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Abstract

We consider rectifiable closed space curves for which the energy

Ip(γ) :=
∫

γ

∫
γ

1
infz Rp(x,y,z)

dH 1(x)dH 1(y), p≥ 2,

is finite. Here, R(x,y,z) denotes the radius of the smallest circle passing through x,y, and z. It turns
out that Ip is a self-avoidance energy (curves of finite energy have no self-intersections). For p >
2, we study regularizing effects of Ip: we prove that the arclength parametrization Γ of a curve
γ with Ip(γ) < ∞ is everywhere differentiable, and its derivative, Γ′, is Hölder continuous with
exponent 1−2/p. Moreover, we obtain compactness results for classes of curves with uniformly
bounded Ip energy, and briefly discuss their variational applications.

Mathematics Subject Classification (2000): 28A75, 49J45, 49Q10, 53A04, 57M25

1 Introduction

In 1930 K. Menger [Men30] introduced a metric version of curvature for so-called metric arcs, i.e.,
for subsets A⊂ X of a metric space (X ,d) such that A is homeomorphic to the unit interval [0,1]⊂R.
For this purpose Menger defined the radius of curvature R(x,y,z) of three pairwise distinct points
x,y,z ∈ A as

R(x,y,z) :=
dxy ·dyz ·dzx√

[dxy +dyz +dzx][dxy +dyz−dzx][dxy−dyz +dzx][−dxy +dyz +dzx]
, (1.1)

where dxy := d(x,y), etc. He then introduced (local) curvature κ(ξ ) for any ξ ∈ A as

κ(ξ ) := lim
x,y,z→ξ

1
R(x,y,z)

. (1.2)

Menger’s overall goal was a coordinate free description of metric continua to study their differen-
tial properties and to generalize differential geometric concepts to more general spaces; see e.g. the
treatise of Blumenthal and Menger [BlM70], in particular Chapter 10. In Euclidean 3-space R(x,y,z)
as defined in (1.1) equals the classical circumcircle radius of the points x,y,z ∈ R3, and even in that
Euclidean setting some authors refer to the quotient 1/R(x,y,z) as the Menger curvature of the triple
(x,y,z).

Motivated by quite different mathematical questions regarding curves γ in R3 O. Gonzalez and
J.H. Maddocks [GM99] had the ingenious idea to minimize R over pairs or triples of curve points
leading to the global radius of curvature function

ρG[γ](x) := inf
x 6=y6=z6=x

y,z∈γ

R(x,y,z), (1.3)

1
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and to
4[γ] := inf

x 6=y6=z6=x
x,y,z∈γ

R(x,y,z), (1.4)

which we refer to as the global radius of curvature of γ . Gonzalez and Maddocks used this quantity to
characterize the thickness of the curve γ . Indeed, a positive lower bound on4[γ] does not only control
curvature (as (1.2) would suggest), but also prevents the curve γ from self-intersecting by establishing
a uniform tubular neighbourhood as an excluded volume constraint; see e.g. [GMSvdM02, Lemmata
1–3] for the precise statements. For C2-smooth curves 4[γ] is equal to the normal injectivity radius
as observed in [GM99]. But the global radius of curvature is well-defined for merely continuous
and rectifiable curves as well. Moreover, it is analytically tractable, which paves the way towards
variational calculus on embedded curves. In [GMSvdM02] various energy minimization problems
for nonlinearly elastic curves and rods under topological constraints such as a prescribed knot class,
or a given linking number on framings, could be solved (see also [CKS02] and [GL03]). Here, an
inequality constraint involving 4 on the class of competing curves guarantees the right topology of
the respective minimizer. The dependence of 4 on the underlying curve is not only highly nonlinear
but also nonsmooth which turned out to be a challenge for the regularity investigations in [SvdM03b],
[CFK+04], and for a numerical treatment [CPR05], [ACPR05].

A relaxed variant of a possible self-avoidance energy involving Menger curvature as suggested by
[GM99] and later by Banavar et al. [BGMM03] is

Mp(γ) :=
∫

γ

∫
γ

∫
γ

1
Rp(x,y,z)

dH 1(x)dH 1(y)dH 1(z), p≥ 2. (1.5)

In contrast to the common singular and therefore divergent repulsive potentials of the form∫
γ

∫
γ

1
|x− y|p

dH 1(x)dH 1(y) (1.6)

as discussed e.g. in [O’H92], [FHW94], [KS98a], [AS93], [O’H03], the three-point interaction func-
tion R−p(x,y,z) in Mp requires no regularization: For a smooth embedded curve the integrand in (1.5)
tends to the pth power of local curvature at x ∈ γ as y,z → x. Analytically not much is known about
the Mp-energy. If p = 2 the functional is called the total Menger curvature and M. Melnikov [Mel95]
had discovered its importance for complex analysis: M2 turned out to be a crucial quantity (defined
on one-dimensional subsets of the complex plane) for the solution of the Vitushkin conjecture on the
removability of singularities of bounded analytic functions; see e.g. the surveys [Ma98], [Ma04], or
the monograph [P02]. Moreover, one-dimensional Borel sets in Rn with bounded M2-energy are in
fact countably 1-rectifiable in the sense of geometric measure theory, which was proved by J.C. Léger
[Le99]. Later this result was generalized to the metric setting by I. Hahlomaa [Ha05a], [Ha05b]; see
also recent work of R. Schul [Schu06]. For Borel sets of fractal dimensions p/2, 0 < p < 2 we refer to
the work of Y. Lin and P. Mattila [LM00]. But we are not aware of any existence or regularity results
for Mp-minimizing curves.

The motivation for our recent investigations in [StvdM07] and for the present work is two-fold:
Firstly, we would like to study a whole range of possible energies in between (and including) 1/4
involving a triple infimization (see (1.4)) and the triple integral Mp defined in (1.5).

Secondly, we aim at complementing the measure-theoretic achievements of Léger for M2 with a
calculus of variation approach in the class of embeddings. In a variational context Mp, or intermediate
versions interpolating between 1/4 and Mp, would on the one hand serve as a cost-function to obtain
“optimally embedded” curves as minimizers. Or, on the other hand, these energies could appear in
side-conditions to guarantee embeddedness for variational problems with different cost functions such
as bending or torsional energies.
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As a first relaxation of (1.4) we analyzed in [StvdM07] the “semi-soft” self-avoidance energy

Up(γ) :=
(∫

γ

1
ρG[γ](x)p dH 1(x)

)1/p

=
(∫

γ

1
infy,z R(x,y,z)p dH 1(x)

)1/p

, p≥ 1. (1.7)

Notice that U∞(γ) = 1/4[γ]. One central result of [StvdM07] is the characterization of closed curves
γ with Up(γ) < ∞, p > 1, as those embedded curves that have their arclength parametrization in
the Sobolev class W 2,p. This generalized the corresponding characterization of C1,1-embeddings1 in
[SvdM03a]. Moreover, quantitative estimates lead to compactness theorems and to existence theorems
for embedded curves (or rods) under topological constraints analogous to the variational applications
in [GMSvdM02] mentioned above.

