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Abstract
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1 Introduction

The aim of this paper is to give a new proof of the following result:

THEOREM 1.1. Let (Ω, ds2) be a k-fold connected Riemann domain of classCm,α,
m ≥ 2, α ∈ (0, 1), which is bounded by k closed, mutually disjoint Jordan curves
Γ1, . . . ,Γk ∈ Cm,α. Then there is a conformal mapping σ : Ω̄ → B̄ of the closure
of Ω ⊂ R2 onto the closure of a k-circle domain B in R2 such that σ ∈ Cm,α.

In order to establish this result we show that on every such Riemann domain
(Ω, ds2) one can introduce conformal parameters in the large by means of a con-
formal mapping τ : B̄ → Ω̄ from the closure B̄ of a k-circle domain B in R2 ∼= C
with τ ∈ Cm,α. Then, clearly, Theorem 1.1 is obtained by choosing σ as the
inverse of τ.

We note that these results are well-known (see e.g. Jost [14], [15]). The ex-
istence of a conformal mapping τ : B → Ω essentially follows from the local
Korn-Lichtenstein Theorem (cf. [16], [19]), combined with a uniformization pro-
cedure. The extension of τ to a conformal mapping τ : B̄ → Ω̄ of B̄ onto Ω̄ in the
spirit of Osgood – Carathéodory – Kellogg – Warschawski requires an additional
effort.
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2 S. HILDEBRANDT, H. VON DER MOSEL

Here we give a new proof for the existence of the conformal mapping τ :
B̄ → Ω̄ by solving a planar “Douglas problem”. In the spirit of J. Douglas we
thereby obtain the diffeomorphism τ in one stroke up to the boundary. A similar
approach was used by C.B. Morrey in Chapter 9 of his monograph [22]; however,
his proof is invalid as it stands. Later, J. Jost (loc.cit.) provided another varia-
tional proof using some of Morrey’s ideas. The proof presented here is possibly
simpler and more direct. Its new feature consists in a simultaneous minimization
of the area functional A and the Dirichlet integral D in a “Douglas class” C(Γ).
This class consists of mappings τ ∈ H1,2(B,R2), defined on variable k-circle
domains B in R2, which monotonically and continuously map the boundary cir-
cles C1, . . . , Ck of ∂B onto the closed curves Γ1, . . . ,Γk forming the boundary
configuration Γ := 〈Γ1, . . . ,Γk〉 of Ω. The artifice in obtaining such a simulta-
neous minimizer τ of A and D consists in minimizing the convex combinations
Aε := (1 − ε)A + εD for ε ∈ (0, 1]. This trick is borrowed from earlier work
of the authors on Cartan functionals and was already used in [12] to establish the
existence of a conformal mapping τ : D̄ → Ω̄ of the closure of a disk D onto the
closure Ω̄ of a simply connected Riemann domain (Ω, ds2) of class Cm,α. This
case is much simpler than the case k > 1 since all simply connected, bounded do-
mains Ω are conformally equivalent, while two multiply connected domains with
k closed boundary contours are in general of different conformal type. Therefore
one has to minimize Aε over mappings τ : B → R2 whose domains dom(τ) = B
are not kept fixed, but will be allowed to vary in the class of k-circle domains.

To solve the Douglas problem “Aε → min in C(Γ)” we follow Courant’s ap-
proach [3], or rather a modification of this approach devised by M. Kurzke in his
profound Diploma thesis [17] and, later, by Kurzke and the second author [18]. Let
us outline a few ideas of our method. For this purpose we need some definitions.

For q ∈ C and r > 0 we define the disk Br(q) as

Br(q) := {w ∈ C : |w − q| < r};

it is a 1-circle domain. If q = 0 and r = 1, we call the unit disk B1(0) the normed
1-circle domain. For k > 1, a k-circle domain B(q, r) with q = (q1, . . . , qk) ∈ Ck

and r = (r1, . . . , rk) ∈ Rk, r1 > 0, . . . , rk > 0, is a diskBr1(q1), from which k−1
closed disks B̄r2(q2), . . . , B̄rk

(qk) are removed which are contained inBr1(q1) and
do not intersect. That is,

B(q, r) = Br1(q1) \
{
B̄r2(q2) ∪̇ . . . ∪̇ B̄rk

(qk)
}
,

and |q1 − qj |+ rj < r1 for 1 < j ≤ k as well as

rj + rl < |qj − ql| for j 6= l with 2 ≤ j, l ≤ k.

If, in addition, q1 = q2 = 0 and r1 = 1, then B(q, r) is called a normed k-circle
domain.
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Let N (k) be the class of k-circle domains, and N1(k) be the class of normed
k-circle domains.

Next we introduce Riemann domains in R2 as diffeomorphic images of k-circle
domains, bounded by smooth curves and equipped with a Riemannian metric. To
formulate a clear cut notion we give the following

DEFINITION 1.2. A k-fold connected Riemann domain (Ω, ds2) in R2 of class
Cm,α, m ≥ 1, α ∈ (0, 1), is an open, bounded subset Ω of R2 whose closure is
equipped with a Riemannian metric

ds2 = gjl(x)dxjdxl, x ∈ Ω̄,

and which has the following properties:

(i) There is aB ∈ N (k) and aCm,α-diffeomorphism τ0 of B̄ (viewed as subset
of R2) such that Ω̄ = τ0(B̄).

(ii) (gjl) is a positive definite, symmetric, 2×2-matrix valued function on Ω̄ with
gjl ∈ Cm−1,α(Ω̄).

Extending (gjl) suitably to all of R2 we may and will assume that (gjl) is a sym-
metric matrix function on R2 with gjl ∈ Cm−1,α(R2) satisfying

gjl(x) = δjl for |x| � 1,

and

(1.1) m1|ξ|2 ≤ gjl(x)ξjξl ≤ m2|ξ|2 for all x, ξ ∈ R2

for some positive constants m1,m2 with m1 ≤ m2.
Note that the boundary ∂Ω of the Riemann domain (Ω, ds2) consists of k

closed, mutually disjoint Jordan curves Γ1, . . . ,Γk of class Cm,α which are given
by τ0(C1), . . . , τ0(Ck) where C1, . . . , Ck are the “boundary circles” of B. The
k-tuple

(1.2) Γ = 〈Γ1, . . . ,Γk〉

is called the boundary configuration of the Riemann domain (Ω, ds2).

Example. If X ∈ Cm,α(Ω̄,Rn), n ≥ 2, is an immersion of Ω̄ ⊂ R2 and Ω̄ =
τ0(B̄), B ∈ N (k), τ0 aCm,α-diffeomorphism, then (Ω, ds2) with the pulled-back
metric ds2 = X∗(ds2e) of the Euclidean metric ds2e in Rn is a k-fold connected
Riemann domain of class Cm,α.

For τ ∈ H1,2(B,R2), B ∈ N (k), the functions

E (τ) := gjl(τ)τ j
uτ

l
u, F (τ) := gjl(τ)τ j

uτ
l
v, G (τ) := gjl(τ)τ j

v τ
l
v



4 S. HILDEBRANDT, H. VON DER MOSEL

are integrable, and the pull-back τ∗ds2 of the given metric ds2 can be written as

τ∗ds2 = E (τ)du2 + 2F (τ)dudv + G (τ)dv2.

If τ satisfies the conformality relations

(1.3) E (τ) = G (τ), F (τ) = 0 on B,

then τ is called weakly conformal. If, in addition, τ defines a diffeomorphism from
B̄ onto Ω̄, then τ is said to be a conformal mapping from B̄ onto Ω̄ (or, more
precisely, from (B̄, ds2e) onto (Ω̄, ds2), where ds2e denotes the Euclidean metric
ds2e = du2 + dv2 on R2). Then we can write

τ∗ds2 = λ(w)(du2 + dv2), λ := E (τ) = G (τ), w = (u, v) ≡ u+ iv.

Note that for ds2 = ds2e a conformal mapping in the above sense is a “classic”
conformal mapping if detDτ > 0 on B̄, and it is “anticonformal” if detDτ < 0.

Next we are going to define the area functionalA(τ) and the Dirichlet integral
D(τ) for any τ ∈ H1,2(B,R2) with B = dom(τ) ∈ N (k) as

A(τ) :=
∫

B

√
E (τ)G (τ)−F 2(τ) dudv,

D(τ) :=
1
2

∫
B

[E (τ) + G (τ)] dudv.

Recall that B, the domain of τ , may vary with τ and is allowed to be an arbitrary
k-circle domain. We note that

A(τ) ≤ D(τ) for any τ ∈ H1,2(B,R2)

and
A(τ) = D(τ) if and only if (1.3) is satisfied.

Finally we define the Douglas class C(Γ) of admissible mappings τ : B → R2 for
the variational procedure that we are going to set up, where Γ is given by (1.2).

DEFINITION 1.3. A mapping τ ∈ H1,2(B,R2)∩C0(∂B,R2) withB = dom(τ) ∈
N (k) belongs to C(Γ) if τ |∂B maps ∂B in a weakly monotonic way onto Γ =
〈Γ1, . . . ,Γk〉. By this we mean the following: There is an enumeration C1, . . . , Ck

of the boundary circles of B such that τ |Cj maps Cj in a weakly monotonic way
onto Γj , j = 1, . . . , k.

If in the sequel we consider a mapping τ ∈ C(Γ) with B = dom (τ) and ∂B =
C1 ∪ . . .∪Ck, we tacitly assume the boundary circles Cj to be enumerated in such
a way that Γj = τ(Cj), j = 1, . . . , k.

Now we can formulate our principal result, from which Theorem 1.1 follows
in the indicated way:
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THEOREM 1.4. Let (Ω, ds2) be a k-fold connected Riemann domain of classCm,α,
m ≥ 2, α ∈ (0, 1), with the boundary configuration Γ = 〈Γ1, . . . ,Γk〉. Then there
exists a τ ∈ C(Γ) ∩ Cm,α(B̄,R2) with B = dom(τ) ∈ N (k) such that

(1.4) A(τ) = inf
C(Γ)

A = inf
C(Γ)

D = D(τ).

The mapping τ provides a conformal mapping from (B̄, ds2e) onto (Ω̄, ds2).

Remarks. (i) Note that either detDτ > 0 on B̄ or detDτ < 0 on B̄. In the
second case we compose τ with the reflection ρ : (u, v) 7→ (u,−v) which maps B̄∗

onto B̄ where B∗ is the mirror image of B = dom(τ) with respect to the u-axis.
Then τ∗ := τ◦ρ is of class C(Γ)∩Cm,α(B̄∗,R2) withB∗ = dom(τ∗) ∈ N (k) and
furnishes a conformal mapping from (B̄∗, ds2e) onto (Ω̄, ds2) with detDτ∗ > 0.
We also have

A(τ∗) = inf
C(Γ)

A = inf
C(Γ)

D = D(τ∗).

(ii) Theorem 1.4 generalizes Koebe’s mapping theorem from Euclidean to Rie-
mannian metrics; see also R. Courant [3], Chapter V.
(iii) Suppose that τ1 and τ2 are two conformal mappings from (B̄1, ds

2
e) and

(B̄2, ds
2
e) onto (Ω̄, ds2), B1, B2 ∈ N (k), with detDτj > 0 for j = 1, 2. Then

σ : τ−1
2 ◦ τ1 is a biholomorphic map from B̄1 onto B̄2. By virtue of a result of P.

Koebe σ is a Möbius transformation (cf. [20], p. 278, footnote 354). A proof of
this “uniqueness theorem” can be found in [13], pp. 517–519, and, in a different
formulation, in [2], pp. 187–191.

Thus we have found:
A conformal mapping τ from (B̄, ds2e), B ∈ N (k), onto (Ω̄, ds2) is uniquely
determined up to a composition τ ◦ σ with a Möbius transformation σ : B̄′ → B̄,
B′ ∈ N (k).

As mentioned before we shall proceed by studying the minimum problem

(1.5) Aε → min in C(Γ)

for the modified functional

(1.6) Aε := (1− ε)A+ εD

with a fixed ε ∈ (0, 1], instead of considering the problem “D → min in C(Γ)”
and then proving “minC(Γ)A = minC(Γ)D” which needs sophisticated analytic
tools. Suppose we had a solution τ ε of (1.5). Since A is parameter invariant we
would obtain that the first inner variation of D at τ ε vanishes for all C1-vector
fields, i.e.

(1.7) ∂D(τ ε, η) = 0 for all η ∈ C1(B̄,R2) with B = dom(τ ε).
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In Section 2 we prove that (1.7) implies the conformality relations

(1.8) E (τ ε) = G (τ ε), F (τ ε) = 0,

following Courant’s ideas (see [3], pp. 169–178, and also [17], Chapter 3). This
enables us to avoid Riemann’s mapping theorem for multiply connected domains
in C.

After some technical preparations in Section 3 we shall formulate in Section 4
the Douglas condition, and then prove the following intermediate result:

THEOREM 1.5. If the Riemann domain (Ω, ds2) satisfies the Douglas condition
then there is an ε0 ∈ (0, 1] such that (1.5) possesses a solution τ ε for every ε ∈
(0, ε0], and in addition, τ ε fulfills (1.8).

On account of (1.8) one obtains in Section 5 that

Aε(τ ε) = A(τ ε) = D(τ ε) for 0 < ε < ε0.

An easy reasoning will then imply

D(τ ε) ≡ const on (0, ε0],

and one can conclude that, for any ε ∈ (0, ε0], the mapping τ := τ ε is a solution of
(1.4) and (1.3). Applying a similar reasoning as in [12] it follows that the assertions
of Theorem 1.4 hold under the additional assumption that (Ω, ds2) satisfies the
Douglas condition. Having established this fact, the proof of Theorem 1.4 will be
completed by finally showing that this additional assumption is superfluous. The
details of these arguments will be carried out in Section 5.

