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Abstract

A Finsler manifold is a smooth manifoldM equipped with a family of
Minkowski normsF(x, ·), x ∈ M , which varies smoothly over the tangent
bundleTM =

⋃
x∈M TxM . The fundamental tensorgαβ(x, y) =

(
1
2F2

)
yαyβ

induces a Riemannian metric on the sphere bundleSM ⊂ TM \ 0, the
so-called Sasaki metric, which can be used to define the energy of a map
U : M → N from (M , F) into a Riemannian manifold (N ,h) as follows:

E(U) :=
1

2vol(Sm−1)

∫
SM

gαβ(x, y)
∂ui

∂xα
∂u j

∂xβ
hi j (u) dVSM .

Here,m is the dimension ofM , u = (u1, . . . ,un) is a local representation
of U on then-dimensional target manifoldN , (gαβ) is the inverse matrix
of (gαβ), hi j denote the coefficients of the Riemannian metrich on N , and
dVSM is the volume form with respect to the Sasaki metric.W1,2-solutions
of the corresponding Euler-Lagrange equation are called weakly harmonic.

In the following we show that weakly harmonic mappings with image
contained in a regular ballBL(Q) are locally Ḧolder continuous. More pre-
cisely, we derive an interiorC0,α-estimate which generalizes a correspond-
ing estimate by Giaquinta, Hildebrandt [GH] and Hildebrandt, Jost, Widman
[HJW] for weakly harmonic mappings between Riemannian manifolds. As
an application of this estimate, we obtain a Liouville theorem for entire har-
monic mappings from Finsler manifolds. We also indicate how to extend
the a priori estimates up to the boundary, which together with higher order
estimates as in [GH] lead to an existence theorem for harmonic maps from
Finsler into Riemannian manifolds via the Leray-Schauder theory.

1 Introduction

Let M m be anm-dimensional oriented smooth manifold andχ : Ω → Rm a local
chart on an open subsetΩ ⊂M which introduces local coordinates (x1, . . . , xm) =

1
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(xα), α = 1, . . . ,m. We denote by

TM =
⋃
x∈M

TxM

the tangent bundle consisting of points (x, y), x ∈ M , y ∈ TxM , which can be
identified onπ−1(Ω) ⊂ TM by bundle coordinates (xα, yα), α = 1, . . . ,m, where

π : TM →M , π(x, y) := x,

is the natural projection ofTM onto the base manifoldM , and where

y = yα
∂

∂xα

∣∣∣∣∣
x
∈ TxM .

Whenever possible, we will not distinguish between the point (x, y) and its coordi-
nate representation (xα, yα). Moreover, we employ Einstein’s summation conven-
tion: Repeated Greek indices are automatically summed from 1 tom. We will also

frequently use the abbreviationsfyα =
∂ f
∂yα , fyαyβ =

∂2 f
∂yα∂yβ

, etc.
A Finsler structure FonM is a function

F : TM → [0,∞)

with the following properties:

(i) (Regularity) F ∈ C∞(TM \ 0), where

TM \ 0 := {(x, y) ∈ TM , y , 0}

denotes theslit tangent bundle;

(ii) (Homogeneity)

(H) F(x, ty) = tF(x, y) for all (x, y) ∈ TM , t > 0;

(iii) (Ellipticity) the matrix

gαβ(x, y) :=

(1
2

F2
)
yαyβ

(x, y)


α,β=1,...,m

,

representing thefundamental tensor,is positive definite for all (x, y) ∈ TM \

0.
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The pair (M , F) is called aFinsler manifold.
An explicit fundamental example is given by theMinkowski space(Rm, F),

whereF = F(y) does not depend onx ∈ Rm. A manifold (M , F) is calledlocally
Minkowskian, if for every x ∈ M there is a local neighbourhoodΩ of x such that
F = F(y) on TΩ. Moreover, any Riemannian manifold (M , g) with Riemannian

metricg is a Finsler manifold withF(x, y) :=
√
gαβ(x)yαyβ. A Finsler manifold

(M , F) with

(1.1) F(x, y) :=
√
gαβ(x)yαyβ + bσ(x)yσ, ‖b‖ :=

√
gαβbαbβ < 1,

is called aRanders space.
In the present paper we study harmonic mappingsU : (M , F)→ (N ,h) from

a Finsler manifold (M , F) into ann-dimensional Riemannian target manifoldN n

with metric h, ∂N = ∅. What does it mean forU to be harmonic? While it is
common knowledge how to measure the differentialdU of U in the Riemannian
target by means of the metrich, it is by no means obvious how to integrate the most
evident choice of energy density

e(U)(x, y) :=
1
2
gαβ(x, y)

∂ui

∂xα
∂u j

∂xβ
hi j (u)

over the Finsler manifold. Here,u is the local representation ofU with respect
to coordinates (xα), α = 1, . . . ,m, on M , and (ui), i = 1 . . . ,n, on N ; hi j are
the coefficients of the Riemannian metrich, and (gαβ) denotes the inverse matrix
of (gαβ). In fact, the fundamental tensorgαβ doesnot establish a well-defined
Riemannian metric onM since it depends not only onx ∈ M but also ony ∈
TxM . In other words, on each tangent spaceTxM , x ∈ M , one has a whole
m-dimensional continuum of possible choices of inner products formally written
as

gαβ(x, y)dxα ⊗ dxβ

for y ∈ TxM \ {0}. We are going to describe in Sections 2 and 3 how to overcome
this conceptual problem by incorporating the “reference directions” (x, [y]) :=
{(x, ty) : t > 0} as base points for larger vector bundles sitting over the sphere
bundle

SM = {(x, [y]) : (x, y) ∈ TM \ {0}}.

The resulting general integration formula (Proposition 2.3) yields in particular the
integral energyE(U) whose critical points are harmonic mappings. It turns out
that for scalar mappingsE(U) is proportional to the Rayleigh quotients studied
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by Bao, Lackey [BL] in connection with eigenvalue problems on Finsler mani-
folds. For mappings into Riemannian manifoldsE(U) coincides with Mo’s vari-
ant [Mo] of energy. Mo established a formula for the first variation of the energy,
and proved among other things that the identity map from a locally Minkowskian
manifold to the same manifold with a flat Riemannian metric is harmonic. Shen
and Zhang [SZ] generalized Mo’s work to Finsler target manifolds, derived the
first and second variation formulae, proved nonexistence of non-constant stable
harmonic maps between Finsler manifolds, and provided with the identity map an
example of a harmonic map defined on a flat Riemannian manifold with a Finsler
target thus reversing Mo’s setting. In contrast to these investigations focused on
geometric properties of harmonic maps whose existence and smoothness is gen-
erally assumed, Tachikawa [T] has studied the variational problem for harmonic
maps into Finsler spaces, starting from Centore’s [C] formula for the energy den-
sity, which can be regarded as a special case of Jost’s [J2, J3, J4] general setting of
harmonic maps between metric spaces. In particular, Tachikawa [T] has shown a
partial regularity result for energy minimizing and therefore harmonic maps from
Rm into a Finsler target manifold form = 3,4. More recently, Souza, Spruck, and
Tenenblat [SST] proved Bernstein theorems and the removability of singularities
for minimal graphs in Randers spaces (cf. (1.1) above) if‖b‖ < 1/

√
3, since then

the underlying partial differential equation can be shown to be of mean curvature
type studied intensively by L. Simon and many others. Forb > 1/

√
3 the equation

ceases to be elliptic, and there are minimal cones singular at their vertex.
Here we address the basic question: Do harmonic maps with a Finslerian do-

main exist, and under what circumstances? To answer this question in the af-
firmative we draw from earlier results by Giaquinta, Hildebrandt, Jost, Kaul and
Widman, in particular [GH], [HJW], [HKW]1, on harmonic maps between Rie-
mannian manifolds with image contained in so-called regular balls. A geodesic
ball

BL(Q) := {P ∈ N : dist (P,Q) ≤ L}

onN with centerQ ∈ N and radiusL > 0 is calledregular, if it does not intersect
the cut-locus ofQ and if L < π

2
√
κ
, where

(1.2) κ := max{0, sup
BL(Q)

KN }

is an upper bound on the sectional curvatureKN of N within BL(Q). It is well-
known that on simply connected manifoldsN with KN ≤ 0 all geodesic balls are

1Using Jost’s method [J5] to prove Hölder regularity of generalized harmonic mappings, Eells
and Fuglede later considered weakly harmonic maps fromRiemannian polyhedrainto Riemannian
manifolds [EF], [F1], [F2]. A Finsler manifold, however, does not fall into the category of Rieman-
nian polyhedra.
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regular, and that forN := Sn all geodesic balls contained in an open hemisphere
are regular. IfN is compact, connected, and oriented with an even dimensionn
and 0< KN ≤ κ, then all geodesic balls of radiusL < π

2
√
κ

are regular, whereas
for simply connected manifolds with sectional curvature pinched betweenκ/4 and
κ any geodesic ball with radius less thanπ

2
√
κ

is regular; see e.g. [GKM, pp. 229,
230, 254].

Introducing also the lower curvature bound

(1.3) ω := min{0, inf
BL(Q)

KN },

we can state our results onweakly harmonic maps, i.e. on boundedW1,2-solutions
of the Euler-Lagrange equation of the energyE(U) (for a detailed definition see
Section 3).

Theorem 1.1 (Interior C0,α-estimate) Let (M m, F) be a Finsler manifold, and
let (N n,h) be a complete Riemannian manifold with∂N = ∅. Suppose that
χ : Ω→ B4d is a local coordinate chart ofM which mapsΩ onto the open ball

B4d ≡ B4d(0) := {x ∈ Rm : |x| < 4d},

and suppose that the components of the Finsler metricgαβ(x, y) satisfy

(1.4) λ|ξ|2 ≤ gαβ(x, y)ξ
αξβ ≤ µ|ξ|2

for all ξ ∈ Rm and all (x, y) ∈ TΩ \ 0 � B4d × R
m \ {0} with constants0 <

λ ≤ µ < +∞. Moreover, let BL(Q) ⊂ N be a regular ball. Finally, assume that
U : M → N is a weakly harmonic map with U(Ω) ⊂ BL(Q). Let u denote the
local representation of U with respect toχ and a normal coordinate chart around
Q. Then U is Hölder continuous, and we have the estimate

(1.5) Hölα,Bdu := sup
x,y∈Bd

|u(x) − u(y)|
|x− y|α

≤ Cd−α

with constants0 < α < 1 and C> 0 depending only on m,λ, µ, L,ω andκ, but not
on d> 0. Here,ω andκ are the bounds on the sectional curvature ofN on BL(Q)
from (1.2)and(1.3), respectively.

Lettingd→ ∞ in (1.5) we immediately obtain the following Liouville theorem for
harmonic maps from simple Finsler manifolds generalizing [HJW, Thm. 1]. Here,
a Finsler manifold (M , F) is calledsimpleif there exists a global coordinate chart
χ : M → Rm for which the Finsler metric satisfies condition (1.4) for allξ ∈ Rm,
(x, y) ∈ TM \ {0} � Rm× Rm \ {0} , with constants 0< λ ≤ µ < +∞.
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Theorem 1.2 (Liouville Theorem) Suppose that(M , F) is a simple Finsler man-
ifold and that(N ,h) is a complete Riemannian manifold with∂N = ∅. Fur-
thermore, suppose that BL(Q) is a regular ball inN . Then any harmonic map
U : M → N with U(M ) ⊂ BL(Q) is constant.