In the present paper we replace one more infimization in (1.4) by an integration to get a further
relaxation

Ip(γ) :=
∫

γ

∫
γ

1
infz Rp(x,y,z)

dH 1(x)dH 1(y), p≥ 2. (1.8)

It turns out that Ip behaves similar to a repulsive potential of the form (1.6) on large parts of a generic
curve γ away from the diagonal {(x,x) ∈ γ× γ}. Nevertheless, no regularization near the diagonal is
necessary for Ip since the integrand tends to the pth power of local curvature for x = y as z → x,
provided that γ is embedded and sufficiently smooth.

We are going to prove in Section 2 that Ip is in fact a self-avoidance energy for p ≥ 2. To be
more precise, rectifiable closed curves γ : S1 → R3 (of length L) with Ip(γ) < ∞ have an injective
arclength parametrization Γ : SL ∼= R/LZ→R3; see Proposition 2.1. The regularizing effect of the Ip-
energy is studied in Section 3: If Ip(γ) < ∞ and p > 2, then the arclength parametrization possesses a
Hölder continuous tangent Γ′ ∈C0,α(SL,R3) for α = (p−2)/(p+4) (Corollary 3.2). Technically this
is proved by establishing a uniform cone flatness, which basically means that locally near any curve
point the curve is contained in a cone with arbitrarily small cone angle. The resulting Hölder norm
is solely controlled by the energy level Ip(γ). This instantaneously gives compactness results and,
with an additional geometric argument, convergence of Ip-equibounded sequences to a simple limit
curve (Corollary 3.3). Existence theorems for topologically constrained variational problems involv-
ing Ip as cost-function or in side conditions are then immediate consequences; see e.g. Theorem 3.4.
Using the C1,α -regularity we can use measure theoretic arguments to improve the Hölder exponent
of Γ′ up to 1− (2/p), p > 2. This regularity theorem is vaguely reminiscent of the Morrey-Sobolev
embedding theorem: Menger curvature is related to local curvature, i.e. to |Γ′′|, and the domain is
two-dimensional, which leads to the expected Hölder exponent 1− (2/p).

The authors are convinced that the results in this paper can be generalized to curves in Rn for
n > 3. However, to keep the geometric ideas simple and transparent, we stick to the case of curves in
three-dimensional space.

The proofs of the present paper are based on a mixture of geometric and measure-theoretic argu-
ments. A substantial part of this discussion carries over to the triple integral Mp for p > 3 (see (1.5)).
However, to this end one has to change numerous technical details, not only in the proofs, but also in
the assumptions. Moreover — unlike in Proposition 2.1 in this paper — arclength parametrizations of
curves of finite Mp energy do not have to be injective; this part of the analysis is significantly more
complicated. This would make a joint presentation of the results rather lengthy, with long, some-
times even awkward, statements of theorems designed to cover various cases. Therefore, a detailed
account on the Mp-energy will be published elsewhere [SStvdM07], which – together with the present
work brings the variational calculus closer to the purely measure-theoretic setting of Léger’s work in

1Recall that C1,1 ∼= W 2,∞.
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[Le99]. However, the situation for higher-dimensional analogues of geometric curvature energies such
as (1.7), (1.8) or (1.5) for surfaces, remains largely open2.

Acknowledgement. The first author was partially supported by KBN grant no 1 PO 3A 005 29. The
second author was partially supported by EC FP6 Marie Curie ToK programme SPADE2, MTKD-CT-
2004-014508 and Polish MNiSW SPB-M. The third author was partially supported by the Deutsche
Forschungsgemeinschaft.

2 Injectivity

In view of applications in the calculus of variations we prefer to work with geometric quantities
defined in terms of parametrized curves. We assume that Γ ∈C0,1(SL,R3), where SL ∼= R/LZ, is the
arclength parametrization of a rectifiable closed curve γ : S1 → R3 with H 1(γ(S1)) = L > 0. (The
reader should bear in mind that throughout the whole paper, whenever capital Γ is used, we mean the
arclength parametrization of a curve.)

Fixing two distinct arclength parameters s, t ∈ SL we can define an intermediate global radius of
curvature function as follows. Let

ρ[Γ](s, t)≡ ρ(s, t) := inf
τ∈SL\{s,t}

R(Γ(s),Γ(t),Γ(τ)), (2.1)

where R(x,y,z) is the uniquely defined radius of the smallest circle containing the points x,y,z ∈ R3.
For points x,y,z that are not collinear R(x,y,z) equals the circumcircle radius which may be expressed
as

R(x,y,z) :=
|x− y|

|2sin<)(x− z,y− z)|
,

where <)(x− z,y− z) ∈ [0,π] denotes the angle between the vectors x− z and y− z. Then we see from
(1.8) that

Ip(γ) =
∫

SL

∫
SL

dsdt
ρ p(s, t)

. (2.2)

In order to analyze the local behaviour of the curve we introduce some three-dimensional shapes,
namely cones, lenses and doughnuts. For x 6= y ∈ R3 and ε ∈ (0, π

2 ),

C+
ε (x;y) : = {z ∈ R3 : <)(z− x,y− x) <

ε

2
}

is a (one-sided) cone with vertex at x, axis passing through y and opening angle ε . We set

Cε(x;y) : = {x+ t(z− x) : t ∈ R, z ∈C+
ε (x;y)}. (2.3)

Next, for x 6= y ∈ R3 and r > 0, we write

l(x,y;r) : =
⋂
{Br : x,y ∈ ∂Br} (2.4)

to denote the “lens-shaped” region which is formed by the intersection of all openballs Br of radius r
that contain both points x,y on their boundary ∂Br. We also write

V (x,y;r) : =
⋃
{Br : x,y ∈ ∂Br} (2.5)

to denote the “thick (degenerate) doughnut” formed by the union of all such balls.
2See however, our investigation [StvdM05], [StvdM06] on a generalization of the global radius of curvature (1.4) to

two-dimensional surfaces in Euclidean n-space.
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Proposition 2.1 (Self-avoidance). Assume that p ≥ 2, L > 0, and Ip(γ) < ∞. Then γ is simple, i.e.,
its arclength parametrization Γ : SL → R3 is injective.

Proof. We argue by contradiction. Assume that Γ(0) = 0 = Γ(s1) for some s1 ∈ SL \{0}. Let

Γ1 : = Γ
(
[0,s1]

)
, Γ2 : = Γ

(
[s1,L]

)
.

Since Γ is the arc length parametrization of γ , it has no intervals of constancy. Thus,

d : = min(diamΓ1,diamΓ2) > 0.

