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Abstract

We consider the variational problem of finding the longest closed
curves of given minimal thickness on the unit sphere. After establishing
the existence of solutions for any given thickness between 0 and 1 we
explicitly construct for each given thickness Θn := sinπ/(2n), n ∈ N,
exactly ϕ(n) solutions, where ϕ is Euler’s totient function from number
theory. Then we prove that these solutions are unique, and also provide
a complete characterisation of sphere filling curves on the unit sphere,
i.e. of those curves whose spherical tubular neighbourhood completely
covers the surface area of the unit sphere exactly once. All of these
results carry over to open curves as well, as indicated in the last section.

Mathematics Subject Classification (2000): 49Q10, 51M15, 51M25,
52C15, 53A04, 74K10

1 Introduction

What is the best way to bend a bulky mattress such that most of it fits into
the trunk of a car? Why is it useful to carefully roll up a long electric cable
onto a cable reel in order to stow it away? This and similar questions belong
to the sort of packing problems where one tries to place a maximal portion
of a huge or long object into a certain volume or onto a given surface. Also
nature displays such optimisation tasks: it is fascinating how and in which
remarkably high density extremely long strands of viral DNA are being
packed into the tiny volume of the phage head of a bacteriophage [KAB06].

For modelling purposes of such complicated packing processes it is often
helpful to analyse such problems in an idealised mathematical form. For
instance, one can ask: What are the longest ropes on a given surface? Spec-
ifying this target surface to be the unit sphere and realizing that ropes can
be described as curves with a positive thickness, we arrive at the following
packing problem:

Problem (P). Find the longest closed curves of prescribed minimal thick-
ness which fit onto the 2-sphere S

2 := {x ∈ R
3 : |x| = 1}.
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2 Longest ropes on the unit sphere

For a precise mathematical formulation of this maximisation problem
we recall first that the length functional L defined on rectifiable continuous
closed curves γ : S

1 → R
3 is given by

L (γ) :=

∫

S1
|γ′(t)| dt,

where S
1 denotes the unit circle S

1 ∼= R/2πZ. We follow the ideas of Gon-
zalez and Maddocks [GM99] in defining the thickness △[γ] of a continuous
closed curve γ : S

1 → R
3 of length L > 0 with arc-length parametrisation

Γ : [0, L] → R
3 as

(1.1) △[γ] := inf
s6=t 6=τ 6=s

s,t,τ∈[0,L)

R(Γ(s),Γ(t),Γ(τ)).

Here, R(x, y, z) denotes the radius of the smallest1 circle through the points
x, y, z ∈ R

3. It was shown in [GMSvdM02, Lemma 2] and [Ge04, Satz 2.14]
that the arc-length parametrisation of a closed curve with positive thickness
possesses a Lipschitz continuous tangent vector. This allows us to restate
the variational problem (P) more precisely:

Problem (P). Given a constant Θ ∈ (0, 1] find a closed curve γΘ in the
class

CΘ := {γ ∈ C1,1(S1,R3) : |γ| = 1 and |γ′| > 0 on S
1,△[γ] ≥ Θ}

such that L (γΘ) = supCΘ
L .

Existence problems of this kind have been solved recently and in more
generality in [GeM06]; for the convenience of the reader, however, we will
present a proof of the following existence result, where we will need an extra
effort to show that the minimal prescribed thickness is in fact attained by
any solution.

Theorem 1.1 (Existence). For each prescribed minimal thickness Θ ∈ (0, 1]
Problem (P) possesses (at least) one solution γΘ ∈ CΘ. In addition, every
such solution has minimal thickness, i.e., △[γΘ] = Θ.

Related variational problems in the context of nonlinearly elastic curves
and rods with the same notion of thickness, in particular also the existence
of ideal knots, were treated in [GMSvdM02], for ideal knots and links see also
[CKS02] and [GdlL03]. Ideal knots are length minimising representatives of
a given knot class subject to a prescribed minimal thickness. Unfortunately

1If x, y, and z are not collinear R(x, y, z) is simply the radius of the circumcircle of
x, y, and z; if these points are collinear but distinct we set R(x, y, z) to be infinite, if they
are collinear but not distinct then R(x, y, z) equals half of the diameter of the point set
{x, y, z}.
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it has turned out to be quite challenging to obtain more information about
the actual shape of the solutions, e.g. of ideal knots; see [D02], [SvdM04].
[CFKSW04]. Cantarella, Kusner, and Sullivan were able to provide an ex-
plicit one-parameter family of ideal links [CKS02, Section 3], and in coop-
eration with Fu and Wrinkle analysed in detail the shape of the tight clasp,
a solution of a special related boundary value problem [CFKSW04, Section
9], but even for the simplest nontrivial knot, the trefoil, the ideal shape is
analytically not determined. For numerical realizations see e.g. [P98], [S04],
[CLMS05], [CPR05].

The focus of the present paper is to construct explicit and unique solu-
tions of (P) taking advantage of the symmetry of the target manifold S

2.
It was already mentioned in [GeM06, Remark 3.4] that for given minimal
thickness Θ = 1 any great circle on S

2 provides the unique length max-
imising closed curve (up to congruence). Any closed curve γ in S

2 different
from a great circle has thickness △[γ] less than 1. The great circle happens
to be the first (and “simplest” member of an infinite family of solutions
corresponding to the decreasing sequence of prescribed values of thickness

Θn := sinϑn for ϑn :=
π

2n
, n ∈ N.

The building blocks of these explicit solutions will be semicircles of the n
latitudes

Ci : S
1 → S

2, i = 0, . . . , n− 1.

Here, C0 is a circle of spherical radius ϑn around the north pole, and all
latitudinal circles Ci have spherical distance

dist
S
2(Ci, Ci−1) = 2ϑn for i = 1, . . . , n− 1,

such that the last latitude Cn−1 is a circle of spherical radius ϑn around the
south pole; see Figure 1.

We may view the union C0 ∪ . . . ∪ Cn−1 as one (discontinuous) curve
βn,0 : S

1 → S
2, where the n connected components Ci of βn,0 possess

mutually disjoint tubular neighbourhoods of uniform radius Θn in R
3 so

that βn,0 has thickness △[βn,0] = Θn. In order to construct from βn,0 con-
tinuous closed curves βn,k consisting of only one component for suitable
k ∈ {1, . . . , n− 1}, we cut the 2-sphere S

2 into two hemispheres along a lon-
gitude such that βn,0 is cut orthogonally into a collection of 2n semicircles.