Finally the authors would like to apologize for the unanticipated wealth of
material which led to this rather long exposition. This is in part caused by the
fact that for several of the results used here we have not found complete proofs in
the literature, or that these results could not be applied directly in the existing form.

Acknowledgement. The authors would like to thank the Deutsche Forschungs-
gemeinschaft, the Hausdorff Research Institute for Mathematics at Bonn Univer-
sity, and the Centro di Ricerca Matematica Ennio De Giorgi at the Scuola Normale
Superiore in Pisa, in particular Professor Mariano Giaquinta, for their generous
support.

2 Conformality relations

Consider a set B ∈ N (k) given by

B = Br1(q1) \
k⋃

j=2

B̄rj (qj)

with B̄rj (qj) ⊂ Br1(q1) and B̄rj (qj) ∩ B̄rl
(ql) = ∅ for 2 ≤ j, l ≤ k, j 6= l.
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LEMMA 2.1. There is a Möbius transformation f such that f(B) ∈ N1(k).

PROOF: For k = 1 the mapping f is given by

f(w) :=
w − q

r
where r = r1 and q = q1.

If k > 1 then f := ψ ◦ ϕ with

ϕ(w) :=
w − q1
r1

, ψ(z) :=
z − p2

p2z − 1
, p2 := ϕ(q2).

2

PROPOSITION 2.2. If τ ∈ C(Γ) with dom(τ) = B satisfies

(2.1) ∂D(τ, η) = 0 for all η ∈ C1(B̄,R2)

then τ fulfils the conformality relations (1.3).

PROOF: Because of Lemma 2.1 and the conformal invariance of D we may as-
sume that B ∈ N1(k). If k = 1 the proof is given in [12]; so we now assume
k > 1, q1 = 0, r1 = 1. Let us view B as a subset of C and consider the mapping
φ : B → C defined by

φ := a− ib, a := E (τ)− G (τ), b := 2F (τ).

For η = (η1, η2) ∈ C1(B̄,R2) the inner variation ∂D(τ, η) is given by

∂D(τ, η) =
1
2

∫
B

[a(η1
u − η2

v) + b(η2
u + η1

v)] dudv.

By writing η(w) in complex notation η(w) = η1(w) + iη2(w) we obtain

Re (ηw̄φ) =
1
2
[(η1

u − η2
v)a+ (η2

u + η1
v)b].

Thus (2.1) is equivalent to

(2.2) Re
∫

B
ηw̄φdudv = 0 for all η ∈ C1(B̄,C) ∼= C1(B̄,R2).

As a first step towards proving (1.3) we state

LEMMA 2.3. Let α be a closed Jordan curve in B of class C1 which partitions B
into two disjoint open subsets B1 and B2, i.e. B = B1 ∪̇α ∪̇B2, and suppose that
η = η1 + iη2 is holomorphic on B1, (η1, η2) ∈ C1(B̄,R2), and η(w) = 0 for
w ∈ ∂B2 \ α. Then, for any closed C1-curve β ⊂ B1 that is homologous to α, the
complex line integral

∫
β η(w)φ(w) dw is real, i.e.

(2.3) Im
∫

β
η(w)φ(w) dw = 0.
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Proof of the lemma. Since B = B1 ∪̇α ∪̇B2 and ηw̄ = 0 in B1 it follows from
(2.2) that

Re
∫

B2

ηw̄φdudv = 0

whence ∫
B2

[a(η1
u − η2

v) + b(η2
u + η1

v)] dudv = 0.

As η = 0 on ∂B2 \ α, an integration by parts yields

0 =
∫

α
(aη2 − bη1) du+ (aη1 + bη2) dv

−
∫

B2

[(auη
1 + buη

2) + (bvη1 − avη
2)] dudv.

Furthermore,

2 Re (ηφw̄) = (auη
1 + buη

2) + (bvη1 − avη
2),

and by the same reasoning as in [12] one proves that φ is holomorphic in B, i.e.

φw̄(w) = 0 on B.

Therefore, ∫
α
(aη2 − bη1) du+ (aη1 + bη2) dv = 0.

A brief computation yields

Im (φη dw) = (aη2 − bη1) du+ (aη1 + bη2) dv,

and so
Im

∫
α
φη dw = 0.

Since φη is holomorphic in B1 it follows that∫
α
φη dw =

∫
β
φη dw

whence (2.3) is verified. Thus the lemma is proved. 2

Next we define for any set M in C the “thickening”

Bδ(M) := {w ∈ C : dist(w,M) < δ}.

Then
Aj(δ) := B ∩Bδ(Cj), j = 1, . . . , k, δ > 0,
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are the annuli Aj(δ) of width δ about the boundary circles Cj = ∂Brj (qj), con-
tained in B and satisfying Aj(δ) ∩ Al(δ) = ∅ for j 6= l, 1 ≤ j, l ≤ k, provided
that

δ < δ0 :=
1
2

min{dist(Cj , Cl) : j 6= l, 1 ≤ j, l ≤ k}.

LEMMA 2.4. For any closed C1-curve βj in Aj(δ), 0 < δ < δ0, which is homol-
ogous to Cj one has

(2.4)
∫

βj

φ(w) dw = 0

and

(2.5)
∫

βj

(w − qj)φ(w) dw = 0

for j = 1, . . . , k.

Proof of the lemma. Fix some j ∈ {1, . . . , k} and consider three vector fields
η1, η2, η3 ∈ C∞c (B ∪ Cj ,C) with

∂

∂w̄
ηl(w) = 0 in Aj(δ), l = 1, 2, 3,

satisfying

η1(w) :=

{
ζ for w ∈ Āj(δ)
0 for w ∈ B̄ \ Āj(2δ),

where ζ is an arbitrary complex number,

η2(w) :=

{
w − qj for w ∈ Āj(δ)
0 for w ∈ B̄ \ Āj(2δ),

η3(w) :=

{
−i(w − qj) for w ∈ Āj(δ)
0 for w ∈ B̄ \ Āj(2δ).

Let C ′j be the circle ∂Aj(δ) \ Cj and apply Lemma 2.3 to α := C ′j and η := η1.
Then, for any closed curve βj inAj(δ) homologous to α and therefore homologous
to Cj , it follows that

Im
[
ζ

∫
βj

φ(w) dw
]

= 0 for all ζ ∈ C.

This yields (2.4).
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Applying the same reasoning to η := η2 and η := η3 respectively, we obtain

Im
∫

βj

(w − qj)φ(w) dw = 0 and Re
∫

βj

(w − qj)φ(w) dw = 0

which proves (2.5). 2

Remark. One can as well choose η2(w) := (w− qj)n and η3(w) := −i(w− qj)n

on Āj(δ) with n ∈ Z \ {0}, η2(w) = 0 and η3(w) = 0 on B̄ \ Āj(2δ), η2, η3 ∈
C∞c (B ∪ Cj ,C). Thus one even obtains

(2.6)
∫

βj

(w − qj)nφ(w) dw = 0 for all n ∈ Z

and βj ⊂ Aj(δ), 0 < δ < δ0 (0 < δ < 1 for k = 1). For B ∈ N1(k) one has

φ(w) =
∞∑

n=−∞
anw

n if k = 1 or 2

(with an = 0 for n < 0 if k = 1). Applying (2.6) to q1 = q2 = 0 and 0 < r2 <
r1 = 1 for k = 2, or to q1 = 0, r1 = 1 if k = 1, it follows that φ(w) ≡ 0, and
so Proposition 2.2 is proved for k = 1 or 2. The case k ≥ 3 is more involved. We
need the following crucial result.

LEMMA 2.5. One has

(2.7) Im
[
(w − qj)2φ(w)

]
= 0 for w ∈ Cj , 1 ≤ j ≤ k.

PROOF: (i) We first consider the case j = 1 where q1 = 0 and r1 = 1; by a
suitable Möbius transformation the cases j = 2, . . . , k will be reduced to j = 1 in
step (ii).

Fix some δ ∈ (0, δ0), and let ψ be an arbitrary real valued function with ψ ∈
C1(B̄) and

ψ(w) = 0 for w ∈ B̄ with |w| ≤ 1− 2δ.

Set
η(w) := −i[wψ(w)] for w ∈ B̄.

By (2.2) we have

0 = Re
∫

B
ηw̄φdudv = lim

R→1−0
Re

∫
B∩BR(0)

ηw̄φdudv.

As in the proof of Lemma 2.3 it follows that

0 = − lim
R→1−0

Im
∫

∂BR(0)
iwψ(w)φ(w) dw.
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With w = Reiθ and dw = iw dθ we obtain

(2.8) 0 = lim
R→1−0

∫ 2π

0
ψ(Reiθ)h(Reiθ) dθ

if we denote by h : B → R the harmonic function

h(w) := Im [w2φ(w)], w ∈ B.

Suppose now that ψ depends also on a further parameter z ∈ B̄ρ(0) such that
ψ(w, z) is of class C1 for (w, z) satisfying 1− 2δ ≤ |w| ≤ 1, |z| ≤ ρ ≤ 1− σ for
σ ∈ (0, 2δ). Then we obtain for f := Re [ηw̄(·, z)φ] that∣∣∣∣∣

∫
B∩BR(0)

f dudv

∣∣∣∣∣ =

∣∣∣∣∣
∫

B
f dudv −

∫
B∩BR(0)

f dudv

∣∣∣∣∣
=

∣∣∣∣∣
∫

B\BR(0)
f dudv

∣∣∣∣∣ ≤M ·
∫

B\BR(0)
|φ| dudv for R > 1− σ

where
M := sup{|ηw̄(w, z)| : 1− 2δ ≤ |w| ≤ 1, |z| ≤ ρ} <∞.

Thus we achieve the uniform convergence of
∫
B∩BR(0) f(w, z) dudv to zero as

R→ 1− 0 for z ∈ B̄ρ(0), i.e.

Re
∫

B∩BR(0)
ηw̄(w, z)φ(w) dudv → 0 uniformly in z ∈ B̄ρ(0) as R→ 1− 0,

since |φ| ∈ L1(B). This implies that the convergence in (2.8) is uniform with
respect to z ∈ B̄ρ(0), i.e.

(2.9)
∫ 2π

0
ψ(Reiθ, z)h(Reiθ) dθ → 0 uniformly in z ∈ B̄ρ(0) as R→ 1− 0.

For 0 ≤ r ≤ ρ ≤ 1 − σ < R < 1 and w = Reiθ, z = reiϑ we introduce
the Poisson kernel K(w, z) of the ball BR(0) with respect to w ∈ ∂BR(0) and
z ∈ B̄ρ(0),

K(w, z) :=
R2 − r2

2π[R2 − 2rR cos(θ − ϑ) + r2]
.

Furthermore let ξ be a radial cut-off function of class C∞(R) with ξ(r) = 1 for
r ≥ 1− σ/2 and ξ(r) = 0 for r ≤ 1− σ, 0 < σ < 2δ, and set

ψ(w, z) := ξ(|w|)K(w, z)
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for z ∈ B̄ρ(0), 0 < ρ ≤ 1 − σ, and 1 − 2δ < 1 − σ ≤ |w| ≤ 1. Then ψ(w, z)
has the properties required above, and for R = |w| ≥ 1−σ/2 one has ξ(|w|) = 1.
Consequently it follows from (2.9) that

HR(z) :=
∫ 2π

0
K(Reiθ, z)h(Reiθ) dθ, z ∈ BR(0),

satisfies

(2.10) ‖HR‖C0(B̄ρ(0)) → 0 as R→ 1− 0 for any ρ ≤ 1− σ, 0 < σ < 2δ.

By Poisson’s formula and Schwarz’s theorem it follows that HR is harmonic in the
disk BR(0) and can be extended to a continuous function on B̄R(0) satisfying

(2.11) HR(w) = h(w) for w ∈ ∂BR(0).

In the sequel, A(r, r′) denotes the annulus

A(r, r′) := {w ∈ C : r < |w| < r′} for 0 < r < r′ <∞.

For R0 := 1− 2δ < R < 1 we now consider the excess function

ER(w) := h(w)−HR(w) for w ∈ Ā(R0, R),

which is continuous on Ā(R0, R), harmonic in A(R0, R), and vanishes on the
circle ∂BR(0) according to (2.11). By reflection in this circle we can extend ER

to a continuous function on Ā(R0, R
′) with R′ := R2/R0 which is harmonic in

A(R0, R
′) and satisfies

(2.12) max
∂BR0

(0)
|ER| = max

∂BR′ (0)
|ER|.

Set
C = C(R0) := 2 max

∂BR0
(0)
|h|, R0 = 1− 2δ,

and for an arbitrarily chosen ε > 0 we pick a number σ with

(2.13) 0 < σ < min
{
δ

2
,
εδ

2C

}
.

Because of (2.10) there is a number R1 ∈ (1− (σ/2), 1) such that

max
∂BR0

(0)
|HR| < C/2 for all R ∈ (R1, 1),

and so ER = h−HR satisfies

max
∂BR0

(0)
|ER| < C for all R ∈ (R1, 1).
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In conjunction with (2.12) the maximum principle then implies

(2.14) max
Ā(R0,R′)

|ER| < C for all R ∈ (R1, 1)

where R0 = 1− 2δ and R′ = R2/R0.
For R ∈ (R1, 1) we have 1 − σ/2 < R < 1 and therefore R − (1 − σ) >

σ/2 > 0. For any w ∈ A(1− σ,R) it follows that

dist(w, ∂A(R0, R
′)) > (1− σ)−R0 = 2δ − σ > δ.