Extending the Ḧolder estimates to the boundary, and combining them with
well-known gradient estimates and linear theory we obtain

Theorem 1.3 (GlobalC2,α-estimates) Let (M m, F) be a compact Finsler mani-
fold,Φ : M → BL(Q) ⊂ N of class C2,α, BL(Q) a regular ball in the Riemannian
target manifold(N n,h), ∂N = ∅. Then there is a constant C depending only on
κ, ω,m,n, λ, µ, α, andΦ such that

‖U‖C2,α(M ,N ) ≤ C

for all harmonic maps U: M → N with U(M ) ⊂ BL(Q) and U|∂M = Φ|∂M .

Theorem 1.3 together with a uniqueness theorem modelled after the correspond-
ing result of J̈ager and Kaul [JK] can be employed to prove the existence of har-
monic maps with boundary data contained in a regular ball by virtue of the Leray-
Schauder-degree theory:

Corollary 1.4 If for a given mappingΦ ∈ C1,α(∂M ,N ) there is a point Q∈ N
such thatΦ(∂M ) is contained in a regular ball about Q inN , then there exists
a harmonic mapping U: M → N with image U(M ) contained in that regular
ball, and with U|∂M = Φ.

This result is optimal in the sense that the less restrictive inequalityL ≤ π
2
√
κ

in the
definition of a regular ball admits an example of a boundary mapΦ : ∂(M m) →
N n := Sn with Φ(∂M ) ⊂ BL(Q), L = π

2
√
κ
, n = m ≥ 7, andM a Riemannian

manifold, such thatΦ cannotbe extended to a harmonic map of int (M ) into N ;
see [H, Sec. 2].

The proof of Theorem 1.1, which will be carried out in detail in Section 4,
consists of a local energy estimate and a subtle iteration procedure based on the
observation that|u|2 is a subsolution of an appropriate linear elliptic equation. We
learnt about this approach from M. Pingen’s work [P1], [P2], who utilized ideas
of Caffarelli [Caf] and M. Meier [Me] to study not only harmonic maps between
Riemannian manifolds, but also parabolic systems and singular elliptic systems.
With this elegant method we can completely avoid the use of mollified Green’s
functions in contrast to [GH], or [EF], [F1].

In Section 5 we sketch the ideas how to extend the Hölder estimates to the
boundary. For the gradient estimate we refer to the Campanato method described
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in [GH, Sec. 7], again avoiding any arguments based on Green’s functions. Once
having established these estimates, the higher order estimates in Theorem 1.3 fol-
low from standard linear theory, see e.g. [GT]. Finally, Corollary 1.4 can be proved
in the same way as the corresponding existence theorem in [HKW]. Therefore, de-
tails will be left to the reader.

Acknowledgement. The first author was partially supported by the Deutsche
Forschungsgemeinschaft. The second author was financially supported by the
Alexander von Humboldt foundation and the Centro di Ricerca Matematica Ennio
De Giorgi via a Feodor Lynen research fellowship. We also thank our colleagues
W. Reichel and A. Wagner for providing us an elegant shortcut in the proof of Part
(ii) of Lemma 4.1.

2 Basic concepts from Finsler geometry and preliminary
results

Fundamental tensor and Cartan tensor. Properties (i)–(iii) of the Finsler struc-
ture F defined in the introduction imply thatF(x, ·) : TxM → [0,∞) defines a
Minkowski normon each tangent spaceTxM , x ∈M . Moreover, from the homo-
geneity relation (H) together with Euler’s Theorem on homogeneous functions we
infer

(2.1) F(x, y) > 0 for all (x, y) ∈ TM \ 0.

Indeed, we have

yαFyα(x, y) = F(x, y) and

(2.2)

yβFyαyβ(x, y) = 0 for all (x, y) ∈ TM \ 0,

which implies the identity
(2.3)
gαβ(x, y)y

αyβ = (FFyαyβ + FyαFyβ)y
αyβ = F2(x, y) for all (x, y) ∈ TM \ 0.

This together with property (iii) leads to (2.1).
The coefficientsgαβ defined in (iii) constitute the so-calledfundamental ten-

sor, and (2.3) shows how to recover the Minkowski norm from this tensor. The
coefficients of theCartan tensorare given by2

(2.4) Aαβγ(x, y) :=
F
2

∂gαβ

∂yγ
(x, y) =

F
4

(F2)yαyβyγ .

2We follow here the convention used in [BCC].
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The Cartan tensor measures the deviation of a Finsler structure from a Riemannian
one in the following sense: The Finsler structure is Riemannian, i.e.,F(x, y)2 =

gαβ(x)yαyβ, if and only if the coefficients of the Cartan tensor vanish.

Lemma 2.1 The transformation laws for the fundamental tensor and the Cartan
tensor under coordinate changesx̃p = x̃p(x1, . . . , xm), p = 1, . . . ,m, on M are
given by

(2.5) g̃pq =
∂xα

∂x̃p

∂xβ

∂x̃qgαβ,

and

(2.6) Ãpqr =
∂xα

∂x̃p

∂xβ

∂x̃q

∂xγ

∂x̃r Aαβγ,

respectively.

P: The basis sections transform according to

(2.7)
∂

∂x̃p =
∂xα

∂x̃p

∂

∂xα
,

which yields

(2.8) yα = ỹp∂xα

∂x̃p

for the induced coordinate changeyα = yα(x̃p, ỹp), α = 1, . . . ,m, onTM . There-
fore

Fỹp(x, y) = Fyα(x, y)
∂xα

∂x̃p and Fỹpỹq(x, y) = Fyαyβ(x, y)
∂xα

∂x̃p

∂xβ

∂x̃q ,

and consequently,

g̃pq(x, y) = (FFỹpỹq + FỹpFỹq)(x, y)

= (FFyαyβ
∂xα

∂x̃p

∂xβ

∂x̃q + FyαFyβ
∂xα

∂x̃p

∂xβ

∂x̃q )(x, y) = gαβ(x, y)
∂xα

∂x̃p

∂xβ

∂x̃q .

Similar calculations lead to the desired transformation law (2.6) of the Cartan ten-
sor. �

The Sasaki metric. Letπ∗TM be the pull-back ofTM and likewise,π∗T∗M
be the pull-back of the co-tangent bundleT∗M underπ. That is, e.g., one works
with the bundle

π∗TM :=
⋃

(x,y)∈TM \0

TxM
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with fibres given by

(π∗TM )(x,y) = Tπ(x,y)M = TxM for all (x, y) ∈ TM \ 0.

The vector bundlesπ∗TM andπ∗T∗M have two globally defined sections, namely
thedistinguished section

(2.9) `(x, y) := `α(x, y)
∂

∂xα
:=

yα

F(x, y)
∂

∂xα

and theHilbert form

(2.10) ω := ωα(x, y) dxα :=
∂F
∂yα

(x, y) dxα.

(Here, with a slight abuse of notation,∂∂xα and dxα are regarded as sections of
π∗TM andπ∗T∗M , respectively.) The homogeneity condition (H) implies that`

andω are naturally dual to each other, in fact, one has by (2.2)

ω(`) = Fyα(x, y)
yβ

F(x, y)
dxα(

∂

∂xβ
) = Fyα(x, y)

yβ

F(x, y)
δαβ =

yαFyα(x, y)

F(x, y)
=

(2.2)
1.

By virtue of Lemma 2.1 the fundamental tensor and the Cartan tensor define sec-
tions

g(x, y) = gαβ(x, y)dxα ⊗ dxβ

and
A(x, y) = Aαβγ(x, y)dxα ⊗ dxβ ⊗ dxγ

of the pull-back bundlesπ∗T∗M ⊗ π∗T∗M and⊗3π∗T∗M , respectively. Employ-
ing the homogeneity ofF once more one obtains

(2.11) gαβ(x, y)`
α`β = 1, gαβ(x, y)ωαωβ = 1,

where (gαβ) denotes the inverse matrix of (gαβ). The first identity in (2.11) is a
direct consequence of (2.3), whereas the second one follows from (2.2) via

(2.12) gβγ
yγ

F
=

(2.2)
Fyβ = ωβ,

so that

gαβωαωβ = ωαg
αβgβγ

yγ

F
= ωαδ

α
γ

yγ

F
= Fyα

yα

F
=
(H)

1.

Similarly one can also verify

`α = gαβ(x, y)ωβ, ωα = gαβ(x, y)`
β.
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Of course this is just the duality of` andω again.
We now introduce theformal Christoffel symbols

(2.13) γαβρ =
1
2
gασ

(
∂gρσ

∂xβ
+
∂gσβ

∂xρ
−
∂gβρ

∂xσ

)
and the coefficientsNα

β of a non-linear connection onTM \0, the so-calledEhres-
mann connection, defined by

(2.14)
1
F

Nα
β := γαβκ`

κ − Aαβκγ
κ
ρσ`

ρ`σ.

These coefficients give rise to the following local sections ofT(TM \ 0) and
T∗(TM \ 0):

δ

δxβ
:=

∂

∂xβ
− Nα

β

∂

∂yα

and
δyα := dyα + Nα

β dxβ.

It is easily checked that
{
δ
δxα , F

∂
∂yα

}
and

{
dxα, δy

α

F

}
form local bases for the tangent

bundle and co-tangent bundle ofTM \ 0, respectively, which are naturally dual
to each other. In fact, the transformation matrixB representing the change from
the basis

{
∂
∂xα ,

∂
∂yα

}
to

{
δ
δxα , F

∂
∂yα

}
satisfies detB = Fm > 0 due to (2.1). For the

corresponding transformation matrixB∗ on the co-tangent bundle one calculates
detB∗ = F−m > 0. The duality statement can be verified by calculations like e.g.

δyγ

F

(
δ

δxβ

)
=

δyγ

F

(
∂

∂xβ
− Nα

β

∂

∂yα

)
=

1
F

(dyγ + Nγ
σdxσ)

(
∂

∂xβ
− Nα

β

∂

∂yα

)
=

1
F

Nγ
σdxσ

(
∂

∂xβ

)
+

dyγ

F

(
−Nα

β

∂

∂yα

)
=

1
F

(
Nγ
σδ

σ
β − Nα

β δ
γ
α

)
= 0.(2.15)

The reason to introduce these new bases is their nice behaviour under coordi-
nate transformations as stated in the following lemma, whose proof we defer to the
appendix.