Now, we keep one hemisphere fixed while turning the other by an angle
of 2kϑn (see Figure 1) such that the n semicircles of the original curve βn,0

on the fixed hemisphere together with the now turned semicircles form a
closed continuous curve

(1.2) βn,k : S
1 → S

2.
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3D view:

Front view:

Θ3

Θ3

ϑ3

ϑ3

C1

C2

β3,0 β3,1
C0

Figure 1: Construction of β3,1 starting from β3,0.

That this is indeed possible under the additional algebraic condition2 that
the greatest common divisor gcd(k, n) of k and n equals 1, and that this
construction leads to distinct solutions of (P) is the content of

Theorem 1.2 (Explicit solutions). For each n ∈ N and k ∈ {1, . . . , n −
1} with gcd(k, n) = 1 the curves βn,k are (up to rigid motions and re-
parametrisations) mutually distinct members of the class CΘ. They provide
explicit piecewise circular solutions of the variational problem (P) for pre-
scribed minimal thickness Θ := Θn ∈ (0, 1]. In addition, △[βn,k] = Θn. For
n = 1 the equator β1,0 provides the only solution with thickness Θ1 = 1.

Interestingly, the solution curves βn,k of which some are depicted in Fig-
ure 2 (a), (b), resemble to a striking extent certain so-called Turing patterns
which arise in chemistry and biology as characteristic concentration distri-
butions of different substances as a result of a diffusion-driven instability;
see e.g. [V99].

For our variational problem (P) we can prove that the explicit solutions
for given thickness Θ := Θn, n ∈ N, are in fact unique.

Theorem 1.3 (Uniqueness for Θ = Θn). Any closed curve γΘ ∈ CΘ which
is a solution of (P) for given minimal thickness Θ = Θn, n ∈ N, coincides
(up to congruence and re-parametrisations) with one of the curves βn,k for
k ∈ {1, . . . , n − 1} with gcd(k, n) = 1. For n = 1, i.e. Θ1 = 1 the equator

2Such a construction was used for a bead puzzle called the orb or orb it [WT83] in the
80s and the involved algebra was probably known to its inventors.
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β1,0 is the unique solution. In particular, for Θ = Θn we have exactly ϕ(n)
solutions for Problem (P) where ϕ denotes Euler’s totient function known
in number theory (cf. Table 1).

This uniqueness theorem is a consequence of the following stronger result
which employs the two-dimensional volume V (Tϑ(γ)) := H 2(Tϑ(γ)) of the
tubular neighbourhood

Tϑ(γ) := {ξ ∈ S
2 : dist

S2(ξ, γ(S1)) < ϑ}

on S
2, to identify sphere filling curves3 as precisely those explicit solutions

βn,k for Θ = Θn:

Theorem 1.4 (Sphere filling thick curves). If V (Tϑ(γ)) = 4π for ϑ ∈
(0, π/2] and some closed curve γ ∈ CΘ with Θ = sinϑ ∈ (0, 1], then there is
some n ∈ N and k ∈ {1, . . . , n − 1} with gcd(k, n) = 1, or n = 1 and k = 0,
such that

(i) ϑ = ϑn,

(ii) △[γ] = Θn, where Θn = sinϑn,

(iii) γ = βn,k.

Notice that this theorem provides also insights about intermediate values
Θ ∈ (0, 1] of prescribed minimal thickness for arbitrary competitors γ ∈ CΘ:
Either γ is not a sphere filling curve, i.e.

V (Tϑ(γ)) < 4π for ϑ = arcsin Θ,

or ϑ = ϑn,△[γ] = Θn, and γ = βn,k. In particular, neither the maximiser γΘ

nor any competing closed curve γ ∈ CΘ is a sphere filling curve if Θ 6= Θn.
Our additional analysis of the relation between length, volume, and

thickness reveals among other things an oscillatory behaviour of the vol-
ume V (Θ) := V (Tϑ(γΘ)) as a function of the given minimal thickness Θ. In
Figure 3 the black zig-zag curve serves as a lower bound for V (Θ) which is
attained precisely at each Θn, n ∈ N; see Lemma 3.8 for the details.

Similar results as described above are available for the problem corre-
sponding to (P) on open curves γ : [0, 1] → S

2 as well. For the details we ask
the reader to consult Section 5, we refer in particular to Figure 6 for a first
impression of the shapes of length maximising open curves on the 2-sphere.

3Consider a pointlike light source being placed in the origin, then for any closed curve
γ ⊂ S

2 its spherical tubular neighbourhood Tϑ(γ) may be seen on S
2 as the shadow of

the spatial tubular neighbourhood BΘ(γ) ⊂ R
3 for Θ = sin ϑ. In that sense the spatial

thickness △[γ] = Θ corresponds to a spherical thickness ϑ = arcsin Θ (see Lemma 2.5
in Section 2). Even the equator β1,0 together with its spherical tubular neighbourhood
Tπ/2(β

1,0) is sphere filling although the spatial tubular neighbourhood BΘ(β1,0) covers
only the considerably smaller equatorial collar Tπ/3(β

1,0).
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(a) (b) (c)

Figure 2: (a),(b) Solutions that maximise length for prescribed thickness. (a) β4,1 has thickness
Θ4 = sin π

2·4
with one hemisphere turned by 1 · Θ4. (b) β12,5 has thickness Θ12 = sin π

2·12
with

one hemisphere turned by 5 ·Θ12. (c) βΘ is a good competitor for a thickness Θ ∈ (Θ2, Θ1). None
of the curves is depicted with its full spatial thickness.
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Figure 3: A lower bound for V (Θ) as established by Lemma 3.8. The low peaks are located

at (Θn+1, 4πΘn+1/Θn). The dotted hull-curve h(t) :=
“

sin( π
2t+2

), 4π sin( π
2t+2

)/ sin( π
2t

)
”