We consider the portion of γ contained in Bd/4(0). Choose four parameters: σ1,σ2 ∈ (0,s1) and t1, t2 ∈
(s1,L) such that

σ1 < σ2, t1 < t2 and Γ(σ1), Γ(σ2), Γ(t1), Γ(t2) ∈ ∂Bd/4(0).

Now, choose a number ε ∈ (0, d
12) which is smaller than the smallest gap between 0,σ1,σ2,s1, t1, t2,

and L in the natural ordering on SL.
Take s ∈ (0,ε)⊂ SL. If Γ(s) = 0, we set A(s) : = (0,s)⊂ SL. In this case, since Γ(s) = Γ(0) = 0,

we have ρ(s,σ)≤ |Γ(σ)|/2 < s for all σ ∈ A(s), and

H 1(A(s))ρ(s,σ)−p ≥ s1−p for all σ ∈ A(s). (2.6)

Next, suppose that Γ(s) 6= 0. Then we set

A(s) : = {σ ∈ (σ2, t1) | Γ′(σ) exists and Γ(σ) ∈ B|Γ(s)|(0)} . (2.7)

For each σ ∈ A(s) consider the diameter ball DB(s,σ) defined as follows:

DB(s,σ) : = Br(a) for r : =
|Γ(s)−Γ(σ)|

2
, a : =

Γ(s)+Γ(σ)
2

.

Two cases are possible now.

Case 1. Γ intersects ∂DB(s,σ) transversally at Γ(σ). Then we can find a parameter t ∈ SL, t close to
σ , such that the point Γ(t) ∈ intDB(s,σ). Since Γ(σ2),Γ(t1) ∈ ∂Bd/4(0) and, by the choice of ε and
σ , we have

DB(s,σ)⊂⊂ B3ε(0)⊂⊂ Bd/4(0),

there exists a parameter τ ∈ [σ2, t1] which is different from σ and satisfies Γ(τ) ∈ ∂DB(s,σ). Thus,

ρ(s,σ) ≤ R
(
Γ(s),Γ(σ),Γ(τ)

)
=
|Γ(s)−Γ(σ)|

2
≤ |Γ(s)| as Γ(σ) ∈ B|Γ(s)|(0). (2.8)

(Notice that by definition of R one has ρ(s,σ) ≥ |Γ(s)−Γ(σ)|/2 which together with (2.8) implies
ρ(s,σ) = |Γ(s)−Γ(σ)|/2 in this case.)

Case 2. Γ touches ∂DB(s,σ) at Γ(σ), i.e. Γ′(σ) ⊥ (Γ(σ)−Γ(s)). In this case, take a ball B = Br′

with radius r′ slightly larger than that of DB(s,σ) and such that Γ(s),Γ(σ) ∈ ∂Br′ . Any such Br′ is
intersected transversally by Γ at σ . Mimicking the reasoning for Case 1, one checks that ρ(s,σ)≤ r′.
Taking the infimum over all r′ > |Γ(s)−Γ(σ)|/2, we obtain

ρ(s,σ)≤ |Γ(s)|
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also in this case.

Now, for each s ∈ (0,ε) ⊂ SL with Γ(s) 6= 0 we have H 1(A(s)) ≥ 2|Γ(s)| > |Γ(s)| since Γ is
differentiable a.e. and Γ(s1) = 0. Thus, since |Γ(s)| ≤ s, condition (2.6) holds also when |Γ(s)| 6= 0,
i.e. when A(s) is defined as in (2.7).

Therefore,

Ip(γ)≥
∫

ε

0

(∫
A(s)

1
ρ(s,σ)p dσ

)
ds≥

∫
ε

0
s1−p ds = +∞ for all p≥ 2.

This contradiction completes the proof. 2

3 The existence of tangents

In this section, we prove that for p > 2 a closed curve γ with finite Ip-energy has an arclength
parametrization which is everywhere differentiable. In fact with our method of proof we obtain esti-
mates for the Hölder norm of the tangent in terms of the energy. This yields convergence and com-
pactness results for sequences with equibounded energy, and leads to variational applications.

All of this is based on the following key result.

Theorem 3.1 (Uniform cone flatness). Assume that p > 2 and L > 0. There exists a constant c = c(p)
such that if ε ∈ (0, π

2 ) and η > 0 satisfy

ε
p+4

η
2−p ≥ c(p)E , diamγ ≥ η , (3.1)

where E = Ip(γ), then for every s, t ∈ SL such that |Γ(s)−Γ(t)|= η we have

Γ(SL) ∩ B2η

(
Γ(s)

)
⊂ Cε(Γ(s);Γ(t)) . (3.2)

(See (2.3) for the definition of the cone Cε .)

Notice that Theorem 3.1 easily implies differentiability of Γ at all points of SL and gives control
of the modulus of continuity of Γ′; see Corollary 3.2 below. It also allows us to prove that limits of
convergent sequences of curves with uniformly bounded Ip-energy have no double points (Corollary
3.3). Thus Ip can be used as a cost function or as a side condition in topologically constrained
variational problems for curves and rods. As a model example of such a variational application we
establish in Theorem 3.4 the existence of Ip-minimizing curves in prescribed (tame) knot classes.
Let us discuss these consequences of the uniform cone flatness first before giving a detailed proof of
Theorem 3.1.

Corollary 3.2. Assume that p > 2. If Ip(γ) < ∞, then Γ′ is defined everywhere on SL and moreover

|Γ′(s)−Γ
′(t)| ≤M|s− t|α , (3.3)

where α = (p−2)/(p+4) ∈ (0,1) and M . c(p)Ip(γ)1/(p+4).

Proof. To begin with, pick s < t ∈ SL such that Γ′(s) and Γ′(t) exists. Set η : = |Γ(s)−Γ(t)|
and

ε : =
[
c(p)Ip(γ)η p−2]1/(p+4)

where c(p) denotes the constant from Theorem 3.1. If c(p)Ip(γ) < 1 assume

|s− t|<
(

π

2

)(p+4)/(p−2)
; (3.4)
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otherwise assume that

|s− t|<
(
c(p)Ip(γ)

)1/(2−p)
(

π

2

)(p+4)/(p−2)
. (3.5)

In both cases we then have ε < π/2 and we may apply Theorem 3.1 twice to conclude that

Γ(SL)∩
[
Bη

(
Γ(s)

)
∪ Bη

(
Γ(t)

)]
⊂ Cε(Γ(s);Γ(t)) ∩Cε(Γ(t);Γ(s)) .

Since Γ is injective3, this easily gives

|Γ′(s)−Γ
′(t)| ≤ ε ≤ c(p)Ip(γ)1/(p+4)|s− t|(p−2)/(p+4) .

