdist(U o xy %, expy7)  for ne To =R",
=

andM, = M,(R), we obtain forx € & with ¢ := u(xo) by (3.5)
T

(5.3) M; < b, (L) sup|u(x) — u(Xo)l < b,(L)o(R) < L < 2k

0
XeXp

Thus we can choosge€ N so large that

3L T
54 A+Mg+ — < —,
(5.4) NIV
which is possible by assumption (5.1). We kgt= L, and
L
Ly = 3+M§k for 1<k< ]

wheregy := (k/J)¢. We claim that for normal coordinate&) of U centered at
Py 1= expg ék one has

: R
(5.5) WM< Lx in Sgp(x) for R¢:= ot
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Here,l is the smallest integer such that

L2

|
(5.6) (1-060) < w,

wheredy is the constant in Part (ii) of Lemma 4.2. We prove this claim by induc-
tion. (5.5) is valid fork = 0. Assuming (5.5) for all indices less or equakie 1
we estimate
J-(k-1)
—L
J b
Our induction hypothesis, on the other hand, impliesdarSg, , (Xo)

(5.7) Msck_l < Mg + dist (Pk—l, PJ) < Mf +

(5.8) R ()] < dist (U o y2(X), Pi_1) + dist (Pi_1, P) < L1 + %

In addition, we have by definition dfy andé&, (5.7), and (5.4)

L k L L
L+|§k|+Lk_1+3 < L+3L+3+M§H+3
L
< L+=[2+k+J-(k-1D]+M
S Ll (k=1)] + Mg,

L
= 2L+ 33 + Mg,
< T
54 Vi

which, together with (5.8) and®(x)| < dist (U oy 1(x), Q) +dist (Q, Px) < L +|&
leads to

1 L n
@il < =L Lo st =
PO < 5 |L+16d+ L + 5] < e
Thus, by Part (i) of Lemma 4.1y|? is a subsolution of the elliptic operator
9o(A8g) on Sgr_,(X0). Applying Part (ii) of Lemma 4.2-times we obtain by
our choice (5.6)

forall xe Sg_,(Xo)-

-1

sup M2 < (1-60) sup M+ 6o(1-60) T sup M
Sr4 (X0) Sry_4 (X0) i=0 2%, (X0)
- D=1

4

IA

(1-60)'(L + 1D+ [1 - (1 - 60)'] M2
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which implies
[ (X)] < 3 + Mg = Lx  forall xe Sg(xo),

thus proving our claim (5.5).
Specifically,

L 1 b4
D<=+ M 1+ =L — inS
015+ Me g (143)L g T2 i Swoo)

and solp™[? is a subsolution irSg,(x) according to Lemma 4.1. Part (ii) of
Lemma 4.2 then implies for

m(t) := supdist(U o y 1, Py)
St(%o)

the estimate
R
M7 (o) < (1 - 60)1P(4p) + 6oMZ(4p)  forall 0 <p < ==,

Iterating this inequality as in [GT, Lemma 8.23] we obtain

me) < K |(i& ) ™R + MR

for R" ;= R* (4, u, L, w, k, M) := Ry and constant& andg € (0, 1) depending only
onm, 4, andu. This together with (5.3) proves (5.2). m|

Appendix

Throughout this section we automatically sum over repeated GragK_atin in-
dices from 1 tom. Latin indices are used here (in contrast to the previous sec-
tions) for transformed quantities under the coordinate chafgeXP(x%, ..., x™,
p=1,...,m whereas Greek indices are used for the original quantities.

We begin with the

Proof of Lemma 2.2.1t suffices to prove the first identity of (2.16) and second
of (2.17), the other identities are immediate consequences of (2.7) and (2.8).

For our calculations we notice thﬁ—, anddy®, interpreted as tangent and co-
tangent vectors of.#, transform under the coordinate chang§e="%P(x%, . .., x"),
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p=1....,masd
p oxt 8 P
Al _— = R — ~q_—
(A1) o~ oxax | oxeasa’ oy
OxP 2%P
A2 di? = dyr+ 2 ed,
(A-2) Y o Y T oo

This follows from (2.7) and (2.8).

Next we determine the transformation behaviour of the formal Chfedteym-
bOISygp defined in (2.13). By virtue of (2.5) we have

ox %3
A. ~I'S - - 7 7'0'.
(A-3) g oxt ax”g

Hence, we compute

~r
Ypq

o%p T % 9%
B OX 3% __[(0% gap 02X _ Ogap) OX OXE
(25)(A1)(A3) 20x ox7? [{ﬁ oxe " axrost! 614/1}8)"(‘1%
P S P i i
Job 5a0%P o%s 9P %4 o%0%P
X 0gap  OPX _ 0gap) X OX
{a_“xq axe " a%a9%” }%ﬁ
L P ox P
9ot Gssasa oz I g gPaxa
X Ogap  O°X _,0gap OXY OXP
_{% axs | axeoR’ oy }cﬁa_iq
9?x* 98 )l < ]

}ars [aéqs + 8ésp _ aéDQ]
2
1

" 9B gspass axa 9P Hx0 o390

5The transformation law (A.1) fog% as a tangent vector of the manifold# is more compli-
cated than the standard transformation law (2.7)6—29ras a tangent vector of7 itself.
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Relabeling indices and organizing terms, this leads to

P S W
Yea T xr oxp oxa 27 (axu axr axff)
+6_x' X
X7 OXIOKP
+}gma_>~<f{ X 1 000r OX° | 0% étagagﬁ}
27 ox \oxrox” oy oxa T axaax’ ayr oxP
10K 0% _ 0P 0gap OX* OXC
“20x ox? axsor” oy axe osa”