Applying Cauchy’s estimate to∇ER onA(1−σ,R) we then infer from (2.14) that

max
Ā(1−σ,R)

|∇ER| ≤
C(R0)
δ

for R ∈ (R1, 1).

Since ER(w) = 0 for |w| = R, we can write

|ER((1− σ)eiθ)| ≤
∫ R

1−σ
|∂rER(reiθ)| dr

≤ σ
C

δ
<

εδ

2C
· C
δ

whence
|ER(w)| < ε

2
for |w| = 1− σ and R1 < R < 1

where R1 ∈ (1 − σ/2, 1) was chosen above and σ is a fixed number satisfying
(2.13).

Applying once more (2.10) it follows that for the chosen σ there is a number
R2 ∈ [R1, 1) such that

max
B̄1−σ(0)

|HR| <
ε

2
for all R ∈ (R2, 1).

Because of
h(w) = ER(w) +HR(w) for w ∈ Ā(R0, R)

and R0 = 1− 2δ < 1− σ < 1− σ/2 < R1 ≤ R2 < R < 1 we arrive at

|h(w)| < ε/2 + ε/2 = ε for |w| = 1− σ.

This implies for the harmonic function h(w) = Im [w2φ(w)] that

lim
σ→+0

max
∂B1−σ(0)

|h| = 0,

and so we can extend h continuously toB∪C1, C1 = ∂B1(0) by setting h(w) = 0
for w ∈ C1, which completes the proof of (2.7) for j = 1.
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(ii) Note that for the proof of (2.7) in the case j = 1 we only have used q1 = 0,
r1 = 1 and the fact that C1 = ∂B1(0) contains C2, . . . , Ck in its interior domain
B1(0). Therefore we can reduce the cases j = 2, . . . , k to (i) by applying the
Möbius transformation µ : Ĉ → Ĉ, Ĉ := C ∪ {∞}, defined by

z = µ(w) :=
rj

w − qj

where Cj = ∂Brj (qj) = {w ∈ C : |w − qj | = rj}. The mapping µ maps B
into another k-circle domain B∗ whose exterior circle is C1 = ∂B1(0), and C1 =
µ(Cj). Let ν := µ−1 be the inverse of µ, and set τ∗ := τ ◦ ν with dom(τ∗) = B∗;
then (2.1) implies

∂D(τ∗, ζ) = 0 for all ζ ∈ C1(B̄∗,R2)

on account of the conformal invariance of D, and (i) yields

Im [z2φ∗(z)] = 0 for z ∈ C1

where φ∗(z) = a∗(z)− ib∗(z), z ∈ B∗, is defined by

a∗ := E (τ∗)− G (τ∗), b∗ := F (τ∗).

A straight-forward computation yields

(w − qj)2φ(w) = z2φ∗(z) for z ∈ C1 and w = ν(z),

and since ν(C1) = Cj it follows that

Im
[
(w − qj)2φ(w)

]
= 0 for w ∈ Cj , 2 ≤ j ≤ k.

This completes the proof of the lemma. 2

Precisely speaking we have shown that each of the holomorphic functions

Fj(w) := (w − qj)2φ(w), w ∈ B, j = 1, . . . , k,

has a harmonic imaginary part hj := ImFj which can continuously be extended
to B ∪ Cj by setting hj(w) = 0 for w ∈ Cj . Then the reflection principle for
harmonic functions yields that hj can be extended as a harmonic function beyond
Cj . Inspecting the Cauchy-Riemann equations it follows that Fj can be extended
holomorphically across Cj and therefore φ can be extended holomorphically to
some domain G with B̄ ⊂ G ⊂ C. This implies that either φ(w) ≡ 0 in B̄, or
else φ has finitely many zeros in B̄. Employing a method due to Hans Lewy (cf.
Courant [3], p. 175) we will show that the second case is impossible, thus verifying
the assertion of Proposition 2.2.
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Let r, θ be polar coordinates around qj defined by w = qj +reiθ, and introduce
the 2π-periodic functions

fj(θ) := r2j e
i2θφ(qj + rje

iθ), j = 1, . . . , k,

that are real analytic in θ and satisfy fj(θ) ∈ R for θ ∈ R on account of (2.7). By
Lemma 2.4 applied to βj := Cj it follows that

i

∫ 2π

0
fj(θ) dθ = 0 and ir−1

j

∫ 2π

0
e−iθfj(θ) dθ = 0,

whence

(2.15)
∫ 2π

0
fj(θ) dθ = 0,

∫ 2π

0
fj(θ) cos θ dθ = 0,

∫ 2π

0
fj(θ) sin θ dθ = 0.

Then fj(θ) 6≡ const, because the first equation would imply fj(θ) ≡ 0 and there-
fore φ(w) ≡ 0 on ∂Brj (qj) which is impossible since φ(w) has only finitely many
zeros in B̄. Moreover,

∫ 2π
0 fj(θ) dθ = 0 shows that fj(θ) must change its sign in

[0, 2π) at least once, and so it has a positive maximum and a negative minimum.
Correspondingly fj(θ) possesses two zeros θ0, θ1 ∈ [0, 2π), i.e. |θ0 − θ1| < 2π
since fj is periodic. By choosing the polar angle θ suitably we can assume that
fj(θ) has the two zeros θ0 and −θ0 with some θ0 ∈ (0, π), while the three equa-
tions (2.15) remain valid. This yields

(2.16)
∫ π

−π
fj(θ)[cos θ − cos θ0] dθ = 0,

and so the function fj(θ)[cos θ−cos θ0] changes its sign in (−π, π). Since g(θ) :=
cos θ − cos θ0 with g′(θ) = − sin θ satisfies g′(θ) > 0 for −π < θ < 0, g′(θ) < 0
for 0 < θ < π, it follows that

g(θ) < 0 on (−π,−θ0) ∪ (θ0, π), g(θ) > 0 on (−θ0, θ0).

If fj(θ) did not have any other zero than θ0 and −θ0 then fj(θ)g(θ) would not
change its sign in (−π, π), but this contradicts (2.16). Thus there is a third zero θ3
of fj(θ) in (−π, π). We claim that there is even a fourth zero θ4 of fj in (−π, π). In
fact, suppose that fj(θ) 6= 0 for θ ∈ (−π, π) with θ 6= ±θ0, θ3. If θ3 ∈ (−θ0, θ0)
then again fj(θ)g(θ) would not change its sign, a contradiction to (2.16). The other
two cases θ3 < −θ0 and θ0 < θ3 can be transformed to the case −θ0 < θ3 < θ0
by a shift of θ which keeps (2.16) fixed because of (2.15). Thus we have found:

LEMMA 2.6. If φ(w) 6≡ 0 in B̄ then φ has at least four zeros on any boundary
circle Cj of B.
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Now let wm ∈ B be the interior zeros of φ with the multiplicities µm, m =
1, . . . ,M, and ζl ∈ ∂B be the boundary zeros of φ with the multiplicities νl,
l = 1, . . . , L. Set N := µ1 + · · ·+µM , and choose ρ > 0 sufficiently small. Then,
by Rouché’s formula, the number N ≥ 0 is given by

N =
1

2πi

∫
∂Gρ

φ′(w)
φ(w)

dw, Gρ := B \
L⋃

l=1

B̄ρ(ζl).

The boundary ∂Gρ consists of βj(ρ) := Cj∩∂Gρ, j = 1, . . . , k, and of the circular
arcs γl(ρ) := ∂Bρ(ζl)∩B, l = 1, . . . , L. Recall also that Fj(w) = (w− qj)2φ(w)
is holomorphic in B ∪ Cj and real valued on Cj . Then we have

d logFj(w) = d log(w − qj)2 + d log φ(w) on βj ,

whence
φ′(w)
φ(w)

dw =
F ′j(w)
Fj(w)

dw − 2
w − qj

dw for w ∈ βj .

This implies
1

2πi

∫
βj(ρ)

φ′(w)
φ(w)

dw = Ij(ρ)−Kj(ρ)

with

Ij(ρ) :=
1

2πi

∫
βj(ρ)

F ′j(w)
Fj(w)

dw

and

Kj(ρ) := 2
1

2πi

∫
βj(ρ)

dw

w − qj
.

We have

lim
ρ→+0

Kj(ρ) =

{
2 for j = 1
−2 for j = 2, . . . , k,

and it will be proved below that

(2.17) lim
ρ→+0

Ij(ρ) = 0.

Thus

N = lim
ρ→+0

k∑
j=1

[Ij(ρ)−Kj(ρ)] + lim
ρ→+0

L∑
l=1

Pl(ρ)

with

Pl(ρ) :=
1

2πi

∫
γl(ρ)

φ′(w)
φ(w)

dw.
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Since φ is mirror symmetric with respect to the inversion at Cj it follows that (for
γ∗l (ρ) as reflection of γl(ρ) at Cj)

lim
ρ→+0

Pl(ρ) =
1

4πi
lim

ρ→+0

∫
γl(ρ)∪γ∗l (ρ)

φ′(w)
φ(w)

dw =
1

4πi
lim

ρ→+0

∫
−∂Bρ(ζl)

φ′(w)
φ(w)

dw = −νl

2

since the positive orientation of Gρ implies that circles ∂Bρ(ζl) are to be taken as
negatively oriented. Since L ≥ 4k and νl ≥ 1 it follows that

N = −2 + 2(k − 1)− 1
2

L∑
l=1

νl ≤ −4 + 2k − 1
2
· 4k = −4,

a contradiction to N ≥ 0. Therefore we obtain φ(w) ≡ 0 on B̄.
It remains to prove (2.17). Since

2πiIj(ρ) =
∫

βj(ρ)
d log |Fj(w)| =

∫
β′j(ρ)

d log |ψ(θ)|

with ψ(θ) := Fj(qj + rje
iθ) and

β′j(ρ) = [0, θ1 − ε(ρ)] ∪
p−1⋃
s=1

[θs + ε(ρ), θs+1 − ε(ρ)] ∪ [θp + ε(ρ), 2π],

where ε = ε(ρ) → +0 as ρ → +0, and ζs := eiθs are the zeros of Fj on Cj , we
obtain ∫

β′j(ρ)
d log |ψ(θ)| =

p+1∑
s=1

[
log |ψ(θ)|

]bs(ρ)

as(ρ)

with

a1(ρ) = 0, a2(ρ) = θ1 + ε(ρ), . . . , ap(ρ) = θp−1 + ε(ρ), ap+1(ρ) = θp + ε(ρ)
b1(ρ) = θ1 − ε(ρ), b2(ρ) = θ2 − ε(ρ), . . . , bp(ρ) = θp − ε(ρ), bp+1(ρ) = 2π.

Thus we infer from ψ(0) = ψ(2π)∫
β′j(ρ)

d log |ψ(θ)| =
p∑

s=1

[
log |ψ(bs(ρ))| − log |ψ(as+1(ρ))|

]
=

p∑
s=1

log
∣∣∣∣ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

∣∣∣∣ → 0 for ρ→ +0

since
ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

→ 1 as ρ→ +0.

Thus we conclude Ij(ρ) → 0 as ρ→ +0, and we have verified (2.17).
This completes the proof of Proposition 2.2. 2
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3 Cohesive sequences of mappings, and the pinching method

We say that a sequence {Bm} of k-circle domains

Bm = B(q(m), r(m)) ∈ N (k)

converges to the domain

B = B(q, r) = Br1(q1) \
k⋃

j=2

B̄rj (qj)

(denoted by Bm → B as m→∞) if

q(m) → q in Ck and r(m) → r in Rk as m→∞.

By N̄ (k) and N̄1(k) we denote the set of domains B that are limits of converging
sequences {Bm} in N (k) and N1(k), respectively.

Let {τm} be a sequence in C(Γ) withBm = dom(τm) ∈ N (k) andAε(τm) →
infC(Γ)Aε for some ε > 0. We can assume that Bm ∈ N1(k) since by Lemma 2.1
there are Möbius transformations fm such that B̃m := fm(Bm) ∈ N1(k). Then
τ̃m := τm ◦ f−1

m satisfy

Aε(τ̃m) = Aε(τm) → inf
C(Γ)

Aε

and are “normalized” by B̃m ∈ N1(k).
From any sequence {Bm} of domains Bm ∈ N1(k) we can extract a converg-

ing subsequence {Bmj} since |q(m)|, |r(m)| ≤ 1. Then Bmj → B ∈ N̄1(k), but
generally not B ∈ N1(k), i.e. the limit domain B might be “degenerate” in the
sense that B ∈ N̄1(k) \N1(k). If this were not the case for any convergent sub-
sequence of domains Bm ∈ N1(k) of normalized mappings τm ∈ C(Γ) forming a
minimizing sequence forAε in C(Γ), we could find a minimizer of Aε in C(Γ) by
the usual direct method.

Eventually the Douglas condition will be used to prevent the degeneration of
the limit domain. However, this condition is somewhat difficult to handle, and so
we first follow Courant’s approach to work with cohesive minimizing sequences.

Before we give the definition of cohesiveness we investigate how the limit B
of a convergent sequence {Bm} of Bm ∈ N (k) might be “degenerate”. To this
end we examine how the boundary circles C(m)

j := ∂B
r
(m)
j

(q(m)
j ) of

Bm = B
r
(m)
1

(q(m)
1 ) \

k⋃
j=2

B̄
r
(m)
j

(q(m)
j )
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behave if the Bm converge to a degenerate domain with the “boundary circles”
Cj = ∂Brj (qj). Here, rj might be zero; then Cj is just the point qj , i.e. C(m)

j →
{qj} as m → ∞. Another form of degeneration is that two limit circles Cj and
Cl, j 6= l, are true circles which “touch” each other (this includes the possibility
Cj = Cl).