, t ∈
[1,∞) reveals that the spikes are not on a straight line. The values of V (Θ2) and V (Θ3) (acci-
dently) agree. For Θ ∈ (Θ2,Θ1) the volume of V (Tϑ(βΘ)) indicates (dashed line) that the curves
βΘ serve as good competitors for Problem (P), see also Figure 5(d).
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Let us finally outline the structure of the paper. Section 2 contains
the details of the construction of the explicit solutions βn,k, where we use
algebraic arguments to determine when these curves form closed single loops
(Lemma 2.1). This section ends with the proof of Theorem 1.2. In Section 3
we first show how to approximate continuous loops with positive thickness
by smooth loops with positive thickness, which may also be of independent
interest (Lemma 3.2 and Corollary 3.3). We use this lemma twice – first to
establish a variant of the well-known theorem of Hotelling and Weyl [H39],
[W39] relating the volume of a non-self-intersecting tubular neighbourhood
to the length of its centreline, for continuous curves with positive thickness
(see Proposition 3.1). This is of great help in proving optimality in the
variational problem (P). The second application of the approximation result,
Lemma 3.2, appears in the proof that the length maximiser indeed has the
prescribed minimal thickness (Theorem 3.5). As an additional valuable tool
for that purpose we construct for any given minimal thickness Θ ∈ (Θ2,Θ1)
distinguished competing closed curves βΘ with a construction similar to
the one described above. In fact it turns out that the two unique explicit
solutions βn,k for n = 1, 2 appear as the limit members of this one-parameter
family of competitors, i.e. β1,1 = βΘ1 and β2,1 = βΘ2 ; see Lemma 3.6
and consult Figure 3 for the corresponding tubular volumes V (Tϑ(βΘ)).
At this point we are unable to prove that the curves βΘ provide explicit
solutions to (P) for the intermediate values Θ ∈ (Θ2,Θ1) of prescribed
minimal thickness, but we view them as good candidates. Moreover, we
analyse how thickness, length, and tube volume of solutions depend on the
prescribed minimal thickness justifying, e.g., Figure 3; see Lemmas 3.7,
3.8. The uniqueness result, Theorem 1.4, is proved in a series of technical
lemmas in Section 4. The starting point here is the observation that a
spherical curve with thickness Θ = △[γ], ϑ := arcsin Θ, which touches
a geodesic ball of spherical radius ϑ in two non-antipodal points actually
contains the whole circular arc connecting these two points (Proposition
4.1). Then follows with Lemma 4.3 a quite explicit characterisation of sphere
filling curves γ of thickness Θ: the boundary of an open geodesic ball of
spherical radius ϑ which has no point in common with γ intersects γ in a
circle, a semicircle, or in two antipodal points. These two results are used
in Lemmas 4.4 and 4.5 to determine characteristic patterns of sphere filling
curves before we conclude with the proof of Theorem 1.4. In Section 5 we
provide the necessary modifications to establish the analogous results for
length maximising open curves on the 2-sphere S

2.
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2 Explicit solutions

We recall from the introduction that we obtain the curves βn,k for n ∈ N

and k ∈ {0, . . . , n−1} by cutting the 2-sphere S
2 into two hemispheres from

now on referred to as western hemisphere S
w and eastern hemisphere S

e such
that the latitudes Ci : S

1 → S
2 for i = 0, . . . , n − 1, perpendicular to the

longitudinal cutting plane satisfy

(i) C0 is a circle of spherical radius ϑn = π/(2n) about the north pole,

(ii) dist
S2(Ci, Ci−1) = 2ϑn for i = 1, . . . , n− 1,

which implies that Cn−1 is a circle of spherical radius ϑn about the south
pole, see Figure 1. Keeping the western hemisphere S

w fixed and turning S
e

by an angle of 2kϑn leads to a collection of 2n semicircles whose (generally
disconnected) union we may parametrise with constant speed to obtain our
candidates

βn,k : S
1 → S

2 for k = 1, . . . , n− 1.

Lemma 2.1. For every n ∈ N and k ∈ {1, . . . , n − 1} with gcd(k, n) = 1
the appropriately re-parametrised curve βn,k : S

1 → S
2 is a closed piecewise

circular curve whose constant speed parametrisation is of class C1,1(S1,R3)
satisfying

△[βn,k] = Θn = sinϑn = sin
π

2n
.

Moreover, for distinct k1, k2 ∈ {0, . . . , n− 1} the curves βn,k1 and βn,k2 are
not equivalent, i.e., there is no rigid motion M with M(βn,k1) = M(βn,k2).

Proof. The main issue will be to check, whether or not the resulting curve
forms a single closed embedded loop, and we postpone this task to analyse
its consequences first.

Notice that by our choice of the turning angle 2kϑn every endpoint of a
semicircle on S

w meets exactly one endpoint of a semicircle on S
e, so ∂βn,k =

∅, which means that all connected components of βn,k are embedded closed
loops. Moreover, our construction connects semicircles in a C1-fashion, that
is, the tangent lines of the respective semicircles coincide at the common
endpoints. Once we are certain that we have obtained one single closed
simple curve we can rearrange the sub-arcs of the domain S

1 corresponding
to the various semicircles in the right order to obtain the desired constant
speed parametrisation βn,k : S

1 → S
2.

To show then, in addition, that △[βn,k] = Θn, we recall that the original
curve βn,0 consisting of the stack of n disjoint latitudinal circles with mutual
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spherical distance 2ϑn satisfies △[βn,0] = Θn. According to [GMSvdM02,
Lemma 3] this implies that the tubular neighbourhood BΘn(βn,0) in R

3 can
be expressed as the disjoint union of normal disks, i.e.,

BΘn(βn,0) =
⋃̇

s∈S
1
DΘn(βn,0(s), (βn,0)′(s)),

where Dθ(ξ, η) denotes the two-dimensional disk of radius θ centred at ξ ∈
R

3 and perpendicular to η ∈ R
3 \ {0}. Moreover, after cutting the S

2 along
a longitudinal plane into the hemispheres S

w and S
e one observes that these

normal disks centred in S
w do not intersect S

e, and vice versa. Therefore
also
(2.1)

BΘn(βn,k) =
⋃̇

s∈S
1
DΘn(βn,k(s), (βn,k)′(s)) for all k = 0, . . . , n− 1,

since the βn,k are obtained by simply turning S
e against S

w leading to a
piecewise circular closed C1,1-curve.

We claim that for each x ∈ BΘn(βn,k) there is exactly one point p ∈
βn,k(S1) such that

(2.2) dist
R3(x, βn,k) = |x− p|,

which by [GMSvdM02, Lemma 3 (iii)] implies △[βn,k] ≥ Θn, and since the
local radius of curvature of the semicircles C0 ∩ β

n,k equals Θn we arrive at
△[βn,k] = Θn.