» oX o oxt oK X
Tra T Gxraxp axa o T ox a%a0%P
+}gma_x'{ X 1000 OX | 0% étagagﬁ}
29 ox \aseoxt! gy a0 " axaax” yr oxP
10K 0% _ 0P 0gap OX* OXC
“20x ax? axsor” oy axe osa”

(A.4)

Now we need the identities

agaﬁ agaﬁ agaﬁ
A. ¢ = =
(~.5) Dbye -y

which are a consequence of the 0-homogeneity. din fact, by Euler’'s theorem

we have

99,
g.Byp 0,

which is the third identity. The other two then follow from

99ap _ O9pp _ Ogpa _ ( }Fz)
oy apf 2 vV
With e
9= pr— =1,...,
o U m,
we obtain
o % X Xt . X 9Px o
Yoot = P+ —
PA” (A4)A5)  OXT OXP Yo OX@ OXAGXP
s X o%d
(A6) FOX X 0gac OX* 0

2g "% o507 oy 030" a%
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Furthermore,
IX Ox! oxP X 9%xr 9% L OXP
arp T pp pe
Vool 't axr ax 55070 C oxe ¥ o oo vl ol
LSO X 0oy OX ox 0% o%a _o%P
29 " ox oxaR oy a%. %’ axe
X OX  9%xe 9%d  9%P
— T fpge [
o ax Ul T S axaa ot ol

Therefore we infer from

x IX® X Ox?
e
(A7) Por (26) OxT OR0 IX

the identity

AXE X« 9*x 9% o%P
A.8 PPl = A lve e +
(A.8) Abr Vpq Oxo gb’ K HKAIRP O (9Xf

Summarizing these calculations we now compute

r
p _ Ar ~k 7bic
F i Pal !~ Anbe

AX OxH oX 92x -

— ,y‘r P4
(AB)AB) OXT AXP'HP OXx HKAGKP
F 0K X _10gar OX* 0K

zg " ox oxa% oy 9% ox
O OX o | o pppe . OX° X OXC .
s acp’ ww |7V + S ’
OXT OXP P ARPOKE IX (’)xf

and recalling the definitions & and¢ from (2.4) and (2.9), we finally arrive at the
following transformation formula for the Ehresmann connection,

N or N? Sr 92
Np _ox o Ny 0% %" o
(A-9) F = ox o F T ox o%a0%0.
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Now we come to theroof of the second identity in (2.17).

65° = dijP + Nfdxd
(A2) Zizdy aiiz;”ad)g Npg_quxy
o 56 e xﬂ+(§§5 6%+ e o) (0%
< e | B G | e
o Lo o
= g—iZ[dyuNgd)ﬁ],
since diferentiation of the identity
o _ OX 0%
B 9% oxB
leads to
PxT 9% % X K%
" 9%0%A 0% Ox' | IR 05O
hence
2 S 23S
0= aisg;giﬁfaxq X %aiﬁgﬂfdxy’
and therefore
P 52 p 2gs
0 = zza aiZSEQXqNSZXxyqu " Z; 8;; aiﬂ;xyyg dx
P s
- Z; aisganNSZ_;qd o paiﬂ; ydx
_ OxP 92x Nsaqu %P Adx.

axe axsaxa’ oxr 8)«38XY
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We conclude with th@roof of the first identity in (2.16).

since

(A1)A9)

0 cq0
axP P aga

oxt 0 OPX o D
AP Ixa  AXPAXS” Ay
(axq axﬂNa % FPx ~t) 9

“\oxe oz T oxe ozpagt” a9
O 0\ IR0 5 e o
AXP Oxe P 9xa 9%4 OXP OyY

oxe axPox” 8% oy
ox 9 XD

axPoxe PP ay
o9 LoD

P axa B AR dyr
6x"[ 0 9 ]

a%P | axe oy

OX O% X b L, X 0 X 0

a5 axe gseoR” ayr ~

“gsvox” ayr = aseor” aye

axPo%s” ay

39
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Finally we present thproof of identity (2.18).

oF o .50
= = |[—-N2F
X (axa “ayﬂ)
o3n P~ |FOhl = Moty |
(2:12) I:x" - (’ygsfe - A'geyzo—gpgo—)gﬂ‘ry‘r
= Fo —Yaelgpes” + AtV oo Oy
— Foo — £ T
(A5) X yge gpry
1 agev agva 39&5
— F o — — 24 _ ff T
@13 * 296 [axf' T oxe ox |° %Y
1 agE‘I' agT(l 8g(¥€
— Foo — = _ T
x 2[axw Toxe ox |V

1
= Fxrr - E[FXGF!/E”T + FFyEyTXa + Fyexrr Fyr + FyEwayT
+FXE FyTy(l + FFyTy(le + FyTxf Fy(Y + FyTFXEy(Y
—(FXT Fynye + FwayEXr + Fyaxr Fye + Fyn Fxryf):lF_lyTyg.
SinceF satisfies (H) the same is true Bk, which implies by Euler’s theorem
anyﬁyg = FX(Z and anryﬁysyﬁ = O.

Applying this as well as (2.2) we obtain from the above calculation

SF 1 .
67 = an - E[Fyexa FyT + FyEanyT + FyTXEFya + Fy(ZXEFyT — (FyaxTFye + Fyn Fxr,/E)]F ly y
= F —}[F + Fyo + F I FwF ot + Fpoxey — Fyoxy” — F1F e Fyey”
= X 2 X X xe Fya y yarxey ynxry ye X‘ry ]
= 0
O
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