Such an estimate is obviously valid also when (3.4) or (3.5), respectively, is violated.
Thus, Γ′ has a unique Hölder continuous extension g to the whole parameter circle SL.
As Γ is Lipschitz, we have

Γ(t2)−Γ(t1) =
∫ t2

t1
Γ
′(τ)dτ =

∫ t2

t1
g(τ)dτ

for all t1, t2 ∈ SL; it is now a routine matter to check that Γ′ exists and is equal to g at each point of SL.
The estimate (3.3) is also satisfied. 2

Corollary 3.3. Assume that K,L > 0 and p > 2. Let Q be a fixed point in R3. If a family of rectifiable
closed curves γ j : S1 → R3 satisfies

Q ∈ γ j(S1) and H 1(γ j) = L for all j, and sup
j=1,2,...

Ip(γ j)≤ K, (3.6)

then there exists ε0 = ε0(p,K) > 0 such that the arclength parametrizations Γ j of γ j satisfy

|Γ j(s)−Γ j(t)| ≥min
(

ε0,
|s− t|

2

)
for all j and all s, t ∈ SL. (3.7)

Moreover, the family of functions Γ′j : SL → S2 ⊂ R3 is equicontinuous and {Γ j} contains a subse-
quence {Γ jk} which for jk → ∞ converges in the C1-topology to a simple arclength parametrized
closed curve Γ ∈C1,(p−2)/(p+4)(SL,R3) with Q ∈ Γ(SL).

Proof. The existence of a convergent subsequence follows easily from (3.6) in combination with
Corollary 3.2 and the Arzela–Ascoli compactness theorem. Once (3.7) is established, injectivity of the
limit curve Γ follows from (3.7) upon passing to the limit jk → ∞.

Thus it is enough to prove (3.7). Consider g j ∈C1(SL×SL) given by

g j(s, t) : = |Γ j(s)−Γ j(t)|2 .

Since Γ j are uniformly bounded in C1,α , it is easy to show that there is a constant ε1 = ε1(p,K) > 0
such that

g j(s, t)≥
|s− t|2

4
for all j and all s, t such that |s− t| ≤ ε1(p,K). (3.8)

3In principle, Γ′(s) and Γ′(t) could both point into the diamond-shaped subset of the intersection of the cones with tips at
Γ(s) and Γ(t). But then Γ would have to leave this diamond-shaped region at either tip at some parameter τ 6= s, t producing
a double point. This would contradict Proposition 2.1.



A geometric curvature double integral of Menger type 8

(See e.g. the next section, Lemma 4.2, for details.) Since Σ = SL× SL \ {(s, t) : |s− t| < ε1(p,K)} is
compact, we find for each j a pair (s j, t j) ∈ Σ such that

g j(s j, t j)≤ g j(s, t) for all (s, t) ∈ Σ.

Now, we either have |s j− t j|= ε1(p,K) in which case (3.8) implies

g j(s, t)≥
ε1(p,K)2

4
for all s, t ∈ Σ, (3.9)

or we have ∇g j(s j, t j) = 0, which is equivalent to

Γ
′
j(s j)⊥

(
Γ j(s j)−Γ j(t j)

)
and Γ

′
j(t j)⊥

(
Γ j(s j)−Γ j(t j)

)
. (3.10)

For each j, this implies that Γ j(SL)∩ [Bη j(Γ j(s j))∩Bη j(Γ j(t j))] is not contained in the intersection
Cπ/4(Γ j(s j);Γ j(t j)) ∩ Cπ/4(Γ j(t j);Γ j(s j)), where η j := |Γ j(s j)−Γ j(t j)|; see figure below. By virtue
of Theorem 3.1 for ε := π/4 this means, however, that

g j(s, t) ≥ |Γ j(s j)−Γ j(t j)|2 = η
2
j >

[
(π/4)

p+4
p−2

(c(p)Ip(γ j))
1

p−2

]2

≥
[
(π/4)p+4

c(p)K

] 2
p−2

=: ε2(p,K) > 0 for all j ∈ N,(s, t) ∈ Σ. (3.11)

Summarizing (3.8), (3.9), and (3.11), we obtain (3.7)
with ε0 : = min

{
ε1(p,K)/2,

√
ε2(p,K)

}
. 2

Left: The plane which passes through two points
Γ j(s j),Γ j(t j), and contains Γ′j(s j). The planar cross-section
of

Cπ/4
(
Γ j(s j);Γ j(t j)

)
∩ Cπ/4

(
Γ j(t j);Γ j(s j)

)
is shaded. The tangent vectors to γ j at these two points are
perpendicular to the common axis of the cones.

As one of various possible variational applica-
tions we consider the variational problem of minimiz-

ing the Ip-energy for an arbitrary fixed p > 2 in a prescribed knot class. To be more precise, we look
for a minimizer of Ip in the class

CL,k := {γ ∈C0(S1,R3) : length (γ) = L, γ isotopic to k},

where k is a given representative of a particular tame knot or isotopy class. Recall that two continuous
closed curves γ1,γ2 ⊂ R3 are isotopic, if there are open neighborhoods N1 of γ1 and N2 of γ2, and a
continuous map Φ : N1× [0,1]→ R3 such that Φ(·, t) : N1 −→ Φ(N1, t) is a homeomorphism for all
t ∈ [0,1], Φ(x,0) = x for all x ∈ N1, Φ(N1,1) = N2, and Φ(γ1,1) = γ2.

Theorem 3.4. Let p > 2 and L > 0. In any given isotopy class represented by a closed curve k there
is an arclength parametrized curve Γ ∈C1,(p−2)/(p+4)(SL,R3)∩CL,k such that Ip(Γ) = infCL,k Ip(.).

Proof. Scaling a smooth representative of the given knot class to have length L we observe
that the class CL,k is not empty and contains smooth curves of finite energy. Thus we find a minimal
sequence {γi} ⊂CL,k with arclength parametrizations Γi ∈C0,1(SL,R3) satisfying

Ip(γi)→ inf
CL,k

Ip(.) < ∞ as i→ ∞.
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Translating the curves we may assume that 0 ∈ γi(S1) for all i ∈N. By virtue of Corollary 3.3 we find
a subsequence again denoted by Γi converging in the C1-topology to a simple arclength parametrized
closed curve Γ ∈ C1,(p−2)/(p+4)(SL,R3). This implies that also the limit Γ is in the prescribed knot
class, since isotopy is stable with respect to C1-topology; see [R05]. Consequently, Γ ∈CL,k and we
have

inf
CL,k

Ip(.)≤Ip(Γ)≤ liminf
i→∞

Ip(Γi) = lim
i→∞

Ip(γi) = inf
CL,k

Ip(.),

where we used the fact that Ip is lower-semicontinuous as stated in Lemma 3.5 below. 2

Lemma 3.5. Suppose that the sequence {Γ j} of arclength parametrized curves Γ j : SL → R3 con-
verges uniformly to Γ, i.e. Γ j → Γ in C0(SL,R3) as j → ∞ and assume that Γ is simple. Then

Ip(Γ)≤ liminf
j→∞

Ip(Γ j) for all p≥ 2.