In order to prove the claim we use (2.1) to find a unique parameter
s = s(x) ∈ S

1 such that x ∈ DΘn(βn,k(s), (βn,k)′(s)). Since βn,k is of class
C1 we know that the segment x − p is perpendicular to the curve βn,k at
all points p ∈ βn,k satisfying (2.2). If there were one point p := βn,k(t)
satisfying (2.2) for t 6= s, then we would have x ∈ DΘn(βn,k(t), (βn,k)′(t)),
hence

x ∈ DΘn(βn,k(s), (βn,k)′(s)) ∩DΘn(βn,k(t), (βn,k)′(t)) 6= ∅

contradicting the fact that the sets on the right-hand side of (2.1) are dis-
joint. So the only point satisfying (2.2) is the point p := βn,k(s), which
proves the claim.

It remains to be shown that each of the βn,k with gcd(k, n) = 1 forms one
single closed loop. For that purpose we introduce certain checkpoints and
study if and how the curve βn,k passes through these points. We consider the
fixed western hemisphere S

w and label the 2n endpoints of the semicircles
counter-clockwise from 0 to 2n − 1, such that checkpoints number i and
2n − 1 − i correspond to the i-th semicircle on S

w for i = 0, . . . , n − 1; see
Figure 4. The n semicircles on S

w connect the checkpoints to n pairs which
may be viewed as a permutation

c := (0 2n − 1)(1 2n− 2) · · · (n− 1 n)
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0

1

· · ·

2n−1

2n−2

· · ·

n+1

2ϑ 2ϑ

2ϑ 2ϑ

2ϑ

2ϑ

n−2

n−1 n

Figure 4: Labelling 2n checkpoint on a hemisphere for Lemma 2.1

consisting of n cycles of length 2, or alternatively,

c(i) ≡ −1 − i mod 2n, i = 0, . . . , 2n − 1.

So if we pass through checkpoint i along the corresponding semicircle con-
tained in βn,k∩S

w we will next pass through checkpoint c(i) as the endpoint
of this semicircle upon entering the eastern hemisphere S

e. To model the
turn of the other hemisphere S

e by an angle of 2ϑn against S
w we use the

permutation

t := (0 1 · · · 2n− 2 2n− 1)

consisting of 1 cycle of length 2n, so that the turning angle of 2kϑn corre-
sponds to

tk(i) ≡ i+ k mod 2n for k = 1, . . . , n− 1.

As we proceed along the curve βn,k we pass alternately through the semi-
circles on S

w and the semicircles on the rotated hemisphere S
e, respectively.

It can easily be checked that if we enter S
w through checkpoint i then we

enter S
w the next time at checkpoint

q(i) := t−k ◦ c ◦ tk ◦ c(i) mod 2n, i = 0, . . . , 2n− 1.

We enter through n distinct checkpoints and therefore pass through all
semicircles on S

w and S
e, respectively, if and only if the permutation q =

t−k ◦ c ◦ tk ◦ c consists of exactly two cycles of common length n. In order to
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determine under which condition this happens we calculate

q(i) ≡ t−k ◦ c ◦ tk ◦ c(i) mod 2n

≡ t−k ◦ c ◦ tk(−1 − i) mod 2n

≡ t−k ◦ c(−1 − i+ k) mod 2n

≡ t−k(−1 − [−1 − i+ k]) mod 2n

≡ t−k(i− k) mod 2n

≡ i− 2k mod 2n,

hence
ql(i) ≡ i− 2kl mod 2n.

This relation shows in particular that the reentry after an even checkpoint
is again an even checkpoint this way making sure that no semicircle on S

w

and for symmetry reasons also on S
e is left out in the process.

By Lemma 2.2 which will also be applied in the construction of open
curve solutions in Section 5 we conclude that q consists of two cycles of
common length n if and only if (2n)/ gcd(2k, 2n) = n ⇔ gcd(k, n) = 1,
otherwise it consists of 2 gcd(k, n) cycles of length n/ gcd(k, n). To see the
latter we note that the cyclic group 〈q〉 := {q, q2, q3, . . .} operates freely
on the set of checkpoints. The number of algebraically disjoint orbits, i.e.
cycles in our situation, is given by the well-known orbit formula

♯
{
orbits of q

}
=
♯
{
checkpoints

}

|〈q〉|
=

2n

n/ gcd(k, n)
= 2 gcd(k, n).

Switching the roles of the entry and exit checkpoints on the western hemi-
sphere Sw will produce the opposite orientation of the constructed curves.
Since each algebraic orbit corresponds to one of the two opposite orienta-
tions we end up with gcd(k, n) closed loops, in particular with one closed
curve if gcd(k, n) = 1.

To see that for k1 6= k2 the curve βn,k1 cannot be mapped by a rigid
motion to βn,k2 we consider the oriented angle between the polar axes con-
necting the respective north and south poles on S

w and the tilted S
e mea-

sured counterclockwise in the cutting plane as seen from S
w. This invariant

under rigid motions is in fact different for k1 6= k2. This finishes the proof
of Lemma 2.1.

Lemma 2.2. For given r, v ∈ N let the permutation q : {0, · · · , r − 1} −→
{0, · · · , r − 1} be defined as q(i) := i− v mod r. Then the orbit length of i
under the cyclic group 〈q〉 is ♯{q0(i), · · · , qr(i)} = r/ gcd(v, r).

Proof. For l = r/ gcd(v, r) we find

ql(i) ≡ i−v
r

gcd(v, r)
≡ i−r

v

gcd(v, r)
≡ i mod r for all i = 0, . . . , r−1,
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n ♯An n ♯An n ♯An n ♯An n ♯An n ♯An

1 1 8 4 15 8 22 10 29 28 36 12
2 1 9 6 16 8 23 22 30 8 37 36
3 2 10 4 17 16 24 8 31 30 38 18
4 2 11 10 18 6 25 20 32 16 39 24
5 4 12 4 19 18 26 12 33 20 40 16
6 2 13 12 20 8 27 18 34 16 41 40
7 6 14 6 21 12 28 12 35 24 42 12

Table 1: The set An := {k ∈ {1, . . . , n} : gcd(k, n) = 1} for n ∈ N, consists of the values k, such
that βn,k is a closed curve. By the uniqueness result, Theorem 1.3, ♯An = ϕ(n) is the number of
distinct solutions of Problem (P) for the thickness values Θn = sin π

2n
. Moreover, ϕ(n) counts

all sphere filling curves according to Theorem 1.4.

which proves that no cycle in q is longer than r/ gcd(v, r). Now let m > 0
be the smallest integer such that

(2.3) qm(i) ≡ i− vm ≡ i mod r

for some i ∈ {0, . . . , r − 1}. By (2.3) vm is a multiple of r, i.e. there exists
j ∈ N such that

vm = j lcm(v, r) = j
vr

gcd(v, r)
,

where lcm(v, r) denotes the least common multiple of v and r. Cancelling v
yields

m = j
r

gcd(v, r)
,

which implies m ≥ r/ gcd(r, v) and consequently, for r/ gcd(v, r) is the upper
bound on the length of any cycle as shown above,

m =
r

gcd(v, r)
.