Lemma 2.2 Let x̃p = x̃p(x1, . . . , xm), p = 1, . . . ,m, be a local coordinate change
onM and letỹp = ∂x̃p

∂xα y
α be the induced coordinate change on TM . Then

(2.16)
δ

δx̃p =
∂xα

∂x̃p

δ

δxα
,

∂

∂ỹp =
∂xα

∂x̃p

∂

∂xα

and

(2.17) dx̃p =
∂x̃p

∂xα
dxα, δỹp =

∂x̃p

∂xα
δyα.
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As an important consequence we deduce from (2.5) and (2.17) that

G = gαβ(x, y) dxα ⊗ dxβ + gαβ(x, y)
δyα

F(x, y)
⊗

δyβ

F(x, y)

defines a Riemannian metric onTM \ 0, the so-calledSasaki metric. It induces
a splitting ofT(TM \ 0) into horizontal subspaces spanned by

{
δ
δxα

}
and vertical

subspaces spanned by
{
F ∂
∂yα

}
, respectively. By a straightforward computation (see

Appendix) one deduces that with respect to this splittingF is horizontally constant,
i.e.,

(2.18)
δF
δxα
= 0.

The sphere bundleSM . We conclude with some remarks on scaling invari-
ance. Denote by

SM = {(x, [y]) : (x, y) ∈ TM \ 0}

thesphere bundlewhich consists of the rays (x, [y]) := {(x, ty) : t > 0}. Since the
objectsgαβ,

δyα

F , G, etc. are invariant under the scaling (x, y) 7→ (x, ty), t > 0, they
naturally make sense onSM . To be more precise, consider the indicatrix bundle

I := {(x, y) ∈ TM \ 0 : F(x, y) = 1}.

I is a hypersurface ofTM \0 which can be identified withSM via the diffeomor-
phism

ι : SM → I , ι(x, [y]) =

(
x,

y

F(x, y)

)
.

Also note thatI carries an orientation, sinceν := yα ∂
∂yα is a globally defined unit

normal vector field alongI . Indeed, by (2.11),ν has unit length,

G(ν, ν) = gαβy
τyσ

δyα

F

(
∂

∂yτ

)
δyβ

F

(
∂

∂yσ

)
= gαβ

yτ

F
yσ

F
δατδ

β
σ =

(2.11)
1.

Furthermore, sinceF is horizontally constant by (2.18), the differential ofF is
given by

dF =
δF
δxα

dxα + F
∂F
∂yα

δyα

F

=
∂F
∂yα

δyα,
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and therefore, for any tangent vectorX = Xα δ
δxα + YαF ∂

∂yα onTM \ 0 we find

dF(X) =
∂F
∂yα

FYα.

Using (2.12) this leads to

d(logF)(X) =
dF(X)

F
= gαβ(x, y)

yβ

F
Yα = G(ν,X).

In particular, ifX is tangent toI at (x, y) ∈ I , i.e., X = dc
dt (0) for some smooth

curvec : (−ε, ε)→ I with c(0) = (x, y), we obtain

G(ν,X) = d(logF)(X) =
d
dt

(logF)(c(t))|t=0 = 0,

where we have used in the last equation thatF = 1 on I .
Hence, we can think ofSM ⊂ TM \ 0 as being an oriented (2m − 1)-

dimensional submanifold ofTM \ 0 to which the above objects pull back. In
particular, the Sasaki metric induces a Riemannian metricGSM with a volume
form dVSM on SM . dVSM will be of particular importance in the definition of
harmonic mappings from Finsler manifolds.

Orthonormal frames. For later purposes let us write down some of the pre-
ceding formulas in orthonormal frames: Let{eσ} be an oriented localg-orthonormal
frame forπ∗TM (i.e. g(eσ,eτ) = δστ), such thatem = ` is the distinguished section
defined in (2.9). Let{ωσ} be the dual frame forπ∗T∗M such thatωm = ω is the
Hilbert form (2.10). Then we have local expansions of the form

eσ = uασ
∂

∂xα

and
ωσ = vσαdxα.

Sinceem = ` andωm = ω we find uαm = `α =
yα

F andvmα = Fyα . Also note the
relations

(2.19) uσβ v
α
σ = δ

α
β , uασv

σ
β = δ

α
β , and uασuβτgαβ(x, y) = δστ.

Hence,

(2.20) det(vσα ) = +
√

det(gαβ)(x, y),
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where the positive sign is due to the specific orientation of the frame.
We can now introduce localG-orthonormal bases{êσ, êm+σ} for T(TM \ 0)

and{ωσ, ωm+σ} for T∗(TM \ 0) which are dual to each other:

(2.21) êσ = uασ
δ

δxα
, êm+σ = uασF

∂

∂yα
, σ = 1, . . . ,m,

and

(2.22) ωσ = vσαdxα, ωm+σ = vσα
δyα

F
, σ = 1, . . . ,m.

In these frames, the Sasaki metric takes the form

G = δστω
σ ⊗ ωτ + δστω

m+σ ⊗ ωm+τ

and its volume form onTM \ 0 is given by

(2.23) dVTM \0 = ω
1 ∧ . . . ωm∧ ωm+1 ∧ . . . ∧ ω2m.

SinceF is horizontally constant by (2.18), andvmα = Fyα , one easily verifies the
relation

ω2m = d(logF).

Thus,ω2m vanishes on the indicatrix bundleI , which means that ˆe2m is a unit
normal to I and ê1, . . . , ê2m−1 are tangential. Note that ˆe2m coincides with the
above defined normal vector fieldν. In particular, we may specify the orientation
of I such that{ê1, . . . , ê2m−1} is positively oriented. It follows thatdVSM is given
by

dVSM = ω
1 ∧ . . . ωm∧ ωm+1 ∧ . . . ∧ ω2m−1.

In other words,dVSM can be obtained by pluggingν into the last slot ofdVTM \0,
i.e.,

(2.24) dVSM (X1, . . . ,X2m−1) = dVTM \0(X1, . . . ,X2m−1, ν)

for all vectorfieldsX1, . . . ,X2m−1 tangential toSM ⊂ TM \ 0.

The volumedVSM in local coordinates. For local computations, in particular
for the derivation of the Euler-Lagrange equations for weakly harmonic mappings,
we need to derive an expression for the volume elementdVSM in local coordinates.

Letχ : Ω→ Rm be a local coordinate chart ofM with coordinates (x1, . . . , xm).
We consider the mapping

Φ : Ω × Sm−1→ I ⊂ TM \ 0, Φ(x, θ) =

(
x,

y

F(x, y)

)
,
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where

(2.25) y = y(x, θ) := yα(θ)
∂

∂xα

∣∣∣∣∣
x
,

andyα are Cartesian coordinates ofθ ∈ Sm−1, i.e.,

(2.26) θ = (y1(θ), . . . , ym(θ)).

Let (θ1, . . . , θm−1) be local coordinates forSm−1. Then we compute

(2.27) dΦ

(
∂

∂xα

)
=

∂

∂xα
−

1
F2

∂F
∂xα

yβ
∂

∂yβ
, α = 1, . . . ,m,

and

(2.28) dΦ

(
∂

∂θA

)
=

(
1
F
∂yβ

∂θA
−

1
F2

∂F
∂yγ

∂yγ

∂θA
yβ

)
∂

∂yβ
, A = 1, . . . ,m− 1.

Here note carefully that, on the left hand side,∂
∂xα and ∂

∂θA are considered as tangent
vectors toΩ andSm−1 with respect to (xα) and (θA), respectively, whereas on the
right hand side ∂

∂xα and ∂
∂yα are tangent vectors ofTM associated with the bundle

coordinates (xα, yα).

Also notice thatηA := ( ∂y
1

∂θA , . . . ,
∂ym

∂θA ) andηm := (y1(θ), . . . , ym(θ)) are nothing

but the realizations of∂
∂θA andθ as vectors inRm. In particular we may without loss

of generality assume that{η1, . . . , ηm} forms a positively oriented basis ofRm.
We recall that the normal of the indicatrix bundle at

Φ(x, θ) =

(
x,

y(x, θ)
F(x, y(x, θ))

)
is given by

(2.29) ν = ê2m =
yα

F(x, y)
∂

∂yα
.

Combining (2.27), (2.28) and (2.29) we obtain:

dVTM \0

(
. . . ,dΦ

(
∂

∂xα

)
, . . . ,dΦ

(
∂

∂θA

)
, . . . , ν

)
= dVTM \0

(
. . . ,

∂

∂xα
, . . . ,

1
F
∂yβ

∂θA

∂

∂yβ
, . . . ,

yγ

F
∂

∂yγ

)
From (2.23), (2.20), and (2.21) we infer the relation

dVTM \0

∣∣∣
Φ(x,θ) = det(gαβ(x, y))dx1 ∧ . . . ∧ dxm∧ δy1 ∧ . . . ∧ δym,
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sinceF(Φ(x, θ)) = 1 for all x ∈ Ω, θ ∈ Sm−1.

Hence, we find

dVTM \0

(
. . . ,dΦ

(
∂

∂xα

)
, . . . ,dΦ

(
∂

∂θA

)
, . . . , ν

)
= +

det(gαβ(x, y))

F(x, y)m

√
det(σAB)

with

σAB :=
m∑
α=1

∂yα

∂θA

∂yα

∂θB
= ηA · ηB.

Note that the sign is due to the specific orientation of{η1, . . . , ηm}. We recall from
(2.24) thatdVSM is obtained by pluggingν into the last slot ofdVTM \0. Hence we
arrive at

Φ∗dVSM

(
. . . ,

∂

∂xα
, . . . ,

∂

∂θA
, . . .

)
= dVSM

(
. . . ,dΦ

(
∂

∂xα

)
, . . . ,dΦ

(
∂

∂θA

)
, . . .

)
= dVTM \0

(
. . . ,dΦ

(
∂

∂xα

)
, . . . ,dΦ

(
∂

∂θA

)
, . . . , ν

)
=

det(gαβ(x, y))

F(x, y)m

√
det(σAB).

That is

Φ∗dVSM =
det(gαβ(x, y))

F(x, y)m

√
det(σAB) dx1 ∧ . . . ∧ dxm∧ dθ1 ∧ . . . ∧ dθm−1.

Finally, observe that √
det(σAB) dθ1 ∧ . . . ∧ dθm−1

is the standard volume formdσ onSm−1. Thus we have shown:

Φ∗dVSM =
det(gαβ(x, y))

F(x, y)m dx1 ∧ . . . ∧ dxm∧ dσ onΩ × Sm−1

Let us summarize this as follows:

Proposition 2.3 Let χ : Ω → Rm be a local coordinate chart ofM , and let f :
SM ⊂ TM \ 0→ R be an integrable function with support inπ−1(Ω). Then we
have ∫

SM
f (x, y) dVSM =

∫
Ω

(∫
Sm−1

f

(
x,

y

F(x, y)

)
det(gαβ(x, y))

F(x, y)m dσ

)
dx.

Here, dσ is the standard volume form on Sm−1, dx= dx1∧. . .∧dxm, andy = y(x, θ)
for (x, θ) ∈ Ω × Sm−1, as defined in(2.25), (2.26).
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The Riemannian case – an example.Let α1, . . . , αm > 0 be positive real
numbers. Then we have the identity

(2.30)
∫

Sm−1

α1 · · ·αm

(α2
1θ

2
1 + · · · + α

2
mθ

2
m)m/2

dσ(θ) = vol(Sm−1),

In fact, if we parametrize the boundary of an ellipsoidE as

∂E := A(Sm−1) = {(α1θ1, . . . , αmθm) : θ = (θ1, . . . , θm) ∈ Sm−1},

where

A =


α1

. . .