Proof. If ρ[Γ j](s, t)≥ δ for some δ > 0, s 6= t, for infinitely many j, then ρ[Γ](s, t)≥ δ , since
otherwise we would find a parameter τ distinct from s and t, such that R(Γ(s),Γ(t),Γ(τ)) < δ . This
would imply that R(Γ j(s),Γ j(t),Γ j(τ)) < δ for j � 1, since Γ is simple and the function R(., ., .) is
continuous near mutually different non-collinear points in space.

Hence if limsup j→∞ ρ[Γ j]p(s, t) ≥ δ for some s 6= t, then ρ[Γ]p(s, t) ≥ δ − ε for all ε > 0. If, on
the other hand, limsup j→∞ ρ[Γ j]p(s, t) = 0 then obviously ρ[Γ]p(s, t)≥ limsup j→∞ ρ[Γ j]p(s, t). In any
case,

ρ[Γ]p(s, t)≥ limsup
j→∞

ρ[Γ j]p(s, t) for all s 6= t,

which implies
1

ρ[Γ]p(s, t)
≤ liminf

j→∞

1
ρ[Γ j]p(s, t)

for all s 6= t

and

Ip(Γ) =
∫

SL

∫
SL

dtds
ρ[Γ]p(s, t)

=
∫

SL

∫
SL\{s}

dtds
ρ[Γ]p(s, t)

≤
∫

SL

∫
SL\{s}

liminf
j→∞

1
ρ[Γ j]p(s, t)

dtds

=
∫

SL

∫
SL

liminf
j→∞

1
ρ[Γ j]p(s, t)

dtds

≤ liminf
j→∞

∫
SL

∫
SL

1
ρ[Γ j]p(s, t)

dtds = liminf
j→∞

Ip(Γ j),

where we used the Lemma of Fatou for the last inequality. 2

Proof of Theorem 3.1. Without loss of generality we assume that s = 0 and Γ(0) = 0. Fix ε > 0 and
η > 0 satisfying (3.1). We need to introduce some notation first. Choose ε̃ > 0 such that

ε̃

∞

∑
1

1
N2 � ε; (3.12)

for our purposes, ε̃ = ε/20 will do. Set

ηN :=
η

2N−1 and rN := ε̃
−1N2

ηN , N = 1,2, . . . (3.13)
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Next, pick a point pN = Γ(tN) ∈ ∂BηN (0), which is possible since η ≤ diamγ. For N = 1 we take
p1 : = Γ(t); hence |p1|= η1.

Introduce the lenses and doughnuts (compare with (2.4) and (2.5) for the definition)

lN : = l(0, pN ;rN), VN : = V (0, pN ;rN), (3.14)

and finally let
KN : = B2ηN (0)\VN . (3.15)

Our general aim will be to show first that for each N = 1,2, . . . the part of γ which is in B2ηN(0) is
either in KN or in lN or very close to one of the points 0, pN .

Fig. 1 (see left). A plane passing through two
points 0 = Γ(0) and pN = Γ(tN), located at the
centers of two tiny shaded balls in the middle part
of the picture. Big arcs represent the boundaries
of two of the balls of radius rN whose union is
equal to the doughnut VN . (Note: for ε small and
N large, the ratio rN/ηN is in fact much larger than
the figure shows.) Later on, cf. (3.21) and (3.32),
we prove that γ ∩B2ηN (0) must be contained in

lN ∪BhN (pN)∪BhN (0)∪KN

that is, in that portion of the ball B2ηN (0) which is
formed by rotation of the shaded region in Fig. 1
around the axis passing through 0 and pN .

To be more precise, let αN denote the
opening angle of the smallest cone with ver-
tex at 0 containing lN ; then

sin
αN

2
=

ηN

2rN
. (3.16)

Let

hN : = dist
(

pN +Γ(0)
2

, ∂ lN

)
= rN

(
1− cos

αN

2

)
, (3.17)

ϕN : = arc tan
2hN

ηN
, (3.18)

h̃N : = hN sinϕN . (3.19)

Fig. 2 and 3. Enlarged view of parts of Fig. 1,
showing the location of 0 and pN , the distances
ηN , hN , h̃N , and the angles αN , ϕN that are defined
by (3.16)–(3.19).

Finally, let δN be the smallest angle such that the cone CδN (0; pN) contains the union lN ∪KN (see
Fig. 1 above). An elementary geometric argument shows that δN = αN +2α ′

N , where α ′
N = arcsin ηN

rN
=

arcsin ε̃

N2 . Thus, since arcsinx≤ πx/2 on [0,1], we have

δN = αN +2α
′
N ≤

3π

2
ε̃

N2 and
∞

∑
N=1

δN ≤
3π

2

∞

∑
N=1

ε̃

N2 <
ε

2
, (3.20)
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if ε̃/ε is chosen appropriately.
The main tool in the proof of Theorem 3.1 is the following

Claim 1. For each N = 1,2, . . . the following is true:

Γ(SL)∩B2ηN (0) ⊂ CδN (0; pN)∪BhN (0). (3.21)

(Applying (3.21) iteratively as will be done later, and invoking injectivity of Γ, one easily concludes
the whole proof of Theorem 3.1.)

To prove Claim 1, we need the following elementary relations between hN , h̃N , ηN and rN .

Lemma 3.6 (Relations between distances on Figs. 1–3). For all N = 1,2, . . . we have

η2
N

4πrN
≤ hN ≤ η2

N

3rN
, (3.22)

h2
N

ηN
≤ h̃N ≤ 2h2

N

ηN
, (3.23)

hN

ηN
≥ ε̃

4πN2 . (3.24)

Proof. We use the elementary inequalities

2
π

x ≤ sinx ≤ x ≤ tanx, 0 < x <
π

2
, (3.25)

x2

π
≤ 1− cosx ≤ x2

2
, 0 < x <

π

2
, (3.26)

π

4
x≤ arc tanx ≤ x, 0 < x < 1. (3.27)

By definition of hN , we have

hN = rN

(
1− cos

αN

2

)
(3.26)
≤ rN

α2
N

8

(3.25)
≤ π2

8
rN sin2 αN

2
(3.16)=

π2

8
rN

(
ηN

2rN

)2

<
η2

N

3rN
.

Moreover,

hN
(3.26)
≥ rN

π

(
αN

2

)2 (3.25)
≥ rN

π
sin2 αN

2
=

η2
N

4πrN
.

This proves (3.22). Next, we have

h̃N = hN sinϕN ≤ hN tanϕN =
2h2

N

ηN

and

h̃N
(3.25)
≥ hN

2ϕN

π

(3.18)=
2hN

π
arc tan

2hN

ηN

(3.27)
≥ h2

N

ηN
.