Remark 2.3. (i) Since we are only interested in different shapes we do not
have to take into account any integer k ≥ n since the corresponding arcs
βn,k ∩ S

e are equivalent with βn,k−n ∩ S
e for k ≥ n.4 Therefore the number

of distinct closed curves βn,k for given n ∈ N is identical with the cardinality
of the set

An := {k ∈ {1, . . . , n} : gcd(k, n) = 1}, n ∈ N,

which equals ϕ(n) where ϕ is Euler’s totient function (see e.g. [BaSh96,
p. 21]). In Table 1 we have listed the number of distinct closed curves of
type βn,k for n ≤ 42.

4For algebraic reasons we do count the case k = n instead of k = 0.
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(ii) If we turn the hemisphere S
e in Lemma 2.1 by the angle k · 2ϑn for

some k with gcd(k, n) > 1 the curve splits into gcd(k, n) connected compo-
nents. This configuration is a solution to an optimisation problem similar
to (P), namely maximising the length of collections of precisely gcd(n, k)
closed curves on S

2 subject to the prescribed minimal thickness Θn.

(iii) Recall from [GMSvdM02, Lemma 3 (i)] the torus property (T): Let
△[γ] ≥ Θ > 0. Then the union of all open balls BΘ of radius Θ which are
tangent to the curve γ at any fixed point p ∈ γ has no point in common with
γ. This readily implies the

Spherical torus property (ST): Any closed spherical curve γ : S
1 → S

2

with spatial thickness △[γ] = Θ satisfies

γ(S1) ∩ Bϑ(ξ) = ∅ for ϑ = arcsin Θ

for any geodesic open ball

Bϑ(ξ) := {η ∈ S
2 : dist

S2(η, ξ) < ϑ},

whose boundary ∂Bϑ(ξ) is tangent to γ in at least one point of γ.

Definition 2.4 (Tubes without self-overlap). Let γ : S
1 → S

2 be a spherical
closed curve which possesses a tangent at every point. The spherical tubular
neighbourhood

Tφ(γ) := {x ∈ S
2 : dist

S2(x, γ) < φ}

is said to be non-self-overlapping if two geodesic arcs of length φ emanating
from two distinct curve points in a direction perpendicular to γ have at most
common endpoints but otherwise do not intersect.

Lemma 2.5 (Thick curves and non-self-overlapping tubes). All spherical
tubular neighbourhoods

Tφ(γ) := {x ∈ S
2 : dist

S2(x, γ) < φ}, φ ∈ (0, ϑ],

of a spherical closed curve γ : S
1 → S

2 with spatial thickness △[γ] ≥ Θ =
sinϑ for ϑ ∈ (0, π/2] are non-self-overlapping.

Proof. Recall first from [GMSvdM02, Lemma 2] that γ possesses a C1,1-
arclength parametrization so that γ indeed possesses a tangent vector at
every curve point. It suffices to prove the statement for φ = ϑ.Assuming now
to the contrary that two geodesic arcs of length ϑ emanating perpendicularly
from γ from two different curve points p and q have one point x ∈ S

2 in
common which is not the endpoint of both arcs. We can assume without
loss of generality that

dist
S2(x, q) ≤ dist

S2(x, p).
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Let p′ be the endpoint of the geodesic ray emanating from p and q′ the end-
point of the geodesic ray emanating from q. Then by the triangle inequality

dist
S2(p′, q) < dist

S2(p′, x) + dist
S2(x, q) ≤ dist

S2(q′, x) + dist
S2(x, q) = ϑ,

where the strict inequality holds unless p′ lies on the geodesic arc connecting
q and q′ in which case p′ 6= q′ since p 6= q. In both cases, however, we find
that the geodesic ball Bϑ(p′) whose boundary ∂Bϑ(p′) is tangent to γ in p
contains the point q ∈ γ contradicting the spherical torus property (ST).

Proof of Theorem 1.2. According to Lemma 2.1 and Remark 2.3 (i) we
find for each n ∈ N exactly ϕ(n) distinct closed curves βn,k ∈ CΘn with
△[βn,k] = Θn. By construction the spherical tubular neighbourhood

Tϑn(βn,k) := {x ∈ S
2 : dist

S2(x, βn,k) < ϑn}

covers the 2-sphere except for a set of two-dimensional measure zero:

(2.4) V (Tϑn(βn,k)) = H
2(Tϑn(βn,k)) = 4π = H

2(S2).

Moreover, Tϑn(βn,k) is non-self-overlapping in the sense of Definition2.4.
Hence by virtue of the well-known theorem of Hotelling [H39] (see also [W39],
[Gr90]), which we are going to adapt to the present context of thick loops
in Proposition 3.1, one has

L (γ) =
V (Tϑn(βn,k))

2 sin ϑn
≤

4π

2Θn
=

2π

Θn
for all γ ∈ CΘn .

This estimate produces a sharp uniform upper bound on the length func-
tional on the class CΘn . Regarding (2.4) this bound is attained by the curves
βn,k, which means that they are length maximising in the class CΘn , i.e. their
smooth and regular parametrisations are solutions of Problem (P).

3 Existence, and properties of thickness, length

and volume of general solutions

For the volume V (Tϑ(γ)) of the tube

Tϑ(γ) = {x ∈ S
2 : dist

S2(x, γ) < ϑ}

on the sphere S
2 we are going to prove the following version of the theorem

of Hotelling [H39] for continuous thick curves:

Proposition 3.1. Let γ : S
1 → S

2 be a closed rectifiable continuous curve
with thickness △[γ] > 0 and length L (γ). Then for all ϑ ∈ [0, arcsin(△[γ])]
one has

(3.1) V (Tϑ(γ)) = 2 sin ϑL (γ).
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In particular, the tubular neighbourhood TarcsinΘ(γΘ) of any solution γΘ ∈
CΘ of Problem (P) for given thickness Θ ∈ (0, 1] covers the same amount of
area on S

2.