αm

 ∈ Rm×m,

by the mappingX : Sm−1 → Rm with X(θ) := Aθ, then we can express its exterior
unit normalν by

ν :=
Ae1 ∧ . . . ∧ Aem−1

|Ae1 ∧ . . . ∧ Aem−1|
,

where{ei}
m−1
i=1 is an orthonormal basis ofTSm−1. In particular, one has

X · ν = Aθ ·
Ae1 ∧ . . . ∧ Aem−1

|Ae1 ∧ . . . ∧ Aem−1|

= detA
(e1 ∧ . . . ∧ em−1) · θ
|Ae1 ∧ . . . ∧ Aem−1|

=
detA

|Ae1 ∧ . . . ∧ Aem−1|
.

With dX(ei) = Aei for i = 1, . . . ,m− 1, one obtains for the metric coefficients

gi j := dX(ei) · dX(ej) = Aei · Aej ,

and hence

detgi j = det(Aei · Aej)

= (Ae1 ∧ . . . ∧ Aem−1) · (Ae1 ∧ . . . ∧ Aem−1)

= |Ae1 ∧ . . . ∧ Aem−1|
2,

and hence
dV =

√
detgi j dσ = |Ae1 ∧ . . . ∧ Aem−1|dσ,

wheredσ denotes the standard volume form onSm−1. This yields

X · νdV = α1 · · ·αm dσ,
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which implies ∫
Sm−1

α1 · · ·αm

(α2
1θ

2
1 + · · · + αmθ

2
m)m/2

dσ =
∫

Sm−1

X · ν
‖X‖m

dV.

The right-hand side may be written as∫
∂E

gradRm f (x) · ν∂E dH m−1

with the harmonic function

f (x) :=

log |x| for m= 2,
1

2−m|x|
2−m for m≥ 3.

Cutting out the singularity at 0∈ Rm we can apply the Gauß divergence theorem to
the setE \ Bε(0) and letε tend to 0 to prove (2.30).

As a consequence we find that∫
Sm−1

√
det(gαβ(x))

(gαβ(x)θαθβ)m/2
dσ(θ) = vol(Sm−1)

for any positive definite symmetric matrixgαβ(x).
Hence, if the Finsler structure is Riemannian, i.e.,F2(x, y) = gαβ(x)yαyβ, then

we have the relation

1
vol(Sm−1)

∫
SM

f (x)dVSM =

∫
Ω

f (x)
√

det(gαβ(x)) dx

=

∫
M

f (x)dVM(2.31)

for all integrable functionsf : M → R with support inΩ and trivial extension to
SM .

3 Harmonic mappings from Finsler manifolds

In this section we introduce the energy density and present the weak Euler-Lagrange
equation for harmonic mappings from Finsler manifolds.

The energy functional. Let U : M m → N n be a smooth mapping from the
m-dimensional Finsler manifold (M , F) into ann-dimensional Riemannian man-
ifold (N ,h). Following [Mo], [SZ], we define an energy densitye(U) : SM →

[0,∞) as follows:

(3.1) e(U)(x, [y]) :=
1
2
gαβ(x, y)

∂ui

∂xα
∂u j

∂xβ
hi j (u).
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Here,u is the local representation ofU with respect to coordinates (xα) and (ui)
on M andN , respectively, andhi j are the coefficients of the Riemannian target
metrich. Moreover, we extend our summation convention: Repeated Latin indices
are automatically summed from 1 ton.

The energyE(U) is then given by

(3.2) E(U) :=
1

vol(Sm−1)

∫
SM

e(U) dVSM .

Here, integration is with respect to the Sasaki metric onSM . We also need the
localized energiesEΩ(U) := E(U |Ω) for the restriction ofU to an open subset
Ω ⊂M . In particular, for mappings between Riemannian manifolds the above def-
inition of energy coincides with the usual one by virtue of our observation (2.31),
i.e.,

E(U) =
1
2

∫
M
gαβ(x)

∂ui

∂xα
∂u j

∂xβ
hi j (u) dVM .

As in the Riemannian case,U ∈W1,2
loc(Ω,N )∩ L∞(Ω,N ) is said to beweakly

harmoniconΩ ⊂⊂M if the first variation ofEΩ vanishes atU, i.e.,

d
dε

∣∣∣∣∣
ε=0

EΩ(Uε) = 0

for all variationsUε of U of the form

Uε = expU(εV + o(ε)),

whereV is a smooth vectorfield alongU with compact support inΩ. Here, exp
denotes the exponential map on (N ,h). We say thatU is (weakly) harmonic on
M , if it is (weakly) harmonic onΩ for all Ω ⊂⊂M .

The weak Euler-Lagrange equation. Let χ : Ω → Rn be a local coordinate
chart ofM and putD := χ(Ω). In view of the preceeding discussion, in particular
(3.1), (3.2) and Proposition 2.3, the energyE is locally given by the quadratic
functional

EΩ(U) =
1
2

∫
D

Aαβ(x)
∂ui

∂xα
∂u j

∂xβ
hi j (u) dx,

where

(3.3) Aαβ(x) =
1

vol(Sm−1)

∫
Sm−1

gαβ(x, y)
det(gαβ(x, y))

F(x, y)m dσ.

By a standard computation we can now derive the weak Euler-Lagrange equa-
tion of E. The result is:

(3.4)
∫

D
Aαβ(x)

∂ui

∂xα
∂ϕi

∂xβ
dx=

∫
D
Γl

i j (u)Aαβ(x)
∂ui

∂xα
∂u j

∂xβ
ϕl dx
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for all ϕ ∈ C∞c (D,Rn). Here,Γl
i j denote the Christoffel symbols of the Riemannian

metrich.
Suppose now that the coefficientsgαβ of the Finsler metric satisfy condition

(1.4), i.e.,
λ|ξ|2 ≤ gαβ(x, y)ξ

αξβ ≤ µ|ξ|2

for all ξ ∈ Rm and all (x, y) ∈ TΩ \ 0 with constants 0< λ ≤ µ < +∞. Then the
following structure conditions hold for equation (3.4):

(3.5) λ∗|ξ|
2 ≤ Aαβ(x)ξαξβ ≤ µ∗|ξ|

2

for all ξ ∈ Rm and allx ∈ D with

(3.6) λ∗ =
λm

µ1+m
2
, µ∗ =

µm

λ1+m
2
.

4 Interior regularity of harmonic mappings

Jacobi field estimates.According to Jost [J1], any two pointsP1, P2 of a regular
ball BL(Q) can be connected by a geodesic completely contained inBL(Q). This
geodesic is shortest among all curves joiningP1 andP2 within BL(Q). Moreover,
it contains no pair of conjugate points.

In particular, around each pointP ∈ BL(Q) one may introduce a normal co-
ordinate chartψ : BL(Q) → Rn. Denote by (vi) = (v1, . . . , vn) the corresponding
coordinates. ThenP has coordinates (0, . . . ,0) and, ifP′ ∈ BL(Q) has coordinates
v, then

dist (P,P′) = |v| <
π
√
κ
.

Moreover, the following estimates hold for the metric and the Christoffel symbols;
see e.g. [H, Section 5]:

(4.1) {δi j − aω(|v|)hi j (v)}ζ
iζ j ≤ Γl

i j (v)v
lζ iζ j ≤ {δi j − aκ(|v|)hi j (v)}ζ

iζ j ,

(4.2) b2
κ(|v|)|ζ |

2 ≤ hi j (v)ζ
iζ j ≤ b2

ω(|v|)|ζ |2

for all ζ ∈ Rn. Here, the functionsaσ andbσ are defined as follows:

aσ(t) =

 t
√
σctg(t

√
σ) if σ > 0, 0 ≤ t < π√

σ
,

t
√
−σctgh(t

√
−σ) if σ ≤ 0, 0 ≤ t < ∞,



20

and

bσ(t) =


sint
√
σ

t
√
σ

if σ > 0, 0 ≤ t < π√
σ
,

sinht
√
−σ

t
√
−σ

if σ ≤ 0, 0 ≤ t < ∞.

As a consequence of (4.1) and (4.2) we obtain for every positive semi-definite
matrix (Aαβ) ∈ Rm×m, and for every matrix (pi

α) ∈ Rn×m

Aαβpi
αpi

β − aω(|v|)Aαβpi
αp j

βhi j (v) ≤ Γl
i j (v)v

lAαβpi
αp j

β

≤ Aαβpi
αpi

β − aκ(|v|)A
αβpi

αp j
βhi j (v),(4.3)

(4.4) b2
κ(|v|)A

αβpi
αpi

β ≤ Aαβpi
αp j

βhi j (v) ≤ b2
ω(|v|)Aαβpi

αpi
β.

Moreover, if we use normal coordinates centered aroundQ, then by (4.2) in con-
nection with our assumptionL < π

2
√
κ

we can estimate the distance of two points

P1,P2 ∈ BL(Q) with coordinatesp1, p2 by3

(4.5) bκ(L)|p1 − p2| ≤ dist (P1,P2) ≤ bω(L)|p1 − p2|.

Subsolutions of elliptic equations and a local energy estimate.
Let ψ : BL(Q) → Rn be a normal coordinate chart around some pointP ∈

BL(Q). We denote byv = (v1, . . . , vn) the representation ofU with respect toψ and
χ, i.e.,

v := ψ ◦ U ◦ χ−1.

Abbreviate∂α = ∂
∂xα . The weak Euler-Lagrange equation then takes the form

(4.6)
∫

B4d

{
Aαβ(x)∂αv

l∂βϕ
l − f l(v)ϕl

}
dx= 0 for all ϕ ∈ C∞c (B4d,R

n),

and hence by approximation for allϕ ∈W1,2
0 (B4d,Rn)∩L∞(B4d,Rn). Here we have

set
f l(v) := Γl

i j (v)A
αβ(x)∂αv

i∂βv
j .

Denoting
E(v) = Aαβ(x)∂αv

i∂βv
jhi j (v),

3For the right inequality compare the length of the geodesic connectingP1,P2 with the length
of the image of the straight line under exp using (4.2) in the Riemannian length functional together
with bω(|v|) ≤ bω(L). For the left inequality connectP1 andP2 by a minimizing geodesic and use
bκ(|v|) ≥ bκ(L).
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P(v) = Aαβ(x)∂αv
l∂βv

l − f l(v)vl .

We infer from (4.3)

(4.7) aκ(|v|)E(v) ≤ P(v).

Lemma 4.1 (Subsolution & local energy estimate)4 Let v be the representation
of U with respect to normal coordinates around P∈ BL(Q). Then the following
holds true:

(i) (Subsolution) If|v| < π
2
√
κ

on a domain G⊂ Rm then

∂α(Aαβ(x)∂β|v|
2) ≥ 0 on G.

(ii) (Local energy estimate) If|v| ≤ L on B4R(x0) ⊂ B4d then

(4.8) R2−m
∫

BR(x0)
E(v) dx≤ C

[
M2(4R) − M2(R)

]
,

where
M(r) := sup

Br (x0)
|v|, 0 ≤ r ≤ 4R.