This yields (3.23). Finally, (3.24) follows from (3.22) and the definition of rN . 2

Lemma 3.7 (Estimate of R(·, ·, ·) when Γ leaves the grey zone). Fix N = 1,2, . . . and assume that for
some τ0 ∈ SL the point Γ(τ0) ∈ B2ηN (0) but

Γ(τ0) 6∈ lN ∪BhN (pN)∪BhN (0)∪KN .
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Then for all parameters s ∈ A1 and σ ∈ A2, where

A1 = {s ∈ SL : Γ(s) ∈ Bh̃N/10(pN)},
A2 = {σ ∈ SL : Γ(σ) ∈ Bh̃N/10(0)},

we have
R(Γ(s),Γ(σ),Γ(τ0))≤ 4rN . (3.28)

In particular, ρ(s,σ)≤ 4rN for (s,σ) ∈ A1×A2.

Proof. If τ0 satisfies the assumptions of Lemma 3.7, then there exists a unique point q∈R3 determined
by the following three conditions

(i) |q− pN |= |q|= rN ,

(ii) Γ(τ0) ∈ BrN (q)\ lN ,

(iii) the four points Γ(τ0),q, pN and 0 are co-planar.

By elementary geometry,
αN

2
≤ β0 : = <)

(
pN −Γ(τ0),Γ(0)−Γ(τ0)

)
≤ π− αN

2
. (3.29)

(This is easy to see: draw two circles c1,c2 of radius rN , containing pN and 0 = Γ(0) and lying in the
plane determined by pN ,0 and Γ(τ0). Then, β0 = π −αN/2 when Γ(τ0) lies on the short arc of c1
connecting pN to 0, and β0 = αN/2 when Γ(τ0) lies on the long arc of c2 connecting pN to 0. When
Γ(τ0) is between these two arcs, β0 takes some intermediate value.)

For s∈ A1 and σ ∈ A2, let β (s,σ) denote the angle at Γ(τ0) in the triangle with vertices Γ(s),Γ(σ)
and Γ(τ0). We then have

|β (s,σ)−β0| ≤ β1 +β2, (3.30)

where

β1 : = <)
(

pN −Γ(τ0),Γ(s)−Γ(τ0)
)
, β2 : = <)

(
Γ(0)−Γ(τ0),Γ(σ)−Γ(τ0)

)
.

Since the distances of Γ(τ0) to pN and to 0 = Γ(0) exceed hN , and because s ∈ A1 and σ ∈ A2, we
have

βi ≤ βmax, i = 1,2,

where sinβmax = h̃N/10hN . Hence,

βmax
(3.25)
≤ π

2
sinβmax =

π h̃N

20hN

(3.23)
≤ πhN

10ηN

(3.22)
≤ πηN

30rN

(3.16)=
π

15
sin

αN

2
(3.25)
<

αN

8
.

Therefore, by (3.29) and (3.30), we obtain αN
4 ≤ β (s,σ)≤ π− αN

4 and

sinβ (s,σ)≥ sin
αN

4
. (3.31)

Thus,

R(Γ(s),Γ(σ),Γ(τ0)) =
|Γ(s)−Γ(σ)|
2sinβ (s,σ)

≤ 2ηN

2sin(αN/4)

=
2ηN

sin(αN/2)
cos

αN

4
≤ 2ηN

sin(αN/2)
(3.16)= 4rN .
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2

We are now ready for estimates of the energy which prove Claim 1 by contradiction.
Assume that Claim 1 were false. Fix N. Since

CδN (0, pN)∪BhN (0) ⊃ lN ∪BhN (pN)∪BhN (0)∪KN , (3.32)

we would then find a parameter τ0 satisfying the assumptions of Lemma 3.7. Recall that E = Ip(γ).
Shrinking the domain of integration to A1×A2, we obtain

E ≥
∫

A1

∫
A2

dsdσ

ρ(s,σ)p

Lemma 3.7
≥ |A1| |A2|4−pr−p

N
(3.23)
≥ 10−24−ph4

Nη
−2
N r−p

N as |Ai| ≥ h̃N/10
(3.13)= 10−24−ph4

Nη
−2−p
N N−2p

ε̃
p

(3.24)
≥ 10−24−p(4π)−4

η
2−p
N N−8−2p

ε̃
4+p

= 10−24−p(4π)−420−4−p
η

2−p
ε

4+p︸ ︷︷ ︸
≥E·c(p)

2(N−1)(p−2)

N8+2p as ε̃ = ε/20

> E

if we choose

c(p) = 2 ·1024p(4π)4204+p

(
min

N=1,2...

2(N−1)(p−2)

N8+2p

)−1

> 0. (3.33)

This contradiction ends the proof of Claim 1.

Proof of Theorem 3.1 continued. Noting that 2hN < ηN and applying Claim 1 inductively, we
obtain

Γ(SL)∩B2η(0) ⊂ Cδ1+δ2/2+···+δN/2(0; p1)∪BhN (0), N = 2,3, . . . (3.34)

since the axis of each of the successive cones lies in the preceding cone in the iteration.
As the series ∑δN converges and its sum is smaller than ε by (3.20), this yields

Γ(SL)∩B2η(0) ⊂ Cε(0; p1)∪BhN (0), N = 2,3, . . .

Since hN → 0 for N → ∞, the intersection of all the sets Cε(0; p1)∪ BhN (0) is equal to the cone
Cε(0, p1). This completes the whole proof of Theorem 3.1. 2

4 Improved Hölder continuity of tangents

In this section we prove that if p > 2 and a curve γ has finite energy, i.e., Ip(γ) < ∞, then in fact its
arclength parametrization Γ is of class C1,β for β = 1− 2

p .

Theorem 4.1. If Ip(γ) < ∞ for some p > 2, then Γ is contained in the class C1,1−(2/p)(SL,R3), and
there exists a constant M = M(γ) such that

|Γ′(u)−Γ
′(v)| ≤M|u− v|1−2/p

(
E[u,v]

)1/p
for all u,v ∈ SL, (4.1)
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where
E[u,v] : =

∫ v

u

∫ v

u

dσ dτ

ρ(σ ,τ)p .

Remark. We have no explicit examples showing that (4.1) is optimal for curves with bounded Ip-
energy. However, let us note that for curves of bounded global curvature it implies a qualitatively
optimal result: if ρ(s,σ) ≥ θ > 0 for all s,σ ∈ SL, then Γ′ is Lipschitz with a constant proportional
to 1/θ ; see [SvdM03a, Lemma 2]. (Note that even when 1/ρ is uniformly bounded, Γ′ does not have
to be of class C1, as in the example of a stadium curve, where two coplanar semicircles are connected
with two parallel straight segments.)

Proof of Theorem 4.1. If E[u,v] = 0, then Γ([u,v]) is a segment of a straight line and there is nothing
to prove.