We distinguish three kinds of degeneration:
Type 1. Two limits Cj and Cl, j 6= l, are true circles which touch each other, i.e.
either Cj = Cl or Cj ∩ Cl = {w0} for some w0 ∈ B̄.
Type 2. One limit Cl is a point p which lies on a true limit circle.
Type 3. One limit Cl is a point p which does not lie on any true limit circle.

For our purposes it suffices to consider degenerate limits B of domains Bm ∈
N1(k). Here we have for all m ∈ N that

C
(m)
1 = C := ∂B1(0), C

(m)
2 = ∂B

r
(m)
2

(0), 0 < r
(m)
2 < 1.

Case (a): k = 2. Then either r(m)
2 → 1 or r(m)

2 → 0, i.e. C1 = C2 = C (Type 1)
or C2 = {0} (Type 3), whereas Type 2 cannot occur for a degenerate limit B.

Case (b): k ≥ 3. Then either r(m)
2 → 1 or r(m)

2 → r2 ∈ [0, 1).
(b1) If r(m)

2 → 1 then C1 = C2 = C and Cj = {qj} for j = 3, . . . , k. Thus B is
both of Type 1 and 2.
(b2) If r(m)

2 → r2 with 0 ≤ r2 < 1, then C1 = C and either C2 = ∂Br2(0) with
0 < r2 < 1 or C2 = {0}. Here we have at least one of the following possibilities:

(i) B is of Type 1 with Cj ∩Cl = {w0} for some w0 ∈ B̄, and possibly also of
Type 2, or Type 3, or both.

(ii) B is not of Type 1, but of Type 2, or of Type 3, or both.

We now want to state conditions ensuring that the limit B of domains Bm ∈
N1(k) is nondegenerate, that is, B ∈ N1(k). A first step in this direction is

PROPOSITION 3.1. Let {τm} be a sequence of mappings τm ∈ C(Γ) with Bm =
dom(τm) ∈ N1(k), k ≥ 2, and suppose that Bm → B for m → ∞ as well as
D(τm) ≤M for all m ∈ N. Then B ∈ N̄1(k) cannot be degenerate of Type 1.

PROOF: Let µ(Γ) be the minimal distance of the curves Γ1, . . . ,Γk from each
other, i.e.

(3.1) µ(Γ) := min{dist(Γj ,Γl) : 1 ≤ j, l ≤ k, j 6= l} > 0.

If B is of Type 1, there are j, l ∈ {1, . . . , k} with j 6= l such that C(m)
j → Cj and

C
(m)
l → Cl as m → ∞, where Cj and Cl are true circles with Cj ∩ Cl 6= ∅. Let
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w0 ∈ Cj ∩ Cl, and introduce polar coordinates ρ, θ about w0 : w = w0 + ρeiθ.
There is a representative

ζm(ρ, θ) := τm(w0 + ρeiθ)

of τm which, for almost all ρ ∈ (0, 2), is absolutely continuous in θ ∈ [θ1, θ2]
along each arc γ(ρ) := {w0 + ρeiθ : θ1 ≤ θ ≤ θ2} contained in B̄m; we call γ(ρ)
τm-admissible. The Courant-Lebesgue Lemma (cf. [4, Vol. I, p. 242]) yields:

For each m ∈ N and each δ ∈ (0, 1) there is a τm-admissible arc γm(ρ) =
{w0 + ρeiθ : θ(m)

1 ≤ θ ≤ θ
(m)
2 } in B̄m with δ < ρ <

√
δ such that

(3.2) oscγm(ρ) ζm ≤ 2

[
2πM

(
log

1
δ

)−1
]1/2

.

Furthermore, there is an R > 0 such that ∂Br(w0) intersects Cj and Cl for 0 <
r < 2R. Let δ be an arbitrary number with 0 <

√
δ < R. Since C(m)

j → Cj and

C
(m)
l → Cl as m → ∞, there is a number N(δ,R) ∈ N such that the following

holds:
For m > N(δ,R) and δ < ρ < R the circle ∂Bρ(w0) intersects C(m)

j and

C
(m)
l .

Then there is a τm-admissible subarc γm(ρ) of ∂Bρ(w0) ∩ Bm with δ < ρ <√
δ which has its endpoints on two circlesC(m)

j′ andC(m)
l′ (which might be different

from C
(m)
j and C(m)

l ), and, moreover, which satisfies (3.2).
It follows that

µ(Γ) ≤ dist(Γj′ ,Γl′) ≤ 2

√
2πM
log 1

δ

for 0 < δ � 1.

Letting δ → +0 we obtain µ(Γ) = 0, a contradiction to (3.2). 2

We note that, under the assumptions of Proposition 3.1, the limit B ∈ N̄1(k)
can only be of Type 3 for k = 2 if B is degenerate at all.

The Types 2 and 3 of degeneration may indeed occur if we do not impose a fur-
ther condition, the condition of cohesion. For τ ∈ H1,2(B,R2), the composition
τ ◦ c of τ with a closed curve c ∈ C0(S1, B̄) is not defined in the usual sense. In
order to give it a well-defined meaning we restrict ourselves to special curves c.

Suppose that γ is a closed Jordan curve in B̄, i.e. the image γ = c(S1) of the
unit circle S1 under a homeomorphism c : S1 → γ ⊂ B̄. If the inner domain G
of γ is a “strong Lipschitz domain” (i.e. ∂G ∈ C0,1) then τ has a well-defined
trace ζ = “τ |γ” on γ = ∂G, which is of class L2

H 1(γ,R2). If ζ has a continuous
representative we denote it again by ζ and call it the continuous representative of τ
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on γ. Then ζ ◦ c : S1 → R2 is a well-defined closed continuous curve in R2. (Note
that G need not be a subdomain of B.)

In our application we will be able to choose Sobolev mappings τ with a con-
tinuous representative on the boundary of a suitable domain G, where G will be
either (i) a disk, or (ii) a two-gon bounded by two circular arcs γ1 and γ2, one of
which is contained in ∂B.

In case (i), τ is represented by a mapping τ∗(r, θ) with respect to polar coor-
dinates r, θ about the origin of a suitably chosen disk G of radius R ∈ (0, 1) such
that τ∗(r, θ) is absolutely continuous (denoted by AC) with respect to θ ∈ R for
all r ∈ (0, 1) \ N1, where H 1(N1) = 0 and R 6∈ N1, and τ∗(r, θ) is AC with
respect to r ∈ (ε, 1 − ε), 0 < ε � 1, for almost all θ ∈ R. Then the continuous
representative ζ = “τ |γ” of τ on the circle γ = ∂G is given by ζ = τ∗(R, ·).

In case (ii), γ1 is a subarc of ∂B, B = dom(τ), and γ2 is a circular subarc
in B̄ with the same endpoints as γ1. Here, the continuous representative ζ =
“τ |γ” is the continuous trace of τ on γ1 (recall that for τ ∈ C(Γ) we have “τ |∂B”
∈ C0(∂B,R2)), while on γ2 the trace ζ = “τ |γ” is given as in (i) by

ζ(w0 +Reiθ) = τ∗(R, θ), θ1 ≤ θ ≤ θ2,

where τ∗(r, θ) is a representation of τ in polar coordinates around some point
w0 ∈ C such that τ∗(R, θ) is AC in θ ∈ [θ1, θ2].

DEFINITION 3.2. (a) A sequence {τm} of mappings τm ∈ H1,2(Bm,R2) with
Bm = dom(τm) ∈ N (k) is called separating if the following holds:

For any ε > 0 there is an m0(ε) ∈ N such that for any m > m0(ε) there exists
a closed Jordan curve γm in B̄m bounding a strong Lipschitz interiorB∗m such that

(i) τm possesses a well-defined continuous trace ζm := “τm|γm” on γm =
∂B∗m;

(ii) diam ζm(γm) < ε;

(iii) A homeomorphic representation cm : S1 → γm of γm is not homotopic to
zero in B̄m.

(b) A sequence {τm} of mappings τm ∈ H1,2(Bm,R2) with Bm = dom(τm) ∈
N (k) is said to be cohesive if none of its subsequences is separating.

We note that the properties “separating” and “cohesive” are “Möbius invariant”.
Precisely speaking, we have:
If {τm} is a sequence of mappings τm ∈ H1,2(Bm,R2) with Bm = dom(τm) ∈
N (k), and {σm} is a sequence of Möbius transformations from B̄∗m onto B̄m,
B̄∗m ∈ N (k), then we have

(i) If {τm} is separating, then also {τm ◦ σm}.
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(ii) If {τm} is cohesive, then also {τm ◦ σm}.

The proof of this observation can be omitted.

Now we turn to the proof of the fact that “cohesiveness prevents degeneration”.
We work out the details of the approach sketched in [3].

PROPOSITION 3.3. Let {τm} be a cohesive sequence of mappings τm ∈ C(Γ) with
Bm = dom(τm) ∈ N1(k), k ≥ 2, and suppose that there is a constant M > 0
such that

D(τm) ≤M for all m ∈ N.

Assume also thatBm → B asm→∞. ThenB is nondegenerate, i.e. B ∈ N1(k).

PROOF: Clearly, B ∈ N̄1(k). If B were degenerate, it could not be of Type 1 on
account of Proposition 3.1; so we have to show that B can neither be of Type 2 nor
of Type 3.

Suppose first that B is of Type 3, that is: One or several circles shrink to a
point p ∈ B̄ which stays away from any other true limit circle. (Note that there
might also be other limit points distinct from p.) Since C(m)

1 ≡ C := ∂B1(0) for
all m ∈ N, we have C1 = C, and therefore p 6∈ C, i.e. p ∈ B̄ \ C. Thus the index
set I := {l ∈ N : 2 ≤ l ≤ k} consists of two disjoint, nonempty sets I1 and I2
such that

C
(m)
j → {p} as m→∞ for j ∈ I1,

C
(m)
l → Cl (= point or circle) as m→∞ with p 6∈ Cl for l ∈ I2.

Then we can find a number ρ0 ∈ (0, 1) and an indexm0 ∈ N such that form ≥ m0

the following holds true:

C
(m)
j ⊂ Bρ0(p) for j ∈ I1,

C
(m)
l ∩ B̄ρ0(p) = ∅ for l ∈ I2.

Secondly, for any ρ1 ∈ (0, ρ0) there is an m1(ρ1) ∈ N with m1(ρ1) ≥ m0 such
that

C
(m)
j ⊂ Bρ1(p) for j ∈ I1 and m > m1(ρ1).

Clearly,

{w ∈ C : ρ1 ≤ |w − p| ≤ ρ0} ⊂ Bm for m > m1(ρ1).

Furthermore, by virtue of a well-known extension theorem, there are Sobolev func-
tions σm ∈ H1,2(B1(0),R2) on the unit disk B1(0) such that σm|Bm = τm.
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We introduce polar coordinates r, θ about p, and choose representatives ζ̃m(r, θ)
of τm restricted to Bρ0(p) \ Bρ1(p), for m > m1(ρ1), which are absolutely con-
tinuous in θ for a.a. r ∈ (ρ1, ρ0), and absolutely continuous in r ∈ (ρ1, ρ0) for a.a.
θ ∈ R. By the Courant-Lebesgue Lemma we have:

For any ε > 0 there is a number δ∗(ε,M, ρ0) ∈ (0, 1), depending only on

ε, M , ρ0, which has the following properties:

(i) δ∗ <
√
δ∗ ≤ ρ0;

(ii) For any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m > m1(ρ1),
there is a set Jm(δ) ⊂ (δ,

√
δ) with H 1(Jm) > 0, such that(3.3)

ζ̃m(r, ·) is absolutely continuous with osc ζ̃m(r, ·) < ε for all r ∈ Jm(δ).
(iii) ζ̃m(r, ·) is the trace of τm on ∂Br(p) for any r ∈ (ρ1, ρ0) \Sm where

H 1(Sm) = 0, and so we can assume that Jm(δ) ⊂ (ρ1, ρ0) \Sm.

Let us now fix some ε > 0 and then some ρ1 > 0 with ρ1 < δ∗(ε,M, ρ0).
Furthermore we choose some δ > 0 satisfying

ρ1 < δ < δ∗(ε,M, ρ0).

Then

{w ∈ C : δ ≤ |w − p| ≤
√
δ} ⊂ Bρ0(p) \Bρ1(p) ⊂ Bm for m > m1(ρ1).

For anym > m1(ρ1) we choose some rm ∈ Jm(δ) and set γm := ∂Brm(p). Then
γm is a Jordan curve in Bm which bounds the strong Lipschitz domain B∗m :=
Brm(p). By construction, σm is defined on B∗m, and τm(w) = σm(w) for w ∈
Bρ0(p) \Bρ1(p). Thus τm possesses the absolutely continuous representative

ζm := ζ̃m(rm, ·) = “τm|γm”

with diam ζm(γm) < ε. Furthermore we have C(m)
j ⊂ B∗m for j ∈ I1. Therefore

no homeomorphic representation cm : S1 → γm of γm is homotopic to zero in
B̄m.

Since ε > 0 can be chosen arbitrarily, we see that {τm} contains a separating
subsequence, a contradiction, since {τm} was assumed to be cohesive.