Here, the constant C depends only on m,λ, µ, κ and L.

P: (i) Usingϕ = vη, η ∈ C∞c (G), η ≥ 0, as a testfunction in (4.6) we obtain:

(4.9) −
1
2

∫
G

Aαβ(x)∂α|v|
2∂βηdx=

∫
G

P(v)ηdx.

Since

aκ(|v|) ≥ aκ

(
π

2
√
κ

)
= 0 on G

we infer from (4.7) thatP(v) ≥ 0 onG. This gives the desired result.
(ii) By virtue of Part (i) the functionz := M2(4R) − |v|2 ≥ 0 is a supersolution

of the linear elliptic operator∂β(Aαβ∂α) in G := B4R(x0). Hence Moser’s weak
Harnack inequality [M, Thm. 3], [GT, Thm. 8.18] implies the existence of a
constantC1 = C1(m, λ∗, µ∗) such that

(4.10)
1

Rm

∫
B2R(x0)

z dx≤ C1(m, λ∗, µ∗) inf
BR(x0)

z.

4In the Euclidean context Part (i) of this lemma is due to M. Meier [Me, p. 5], for Part (ii)
compare with [GH, Proof of Prop. 1].
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Let w ∈W1,2
0 (B4R(x0)) be a solution of

(4.11)∫
B4R(x0)

Aαβ∂αϕ∂βwdx=
1
R2

∫
B4R(x0)

χB2R(x0)ϕdx for all ϕ ∈W1,2
0 (B4R(x0)).

Then one hasw . 0, and according to [GT, Thm. 8.1]

inf
B4R(x0)

w ≥ inf
∂B4R(x0)

(min{w,0}) = 0,

and therefore, by the weak Harnack inequality, there is a constantC2 = C2(m, λ∗, µ∗)
such that

(4.12) 0<
1

Rm

∫
B2R(x0)

wdx≤ C2(m, λ∗, µ∗) inf
BR(x0)

w.

To estimate the left-hand side from below we chooseϕ := w in (4.11) and obtain
from (3.5)

(4.13) λ∗

∫
B4R(x0)

|∇w|2 dx≤
1
R2

∫
B2R(x0)

wdx.

On the other hand, we infer from (4.11) and (3.5) by means of Hölder’s inequality

1
R2

∫
B2R(x0)

ϕdx≤ µ∗‖∇w‖L2(B4R(x0))‖∇ϕ‖L2(B4R(x0)) for all ϕ ∈W1,2
0 (B4R(x0)),

which together with (4.13) yields

(4.14)
1

Rm

∫
B2R(x0)

wdx≥
1

Rm+2

λ∗‖ϕ‖
2
L1(B2R(x0))

µ2
∗‖∇ϕ‖

2
L2(B4R(x0))

for all ϕ ∈W1,2
0 (B4R(x0)).

To estimate the right-hand side we chooseϕ to be the radially symmetric function5

(4.15) ϕ(x) = ϕ(|x|) :=
1

2m
(|x|2 − (4R)2) ∈W1,2

0 (B4R(x0)),

which leads to an explicit lower bound for the left-hand side of (4.12) depending
only onm, λ∗, µ∗, but not onR. Hence, we find a constantC3 = C3(m, λ∗, µ∗) such
that

(4.16) 0< C3 ≤ w in BR(x0).

5The specific functionφ in (4.15) solves the equation∆φ = 1 on B4R(x0) thus maximizing the
quotient‖φ‖2

L1/‖∇φ‖L2 on B4R(x0) related to the classical problem oftorsional rigidity of isotropic
beams; see [PS, Ch. 5], [P]. Note, however, that theL1-norm in the quotient in (4.14) is taken over
the smaller ballB2R(x0).
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On the other hand, a quantitative version of Stampacchia’s maximum principle (see
[HW, Lemma 2.1]) yields a constantC4 = C4(m, λ∗, µ∗) such that

(4.17) 0≤ w ≤ C4 in B4R(x0).

Insertingϕ := wz ∈W1,2
0 (B4R(x0)) as a testfunction in (4.11) leads to

1
2

∫
B4R(x0)

Aαβ∂αz∂β(w
2) dx

≤
(3.5)

1
2

∫
B4R(x0)

Aαβ∂αz∂β(w
2) dx+

∫
B4R(x0)

Aαβz∂αw∂βwdx

=
1
R2

∫
B2R(x0)

wz dx,(4.18)

where we used ellipticity (3.5) and the fact thatz ≥ 0 to obtain the inequality on
the left.

On the other hand, using (4.9) together with (4.7) and the fact that

aκ(|v|) ≥ aκ(L) > aκ

(
π

2
√
κ

)
= 0,

we obtain

0 ≤
∫

B4R(x0)
E(v)ηdx≤

1
2aκ(L)

∫
B4R(x0)

Aαβ∂αz∂βηdx

for anyη ∈W1,2
0 (B4R(x0)) ∩ L∞(B4R(x0)). Applying this toη := w2 in combination

with (4.16), (4.18), (4.17), and (4.10) we arrive at

C2
3

∫
BR(x0)

E(v) dx ≤
(4.16)

∫
B4R(x0)

E(v)w2 dx≤
1

2aκ(L)

∫
B4R(x0)

Aαβ∂αz∂β(w
2) dx

≤
(4.18)

1
aκ(L)R2

∫
B2R(x0)

wz dx ≤
(4.17)

C4

aκ(L)R2

∫
B2R(x0)

z dx

≤
(4.10)

C1C4Rm−2

aκ(L)
inf

BR(x0)
z=

C1C4Rm−2

aκ(L)

[
M2(4R) − M2(R)

]
.

�
As a starting point for our iteration argument we will use (cf. [Me, p. 5])

Lemma 4.2 Let G⊂ Rm be a domain inRm and suppose thatw ∈ W1,2(B4R(x0) ∩
G) is a weak solution of

∂α
(
Aαβ(x)∂βw

)
≥ 0 in B4R(x0) ∩G,
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where the coefficients Aαβ ∈ L∞(B4R(x0) ∩G) satisfy

λ∗|ξ|
2 ≤ Aαβ(x)ξαξβ ≤ µ∗|ξ|

2 for all ξ ∈ Rm, x ∈ B4R(x0) ∩G

with constants0 < λ∗ ≤ µ∗ < +∞.

(i) If G = B4R(x0) ⊂ Rm then

sup
BR(x0)

w ≤ (1− δ0) sup
B4R(x0)

w + δ0

∫
BR(x0)

wdx

with a constantδ0 ∈ (0,1) depending only on m,λ∗ andµ∗.

(ii) If L m(BR(x0) \G) ≥ γL m(BR(x0)) for some constantγ > 0, then

sup
BR(x0)∩G

w ≤ (1− δ0) sup
B4R(x0)∩G

w + δ0 sup
BR(x0)∩∂G

w

with a constantδ0 ∈ (0,1) depending only on m, λ∗, µ∗, andγ.

P: (i) We can assume thatw . 0, and apply Moser’s weak Harnack inequal-
ity [GT, Thm. 8.18] to the non-negative supersolution

v := sup
B4R(x0)

w − w

of the elliptic operator∂α(Aαβ∂β) in B4R(x0) to obtain a constantC = C(m, λ∗, µ∗) >
0, such that

1
Rm

∫
BR(x0)

vdx≤
1

Rm

∫
B2R(x0)

vdx≤ C inf
BR(x0)

v ≤ (C + lm) inf
BR(x0)

v

for lm := L m(B1(0)), which implies

L m(BR(x0))
Rm

 sup
B4R(x0)

w −

∫
BR(x0)

wdx

 ≤ (C + lm)

 sup
B4R(x0)

w − sup
BR(x0)

w

 ,
and therefore

sup
BR(x0)

w ≤ sup
B4R(x0)

w −
lm

C + lm

 sup
B4R(x0)

w −

∫
BR(x0)

wdx

 .
Setδ0 = δ0(m, λ∗, µ∗) := lm(C + lm)−1 ∈ (0,1).
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(ii) Moser’s weak Harnack inequality [GT, Thm. 8.26] applied to the non-
negative supersolutionv := supB4R(x0)∩G w − w yields

1
Rm

∫
B2R(x0)\G

 sup
B4R(x0)∩G

w − sup
B4R(x0)∩∂G

w

 dx+
∫

B2R(x0)∩G
inf {v, inf

B4R(x0)∩∂G
v}dx

≤ C inf
BR(x0)∩G

v = C

 sup
B4R(x0)∩G

w − sup
BR(x0)∩G

w


≤ (C + γlm)

 sup
B4R(x0)∩G

w − sup
BR(x0)∩G

w

 .
The second term on the left-hand side is non-negative and the first is bounded from
below by

γlm( sup
B4R(x0)∩G

w − sup
B4R(x0)∩∂G

w),

which gives the desired result forδ0 := γlm(C + γlm)−1 ∈ (0,1). �

Iteration procedure. As before suppose thatB4R(x0) ⊂ B4d. ChooseJ ∈ N so
large that

(4.19) L(1+ J−1) <
π

2
√
κ
,

and set

(4.20) ε :=
1

2KJ
∈ (0,1)

with a constantK = K(ω, L) ≥ 1 yet to be specified. Definel to be the smallest
integer such that (1− δ0)l < ε2, whereδ0 is the constant from Lemma 4.2, and put
s := 4−l .

Claim 1. If v is the representation of U with respect to normal coordinates
around P in BL(Q) with |v| ≤ L, then there exists i0 = i0(L, J, ω, κ,m, λ, µ) ∈ N such
that

(4.21)
∫

BR0(x0)
|v − v̄R0 |

2 dx≤ L2ε4smJ for R0 = 4−i0R,

where

v̄R0 :=
∫

BR0(x0)
vdx.

P: We have

0 < C5 = C5(m, λ, µ, L, κ) := λ∗b
2
κ(L) ≤ λ∗b

2
κ(|v|),
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and therefore by (3.5), (4.4), and Part (ii) of Lemma 4.1 applied toB4r i (x0) ⊂
B4R(x0), r i := 4−iR, i ∈ N,

C5

∫
Bri (x0)

|∇v|2 dx ≤

∫
Bri (x0)

λ∗b
2
κ(|v|)|∇v|

2 dx

≤
(3.5)

∫
Bri (x0)

b2
κ(|v|)A

αβ∂αv
i∂βv

i dx

≤
(4.4)

∫
Bri (x0)

Aαβ∂αv
i∂βv

jhi j (v) dx

≤
(4.8)

C(m, λ, µ, L, κ)rn−2
i

[
M2(4r i) − M2(r i)

]
,(4.22)

which implies by the Poincaré inequality∫
Bri (x0)

|v − v̄r i |
2 dx≤ C

[
M2(4r i) − M2(r i)

]
= C

[
M2

( R

4i−1

)
− M2

( R

4i

)]
.