From now on we assume E[u,v] 6= 0. We know from Corollary 3.2 that Γ ∈C1,α(SL,R3) for α :=
(p−2)/(p+4). This implies that Γ is a local homeomorphism in the following sense:

Lemma 4.2. Assume that

|Γ′(t)−Γ
′(s)| ≤CΓ|t− s|α , t,s ∈ SL . (4.2)

Then for every λ ∈ (0,1) there exists a positive number δ = δ (λ ,CΓ,α) < 1 such that

|Γ(t)−Γ(s)| ≥ λ |t− s| (4.3)

for all t,s ∈ SL with |t− s|< δ .

Proof. Fix s ∈ SL and without loss of generality assume that Γ′(s) = (1,0,0). We then have

Γ
′
1(t)≥ Γ

′
1(s)−|Γ′1(s)−Γ

′
1(t)| ≥ 1−CΓ|t− s|α ≥ λ

for all t satisfying

|t− s|< δ : =
(

1−λ

CΓ

)1/α

(w.l.o.g. we may assume that CΓ ≥ 1 so that δ < 1.) Thus

|Γ(t)−Γ(s)| ≥ |Γ1(t)−Γ1(s)|=
∣∣∣∣∫ t

s
Γ
′
1(τ)dτ

∣∣∣∣≥ λ |t− s| .

This ends the proof of Lemma 4.2. 2

From now on we fix λ = λ0 : = (2
3)p/2 and choose δ = δ (λ0,CΓ,α). In our situation we have α =

(p− 2)/(p + 4) and CΓ = M . c(p)Ip(γ)1/(p+4); see Corollary 3.2. Therefore δ depends on p and
Ip(γ) so far. Throughout the rest of the proof, we assume that u,v∈ SL are fixed and 0 < v−u < δ <
1.

Take any c > 0 such that

2
(
8cpE[u,v]

)α ≤ 1
4

. (4.4)

For example,

c : =
(

81+1/αE[u,v]

)−1/p
, (4.5)



A geometric curvature double integral of Menger type 15

satisfies this smallness condition and will serve our purposes later on.

Remark. Note that one could replace E[u,v] in (4.4) by E[u′,v′], where [u′,v′]⊂ [u,v], and keep the same

constant c as in (4.5). Since
(
E[u,v]

)−1/p ≤
(
E[u′,v′]

)−1/p, the smallness condition (4.4) would still be
satisfied.

Shrinking δ if necessary and using the absolute continuity of the integral, we may also assume
that E[u,v] ≤ 8−(1+1/α) whenever |u− v|< δ . Then c > 1.

Let

Ts : = {t ∈ [u,v] : ρ(s, t)≤ c|Γ(s)−Γ(t)|
2
p } , (4.6)

S : = {s ∈ [u,v] : H 1(Ts)≥
1
8
|u− v|}. (4.7)

(An informal word about the structure of the whole proof might be of some use here: These sets in fact
do depend on u,v but we do not make this explicit in the notation in order to avoid too many indices.
Think of parameters in S as “bad”. The overall strategy is as follows. First we prove in Lemma 4.4 that
the tangent Γ′ behaves nicely when, for given u,v, one restricts it to “good” parameters [u,v]\S. Then
we notice that there are good parameters very close to u,v, and this observation gives an improvement
of the initial Hölder estimate (4.2). It turns out that the whole reasoning can be iterated; in the limit
we obtain the desired conclusion (4.1).)

In order to find an upper bound for the measure of S we estimate

E[u,v] =
∫ v

u

∫ v

u
ρ
−p(s, t)dt ds ≥

∫
S

∫
Ts

ρ
−p(s, t)dt ds

≥ c−p
∫

S

∫
Ts

|Γ(s)−Γ(t)|−2 dt ds

>
1

8cp

∫
S
|u− v|−1ds as |Γ(s)−Γ(t)| ≤ |u− v|< 8H 1(Ts) for s ∈ S

≥ H 1(S)
(
8cp|u− v|

)−1

Thus
H 1(S) < 8cpE[u,v]|u− v| . (4.8)

In the sequel, we use primes to denote complements of various sets in SL, i.e., S′ : = SL \S etc.

Lemma 4.3. If s1,s2 ∈ [u,v] \ S, then T ′s1
∩T ′s2

∩ [u,v] is nonempty; in fact, H 1(T ′s1
∩T ′s2

∩ [u,v]) ≥
3
4 |u− v|.

Proof. For i = 1,2 we have, by definition,

H 1(T ′si
∩ [u,v])≥ 7

8
|u− v| .

Thus

H 1(T ′s1
∩T ′s2

∩ [u,v]) ≥ H 1(T ′s1
∩ [u,v])+H 1(T ′s2

∩ [u,v])

−H 1((T ′s1
∪T ′s2

)∩ [u,v]
)
≥ 3

4
|u− v|. (4.9)

This observation completes the proof of Lemma 4.3. 2
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Lemma 4.4. If |u− v|< δ , then for s ∈ [u,v]\S and t ∈ [u,v]\Ts we have

|Γ′(s)−Γ
′(t)| ≤ 2c−1|Γ(s)−Γ(t)|1−2/p . (4.10)

Proof. Fix s ∈ [u,v]\S and t ∈ [u,v]\Ts. W.l.o.g. suppose s < t. Set r = c|Γ(s)−Γ(t)|2/p and let

l : = l
(
Γ(s),Γ(t);r

)
, V : = V

(
Γ(s),Γ(t);r

)
, A : = V \ l ;

see (2.4) and (2.5) for the definition of lenses l(. . .) and doughnuts V (. . .). Since t 6∈ Ts, we have
ρ(s, t) > r by the very definition of Ts. Thus Γ

(
[s, t]

)
⊂ R3 \A. As γ is simple, i.e., Γ is 1–1, we have

either Γ
(
(s, t)

)
⊂ l or Γ

(
[s, t]

)
⊂ R3 \V .

We now exclude the latter case. Since the shortest curve that joins Γ(s) and Γ(t) in R3 \V has
length at least πc|Γ(s)−Γ(t)|2/p, the inclusion Γ

(
[s, t]

)
⊂ R3 \V would imply by our choice of λ =

λ0 = (2/3)(p/2) in (4.3) that

|s− t| ≥ 3c|Γ(s)−Γ(t)|2/p
(4.3)
≥ 2c|s− t|2/p .

Thus |s− t|1−2/p ≥ 2c > 2 and therefore |u− v| ≥ |s− t| ≥ 1, which is absurd, since |u− v|< δ < 1.

Hence, we have Γ
(
(s, t)

)
⊂ l. This yields

Γ(σ)−Γ(s) ∈C+
ϕ (0;Γ(t)−Γ(s)) for all σ ∈ (s, t),

where the angle ϕ is given by

ϕ : = 2arcsin
|Γ(s)−Γ(t)|

2c|Γ(s)−Γ(t)|2/p .