Now we turn to the last possibility: Suppose thatB := limm→∞Bm is of Type
2. Then we have k ≥ 3, see Case (a) of our discussion following our classification
of types of degeneracies. Here we again have C(m)

1 ≡ C = ∂B1(0) for all m ∈ N,
whence C1 = C, and either C2 = {0} or C2 = ∂Br2(0) with 0 < r2 < 1, since
we have excluded Type 1 already. Furthermore, Type 2 means that one sequence
of circles, say {C(m)

j }, converges to a true limit circle Cj , 1 ≤ j ≤ k, while one or
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several other sequences {C(m)
l } shrink to a point p ∈ Cj . Here we can decompose

I ′ := {l ∈ N : 1 ≤ l ≤ k, l 6= j} into I ′1 := {l ∈ I ′ : C(m)
l → {p} as m → ∞}

and I ′2 := I ′ \ I ′1; then the limits Cl of C(m)
l for m → ∞ and l ∈ I ′2 are either

points or circles which stay away from p.
We can find a number ρ0 ∈ (0, 1) and an index m0 ∈ N such that for m ≥ m0

the following holds true:

∂Bρ0(p) intersects C(m)
j in exactly two points;

C
(m)
l ⊂ Bρ0(p) ∩ B̄m \ C(m)

j =: Sm
ρ0

(p) for l ∈ I ′1;(3.4)

C
(m)
l ∩ B̄ρ0(p) = ∅ for l ∈ I ′2.

Checking the three cases j = 1, j = 2, and 3 ≤ j ≤ k, one realizes that both I ′1
and I ′2 are nonempty.

For any ρ1 ∈ (0, ρ0) there is an m1(ρ1) ∈ N with m1(ρ1) ≥ m0 such that

C
(m)
l ⊂ Bρ1(p) ∩ B̄m \ C(m)

j =: Sm
ρ1

(p) for l ∈ I ′1 and m > m1(ρ1).

As in the preceding discussion we choose extensions σm ∈ H1,2(B1(0),R2) of τm
from Bm to B1(0). Then we introduce polar coordinates r, θ about p, and choose
representations ζ̃m(r, θ) of τm, restricted to Sm

ρ0
(p) \ Sm

ρ1
(p), for m > m1(ρ1)

which are absolutely continuous in θ for a.a. r ∈ (ρ1, ρ0), and absolutely continu-
ous in r ∈ (ρ1, ρ0) for a.a. θ such that w = p+ reiθ ∈ Sm

ρ0
(p) \ Sm

ρ1
(p).

Now we fix some ε > 0 and notice that the boundary curve Γj is of class
C2,α, which implies that there is a number η(ε) with 0 < η(ε) < ε/2 such that for
any two points P and Q on Γj with |P − Q| < η(ε) the shorter subarc Γ∗ ⊂ Γj

connecting P with Q satisfies

(3.5) diam Γ∗ < ε/2.

Keeping this in mind we apply the Courant-Lebesgue Lemma to obtain the follow-
ing statement analogous to (3.3):

There is a number δ∗(η(ε),M, ρ0) ∈ (0, 1), depending only on η(ε), M , ρ0,

which has the following properties:

(i) δ∗ <
√
δ∗ ≤ ρ0;

(ii) For any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m > m1(ρ1),
there is a set Jm(δ) ⊂ (δ,

√
δ) with H 1(Jm) > 0, such that ζ̃m(r, ·)(3.6)

is absolutely continuous with osc ζ̃m(r, ·) < η(ε) for all r ∈ Jm(δ).
(iii) ζ̃m(r, ·) is the trace of τm on ∂Br(p) ∩ B̄m for any r ∈ (ρ1, ρ0) \Sm,

where H 1(Sm) = 0, and so we can assume that Jm ⊂ (ρ1, ρ0) \Sm.
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In addition, we may choose now ρ1 > 0 with ρ1 < δ∗(η(ε),M, ρ0) and then δ > 0
satisfying

ρ1 < δ < δ∗(η(ε),M, ρ0).

Then it follows that, for ρ ∈ (δ,
√
δ) and m > m1(ρ1), the circle ∂Bρ(p) meets

C
(m)
j in exactly two points w′m(ρ) and w′′m(ρ). Set γ′m(ρ) := ∂Bρ(p)∩B̄m; the set

γ′m(ρ) is a connected, circular arc in B̄m with the end points w′m(ρ) and w′′m(ρ).
Now we restrict the radii ρ to lie in the sets Jm ⊂ (δ,

√
δ) obtained in (3.6).

Then the image points Q′m(ρ) and Q′′m(ρ) of w′m(ρ) and w′′m(ρ) under ζ̃m(ρ, ·)
respectively lie on Γj , satisfy

|Q′m(ρ)−Q′′m(ρ)| < η(ε),

and they decompose Γj into two closed arcs. We denote the smaller one by Γ∗(m, ρ)
and conclude from (3.5) that

diam Γ∗(m, ρ) < ε/2 for m > m1(ρ1) and ρ ∈ Jm(δ).

Instead of (3.4) we even have

C
(m)
l ⊂ Bρ(p) ∩ B̄m \ C(m)

j =: Sm
ρ (p) for l ∈ I ′1;

C
(m)
l ∩ B̄ρ(p) = ∅ for l ∈ I ′2.(3.7)

provided that m > m1(ρ1) and ρ ∈ Jm(δ).

Choose some rm ∈ Jm(δ) ⊂ (δ,
√
δ) and set

Γ′m := image of γ′m(rm) under the mapping ζ̃m;

Γ′′m := Γ∗(m, rm) = image of γ′′m(rm) under τm.

Here γ′′m(rm) is the connected arc on C(m)
j , bounded by w′m(rm), w′′m(rm), which

is mapped by the Sobolev trace τm|C(m)
j

in a continuous way onto Γ′′m. Then we

have
diam Γ′m + diam Γ′′m <

ε

2
+
ε

2
= ε for m > m1(ρ1).

Consider the closed Jordan curve γm := γ′m(rm) ∪ γ′′m(rm) in B̄m, which bounds
a two-gon B∗m in B1(0); B∗m is a strong Lipschitz domain. Because of (3.7), one
realizes that no homeomorphic representation cm : S1 → γm of γm is homotopic
to zero in B̄m. There is a continuous representative ζm of τm on γm given by

ζm := τm(rm, ·) on γ′m

and
ζm := trace of τm on γ′′m.
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Then it follows

diam ζm(γm) ≤ diam Γ′m + diam Γ′′m < ε for m > m1(ρ1).

Since ε > 0 can be chosen arbitrarily small, we obtain that {τm} contains a sepa-
rating subsequence, and so it cannot be cohesive, a contradiction to the assumption.

Thus we have shown that B cannot be degenerate, i.e. B ∈ N1(k). 2

PROPOSITION 3.4. Let {τm} be a cohesive sequence of mappings τm ∈ C(Γ) with
dom(τm) ≡ B ∈ N1(k) for all m ∈ N, k ≥ 2, and suppose also that there is a
constant M > 0 such that D(τm) ≤ M for all m ∈ N. Then the boundary traces
τm|∂B are equicontinuous on ∂B, and there is a subsequence {τml

} of {τm} such
that the traces τml

|∂B converge uniformly on ∂B as l→∞.

PROOF: We can essentially proceed as in [4], proof of Theorem 1 of Section 4.3,
noting that τm|Cj maps Cj continuously and in a weakly monotonic way onto Γj .
One only has to ensure that small arcs on Cj are mapped onto small subarcs of
Γj . In the case k = 1 this was achieved by imposing a three-point condition upon
{τm}; for k ≥ 2 the same will be attained by the cohesivity condition. In fact, map-
ping small arcs onCj onto large arcs of Γj would correspond to mapping large arcs
on Cj onto small arcs of Γj . Connecting these large arcs on Cj with small circu-
lar arcs in B with the same endpoints, on which the Courant-Lebesgue Lemma
guarantees small oscillation of a continuous representative of τm, one would ob-
tain Jordan curves γm in B bounding strong Lipschitz domains B∗m such that the
continuous trace ζm := “τm|γm” of τm on γm satisfies “diam ζm(γm) = small”.
But γm cannot be contracted continuously in B̄ to some point of B̄ since B̄ ∩ B̄∗m
possesses at least one hole. 2

Now we state a slight generalization of Proposition 3.3 and 3.4 in the next
proposition, which essentially is proved in the same way, so that we can omit the
proof.

PROPOSITION 3.5. Let {Ωm} be a sequence of k-fold connected domains Ωm in
R2 whose boundary configurations Γm converge in the sense of Fréchet to the
boundary configuration Γ of Ω (denoted by Γm → Γ), and let {τm} ⊂ C(Γm) be
a sequence of mappings with a uniformly bounded Dirichlet integral, i.e. there is a
constant C such that

D(τm) ≤ C for all m ∈ N.

Then the following holds:
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(i) If Bm ≡ B ∈ N (k) for all m ∈ N, and if {τm} is cohesive in case that
k > 1, or satisfies a three point condition in case that k = 1, then the
τm|∂B are equicontinuous on ∂B, and there is a subsequence of {τm} which
converges weakly in H1,2(B,R2) and uniformly on ∂B to some τ ∈ C(Γ).

(ii) If {τm} is a cohesive sequence of mappings τm ∈ H1,2(Bm,R2) withBm =
dom(τm) ∈ N1(k), then there is a subsequence {Bmν} and a domain B ∈
N1(k) such that Bmν → B as ν →∞.

For comparison arguments it is important to work with sequences of mappings
which are defined on a fixed domainB ∈ N1(k); see statement (ii) of the preceding
proposition. For this purpose we use the following result:

PROPOSITION 3.6. Let {τm} be a sequence of mappings τm ∈ H1,2(Bm,R2)
with Bm → B ∈ N1(k) and D(τm) → L as m→∞. Then there is a sequence of
diffeomorphisms σm from B̄ onto B̄m such that:

(i) τ∗m := τm ◦ σm ∈ H1,2(B,R2) for all m ∈ N;

(ii) D(τ∗m) → L as m→∞;

(iii) {τ∗m} is cohesive if and only if {τm} is cohesive.

The proof of this result is fairly obvious and will be omitted (for details, see e.g.
[17], Lemma 3.1).

Next we will show that we can replace small parts of a mapping by the con-
stant mapping τ0(w) ≡ 0 without gaining much energy. This argument works for
general functionals

HΩ(τ) :=
∫

Ω
H(τ,∇τ) dudv, H := HB

with a Lagrangian H(x, p) ∈ C0(R2 × R2×2) satisfying

0 ≤ H(x, p) ≤ µ

2
|p|2

for some constant µ > 0.

PROPOSITION 3.7. Suppose that τ ∈ C(Γ). Then, for any δ > 0 and any point
p ∈ B := dom(τ), there exists a number r0 with 0 < r0 < dist(p, ∂B), depending
on τ, δ, p, and µ, such that for any r ∈ (0, r0) there is a mapping ζr ∈ C(Γ) with
dom(ζr) = B and

H(ζr) < H(τ) + δ, and ζr(w) ≡ 0 on Br(p).
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PROOF: Pick any δ > 0 and p ∈ B; then there is some R ∈ (0, 1) with R <
dist(p, ∂B) such that

(3.8)
∫

Bρ(p)
|∇τ |2 dudv < δ0 :=

δ

2µ
for all ρ ∈ (0, R).

Then we take some ρ ∈ (0, R) such that the trace τ |∂Bρ(p) is absolutely continuous
on ∂Bρ(p). Set

M := sup
∂Bρ(p)

|τ |.

Next we choose some h ∈ H1,2(Bρ(p),R2) such that

∆h = 0 in Bρ(p), h = τ on ∂Bρ(p).

It follows that h− τ ∈
◦
H1,2(Bρ(p),R2), and the maximum principle implies

(3.9) sup
Bρ(p)

|h| = sup
∂Bρ(p)

|h| = M.

Furthermore, using Dirichlet’s principle and (3.8), we obtain

(3.10)
∫

Bρ(p)
|∇h|2 dudv ≤

∫
Bρ(p)

|∇τ |2 dudv < δ0.

For some constant ε ∈ (0, ρ) to be fixed later, set

ϕε2(s) :=


1 for ε < s,

1 + log ε−log s
log ε for ε2 ≤ s ≤ ε,

0 for 0 ≤ s < ε2,

and define for w ∈ B the mapping ζε2 by

ζε2(w) :=

{
τ(w) for |w − p| ≥ ρ,

ϕε2(|w − p|)h(w) for |w − p| < ρ.

Furthermore, writing ϕ(w) := ϕε2(|w − p|) we obtain∫
Bρ(p)

|∇ϕ|2 dudv =
1

(log ε)2

∫ 2π

0

∫ ε

ε2

1
r2
r drdθ

= − 2π
log ε

=: δ1(ε) > 0,
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and then∫
Bρ(p)

|∇ζε2 |2 dudv =
∫

Bρ(p)

{
|ϕuh+ ϕhu|2 + |ϕvh+ ϕhv|2

}
dudv

≤ 2M2

∫
Bρ(p)

|∇ϕ|2 dudv + 2
∫

Bρ(p)
|∇h|2 dudv

≤ 2M2δ1(ε) + 2δ0,

taking (3.9) and (3.10) into account.
Now we choose ε0 ∈ (0, ρ) so small that M2δ1(ε) < δ0 for 0 < ε < ε0. Then

1
2

∫
Bρ(p)

|∇ζε2 |2 dudv < 2δ0 for 0 < ε < ε0.

Setting r := ε2 with 0 < ε < ε0 and ζr := ζε2 , we obtain

H(ζr) = HB\Bρ(p)(τ) +HBρ(p)(ζ
r)

≤ H(τ) +
µ

2

∫
Bρ(p)

|∇ζr|2 dudv

< H(τ) + 2δ0µ = H(τ) + δ for r ∈ (0, ε20).