Choosing the integer

p :=
[ C

ε4smJ

]
+ 1

we find i0 ∈ {1, . . . , p} such that

p ·
[
M2

( R

4i0−1

)
− M2

( R

4i0

)]
≤

p∑
i=1

[
M2

( R

4i−1

)
− M2

( R

4i

)]
= M2(R) − M2(4−pR)

≤ M2(R) =

 sup
BR(x0)

|v|

2

≤ L2,

so that forR0 := r i0 we find by our choice ofp∫
BR0(x0)

|v − v̄R0 |
2 dx≤

CL2

p
≤ L2ε4smJ.

�
For k = 0,1, . . . , J let

Rk = skR0, and Pk = expQ

(
k
J

ūR0

)
,

i.e., Pk ∈ BL(Q) corresponds tokūR0/J under normal coordinates aroundQ, and
let v(k) be the representation ofU with respect to normal coordinates aroundPk.
Finally, letL0 := L and

Lk :=

(
1
J
+ 1−

k
J

)
L ≤ L for k = 1, . . . , J.
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Claim 2. We have

(4.23) |v(k)| ≤ Lk in BRk(x0) for k = 0,1, . . . , J.

P: Clearly, (4.23) holds fork = 0.
Suppose now that (4.23) has been shown up tok− 1, k ≥ 1. Then

|v(k)| = dist (U ◦ χ−1,Pk) ≤ dist (U ◦ χ−1,Pk−1) + dist (Pk−1,Pk)

= |v(k−1)| + dist (Pk−1,Pk)(4.24)

≤ Lk−1 + J−1L ≤ (1+ J−1)L in BRk−1(x0).

In particular we have|v(k)| < π
2
√
κ

by (4.19). Thus we can apply Part (i) of Lemma
4.1 and obtain

∂α(Aαβ(x)∂β|v
(k)|2) ≥ 0 in BRk−1(x0).

Applying Lemma 4.2l-times tow := |v(k)|2 yields

sup
BsRk−1(x0)

|v(k)|2 ≤ (1− δ0)l sup
BRk−1(x0)

|v(k)|2 +

l∑
i=1

τi

∫
BRk−1

4i
(x0)
|v(k)|2 dx,

whereτi := δ0(1− δ0)l−i > 0 satisfies

l∑
i=1

τi = 1− (1− δ0)l .

For R∗ ∈ {Rk−1/4i : i = 1, . . . , l} with∫
BR∗ (x0)

|v(k)|2 dx= max
i=1,...,l

∫
BRk−1

4i
(x0)
|v(k)|2 dx

we can deduce by our choice ofl the estimate

sup
BsRk−1(x0)

|v(k)|2 ≤ ε2 sup
BRk−1(x0)

|v(k)|2 +
[
1− (1− δ0)l

] ∫
BR∗ (x0)

|v(k)|2 dx

≤ ε2 sup
BRk−1(x0)

|v(k)|2 +
[
1− ε2(1− δ0)

] ∫
BR∗ (x0)

|v(k)|2 dx

≤ 2ε2 sup
BRk−1(x0)

|v(k)|2 + (1− ε2)
∫

BR∗ (x0)
|v(k)|2 dx.(4.25)
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Observe that by (4.5)

|v(k)| = dist (U ◦ χ−1,Pk) ≤ dist (U ◦ χ−1,PJ) + dist (PJ,Pk)

= dist (U ◦ χ−1,PJ) +

(
1−

k
J

)
|ūR0 |

≤
(4.5)

bω(L)|u− ūR0 | +

(
1−

k
J

)
L,

which by virtue of Young’s inequality leads to

(4.26) |v(k)|2 ≤ (1+ ε−2)b2
ω(L)|u− ūR0 |

2 + (1+ ε2)

(
1−

k
J

)2

L2.

If we use (4.24) to estimate the first term in (4.25), and (4.26) for the second term
in (4.25), then we obtain in combination with (4.21) applied tov := u

sup
BRk(x0)

|v(k)|2 = sup
BsRk−1(x0)

|v(k)|2 ≤ 2ε2L2(1+ J−1)2 + (1− ε4)

[
1−

k
J

]2

L2

+ε2
(
1− ε4

ε4

)
b2
ω(L)

∫
BR∗ (x0)

|u− ūR0 |
2 dx

≤
(4.21)

2ε2L2(1+ J−1)2 + (1− ε4)

[
1−

k
J

]2

L2 + (1− ε4)ε2b2
ω(L)L2

≤ L2

8ε2 +

[
1−

k
J

]2

+ ε2b2
ω(L)

 ,(4.27)

where we also used that bysJR0 ≤ ssk−1R0 = sRk−1 ≤ R∗ ≤ R0∫
BR∗ (x0)

|u− ūR0 |
2 dx≤

1
smJ

∫
BR0(x0)

|u− ūR0 |
2 dx.

Hence, if we specifyK :=
√

2+ bω(L)2

4 , we arrive at

sup
BRk(x0)

|v(k)|2 ≤ L2


[
2Kε + 1−

k
J

]2

− 4Kε

[
1−

k
J

]
− 4K2ε2 + 8ε2 + ε2b2

ω(L)


≤ L2

(
2Kε + 1−

k
J

)2

=
(4.20)

L2
k.

This proves Claim 2. �
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In particular we obtain the estimate

dist (U,PJ) = |v(J)| ≤
L
J

in BRJ(x0) = BsJ4−i0R(x0),

wheres = s(L, J, ω,m, λ, µ), and i0 = i0(L, J, ω, κ,m, λ, µ). In view of (4.5) this
leads to the following estimate for the oscillation ofu:

oscBRJ (x0)u ≤
(4.5)

1
bκ(L)

oscBRJ (x0)U ◦ χ
−1 ≤

2
bκ(L)

sup
BRJ (x0)

dist (U ◦ χ−1,PJ) ≤
2L

bκ(L)J

for J = 1,2, . . .. SinceRJ = sJ4−i0R = 4−Jl−i0R→ 0 asJ → ∞ we can conclude
thatU is continuous.

Proof of Theorem 1.1. In view of the preceeding discussion there exists an
integer i1 = i1(n,m, λ, µ, ω, κ, L) such that for all ballsB4R(x0) ⊂ B4d and for
R̃ := 4−i1Rwe have

(4.28) oscBR̃(x0)u ≤
L

bω(L)
.

Let u′ be the representation ofU with respect to normal coordinates aroundU ◦
χ−1(x0), and define

ω′(ρ) := sup
Bρ(x0)

|u′|2, 0 < ρ ≤ R̃.

Using (4.5) and (4.28) we find onBρ(x0) for all 0 < ρ ≤ R̃

|u′| = dist (U ◦ χ−1,U ◦ χ−1(x0)) ≤
(4.5)

bω(L)|u− u(x0)|

≤ bω(L) osc
Bρ(x0)

u ≤ bω(L) osc
BR̃(x0)

u ≤
(4.28)

L.(4.29)

Thus (4.22) in the proof of Claim 1 forv := u′ and withr i replaced byρ/4 yields

(4.30) ρ2−n
∫

Bρ/4(x0)
|∇u′|2 dx≤ C(m, λ, µ, L, κ)

[
ω′(ρ) − ω′(

ρ

4
)
]
, 0 < ρ ≤ R̃.

Next, let P ∈ BL(Q) be the point which corresponds to ¯uρ/4 under expQ, and let
v be the representation ofU with respect to normal coordinates aroundP. Then,
again by (4.5) and (4.28)

(4.31) |v| = dist (U ◦ χ−1,P) ≤
(4.5)

bω(L)|u− ūρ/4| ≤ bω(L) osc
Bρ(x0)

u ≤
(4.28)

L <
π

2
√
κ
,

which by iterated application of Lemma 4.2 implies forε > 0 ands := 4−l , where
l = l(m, λ∗, µ∗, ε) is the smallest integer with (1− δ0)l < ε2 (δ0 = δ0(m, λ∗µ∗) as in
Lemma 4.2) the estimate

(4.32) sup
Bsρ(x0)

|v|2 ≤ 2ε2 sup
Bρ(x0)

|v|2 + (1− ε2)
∫

Bρ∗ (x0)
|v|2 dx
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for someρ∗ ∈ [sρ, ρ/4], 0 < ρ ≤ R̃ (compare with the proof of Claim 2 above).
Using (4.31) and the Poincaré inequality one can show∫

Bρ∗ (x0)
|v|2 dx ≤

(4.31)
b2
ω(L)

∫
Bρ∗ (x0)

|u− ūρ/4|
2 dx≤ s−mb2

ω(L)
∫

Bρ/4(x0)
|u− ūρ/4|

2 dx

≤ C(m, λ∗, µ∗, ε, ω, L)ρ2−m
∫

Bρ/4(x0)
|∇u|2 dx,

sinces= s(ε, δ0). Thus by (4.32) for 0< ρ ≤ R̃,

(4.33) sup
Bsρ(x0)

|v|2 ≤ 2ε2 sup
Bρ(x0)

|v|2 +C(m, λ∗, µ∗, ε, ω, L)ρ2−m
∫

Bρ/4(x0)
|∇u|2 dx.

With |u| ≤ L, (3.5) and (4.4) one has

λ∗b
2
κ(L)|∇u|2 ≤ Aαβ(x)∂αui∂βu

jhi j (u) ≤ µ∗b
2
ω(L)|∇u|2

for all x ∈ BR(x0). Replacingu by u′ (also with|u′| ≤ L by (4.29)) one obtains the
analogous estimate for|∇u′|2 and thus by the invariance of the energy densitye(U)
(see (3.1)) under change of coordinates

λ∗b2
κ(L)

µ∗b2
ω(L)
|∇u′|2 ≤ |∇u|2 ≤

µ∗b2
ω(L)

λ∗b2
κ(L)
|∇u′|2.

Together with (4.30) this can be used in (4.33) to infer

sup
Bsρ(x0)

|v|2 ≤ 2ε2 sup
Bρ(x0)

|v|2 +C(m, λ∗, µ∗, ε, ω, κ, L)
[
ω′(ρ) − ω′(sρ)

]
sinces≤ 1/4. We note that (4.5), (4.31), and (4.29) also imply

|v| ≤
(4.31)

bω(L)|u− ūρ/4| ≤ 2bω(L) sup
Bρ(x0)

|u− u(x0)| ≤
(4.5)

2
bω(L)
bκ(L)

sup
Bρ(x0)

|u′| in Bρ(x0),

because|u′| = dist (U ◦ χ−1,U ◦ χ−1(x0)), and

|u′| ≤
(4.29)

bω(L)|u− u(x0)| ≤ 2bω(L) sup
Bsρ(x0)

|u− ūρ/4| ≤ 2
bω(L)
bκ(L)

sup
Bsρ(x0)

|v| in Bsρ(x0),

since|v| = dist (U ◦ χ−1,expQ ūρ/4). Therefore from (4.32)

ω′(sρ) ≤ C(κ, ω, L)ε2ω′(ρ) + C̃(m, λ∗, µ∗, ε, ω, κ, L)
[
ω′(ρ) − ω′(sρ)

]
,
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which becomes forε :=
√

(2C(κ, ω, L)−1

ω′(sρ) ≤ θω′(ρ) with θ =

C̃ + 1
2

C̃ + 1

 < 1.