Thus Γ′(s) belongs to the closure of C+
ϕ (0;Γ(t)−Γ(s)). Analogously, we prove that Γ′(t) belongs to

the closure of C+
ϕ (0;Γ(t)−Γ(s)). This gives

|Γ′(s)−Γ
′(t)| ≤ ϕ ≤ 2c−1|Γ(s)−Γ(t)|1−2/p ,

as arcsinτ ≤ 2τ on [0,1]. 2

We are now ready to improve the Hölder exponent of Γ′. So we continue the
Proof of Theorem 4.1.
Using (4.8), (4.9) and the smallness condition (4.4), we select three points s1 ∈ [u,v] \ S, s2 ∈

[u,v]\S and t ∈ [u,v]\ (Ts1 ∪Ts2) such that u < s1 < t < s2 < v and

|u− s1|< 8cpE[u,v]|u− v|< 1
8
|u− v|, |v− s2|< 8cpE[u,v]|u− v|< 1

8
|u− v|. (4.11)

Applying (4.10) twice, we obtain

|Γ′(s1)−Γ
′(s2)| ≤ |Γ′(s1)−Γ

′(t)|+ |Γ′(s2)−Γ
′(t)| ≤ 4c−1|s1− s2|1−

2
p . (4.12)

Thus

|Γ′(u)−Γ
′(v)| ≤ |Γ′(u)−Γ

′(s1)|+ |Γ′(s1)−Γ
′(s2)|+ |Γ′(s2)−Γ

′(v)|

≤ 2CΓ

(
8cpE[u,v]

)α |u− v|α +4c−1|s1− s2|1−
2
p

(4.4)
≤ 1

4
CΓ|u− v|α +4c−1|u− v|1−

2
p . (4.13)
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Now, let us note that for c given by (4.5) and s1,s2 selected above we still have

2
(
8cpE[u,s1]

)α ≤ 1
4

and 2
(
8cpE[s2,v]

)α ≤ 1
4

;

cf. the remark immediately after (4.5). Besides, |u− s1| and |v− s2| are smaller than δ . Thus, we may
repeat the whole reasoning leading from (4.4) to (4.13) (twice, first for the pair u,s1 instead of u,v,
and then for s2,v instead of u,v) and obtain two inequalities similar to (4.13):

|Γ′(u)−Γ
′(s1)| ≤ 4c−1|u− s1|1−2/p +

1
4

CΓ|u− s1|α , (4.14)

|Γ′(v)−Γ
′(s2)| ≤ 4c−1|v− s2|1−2/p +

1
4

CΓ|v− s2|α . (4.15)

Using (4.12), (4.14) and (4.15), and keeping in mind that α < 1− 2
p , we now obtain

|Γ′(u)−Γ
′(v)| ≤ |Γ′(u)−Γ

′(s1)|+ |Γ′(s1)−Γ
′(s2)|+ |Γ′(s2)−Γ

′(v)|

≤ 4c−1|u− s1|1−2/p +
1
4

CΓ|u− s1|α

+ 4c−1|v− s2|1−2/p +
1
4

CΓ|v− s2|α +4c−1|u− v|1−2/p

(4.11)
≤ 8c−1(8cpE[u,v]

)α |u− v|1−2/p +4c−1|u− v|1−2/p +
1
2

CΓ

(
8cpE[u,v]

)α |u− v|α

(4.4)
≤ 1

42CΓ|u− v|α +4c−1|u− v|1−2/p(1+4−1) (4.16)

Again, the resulting inequality

|Γ′(u)−Γ
′(v)| ≤ 1

42CΓ|u− v|α +4c−1|u− v|1−2/p(1+4−1)
is valid for any pair of u,v ∈ SL such that |u− v| < δ and any constant c such that the smallness
condition (4.4) is satisfied. Thus, as in (4.14)–(4.15), we may keep here the c defined by (4.5) but
replace u in (4.4) by s2 (or v by s1).

Iterating computations similar to the proof of (4.16), we check by induction that

|Γ′(u)−Γ
′(v)| ≤ 1

4n+1CΓ|u− v|α +4c−1|u− v|1−2/p
n

∑
k=0

4−k

≤ 1
4n+1CΓ|u− v|α +8c−1|u− v|1−2/p , n = 1,2, . . .

Upon letting n→ ∞, we finally obtain

|Γ′(u)−Γ
′(v)| ≤ 8c−1|u− v|1−2/p = 81+(1/p)+(1/pα)(E[u,v]

)1/p|u− v|1−2/p (4.17)

whenever |u− v|< δ .
If |u− v| ≥ δ , then one simply has to divide the segment [u,v] into k ≤ [L/δ ]+1 pieces [u j,u j+1]

of length at most δ , where j = 0,1, . . . ,k−1 and u = u0 < u1 < .. . < uk = v. Since each of the squares
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[u j,u j+1]2 is contained in [u,v]2, we have E[u j,u j+1] ≤ E[u,v] for each j, and therefore

|Γ′(u)−Γ
′(v)| ≤

k−1

∑
j=0
|Γ′(u j)−Γ

′(u j+1)|

(4.17)
≤ C(p,α)

(
E[u,v]

)1/p
k−1

∑
j=0
|u j−u j+1|1−2/p

≤ C(p,α)
(
E[u,v]

)1/p · k · δ
1−2/p

≤ C(p,α)
(
E[u,v]

)1/p
(L

δ
+1
)
|u− v|1−2/p,

where C(p.α) : = 81+(1/p)+(1/pα) is the constant in (4.17). The whole proof is complete now. 2

References

[ACPR05] Ashton, T.; Cantarella, J.; Piatek, M.; Rawdon, E. Self-contact sets for 50 tightly knotted and
linked tubes. arXiv:math.DG/0508248 v1 (2005).
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of Math. (2) 139 (1994), 1–50.

[GL03] Gonzalez, O.; de la Llave, R. Existence of ideal knots. J. Knot Theory and its Ramifications 12
(2003), 123–133.

[GM99] Gonzalez, O.; Maddocks, J.H. Global curvature, thickness, and the ideal shape of knots. Proc.
Natl. Acad. Sci. USA 96 (1999), 4769–4773.

[GMSvdM02] Gonzalez, O.; Maddocks, J.H.; Schuricht, F.; von der Mosel, H. Global curvature and self-
contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differential Equations 14
(2002), 29–68.



A geometric curvature double integral of Menger type 19

[Ha05a] Hahlomaa, I. Menger curvature and Lipschitz parametrizations in metric spaces. Fund. Math.
185 (2005), 143–169.

[Ha05b] Hahlomaa, I. Curvature integral and Lipschitz parametrization in 1-regular metric spaces. Ann.
Acad. Sci. Fenn. Math. 32 (2007), 99–123.
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