Moreover, we have |ζr| ≤ |τ | and∫
B
|∇ζr|2 dudv ≤

∫
B
|∇τ |2 dudv + 4δ0,

whence ζr ∈ H1,2(B,R2), and

ζr(w) ≡ 0 on Br(p), ζr(w) ≡ τ(w) on B \B√r(p).

This implies ζr ∈ C(Γ) since τ ∈ C(Γ). Setting r0 := ε20, the proposition is
proved. 2

The previous result as well as the next one are generalizations of results due to
Courant [3].

PROPOSITION 3.8 (PINCHING METHOD) Let Γ̃ be a boundary configuration of a
Riemann domain (Ω, ds2) consisting of k Jordan curves where the metric ds2 =
gjl(x)dxjdxl satisfies (1.1) with constants 0 < m1 ≤ m2. For given K > 0,
δ > 0 there is a constant η0 ∈ (0, 1), depending only on Γ̃, K, δ, m1,m2, and
on ‖gjl‖C1(R2) such that for every Q ∈ R2 and η ∈ (0, η0) there is a Lipschitz
mapping Φη,Q ≡ Φη : R2 → R2 with the following properties:

If τ is an arbitrary mapping of class C(Γ̃) and if D(τ) ≤ K, then we have
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(i) Γ∗ := Φη(Γ̃) consists of k Jordan curves such that the Fréchet distance
4(Γ̃,Γ∗) of Γ̃ and Γ∗ satisfies 4(Γ̃,Γ∗) < δ;

(ii) Φη ◦ τ ∈ C(Γ∗) and dom(Φη ◦ τ) = dom(τ);

(iii) Φη(x) = x for x ∈ R2 with |x−Q| ≥ η;

(iv) Φη(x) ≡ Q for x ∈ R2 with |x−Q| ≤ η2;

(v) Aε(Φη ◦ τ) ≤ Aε(τ) + δ for all ε ∈ [0, 1].

PROOF: Choose η0 ∈ (0, 1/e) so small that for the constant m in (3.13) below
we have

(3.11) m−1
1

[
mη0 + 3m2| log η0|−1

]
<

δ

K
,

and such that

η0 <
1
2

min{dist(Γ̃j , Γ̃l) : j 6= l, j, l = 1, . . . , k},

where Γ̃ = 〈Γ̃1, . . . , Γ̃k〉. Then, for η ∈ (0, η0), Q ∈ R2 and x ∈ R2, we set

Φη,Q(x) ≡ Φη(x) := Q+ ϕη(|x−Q|)(x−Q)

with

ϕη(r) :=


1 for η < r,

1 + log η−log r
log η for η2 ≤ r ≤ η,

0 for 0 ≤ r < η2.

The assertions (iii) and (iv) follow immediately from the definition of Φη. Asser-
tion (i) can easily be deduced from the facts that Γ̃ consists of Jordan curves and
Φη is a Lipschitz mapping from R2 onto itself which maps R2 \ B̄η2(Q) in a 1-
1 way onto R2 \ {Q} and pinches the disk B̄η2(Q) to the point Q. In the same
way it follows that Φη ◦ τ is a continuous, weakly monotonic mapping from ∂B
onto Γ∗ if B = dom(τ). Since Φη satisfies a Lipschitz condition on R2 we have
Φη ◦ τ ∈ H1,2(B,R2), and so we infer Φη ◦ τ ∈ C(Γ∗), which is (ii).

It remains to show assertion (v). From

|Φη(x)− x| = |x−Q| ·
[
1− ϕη(|x−Q|)

]
we infer

|Φη(x)− x| ≤ η for all x ∈ R2,

whence

(3.12) |Φη ◦ τ − τ | ≤ η on B.
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Furthermore,
√
g ∈ C1(R2), and for some constant m > 0 we have

|
√
g(x)−

√
g(y)| + |gjl(x)− gjl(y)|ξjξl ≤ m|x− y|

for x, y, ξ ∈ R2, |ξ| ≤ 1.(3.13)

By (1.1) we also have

(3.14) m1|ξ|2 ≤ gjl(x)ξjξl ≤ m2|ξ|2 for all x, ξ ∈ R2,

and

(3.15) m1 ≤
√
g(x) ≤ m2 for all x ∈ R2.

For the following computations we write

τ̃ := Φη ◦ τ and e :=
τ −Q

|τ −Q|
,

and we note that on

R := {w ∈ B : η2 < |τ(w)−Q| < η}

we have

τ̃ = Q+ ϕη(|τ −Q|)(τ −Q) with ϕη(|τ −Q|) = 2− log |τ −Q|
log η

,

and

∂

∂u
ϕη(|τ −Q|) =

−e · τu
(log η)|τ −Q|

,
∂

∂v
ϕη(|τ −Q|) =

−e · τv
(log η)|τ −Q|

.

Then,

τ̃u = ϕη(|τ −Q|)τu −
1

log η
(e · τu)e on R,

(3.16)

τ̃v = ϕη(|τ −Q|)τv −
1

log η
(e · τv)e on R.

Since 0 ≤ ϕη ≤ 1 and |e| = 1 we get

E (τ̃) = gjl(τ̃)τ̃ j
u τ̃

l
u

≤ gjl(τ̃)τ j
uτ

l
u −

2
log η

gjl(τ̃)τ j
u(e · τu)el

+
1

| log η|2
gjl(τ̃)ejel(e · τu)2.
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By (3.14) it follows that

gjl(τ̃)τ j
ue

l(e · τu) ≤ m2|τu||e|(e · τu) ≤ m2|τu|2

≤ m−1
1 m2gjl(τ)τ j

uτ
l
u = m−1

1 m2E (τ) on R,

and

gjl(τ̃)ejel(e · τu)2 ≤ m2|e|2(e · τu)2 ≤ m2|τu|2 ≤ m−1
1 m2E (τ) on R.

Furthermore, (3.12) implies |τ̃ − τ | ≤ η on B. Thus by (3.13) and (3.14)

gjl(τ̃)τ j
uτ

l
u = {gjl(τ) + [gjl(τ̃)− gjl(τ)]}τ j

uτ
l
u

≤ E (τ) +mη|τu|2 ≤ E (τ) +mm−1
1 ηE (τ),

and we obtain

E (τ̃) ≤ E (τ) + [mm−1
1 η +m−1

1 m2(2| log η|−1 + | log η|−2)]E (τ)
≤ E (τ) +m−1

1 [mη + 3m2| log η|−1]E (τ)

since η0 < 1/e. By (3.11) it follows

E (τ̃) ≤ E (τ) + (δ/K)E (τ) on R,

and analogously one finds

G (τ̃) ≤ G (τ) + (δ/K)G (τ) on R.

This leads to

(3.17) DR(τ̃) ≤ DR(τ) + (δ/K)D(τ) ≤ DR(τ) + δ.

Now we want to show that also

(3.18) AR(τ̃) ≤ AR(τ) + δ.

From (3.16) we obtain on R:

detDτ̃ = τ̃u ∧ τ̃v
= ϕ2

η(|τ−Q|)τu∧τv + | log η|−1ϕη(|τ−Q|){(e ·τv)(τu∧e)+(e ·τu)(e∧τv)}.

Applying the identity

(e · b)(a ∧ e) + (e · a)(e ∧ b) = a ∧ b for a, b, e ∈ R2 with |e| = 1,

it follows that

detDτ̃ = {ϕ2
η(|τ −Q|) + | log η|−1ϕη(|τ −Q|)}detDτ,
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whence
|detDτ̃ | ≤ (1 + | log η|−1)|detDτ | on R.

Since |τ̃ − τ | ≤ η on B, we infer from (3.13) and (3.15)

|
√
g(τ̃)−

√
g(τ)| ≤ mη, m1 ≤

√
g(τ),

√
g(τ̃) ≤ m2.

Consequently,√
g(τ̃)|detDτ̃ | ≤

√
g(τ̃)(1 + | log η|−1)|detDτ | on R,

and by (3.11)√
g(τ̃)(1 + | log η|−1) ≤

√
g(τ) + |

√
g(τ̃)−

√
g(τ)|+

√
g(τ̃)| log η|−1

≤
√
g(τ){1 +m−1

1 [mη +m2| log η|−1]}
≤ (1 + δ/K)

√
g(τ).

Thus we obtain√
g(τ̃)|detDτ̃ | ≤

√
g(τ)(1 + δ/K)|detDτ | on R.

Since AR(τ) =
∫
R

√
g(τ)|detDτ | dudv, and analogously for AR(τ̃), it follows

AR(τ̃) ≤ AR(τ) + (δ/K)AR(τ)
≤ AR(τ) + (δ/K)DR(τ) ≤ AR(τ) + (δ/K)D(τ),

and so we have (3.18).
From (3.17), (3.18), and Aε

R = (1− ε)AR + εDR we infer

Aε
R(τ̃) ≤ Aε

R(τ) + δ.

Set B′ := {w ∈ B : |τ(w) − Q| ≤ η2} and B′′ := {w ∈ B : |τ(w) − Q| ≥ η}.
Then B = B′ ∪̇R ∪̇B′′, and Aε

B′(τ̃) = 0, Aε
B′′(τ̃) = Aε

B′′(τ). Thus we finally
arrive at

Aε(τ̃) ≤ Aε(τ) + δ for 0 ≤ ε ≤ 1 and τ̃ = Φη ◦ τ,

which is (v). 2

4 The Douglas problem forAε assuming the Douglas con-
dition

For 0 ≤ ε ≤ 1 we consider the conformally invariant functionals

Aε(τ) := (1− ε)A(τ) + εD(τ)
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which are defined for τ ∈ H1,2(B,R2) with B = dom(τ) ∈ N (k). Clearly,

A0(τ) = A(τ), A1(τ) = D(τ),

and we have
A(τ) ≤ Aε(τ) ≤ D(τ) for 0 ≤ ε ≤ 1.

For 0 < ε ≤ 1 we obtain A(τ) = Aε(τ) = D(τ) if and only if τ satisfies

E (τ) = G (τ), F (τ) = 0.

Our ultimate goal is to find a mapping τ ∈ C(Γ) that simultaneously minimizes A
and D in C(Γ). As a preliminary step we shall in this section prove Theorem 1.5,
i.e. for any ε ∈ (0, ε0] with 0 < ε0 � 1 there is a minimizer τ ε of Aε in C(Γ)
provided that the Riemann domain (Ω, ds2) satisfies the Douglas condition. In
Section 5 it will be shown that this hypothesis is superfluous and that any τ ε with
0 < ε ≤ ε0 furnishes a minimizer for both A and D in C(Γ).

In this first step the Douglas condition is used to find a minimizing sequence
{τn} of Aε in C(Γ) with Bn = dom(τn) ∈ N (k) such that Bn → B ∈ N (k).
Without this condition it would be conceivable that the limit domainB of theBn is
degenerate, i.e. B 6∈ N (k). It is well-known that this may happen for the Douglas
problem in RN if N ≥ 3. In our situation we have N = 2 and we shall be saved
by the fact that surfaces τ ∈ C(Γ) have co-dimension zero.

In order to define the Douglas condition for k > 1 we have to consider the class
of mappings τ : B → R2 whose domains B are disconnected. Precisely speaking
we assume that B is a set {B1, . . . , Bs} of kν-circle domains Bν ∈ N (kν) with

k = k1 + k2 + · · ·+ ks, s > 1,

and τ is a collection {τ (1), . . . , τ (s)} of mappings

τ (ν) ∈ H1,2(Bν ,R2) ∩ C0(∂Bν ,R2)

such that τ (ν)|∂Bν is a weakly monotonic mapping of ∂Bν onto a collection Γν of
kν disjoint closed, rectifiable Jordan curves, and that {Γ1, . . . ,Γs} forms a permu-
tation of the curves Γ1, . . . ,Γk defined by Γj := τ0(Cj) (see Section 1). The set
C+(Γ) of such mappings τ is called the class of splitting mappings bounded by Γ.

Now we define Aε(τ) for τ = (τ (1), . . . , τ (s)) by

Aε(τ) = Aε(τ (1)) + · · ·+Aε(τ (s)),

and then
d(Γ, ε) := inf

C(Γ)
Aε, d+(Γ, ε) := inf

C+(Γ)
Aε,

in particular
a(Γ) := inf

C(Γ)
A, a+(Γ) := inf

C+(Γ)
A,

that is, a(Γ) = d(Γ, 0) and a+(Γ) = d+(Γ, 0).
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DEFINITION 4.1. The Douglas condition is the hypothesis

a(Γ) < a+(Γ).

In the following discussion we need a third function of ε besides d(Γ, ε) and
d+(Γ, ε), namely

d∗(Γ, ε) := inf{lim inf
m→∞

Aε(τm) : {τm} = separating sequence of τm ∈ C(Γ)}.

LEMMA 4.2. The infima d(Γ, ε), d+(Γ, ε), d∗(Γ, ε) are nondecreasing functions
of ε ∈ [0, 1], and

(4.1) d(Γ, 0) = lim
ε→+0

d(Γ, ε), d+(Γ, 0) = lim
ε→+0

d+(Γ, ε).

PROOF: Since A(τ) ≤ D(τ) we obtain for 0 ≤ ε ≤ ε′ that

Aε(τ) = A(τ) + ε
[
D(τ)−A(τ)

]
≤ A(τ) + ε′

[
D(τ)−A(τ)

]
= Aε′(τ),

which shows that d(Γ, ·), d+(Γ, ·), and d∗(Γ, ·) are nondecreasing, whence in par-
ticular

d(Γ, 0) ≤ lim
ε→+0

d(Γ, ε).

Suppose that
δ := lim

ε→+0
d(Γ, ε)− d(Γ, 0) > 0.