The obvious idea to prove this result is to approximate such thick curves
by smooth ones with controlled minimal thickness for which the classic result
of Hotelling is applicable and then go to the limit. That this is indeed
possible is guaranteed by the following lemma, which we will also use for a
variational argument later on in this section to show that length maximisers
attain the prescribed minimal thickness; see Theorem 3.5.

Lemma 3.2 (Smooth approximation with positive thickness I). Let γ :
S

1 → R
3 be a closed continuous, rectifiable, and regular curve with positive

thickness △[γ] > 0. Then for any sequence {γj} ⊂ C1,1(S1,R3) satisfying

(i) γj → γ in C1(S1,R3) as j → ∞,

(ii) lim supj→∞ ‖κj‖L∞((0,2π)) ≤ 1
△[γ] , where κj denotes the local curva-

ture5 of γj for j ∈ N,

one has

(3.2) lim inf
j→∞

△[γj ] ≥ △[γ].

Proof. The length L := L (γ) is positive since △[γ] > 0, and by [GMSvdM02,
Lemma 2] the arc-length parametrisation Γ : [0, L] → R

3 is of class C1,1([0, L],R3),
which implies that γ ∈ C1(S1,R3) since |γ′| > 0. Notice furthermore that
the C1-convergence we assume in (i) implies

Lj := L (γj) −→ L (γ) = L and

(3.3)

|γ′j | −→ |γ′| > 0 on S
1 as j → ∞,

and the arc-length parametrisations Γj : [0, Lj ] → R
3 satisfy by assumption

(ii)

(3.4) lim sup
j→∞

‖Γ′′
j ‖L∞((0,Lj),R

3
)
= lim sup

j→∞
‖κj‖L∞((0,2π)) ≤

1

△[γ]
.

In order to establish (3.2) it suffices to show that for any given ǫ > 0 there
is some j0 = j0(ǫ) ∈ N such that

△[γj ] = △[Γj ] ≥ (1 − ǫ)△[γ] for all j ≥ j0.

5By assumption (i) we can assume that all γj are regular curves, and recall that
C1,1(S1, R

3) ∼= W 2,∞((0, 2π), R
3) so that κj exists and is bounded a.e. on (0, 2π) for

each j ∈ N.
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We argue by contradiction, so if we assume on the contrary that there exists
an ǫ0 > 0 such that

△[Γj ] < (1 − ǫ0)△[γ] for a subsequence j → ∞,

then for each member j of this subsequence we can find an arc-length pa-
rameter sj ∈ [0, Lj ] such that by definition of thickness (see (1.1))

(3.5) ρG[γj ](sj) <
(

1 −
ǫ0
2

)

△[γ],

where ρG[γj ] denotes the global radius of curvature of Γj defined in [GM99]
and [GMSvdM02] by

ρG[γj ](sj) := inf
t,τ∈[0,Lj ]\{sj}

t 6=τ

R(Γj(sj),Γj(t),Γj(τ)).

It was shown in [StvdM07, Lemma 5] that

ρG[γj ](sj) = ρpt[γj ](sj) := inf
τ∈[0,Lj ]\{sj}

pt[γj ](sj, τ),

where pt[γj ](sj , τ) denotes the radius of the unique circle through the points
Γj(sj) and Γj(τ) which is tangent to the curve Γj at the point Γj(τ). There-
fore we can find for each j some arc-length parameter σj ∈ [0, Lj ]\{sj} such
that by (3.5)

(3.6) pt[γj ](sj, σj) <
(

1 −
ǫ0
4

)

△[γ].

Going back to the original parametrisation γj : S
1 → R

3 we find parameters
tj , τj ∈ S

1 given by

∫ tj

0
|γ′j(z)| dz = sj 6= σj =

∫ τj

0
|γ′j(z)| dz,

and by choice of an appropriate subsequence we may assume that

(tj , τj) → (t, τ) ∈ S
1 × S

1 as j → ∞.

Two cases may occur: either those limit parameters t and τ are distinct or
they coincide.

Case I. If t 6= τ then γ(t) 6= γ(τ) since γ is simple, and therefore also
Γ(s) 6= Γ(σ) for s :=

∫ t
0 |γ′(z)| dz and σ :=

∫ τ
0 |γ′(z)| dz. (Notice that we

assumed that γ is a regular curve, i.e., |γ′| > 0 so that a double point γ(t) =
γ(τ) for t 6= τ would imply a double point for the arc-length parametrisation
Γ(s) = Γ(σ) which is impossible because △[γ] is positive.) We arrive at

Γj(sj) = γ(tj) −→ γ(t) = Γ(s) and

(3.7)

Γj(σj) = γ(τj) −→ γ(τ) = Γ(σ) as j → ∞.
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In addition, one has for the derivatives by the C1-convergence and in par-
ticular by (3.3)

(3.8) Γ′
j(σj) =

γ′j(τj)

|γ′j(τj)|
−→

γ′(τ)
|γ′(τ)|

= Γ′(σ) as j → ∞,

so that we can use an explicit formula for the pt-radius and [StvdM07,
Lemma 4] to obtain from (3.6)

(

1 −
ǫ0
4

)

△[γ] >
(3.6)

pt[γj ](sj , σj) =
|Γj(sj) − Γj(σj)|

2

2|(Γj(sj) − Γj(σj)) ∧ Γ′
j(σj)|

j→∞
−→

|Γ(s) − Γ(σ)|2

2|(Γ(s) − Γ(σ)) ∧ Γ′(σ)|
= pt[γ](s, σ)

≥ ρpt[γ](s) ≥
[StvdM07,L.4]

ρG[γ](s) ≥ △[γ],

which is a contradiction.

Case II. If t = τ we find |tj − τj| → 0 as j → ∞, so that by (3.3) for
j ≫ 1

(3.9) |sj −σj| =

∣
∣
∣
∣
∣

∫ tj

τj

|γ′j(z)| dz

∣
∣
∣
∣
∣
≤ 2‖γ′‖

C0(S1,R
3
)
|tj −τj| → 0 as j → ∞.