A standard iteration lemma [GT, Lemma 8.23] then gives the growth estimate

ω′(ρ) ≤ C
(
ρ

R̃

)2α
ω′(R̃) for all 0 < ρ ≤ R̃,

and according to (4.29) we have√
ω′(ρ) ≤

(4.29)
C(ω, L) osc

Bρ(x0)
u ≤ 2C′(κ, ω, L)

√
ω′(ρ),

hence

osc
Bρ(x0)

u ≤ 2C
(
ρ

R̃

)α
osc

BR̃(x0)
u ≤ C′

(
ρ

4R

)α (
4R

R̃

)α
osc

BR(x0)
u ≤ C′′

(
ρ

4R

)α
osc

BR(x0)
u

with α = α(m, λ, µ, L, ω, κ) andC′′ = C′′(m, λ, µ, L, ω, κ). A standard covering
argument now leads to the estimate

Hölα,Bdu ≤ C

with C depending onm, λ, µ, L, ω, κ and also ond, and from this the desired esti-
mate (1.5) follows by a simple scaling argument. �

5 Boundary estimates

Let U : M → N be a harmonic mapping which maps a coordinate neighbourhood
Ω ⊂ M of a pointP ∈ ∂M into a regular ballBL(Q) ⊂ N , and letχ : Ω → Σ5R

be a coordinate chart that mapsΩ homeomorphically onto the closure of the set

Σ5R := {x = (x′, xm) ∈ Rm : |x′| < 5R,0 < xm < 5R}

with
χ(∂M ∩Ω) = Σ0

5R := {x = (x′,0) ∈ Rm : |x′| ≤ 5R}.

For x0 ∈ Σ
0
R set

SR(x0) := BR(x0) ∩ {xm > 0}.

The a priori estimate for the Ḧolder semi-norm up to the boundary follows by com-
bining the interior estimate (1.5) with the following oscillation estimate, Theorem
5.1, near the boundary to obtain the global oscillation estimate

osc
ΣR∩Bρ(y)

u ≤ Cργ
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for anyy ∈ ΣR, whereC = C(λ, µ, L, ω, κ,U |∂M ,m) andγ = γ(λ, µ, L, κ,U |∂M ) ∈
(0,1). Here, as in Theorem 5.1,u = (u1, . . . ,un) denotes the normal coordinate
representation ofU centered atQ. Setting

σ(t) := osc
Σ0

t

u

we formulate

Theorem 5.1 If σ(R) < L/bω(L) and if

(5.1) 2L + bω(L)σ(R) <
π
√
κ
,

then there is R∗ = R∗(λ, µ, L, ω, κ,m) ∈ (0,R] such that for allρ ∈ (0,R∗]

(5.2) osc
Sρ(x0)

u ≤ C

[(
ρ

R∗

)β
osc

SR(x0)
u+ σ(

√
ρR)

]
,

where C= C(λ, µ, L, ω, κ,m) andβ = β(λ, µ,m) ∈ (0,1).

P: Setting

Mη(t) := sup
Σ0

t

dist (U ◦ χ−1,expQ η) for η ∈ TQN � Rn,

andMη ≡ Mη(R), we obtain forx0 ∈ Σ
0
R with ξ := u(x0) by (3.5)

(5.3) Mξ ≤ bω(L) sup
x∈Σ0

R

|u(x) − u(x0)| ≤ bω(L)σ(R) < L <
π

2
√
κ
.

Thus we can chooseJ ∈ N so large that

(5.4) 2L + Mξ +
3L
J
<

π
√
κ
,

which is possible by assumption (5.1). We setL0 := L, and

Lk :=
L
J
+ Mξk for 1 ≤ k ≤ J,

whereξk := (k/J)ξ. We claim that for normal coordinatesv(k) of U centered at
Pk := expQ ξk one has

(5.5) |v(k)| ≤ Lk in SRk(x0) for Rk :=
R

4kl
.
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Here,l is the smallest integer such that

(5.6) (1− δ0)l ≤
L2

J2(L + |ξ|)2
,

whereδ0 is the constant in Part (ii) of Lemma 4.2. We prove this claim by induc-
tion. (5.5) is valid fork = 0. Assuming (5.5) for all indices less or equal tok − 1
we estimate

(5.7) Mξk−1 ≤ Mξ + dist (Pk−1,PJ) ≤ Mξ +
J − (k− 1)

J
L,

Our induction hypothesis, on the other hand, implies forx ∈ SRk−1(x0)

(5.8) |v(k)(x)| ≤ dist (U ◦ χ−1(x),Pk−1) + dist (Pk−1,Pk) ≤ Lk−1 +
L
J
.

In addition, we have by definition ofLk andξk, (5.7), and (5.4)

L + |ξk| + Lk−1 +
L
J
≤ L +

k
J

L +
L
J
+ Mξk−1 +

L
J

≤
(5.7)

L +
L
J

[2 + k+ J − (k− 1)] + Mξk

= 2L + 3
L
J
+ Mξk

<
(5.4)

π
√
κ
,

which, together with (5.8) and|v(k)(x)| ≤ dist (U ◦χ−1(x),Q)+dist (Q,Pk) ≤ L+ |ξk|

leads to

|v(k)(x)| ≤
1
2

[
L + |ξk| + Lk−1 +

L
J

]
<

π

2
√
κ

for all x ∈ SRk−1(x0).

Thus, by Part (i) of Lemma 4.1,|v(k)|2 is a subsolution of the elliptic operator
∂α(Aαβ∂β) on SRk−1(x0). Applying Part (ii) of Lemma 4.2l-times we obtain by
our choice (5.6)

sup
S Rk−1

4l
(x0)
|v(k)|2 ≤ (1− δ0)l sup

SRk−1(x0)
|v(k)|2 +

l−1∑
i=0

δ0(1− δ0)l−1−i sup
Σ0

Rk−1
4i

(x0)
|v(k)|2

≤ (1− δ0)l(L + |ξ|)2 + [1 − (1− δ0)l ] M2
ξk

≤
L2

J2
+ M2

ξk
,
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which implies

|v(k)(x)| ≤
L
J
+ Mξk = Lk for all x ∈ SRk(x0),

thus proving our claim (5.5).
Specifically,

|v(J)| ≤
L
J
+ Mξ <

(5.3)

(
1+

1
J

)
L <

(5.4)

π

2
√
κ

in SRJ(x0),

and so|v(J)|2 is a subsolution inSRJ(x0) according to Lemma 4.1. Part (ii) of
Lemma 4.2 then implies for

m(t) := sup
St(x0)

dist (U ◦ χ−1,PJ)

the estimate

m2(ρ) ≤ (1− δ0)m2(4ρ) + δ0M2
ξ (4ρ) for all 0 < ρ ≤

RJ

4
.

Iterating this inequality as in [GT, Lemma 8.23] we obtain

m(ρ) ≤ K

[(
ρ

R∗

)β
m(R) + Mξ(

√
ρR∗)

]
for R∗ := R∗(λ, µ, L, ω, κ,m) := RJ and constantsK andβ ∈ (0,1) depending only
onm, λ, andµ. This together with (5.3) proves (5.2). �

Appendix

Throughout this section we automatically sum over repeated Greekand Latin in-
dices from 1 tom. Latin indices are used here (in contrast to the previous sec-
tions) for transformed quantities under the coordinate change ˜xp = x̃p(x1, . . . , xm),
p = 1, . . . ,m, whereas Greek indices are used for the original quantities.

We begin with the
Proof of Lemma 2.2.It suffices to prove the first identity of (2.16) and second

of (2.17), the other identities are immediate consequences of (2.7) and (2.8).
For our calculations we notice that∂∂xα anddyα, interpreted as tangent and co-

tangent vectors onTM , transform under the coordinate change ˜xp = x̃p(x1, . . . , xm),
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p = 1, . . . ,m, as6

∂

∂x̃p =
∂xα

∂x̃p

∂

∂xα
+

∂2xα

∂x̃p∂x̃q ỹ
q ∂

∂yα
,(A.1)

dỹp =
∂x̃p

∂xα
dyα +

∂2x̃p

∂xα∂xβ
yαdxβ.(A.2)

This follows from (2.7) and (2.8).

Next we determine the transformation behaviour of the formal Christoffel sym-
bolsγαβρ defined in (2.13). By virtue of (2.5) we have

(A.3) g̃rs =
∂x̃r

∂xτ
∂x̃s

∂xσ
gτσ.

Hence, we compute

γ̃r
pq =

1
2
g̃rs

[
∂g̃qs

∂x̃p +
∂g̃sp

∂x̃q −
∂g̃pq

∂x̃s

]
=

(2.5)(A.1)(A.3)

1
2
∂x̃r

∂xτ
∂x̃s

∂xσ
gτσ

[{
∂xµ

∂x̃p

∂gαβ

∂xµ
+

∂2xµ

∂x̃p∂x̃t ỹ
t ∂gαβ

∂yµ

}
∂xα

∂x̃q

∂xβ

∂x̃s

+gαβ
∂2xα

∂x̃q∂x̃p

∂xβ

∂x̃s + gαβ
∂xα

∂x̃q

∂2xβ

∂x̃s∂x̃p

+

{
∂xµ

∂x̃q

∂gαβ

∂xµ
+

∂2xµ

∂x̃q∂x̃t ỹ
t ∂gαβ

∂yµ

}
∂xα

∂x̃s

∂xβ

∂x̃p

+gαβ
∂2xα

∂x̃s∂x̃q

∂xβ

∂x̃p + gαβ
∂xα

∂x̃s

∂2xβ

∂x̃p∂x̃q

−

{
∂xµ

∂x̃s

∂gαβ

∂xµ
+

∂2xµ

∂x̃s∂x̃t ỹ
t ∂gαβ

∂yµ

}
∂xα

∂x̃p

∂xβ

∂x̃q

− gαβ
∂2xα

∂x̃p∂x̃s

∂xβ

∂x̃q − gαβ
∂xα

∂x̃p

∂2xβ

∂x̃q∂x̃s

]
.

6The transformation law (A.1) for∂
∂xα as a tangent vector of the manifoldTM is more compli-

cated than the standard transformation law (2.7) for∂
∂xα as a tangent vector ofM itself.
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Relabeling indices and organizing terms, this leads to

γ̃r
pq =

∂x̃r

∂xτ
∂xµ

∂x̃p

∂xα

∂x̃q

1
2
gτσ

(
∂gασ
∂xµ

+
∂gσµ

∂xα
−
∂gµα

∂xσ

)
+
∂x̃r

∂xτ
∂2xτ

∂x̃q∂x̃p

+
1
2
gτσ

∂x̃r

∂xτ

{
∂2xµ

∂x̃p∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃q +
∂2xµ

∂x̃q∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃p

}
−

1
2
∂x̃r

∂xτ
∂x̃s

∂xσ
gτσ

∂2xµ

∂x̃s∂x̃t ỹ
t ∂gαβ

∂yµ
∂xα

∂x̃p

∂xβ

∂x̃q .