Then there is a mapping τ ∈ C(Γ) such that

A(τ) ≤ d(Γ, 0) +
δ

2
= lim

ε→+0
d(Γ, ε)− δ

2
.

Choosing ε∗ ∈ (0, 1) so small that

0 ≤ ε∗
[
D(τ)−A(τ)

]
≤ δ/4,

it follows that

Aε∗(τ) = A(τ) + ε∗
[
D(τ)−A(τ)

]
≤ A(τ) +

δ

4

≤ lim
ε→+0

d(Γ, ε)− δ

2
+
δ

4

≤ d(Γ, ε∗)− δ

4
≤ Aε∗(τ)− δ

4
,

a contradiction. Thus we have δ = 0 and therefore d(Γ, ε) → d(Γ, 0) as ε → +0.
Analogously the second relation in (4.1) is proved. 2
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LEMMA 4.3. Let ε ∈ [0, 1] and C ≥ 0, and suppose that {Ωm} is a sequence of
k-fold connected domains Ωm in R2 whose boundary configurations Γm converge
to the boundary configuration Γ of Ω in the sense of Fréchet (denoted by Γm → Γ)
as m→∞. Then for any cohesive sequence of mappings τm ∈ C(Γm) with

(4.2) D(τm) ≤ C for all m ∈ N

there exists a mapping τ ∈ C(Γ) with B = dom(τ) ∈ N1(k) such that

d(Γ, ε) ≤ Aε(τ) ≤ lim inf
m→∞

Aε(τm).

PROOF: We omit the proof for k = 1 since it follows readily from Proposition
3.5 using the method of [12], and so we suppose k > 1. By virtue of Lemma 2.1
we may also assume that

Bm := dom(τm) ∈ N1(k).

There is a subsequence {τmν} such that

(4.3) lim
ν→∞

Aε(τmν ) = lim inf
m→∞

Aε(τm),

and because of (4.2) we can also assume that

(4.4) D(τmν ) → L ∈ [0, C] as ν →∞.

On account of Proposition 3.5, (ii), we may furthermore assume Bmν → B ∈
N1(k) since {τm} is cohesive. By Proposition 3.6 there are C1-diffeomorphisms
σν : B̄ → B̄mν from B̄ onto B̄mν such that

τ∗ν := τmν ◦ σν ∈ H1,2(B,R2) ∩ C(Γmν )

defines a cohesive sequence {τ∗ν } which satisfies

(4.5) D(τ∗ν ) → L as ν →∞.

Using a suitable variant of Poincaré’s inequality and passing to a subsequence of
{τ∗ν } which is again denoted by {τ∗ν } we obtain

τ∗ν ⇀ τ in H1,2(B,R2)

and
τ∗ν |∂B → τ |∂B in L2(∂B,R2) as ν →∞.

By Proposition 3.5, (i), we can assume that

τ∗ν |∂B → τ |∂B in C0(∂B,R2) as ν →∞
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(uniform convergence), and so τ |∂B provides a continuous and weakly monotonic
mapping from ∂B onto Γ since Γm → Γ in the Fréchet sense. Thus τ ∈ C(Γ) with
dom(τ) = B ∈ N1(k) and d(Γ, ε) ≤ Aε(τ). The lower semicontinuity theorem
by Acerbi and Fusco [1] implies

(4.6) Aε(τ) ≤ lim inf
ν→∞

Aε(τ∗ν ).

Now, since A is invariant under C1-diffeomorphisms of the domain,

Aε(τ∗ν ) = (1− ε)A(τ∗ν ) + εD(τ∗ν )

= (1− ε)A(τmν ) + εD(τmν ) + ε
[
D(τ∗ν )−D(τmν )

]
= Aε(τmν ) + ε

[
D(τ∗ν )−D(τmν )

]
,

and [
D(τ∗ν )−D(τmν )

]
→ 0 as ν →∞

on account of (4.4) and (4.5). This implies

lim
ν→∞

Aε(τ∗ν ) = lim
ν→∞

Aε(τmν ),

and by (4.3) and (4.6) we arrive at the assertion. 2

LEMMA 4.4. For all ε ∈ [0, 1] we have

d(Γ, ε) ≤ d∗(Γ, ε) ≤ d+(Γ, ε).

PROOF: For any separating sequence {τm} in C(Γ) we have

d(Γ, ε) ≤ Aε(τm) for all m ∈ N,

which implies d(Γ, ε) ≤ d∗(Γ, ε). Thus we have to prove

(4.7) d∗(Γ, ε) ≤ d+(Γ, ε).

This is obvious for k = 1 since then C+(Γ) = ∅ and therefore d+(Γ, ε) = ∞. Thus
we consider the case k > 1. We have to prove the following:

For any partition {Γ1, . . . ,Γs} of Γ with s ≥ 2 one has

(4.8) d∗(Γ, ε) ≤
s∑

j=1

d(Γj , ε).

This is equivalent to the following assertion:
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For every number η > 0 there is a separating sequence {τm} of mappings
τm ∈ C(Γ) such that

(4.9) lim inf
m→∞

Aε(τm) ≤
s∑

j=1

d(Γj , ε) + η.

We begin with s = 2 and an arbitrary partition {Γ1,Γ2} of Γ. For an arbitrarily
chosen δ > 0 there are τ (ν) ∈ C(Γν) with Bν = dom(τ (ν)) ∈ N (kν), ν = 1, 2,
k1 + k2 = k, such that

Aε(τ (ν)) ≤ d(Γν , ε) + δ for ν = 1, 2.

Applying Proposition 3.7 to H := Aε we construct new mappings ζν ∈ C(Γν)
with dom(ζν) = Bν ∈ N (kν) and

ζν |B2r(pν) = 0 for some disks B2r(pν) ⊂⊂ Bν

such that
Aε(ζν) ≤ Aε(τ (ν)) + δ for ν = 1, 2.

Shifting B2 in a suitable way we may assume that p1 = p2; set p := p1 = p2. Let
ρ be the inversion with respect to the circle ∂B2r(p) and set

B∗2 := ρ(B2 \B2r(p)).

Furthermore, let C∗ be the “outer” boundary circle of B∗2 , and B∗ be the disk
bounded by C∗. Set

B∗1 := B1 \B∗

and
ζ∗1 := ζ1|B∗

1
, ζ∗2 := ζ2 ◦ ρ−1|B∗

2
.

Then

τ∗ :=

{
ζ∗1 on B∗1
ζ∗2 on B∗2

defines a mapping τ∗ ∈ C(Γ) with

dom(τ∗) = B∗1 ∪B∗2 ∈ N (k).

Since Aε is conformally invariant it follows

Aε(τ∗) = Aε(ζ∗1 ) +Aε(ζ∗2 ) = Aε(ζ1|B∗
1
) +Aε(ζ2|B2\B2r(p))

= Aε(ζ1) +Aε(ζ2)
≤ Aε(τ (1)) + δ +Aε(τ (2)) + δ

≤ d(Γ1, ε) + d(Γ2, ε) + 4δ.
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Given η > 0 we choose δ := η/4 and τm := τ∗ for all m ∈ N. Then {τm} is a
separating sequence satisfying (4.9) for a partition {Γ1,Γ2} of Γ.

Similarly, if Γ is partitioned as {Γ1, . . . ,Γs}, we fix a δ > 0 and choose τ (ν) ∈
C(Γν) with Bν = dom(τ (ν)) ∈ N (kν), k1 + · · ·+ ks = k, such that

Aε(τ (ν)) ≤ d(Γν , ε) + δ, ν = 1, . . . , s.

By the above procedure, carried out (s − 1) times, we find a mapping τ∗ ∈ C(Γ)
with dom(τ∗) ∈ N (k) satisfying

Aε(τ∗) ≤
s∑

ν=1

Aε(τ (ν)) + 2s−1δ

whence

Aε(τ∗) ≤
s∑

ν=1

d(Γν , ε) + (s+ 2s−1)δ.

Choosing δ := (s+ 2s−1)−1η and considering the separating sequence {τm} with
τm := τ∗ for all m ∈ N we again arrive at (4.9). Thus inequality (4.8) is verified,
and this implies (4.7). 2

LEMMA 4.5. (a) Let Γm → Γ as m → ∞ in the Fréchet sense, and {τm} be a
sequence of mappings τm ∈ C(Γm) where Γm is the boundary configuration of a
k-fold connected domain Ωm in R2, m ∈ N. Then

(4.10) d(Γ, ε) ≤ lim inf
m→∞

Aε(τm) for any ε ∈ (0, 1].

(b) For any ε with 0 < ε ≤ 1 we have

(4.11) d∗(Γ, ε) = d+(Γ, ε).

PROOF: (a) Inequality (4.10) is trivially satisfied if lim infm→∞Aε(τm) = ∞.
Thus we may assume that the numbers Aε(τm) converge as m→∞, i.e.

(4.12) lim inf
m→∞

Aε(τm) = lim
m→∞

Aε(τm) <∞

(otherwise we pass to a suitable subsequence which is again denoted by {τm}.)
Since D(τm) ≤ ε−1Aε(τm) we have

(4.13) D(τm) ≤ C for all m ∈ N

and some constant C = C(ε) <∞ if 0 < ε ≤ 1. Then (4.10) follows from Lemma
4.3 provided that {τm} is cohesive; in particular the assertion is established for
k = 1 since then any sequence is cohesive.
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Now we are going to prove (4.10) by induction over k where we can restrict
ourselves to noncohesive sequences {τm}, and we fix ε ∈ (0, 1].

Induction hypothesis. Suppose that (4.10) is satisfied for boundary configura-
tions consisting of at most k − 1 closed curves, k > 1.

Consider now a noncohesive sequence {τm} with τm ∈ C(Γm) and Bm =
dom(τm) ∈ N (k), k > 1, satisfying (4.12) and therefore also (4.13). By Lemma
2.1 we may in fact assume Bm ∈ N1(k). As {τm} is noncohesive, it possesses a
separating subsequence which we again call {τm}. Then there exist points Qm ∈
R2, numbers ηm > 0 with ηm → 0, closed Jordan curves γm in B̄m which are not
homotopic to zero in B̄m and bound a strong Lipschitz domain B∗m in R2, such
that τm possesses a well-defined continuous trace ζm = “τm|′′γm

on γm = ∂B∗m
with

sup
γm

|ζm −Qm| ≤ η2
m.

Then we choose a sequence of numbers δj > 0 with δj → 0 and apply Proposition
3.8 with δ := δj andK := C(ε). Let η0,j be the corresponding number η0 ∈ (0, 1).
For a suitable sequence {mj} of mj ∈ N with m1 < m2 < m3 < . . . we have
ηmj < η0,j for all j ∈ N. Renaming τmj , Qmj , ζmj , ηmj , as τj , Qj , ζj , ηj ,
respectively, it follows

ηj < η0,j for all j ∈ N,

and by Proposition 3.8 there are mappings

Φj := Φηj ,Qj ≡ Φηj : R2 → R2

with the following properties:

(i) Γ∗j := Φj(Γj) is a configuration of k closed Jordan curves such that the
Fréchet distance 4(Γj ,Γ∗j ) of Γj and Γ∗j satisfies

4(Γj ,Γ∗j ) < δj for all j ∈ N.

Choosing the numbers δj sufficiently small we can also assume that the
curves of Γ∗j are the boundary curves of a bounded, k-fold connected do-
main Ω∗j in R2;

(ii) Φj ◦ τj ∈ C(Γ∗j ) and dom(Φj ◦ τj) = Bj ;

(iii) Φj = IdR2 on R2 \Bηj (Qj);

(iv) Φj(x) ≡ Qj on B̄η2
j
(Qj);

(v) Aε(Φj ◦ τj) ≤ Aε(τj) + δj .
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In particular we have

Φj ◦ ζj = Qj for all j ∈ N.

Then we define
B1

j := Bj ∩B∗j , B2
j := Bj \ B̄1

j ,

where B∗j is the “inner domain” of γj , i.e. cutting along γj we decompose Bj into
two disjoint partsB1

j andB2
j . Since γj is not homotopic to zero in B̄j , bothB1

j and
B2

j contain at least one of the boundary circles of Bj . Therefore there is a circle βj

in B1
j whose center does not lie in B̄j . Let ρj be the inversion with respect to βj ,

and set

E1
j := B∗∗j ∪ ρj(B1

j ) with B∗∗j := “inner domain” of ρj(γj),

E2
j := B∗j ∪B2

j .

We note that E1
j ∈ N (k′), E2

j ∈ N (k′′) with 1 ≤ k′, k′′ < k and k = k′ + k′′.

Now we define new mappings σ1
j ∈ H1,2(E1

j ,R2) and σ2
j ∈ H1,2(E2

j ,R2) by

σ1
j :=

{
Φj ◦ τj ◦ ρ−1

j on ρj(B1
j )

Qj on B∗∗j ,

σ2
j :=

{
Φj ◦ τj on B2

j

Qj on B∗j .

Roughly speaking this process amounts to “pinching” τj to a pointQj in the neigh-
bourhood of the closed curve γj and to decomposing the resulting surface into two
surfaces of lower topological type by cutting through γj .

Then there is a decomposition Γ = {Γ1,Γ2} of Γ and correspondingly a de-
composition Γj = {Γ1

j ,Γ
2
j} of Γj such that

σ1
j ∈ C(Φj(Γ1

j )), σ2
j ∈ C(Φj(Γ2

j ))

and that
Φj(Γ1

j ) → Γ1 and Φj(Γ2
j ) → Γ2 as j →∞

in the sense of Fréchet. Furthermore the construction yields

Aε(σ1
j ) +Aε(σ2

j ) = Aε(Φj ◦ τj |B1
j
) +Aε(Φj ◦ τj |B2

j
)

= Aε(Φj ◦ τj),

and the induction hypothesis implies

d(Γl, ε) ≤ lim inf
j→∞

Aε(σl
j) for l = 1, 2.