We apply (3.4) to the Taylor expansion (cf. [StvdM07, (2.20)])

(3.10) pt[γj ](sj, σj) =

∣
∣
∣Γ′

j(σj) +
∫

[σj ,sj ]

∫ u
σj

Γ′′
j (z) dzdu

∣
∣
∣

2

2
∣
∣
∣Γ′

j(σj) ∧
1

σj−sj

∫ 1
0

∫ σj

σj−u(σj−sj)
Γ′′

j (z) dzdu
∣
∣
∣

to find for given δ > 0 some j1 = j1(δ) such that for all j ≥ j1
∣
∣
∣
∣
∣

∫ u

σj

Γ′′
j (z) dz

∣
∣
∣
∣
∣
≤

∫

[σj ,sj ]
|Γ′′

j (z)| dz ≤
(3.4)

(1+δ)|sj−σj|
1

△[γ]
for all u ∈ [σj , sj ],

and
∣
∣
∣
∣
∣

∫ σj

σj−u(σj−sj)
Γ′′

j (z) dz

∣
∣
∣
∣
∣

≤
(3.4)

(1 + δ)|u||sj − σj |
1

△[γ]
for all u ∈ [0, 1].

This together with (3.8) and (3.9) allows us to estimate the numerator in
(3.10) by 1−δ from below, and the denominator by (1+δ)/△[γ] from above
for all j ≥ j2 for some j2 = j2(δ) ≥ j1. We infer from (3.6)

(

1 −
ǫ0
4

)

△[γ] > pt[γj ](sj, σj) ≥
1 − δ

1 + δ
△[γ] for all j ≥ j2,
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which is absurd for any δ ≤ ǫ0/(8 − ǫ0).

Now we are going to present the

Proof of Proposition 3.1. The length L := L (γ) is positive since △[γ] >
0. Recall from [GMSvdM02, Lemma 2] that the arc-length parametrisation
Γ : [0, L] → S

2 is injective and of class C1,1([0, L],R3) satisfying the local
curvature bound

(3.11) ‖Γ′′‖L∞([0,L],R3) ≤
1

△[γ]
.

We extend the components Γi, i = 1, 2, 3, as L-periodic functions onto all of
R. Then we choose a sequence ǫj → 0 as j → ∞, a standard nonnegative
mollifier φ ∈ C∞

0 ((−1, 1)), and define the smooth L-periodic convolutions

ηi
j := φǫj ∗ Γi ∈ C∞(R) ⊂ C∞([0, L]) for i = 1, 2, 3,

so that ηj := (η1
j , η

2
j , η

3
j ) are smooth closed curves in R

3 approximating Γ in

C1([0, L],R3), such that

|η′j | −→ 1 uniformly on [0, L], and also

(3.12)

‖η′′j ‖L∞([0,L],R3) ≤ ‖Γ′′‖L∞([0,L],R3) ≤
1

△[γ]
for all j ∈ N.

Furthermore, we can assume that |ηj | > 0 for all j, such that the projected
curves

γj :=
ηj

|ηj |
: [0, L] → S

2

are well-defined and of class C∞([0, L],R3) for all j ∈ N. These curves satisfy

|γj(t) − Γ(t)| ≤

∣
∣
∣
∣

ηj

|ηj |
−

Γ(t)

|ηj |

∣
∣
∣
∣
+

(
|1 − |ηj ||

|ηj|
|Γ(t)|

)

≤ 2‖ηj − Γ‖C0([0,L],R3) + 2‖1 − |ηj |‖C0([0,L],R3),

and

|γ′j(t) − Γ′(t)| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

η′j(t)

|ηj |
−
ηj(t) · η

′
j(t)

|ηj(t)|3
ηj(t) +

Γ(t) · Γ′(t)
|ηj(t)|3

ηj(t)

︸ ︷︷ ︸

=0

−Γ′(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ 2‖η′j − Γ′‖C0([0,L],R3) + 2|ηj(t) · η
′
j(t) − Γ(t) · Γ′(t)|

≤ 2‖η′j − Γ′‖C0([0,L],R3) + 4‖η′j − Γ′‖C0([0,L],R3) + 4‖ηj − Γ‖C0([0,L],R3)
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for all j ≫ 1; hence

(3.13) γj −→ Γ in C1([0, L],R3) as j → ∞.

In addition we compute

γ′′j =

[
η′j
|ηj |

−
ηj · η

′
j

|ηj|3
ηj

]′

(3.14)

=
η′′j
|ηj |

−
ηj · η

′
j

|ηj|3
η′j −

[|η′j |
2 + ηj · η

′′
j ]

|ηj |3
ηj −

3(ηj · η
′
j)

2

|ηj |5
ηj −

ηj · η
′
j

|ηj|3
η′j.

Since ηj → Γ in C1([0, L],R3) and Γ · Γ′ ≡ 0 we find
(3.15)

−
ηj · η

′
j

|ηj |3
η′j −

3(ηj · η
′
j)

2

|ηj |5
ηj −

ηj · η
′
j

|ηj |3
η′j −→ 0 in C0([0, L],R3) as j → ∞.

Moreover, one has for any common Lebesgue point s ∈ [0, L] of Γ′′ and γ′′j
for all j ∈ N (i.e. for a.e. s ∈ [0, L]):

|ηj(s) · η
′′
j (s) − Γ(s) · Γ′′(s)|

=

∣
∣
∣
∣

∫

R

φǫj(s− t)Γ(t) dt ·

∫

R

φ′′ǫj
(s− t)Γ(t) dt − Γ(s) · Γ′′(s)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

φǫj(s− t)Γ(t) dt ·

∫

R

φǫj (s− t)Γ′′(t) dt − Γ(s) · Γ′′(s)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

φǫj(z)Γ(s − z) dz ·

∫

R

φǫj(z)Γ
′′(s − z) dz − Γ(s) · Γ′′(s)

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫

R

φǫj(z)[Γ(s − z) − Γ(s)] dz ·

∫

R

φǫj(z)Γ
′′(s− z) dz

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

R

φǫj(z)Γ(s) dz ·

∫

R

φǫj (z)Γ
′′(s− z) dz − Γ(s) · Γ′′(s)

∣
∣
∣
∣

≤
(3.11)

‖Γ(s− ·) − Γ(s)‖
C0(Bǫj (0),R3)

1

△[γ]

+

∣
∣
∣
∣

∫

R

φǫj(z) dz

∫

R

φǫj(z)[Γ(s) − Γ(s− z)] · Γ′′(s− z) dz

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

R

φǫj(z) dz

∫

R

φǫj(z)Γ(s − z) · Γ′′(s − z) dz − Γ(s) · Γ′′(s)

∣
∣
∣
∣

≤ 2‖Γ(s − ·) − Γ(s)‖C0(Bǫj (0),R3)

1

△[γ]
−→ 0 as j → ∞,

using for the last inequality that the normal curvature of Γ : [0, L] → S
2

equals −1 a.e. on [0, L] (see e.g. [doC76, Chapter 3.2]), so that in particular

Γ′′(s) · Γ(s) = −1 and

Γ′′(s− z) · Γ(s− z) = −1 for a.e. z ∈ R.
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Hence we obtain

(3.16) ‖ηj · η
′′
j − Γ · Γ′′‖L∞((0,L)) −→ 0 as j → ∞,

which we combine with (3.15) and the fact that ηj → Γ in C1([0, L],R3) in
(3.14) to obtain by (3.12)

lim sup
j→∞

‖γ′′j ‖L∞((0,L),R3) = lim sup
j→∞

‖η′′j ‖L∞((0,L),R3) ≤
(3.12)

1

△[γ]
.