γ̃r
pq =

∂x̃r

∂xτ
∂xµ

∂x̃p

∂xα

∂x̃qγ
τ
αµ +

∂x̃r

∂xτ
∂2xτ

∂x̃q∂x̃p

+
1
2
gτσ

∂x̃r

∂xτ

{
∂2xµ

∂x̃p∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃q +
∂2xµ

∂x̃q∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃p

}
(A.4)

−
1
2
∂x̃r

∂xτ
∂x̃s

∂xσ
gτσ

∂2xµ

∂x̃s∂x̃t ỹ
t ∂gαβ

∂yµ
∂xα

∂x̃p

∂xβ

∂x̃q .

Now we need the identities

(A.5)
∂gαβ

∂yρ
yα =

∂gαβ

∂yρ
yβ =

∂gαβ

∂yρ
yρ = 0,

which are a consequence of the 0-homogeneity ofg. In fact, by Euler’s theorem
we have

∂gαβ

∂yρ
yρ = 0,

which is the third identity. The other two then follow from

∂gαβ

∂yρ
=
∂gβρ

∂yα
=
∂gρα

∂yβ
= (

1
2

F2)yαyβyρ .

With
˜̀q = `ρ

∂x̃q

∂xρ
, q = 1, . . . ,m,

we obtain

γ̃r
pq

˜̀q =
(A.4)(A.5)

∂x̃r

∂xτ
∂xµ

∂x̃pγ
τ
µρ`

ρ +
∂x̃r

∂xα
∂2xα

∂x̃q∂x̃p
˜̀q

+
1
2
gτσ

∂x̃r

∂xτ
∂2xµ

∂x̃q∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃p`
ρ ∂x̃q

∂xρ
.(A.6)
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Furthermore,

γ̃r
pq

˜̀q ˜̀p =
∂x̃r

∂xτ
∂xµ

∂x̃pγ
τ
µρ`

ρ`ε
∂x̃p

∂xε
+
∂x̃r

∂xα
∂2xα

∂x̃q∂x̃p

∂x̃q

∂xρ
`ρ
∂x̃p

∂xε
`ε

+
1
2
gτσ

∂x̃r

∂xτ
∂2xµ

∂x̃q∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃p`
ρ ∂x̃q

∂xρ
`ε
∂x̃p

∂xε

=
(A.5)

∂x̃r

∂xτ
γτερ`

ρ`ε +
∂x̃r

∂xα
∂2xα

∂x̃q∂x̃p

∂x̃q

∂xρ
`ρ
∂x̃p

∂xε
`ε .

Therefore we infer from

(A.7) Ãe
br =(2.6)

∂x̃e

∂xσ
∂xκ

∂x̃b

∂xω

∂x̃r Aσκω

the identity

(A.8) Ãe
brγ̃

r
pq

˜̀p ˜̀q =
∂x̃e

∂xσ
∂xκ

∂x̃b
Aσκω

[
γωερ`

ρ`ε +
∂2xω

∂x̃q∂x̃p

∂x̃q

∂xρ
`ρ
∂x̃p

∂xε
`ε

]
.

Summarizing these calculations we now compute

Ñr
p

F
=

(2.14)
γ̃r

pq
˜̀q − Ãr

pkγ̃
k
bc

˜̀bl̃c

=
(A.6)(A.8)

∂x̃r

∂xτ
∂xµ

∂x̃pγ
τ
µρ`

ρ +
∂x̃r

∂xα
∂2xα

∂x̃q∂x̃p
˜̀q

+
1
2
gτσ

∂x̃r

∂xτ
∂2xµ

∂x̃q∂x̃t ỹ
t ∂gασ
∂yµ

∂xα

∂x̃p`
ρ ∂x̃q

∂xρ

−
∂x̃r

∂xσ
∂xκ

∂x̃p Aσκω

[
γωερ`

ρ`ε +
∂2xω

∂x̃b∂x̃c

∂x̃b

∂xρ
`ρ
∂x̃c

∂xε
`ε

]
,

and recalling the definitions ofA and` from (2.4) and (2.9), we finally arrive at the
following transformation formula for the Ehresmann connection,

(A.9)
Ñr

p

F
=
∂x̃r

∂xτ
∂xµ

∂x̃p

Nτ
µ

F
+
∂x̃r

∂xα
∂2xα

∂x̃q∂x̃p
˜̀q.
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Now we come to theproof of the second identity in (2.17).

δỹp = dỹp + Ñp
qdx̃q

=
(A.2)

∂x̃p

∂xα
dyα +

∂2x̃p

∂xα∂xβ
yαdxβ + Ñp

q
∂x̃q

∂xγ
dxγ

=
(A.9)

∂x̃p

∂xα
dyα +

∂2x̃p

∂xα∂xβ
yαdxβ +

(
∂x̃p

∂xα
∂xβ

∂x̃q Nα
β +

∂x̃p

∂xα
∂2xα

∂x̃q∂x̃s ỹ
s
) (
∂x̃q

∂xγ
dxγ

)
=

∂x̃p

∂xα

[
dyα +

∂xβ

∂x̃q

∂x̃q

∂xγ
Nα
β dxγ +

∂2xα

∂x̃q∂x̃s ỹ
s∂x̃q

∂xγ
dxγ

]
+

∂2x̃p

∂xα∂xβ
yαdxβ

=
∂x̃p

∂xα

[
dyα + δβγN

α
β dxγ +

∂2xα

∂x̃q∂x̃s ỹ
s∂x̃q

∂xγ
dxγ

]
+

∂2x̃p

∂xα∂xβ
yαdxβ

=
∂x̃p

∂xα
[
dyα + Nα

β dxβ
]
,

since differentiation of the identity

δαβ =
∂xα

∂x̃s

∂x̃s

∂xβ

leads to

0 =
∂2xα

∂x̃s∂x̃q

∂x̃s

∂xβ
∂x̃q

∂xγ
+
∂xα

∂x̃s

∂2x̃s

∂xβ∂xγ
,

hence

0 =
∂2xα

∂x̃s∂x̃q

∂x̃s

∂xβ
yβ
∂x̃q

∂xγ
dxγ +

∂xα

∂x̃s

∂2x̃s

∂xβ∂xγ
yβdxγ,

and therefore

0 =
∂x̃p

∂xα
∂2xα

∂x̃s∂x̃q ỹ
s∂x̃q

∂xγ
dxγ +

∂x̃p

∂xα
∂xα

∂x̃s

∂2x̃s

∂xβ∂xγ
yβdxγ

=
∂x̃p

∂xα
∂2xα

∂x̃s∂x̃q ỹ
s∂x̃q

∂xγ
dxγ + δp

s
∂2x̃s

∂xβ∂xγ
yβdxγ

=
∂x̃p

∂xα
∂2xα

∂x̃s∂x̃q ỹ
s∂x̃q

∂xγ
dxγ +

∂2x̃p

∂xβ∂xγ
yβdxγ.



Heiko von der Mosel, Sven Winklmann 39

We conclude with theproof of the first identity in (2.16).

δ

δx̃p =
∂

∂x̃p − Ñq
p
∂

∂ỹq

=
(A.1)(A.9)

∂xα

∂x̃p

∂

∂xα
+

∂2xα

∂x̃p∂x̃s ỹ
s ∂

∂yα

−

(
∂x̃q

∂xα
∂xβ

∂x̃p Nα
β +

∂x̃q

∂xα
∂2xα

∂x̃p∂x̃t ỹ
t
)
∂

∂ỹq

=
∂xα

∂x̃p

∂

∂xα
− Nα

β

∂x̃q

∂xα
∂xγ

∂x̃q

∂xβ

∂x̃p

∂

∂yγ
+

∂2xα

∂x̃p∂x̃s ỹ
s ∂

∂yα

−
∂x̃q

∂xα
∂2xα

∂x̃p∂x̃t ỹ
t ∂xγ

∂x̃q

∂

∂yγ

=
∂xα

∂x̃p

∂

∂xα
− Nα

β δ
γ
α
∂xβ

∂x̃p

∂

∂yγ

=
∂xα

∂x̃p

∂

∂xα
− Nγ

β

∂xβ

∂x̃p

∂

∂yγ

=
∂xα

∂x̃p

[
∂

∂xα
− Nγ

α
∂

∂yγ

]
,

since

∂xγ

∂x̃q

∂x̃q

∂xα
∂2xα

∂x̃p∂x̃t ỹ
t ∂

∂yγ
= δ

γ
α
∂2xα

∂x̃p∂x̃t ỹ
t ∂

∂yγ
=

∂2xα

∂x̃p∂x̃t ỹ
t ∂

∂yα
.

�
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Finally we present theproof of identity (2.18).

δF
δxα

=

(
∂

∂xα
− Nβ

α
∂

∂yβ

)
F

=
(2.14)

Fxα −
[
F(γβαε`

ε − Aβαεγ
ε
ρσ`

ρ`σ)Fyβ

]
=

(2.12)
Fxα − (γβαε`

ε − Aβαεγ
ε
ρσ`

ρ`σ)gβτy
τ

= Fxα − γ
β
αε`

εgβτy
τ + Aαετγ

ε
ρσ`

ρ`σyτ

=
(A.5)

Fxα − γ
β
αε`

εgβτy
τ

=
(2.13)

Fxα −
1
2
gβν

[
∂gεν
∂xα
+
∂gνα
∂xε
−
∂gαε
∂xν

]
`εgβτy

τ

= Fxα −
1
2

[
∂gετ
∂xα
+
∂gτα
∂xε
−
∂gαε
∂xτ

]
`εyτ

= Fxα −
1
2

[
FxαFyεyτ + FFyεyτxα + Fyε xαFyτ + FyεFxαyτ

+FxεFyτyα + FFyτyαxε + FyτxεFyα + FyτFxεyα

−(FxτFyαyε + FFyαyε xτ + FyαxτFyε + FyαFxτyε )
]
F−1yτyε .

SinceF satisfies (H) the same is true forFxα , which implies by Euler’s theorem

Fxαyβy
β = Fxα and Fxαyβyεy

β = 0.

Applying this as well as (2.2) we obtain from the above calculation

δF
δxα

= Fxα −
1
2

[
Fyε xαFyτ + FyεFxαyτ + FyτxεFyα + FyαxεFyτ − (FyαxτFyε + FyαFxτyε )

]
F−1yτyε

= Fxα −
1
2

[
Fxα + Fxα + F−1FxεFyαy

ε + Fyαxεy
ε − Fyαxτy

τ − F−1FyαFxτy
τ
]

= 0.

�
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Birkhäuser, Basel 1997.

[J5] J. Jost: Generalized Dirichlet forms and harmonic maps. Calc. Var.5, 1–19
(1997).

[Me] M. Meier: On quasilinear elliptic systems with quadratic growth. Preprint
SFB 72 Univ. Bonn 1984.

[Mo] X. Mo: Harmonic maps from Finsler manifolds. Illinois J. Math.45, 1331–
1345 (2001).

[M] J. Moser: On Harnack’s theorem for elliptic differential equations. Comm.
Pure Appl. Math.14, 577–591 (1961).

[P] L.E. Payne: Some comments on the past fifty years of isoperimetric in-
equalities. In: W.N. Everitt (ed.)Inequalities – fifty years on from Hardy,
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