42 S. HILDEBRANDT, H. VON DER MOSEL

The partition Γ = {Γ1,Γ2} leads to

d+(Γ, ε) ≤ d(Γ1, ε) + d(Γ2, ε),

and by Lemma 4.4 we have

d(Γ, ε) ≤ d+(Γ, ε).

Therefore
d(Γ, ε) ≤ d+(Γ, ε) ≤ lim inf

j→∞
Aε(Φj ◦ τj).

On account of (v) we arrive at

(4.14) d(Γ, ε) ≤ d+(Γ, ε) ≤ lim inf
j→∞

Aε(τj),

which completes the proof by induction, and we have verified assertion (a).
(b) For k = 1 we have d∗(Γ, ε) = d+(Γ, ε) = ∞, and so (4.11) holds true.

If k > 1 then by Lemma 4.4 we have d∗(Γ, ε) ≤ d+(Γ, ε) < ∞; so it suffices to
show d+(Γ, ε) ≤ d∗(Γ, ε). For given δ > 0, there is a separating sequence {τm} in
C(Γ) with

lim inf
m→∞

Aε(τm) ≤ d∗(Γ, ε) + δ.

By the same proof as in (a) we obtain (4.14) for this sequence. Therefore

d+(Γ, ε) ≤ d∗(Γ, ε) + δ

for any δ > 0 whence
d+(Γ, ε) ≤ d∗(Γ, ε)

which finishes the proof of Part (b). 2

Now we can prove the final result of this section which is just Theorem 1.5,
namely:

THEOREM 4.6. If the Douglas condition a(Γ) < a+(Γ) is satisfied, then there is
an ε0 ∈ (0, 1] such that for each ε ∈ (0, ε0] there is a mapping τ ε ∈ C(Γ) with

Aε(τ ε) = d(Γ, ε)

and

(4.15) E (τ ε) = G (τ ε), F (τ ε) = 0.
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PROOF: If k = 1 then a+(Γ) = ∞, and so the Douglas condition is always
satisfied. In this case the assertion is proved in [12]. Thus we assume k > 1. Since
according to Lemma 4.2

d(Γ, ε) → d(Γ, 0) = a(Γ), d+(Γ, ε) → d+(Γ, 0) = a+(Γ) as ε→ +0,

and a(Γ) < a+(Γ), there is an ε0 with 0 < ε0 ≤ 1 such that

(4.16) d(Γ, ε) < d+(Γ, ε) for 0 < ε ≤ ε0.

Fix some ε ∈ (0, ε0] and choose a sequence {τm} in C(Γ) with

Aε(τm) → d(Γ, ε) as m→∞.

If {τm} were not cohesive there were a separating subsequence {τmj} whence

d∗(Γ, ε) ≤ lim
j→∞

Aε(τmj ) = d(Γ, ε)

which in combination with (4.11) contradicts (4.16). Thus {τm} has to be cohesive,
and by Lemma 4.3 applied to Ωm ≡ Ω and Γm ≡ Γ there is a τ ε ∈ C(Γ) such that

d(Γ, ε) ≤ Aε(τ ε) ≤ lim inf
m→∞

Aε(τm) = d(Γ, ε).

Consequently,
Aε(τ ε) = d(Γ, ε),

which means
Aε(τ ε) ≤ Aε(τ) for all τ ∈ C(Γ).

Hence the inner variation ∂Aε(τ ε, η) vanishes for any η ∈ C1(B̄,R2), and since
ε > 0 it follows

∂D(τ ε, η) = 0 for all η ∈ C1(B̄,R2).

This implies (4.15) by virtue of Proposition 2.2. 2

5 Proof of the main result

THEOREM 5.1. Suppose that the Douglas condition a(Γ) < a+(Γ) holds. Then
there is a mapping τ ∈ C(Γ) such that

(5.1) A(τ) = inf
C(Γ)

A = inf
C(Γ)

D = D(τ).

Moreover, τ is a conformal mapping from B̄ onto Ω̄ of class Cm,α(B̄,R2).
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PROOF: Let ε0 ∈ (0, 1] be as in Theorem 4.6, and consider a mapping τ ε ∈ C(Γ)
for 0 < ε ≤ ε0 with Aε(τ ε) = d(Γ, ε) and E (τ ε) = G (τ ε), F (τ ε) = 0. Then
Aε(τ ε) = D(τ ε), and consequently

d(Γ, ε) = Aε(τ ε) = A(τ ε) = D(τ ε) for 0 < ε ≤ ε0.

For arbitrary σ ∈ C(Γ) we have

Aε(τ ε) ≤ Aε(σ) ≤ D(σ)

and therefore
D(τ ε) ≤ D(σ) for any σ ∈ C(Γ),

in particular
D(τ ε) ≤ D(τ ε′) for all ε, ε′ ∈ (0, ε0]

whence
D(τ ε) ≡ const =: c0 for ε ∈ (0, ε0].

This implies

c0 ≡ D(τ ε) = A(τ ε) = Aε(τ ε) = d(Γ, ε) for 0 < ε ≤ ε0.

By Lemma 4.2 we have d(Γ, ε) → a(Γ) as ε→ +0, and so we obtain

d(Γ, ε) ≡ a(Γ) for all ε ∈ (0, ε0].

Thus it follows for any ε ∈ (0, ε0] that

D(τ ε) = A(τ ε) = a(Γ).

Moreover, since
a(Γ) = inf

C(Γ)
A ≤ inf

C(Γ)
D ≤ D(τ ε)

we arrive at

A(τ ε) = inf
C(Γ)

A = inf
C(Γ)

D = D(τ ε) for 0 < ε ≤ ε0.

Therefore, setting τ := τ ε for some ε ∈ (0, ε0], we have a solution τ ∈ C(Γ) of
(5.1) satisfying

E (τ) = G (τ), F (τ) = 0.

From (1.1) one gets

m1

∫
B
|∇σ|2 dudv ≤ 2D(σ) ≤ m2

∫
B
|∇σ|2 dudv
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for any σ ∈ H1,2(B,R2). Then a well-known reasoning due to Morrey yields

τ ∈ C0(B̄,R2) ∩ C0,β(B,R2) with β := m1/m2.

Since Γ satisfies a local chord-arc condition, one finds even τ ∈ C0,γ(B̄,R2)
for some γ > 0 (see e.g. [4], vol. II). As in [12] it follows that τ : B̄ → R2

is a minimal surface of class Cm,α(B̄,R2) in (R2, ds2) satisfying the asymptotic
expansion

(5.2) τw(w) = a(w − w0)ν + o(|w − w0|ν) as w → w0 ∈ B̄

with a ∈ C2 \ {0}, gjl(τ(w0))ajal = 0, and ν ∈ N, τw := 1
2(τu − iτv). From

here we can proceed as in [12] to prove that τ(B̄) = Ω̄ and τ is a diffeomorphism
and, in fact, a conformal mapping from B̄ onto Ω̄, using the area formula. Only
the topological argument leading to the inclusion

(5.3) Ω̄ ⊂ τ(B̄)

needs to be modified in the following way:
If k = 1 then (5.3) follows from the fact that τ is continuous on B̄ and maps

∂B weakly monotonically and therefore also diffeomorphically onto Γ, on account
of (5.2).

If k > 1 we may assume that τ maps the outer circle C1 := ∂Br1(q1) of
∂B onto the outer boundary Γ1 of Ω, and that τ(Cj) = Γj for j = 2, . . . , k,
Cj := ∂Brj (qj). The idea to prove (5.3) consists in filling the holesBj := Brj (qj),
2 ≤ j ≤ k, thereby reducing the case k > 1 to k = 1. To this end we construct a
mapping σ ∈ C(Γ1) ∩ C0(B̄1,R2) with dom(σ) = B1 := Br1(q1) by setting

σ(w) :=

{
τ(w) for w ∈ B̄
τ̃−1
j (hj(w)) for w ∈ Bj , 2 ≤ j ≤ k,

where hj is defined as the solution of the Dirichlet problem

∆hj = 0 in Bj , hj = τ̃j ◦ τ |Cj on ∂Bj , for 2 ≤ j ≤ k,

and τ̃j is chosen as a diffeomorphism from Ω̄j onto B̄j , with Ωj := inner domain
of the Jordan curve Γj , 2 ≤ j ≤ k. (For instance we could choose τ̃j as the inverse
of the conformal mapping from B̄j onto Ω̄j whose existence is proven in [12].)
Since τ |Cj is a diffeomorphism from Cj onto Γj , the mapping τ̃j ◦ τ |Cj furnishes
a diffeomorphism from Cj onto itself. By H. Kneser’s theorem (see e.g. [4], vol. I,
p. 274, Lemma 3) it follows that hj provides a diffeomorphism of B̄j onto itself;
in particular we obtain hj(B̄j) = B̄j and therefore

(5.4) σ(B̄j) = Ω̄j for j = 2, . . . , k.
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On the other hand, the reasoning for k = 1 implies

(5.5) Ω̄1 ⊂ σ(B̄1).

From (5.4) and (5.5) we can deduce (5.3). 2

Now we are going to prove Theorem 1.4 by showing that the Douglas condition
is always satisfied in the present situation.

THEOREM 5.2. One has a(Γ) < a+(Γ).

PROOF: Since Γ = 〈Γ1, . . . ,Γk〉 is rectifiable it follows that C(Γ) 6= ∅, and
therefore a(Γ) <∞.

If k = 1 then C+(Γ) = ∅ and consequently a+(Γ) = ∞ whence a(Γ) <
a+(Γ).

For k > 1 we prove the Douglas condition by induction. Suppose that it holds
up to k − 1, and consider an Ω with a boundary configuration Γ = 〈Γ1, . . . ,Γk〉
where Γ1 is the outer boundary of Ω and Γ2, . . . ,Γk are the inner boundary con-
tours. Let Ωj be the inner domain of Γj for j = 1, . . . , k. Then

Ω = Ω1 \

 k⋃
j=2

Ω̄j

 .

Set

(5.6) δ0 :=
1
2

min{H 2(Ωj), j = 2 . . . , k} > 0,

where H 2 denotes the two-dimensional Hausdorff measure. Choose a mapping
σ = {σ(1), . . . , σ(s)} ∈ C+(Γ) with A(σ) ≤ a+(Γ) + δ0 and dom(σ) = B where

B = B1 ∪ . . . ∪Bs, s > 1, Bj ∈ N (kj), k = k1 + · · ·+ ks,

in particular 1 ≤ kj < k for j = 1, . . . , s. We then can partition Γ in

Γ = {γ1, . . . , γs} with γj = 〈γj
1, . . . , γ

j
kj
〉

such that σ(j)|Cj maps Cj := ∂Bj continuously and weakly monotonically onto
γj for j = 1, . . . , s. Furthermore, σ(j) lies in C(γj) for 1 ≤ j ≤ s, hence

a(γ1) + · · ·+ a(γs) ≤ A(σ(1)) + · · ·+A(σ(s))
= A(σ) ≤ a+(Γ) + δ0.(5.7)

We can assume that γ1
1 = Γ1. Denote by ω1 the k1-fold connected domain with the

boundary configuration γ1 = 〈γ1
1 , . . . , γ

1
k1
〉. Since k1 < k there is (at least) one
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l ∈ {2, . . . , k} with Γl ∈ Γ \ γ1, and by the induction hypothesis we can apply
Theorem 5.1. This way we obtain a domain b1 ∈ N (k1) and a conformal mapping
τ (1) from b̄1 onto ω̄1 such that

(5.8) a(γ1) = A(τ (1)) = H 2(ω1).

Furthermore,

(5.9) H 2(ω1) = H 2(ω1 \ Ωl) + H 2(Ωl).

Since (Ω, ds2) is a k-fold connected Riemann domain, there is a B0 ∈ N (k) and
a diffeomorphism τ0 from B̄0 onto Ω̄ such that τ0 ∈ C(Γ). Then

(5.10) a(Γ) ≤ A(τ0) = H 2(Ω).

Since Ω ⊂ ω1 \ Ωl it follows

H 2(Ω) ≤ H 2(ω1 \ Ωl) = H 2(ω1)−H 2(Ωl),

taking (5.9) into account. By virtue of (5.8) we obtain

H 2(Ω) ≤ a(γ1)−H 2(Ωl)

and by (5.10) we arrive at

a(Γ) ≤ a(γ1)−H 2(Ωl)
≤ a(γ1) + a(γ2) + · · ·+ a(γs)−H 2(Ωl).

Applying (5.7) this leads to

a(Γ) ≤ a+(Γ) + δ0 −H 2(Ωl).

By (5.6) we get H 2(Ωl) ≥ 2δ0, and so we find

a(Γ) ≤ a+(Γ)− δ0 < a+(Γ),

i.e. the Douglas condition is also satisfied for k. This proves the assertion of the
theorem. 2

Proof of Theorem 1.4. The assertion follows from Theorems 5.1 and 5.2. 2
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[4] U. Dierkes; S. Hildebrandt; A. Küster; O. Wohlrab, Minimal Surfaces, vols.
I & II. Grundlehren der math. Wissenschaften 295 & 296, Springer, Berlin
1992.

[5] J. Douglas, Solution of the problem of Plateau. Trans. Amer. Math. Soc. 33
(1931), 263–321.

[6] J. Douglas, Minimal surfaces of higher topological structure. Ann. Math. 40
(1939), 205–298.

[7] C.F. Gauß, Allgemeine Auflösung der Aufgabe: die Theile einer gegebnen
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