This together with (3.13) implies for the arc-length parametrisations Γj :
[0,L (γj)] → S

2 the estimate

lim sup
j→∞

‖Γ′′
j‖L∞((0,L),R3) = lim sup

j→∞

∥
∥
∥
∥
∥

|γ′′j ∧ γ′j|

|γ′j |
3

∥
∥
∥
∥
∥

L∞((0,L),R3)

≤
1

△[γ]
.

With this inequality and with (3.13) we have verified assumptions (i) and
(ii) of Lemma 3.2 for the curve Γ ∈ C1,1([0, L],R3) and the approximating
curves γj : [0, L] → S

2 each of class C∞([0, L],R3), so that by (3.2)

lim inf
j→∞

△[γj ] ≥ △[Γ] = △[γ].

If we we take an appropriate subsequence and relabel we obtain a sequence
{γj} ⊂ C∞([0, L],R3), γj : [0, L] → S

2 for all j ∈ N such that

(3.17) ‖γj − Γ‖C1([0,L],R3) <
1

j
and △[γj ] > △[γ] −

1

j
.

In particular, we find for arbitrary given ϑ ∈ [0, arcsin(△[γ])] and ǫ > 0
some J0 = J0(ǫ) such that

(3.18) Tϑ−ǫ−(2/j)(γj) ⊂ Tϑ−ǫ−(1/j)(γ) ⊂ Tϑ−ǫ(γj) for all j ≥ J0,

and according to Lemma 2.5 these nested spherical tubular neighbourhoods
are non-self-overlapping in the sense of Definition 2.4. Since the γj are
smooth with image on S

2 for all j we may apply the theorem of Hotelling
[H39] twice for j ≥ J1 for some J1 = J1(ǫ) ≥ J0 with

△[γj ] > △[γ] −
1

j
≥ ϑ− ǫ,

to obtain

2 sin(ϑ− ǫ− (2/j))L (γj) =
[H39]

V (Tϑ−ǫ−(2/j)(γj))

≤
(3.18)

V (Tϑ−ǫ−(1/j)(γ))

≤
(3.18)

V (Tϑ−ǫ(γj))

=
[H39]

2 sin(ϑ− ǫ)L (γj) for all j ≥ J1.
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Since (3.17) implies L (γj) → L (γ) as j → ∞ we arrive at

2 sin(ϑ− ǫ)L (γ) = V (Tϑ−ǫ(γ))

for the arbitrarily chosen ǫ > 0, which implies (3.1).
We actually established within the previous proof the following approx-

imation result which might also be of independent interest.

Corollary 3.3 (Smooth approximation with positive thickness II). For any
closed continuous rectifiable, and regular curve γ : S

1 → R
3 with positive

thickness △[γ] > 0 and length L := L (γ) there is a sequence of regular
closed curves ηj ∈ C∞([0, L],R3) such that

(3.19) ηj → Γ in C1 as j → ∞ and lim inf
j→∞

△[ηj ] ≥ △[γ],

where Γ : [0, L] → R
3 denotes the arc-length parametrisation of γ. If, in

addition, γ(S1) ⊂ S
2, then there is a sequence of regular closed curves γj ∈

C∞([0, L],R3) with γj([0, L]) ⊂ S
2 such that (3.19) holds for γj instead of

ηj.

As a prerequisite for the proof of the existence result, Theorem 1.1, we
show that the velocities of constant speed parametrisations of admissible
curves γ ∈ CΘ are controlled solely in terms of the given thickness Θ (see
also [GeM06, Lemma 5.3]):

Lemma 3.4 (Speed limit). For all γ ∈ CΘ with |γ′| ≡ const. on S
1 one has

(3.20) Θ ≤ |γ′| ≤
1

Θ
on S

1.

Proof. The upper bound in (3.20) follows from (3.1) in Proposition 3.1 for
ϑ = arcsin Θ:

2π|γ′| = L (γ) =
(3.1)

1

2 sin ϑ
V (Tϑ(γ)) ≤

4π

2Θ
,

and the lower bound follows from the torus property (see Remark 2.3), which
implies that γ as a closed curve of positive length has to be at least as long
as a great circle on one of the spheres ∂BΘ touching γ in, say γ(0), so that

2π|γ′| = L (γ) ≥ 2πΘ.

Proof of Theorem 1.1 for closed curves6. The class CΘ is not empty
for any Θ ∈ (0, 1], since any great circle cg smoothly parametrised with

6For open curves we will indicate the necessary modifications in Section 5.
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constant speed has thickness △[cg] = 1 ≥ Θ. So there is a maximising
sequence {ηj} ⊂ CΘ such that

Lj := L (ηj) −→ sup
CΘ

L (·) as j → ∞.

The corresponding arc-length parametrisations Γj : [0, Lj ] → S
2 satisfy the

uniform estimate (cf. [GMSvdM02, Lemma 2])

‖Γj‖C1,1([0,Lj ],R
3) = ‖Γj‖C0([0,Lj ],R

3) + ‖Γ′
j‖C0([0,Lj ],R

3) + ‖Γ′′
j ‖L∞((0,Lj),R

3)

≤ 2 +
1

Θ
for all j ∈ N,(3.21)

so that the constant speed re-parametrisations γj : S
1 → S

2 with vj :=
|γ′j | > 0 still yield a maximising sequence in CΘ and satisfy

γj(t) = Γj(tvj), γ′j(t) = Γ′
j(tvj)vj .

Therefore by (3.20) in Lemma 3.4

|γ′j(t) − γ′j(τ)| = vj |Γ
′
j(tvj) − Γ′

j(τvj)|

≤
v2
j

Θ
|t− τ | ≤

(3.20)

1

Θ3
|t− τ | for all t, τ ∈ S

1.

Consequently, we obtain the uniform bound

‖γj‖C1,1(S1,R3) ≤ ‖γj‖C0(S1,R3) + vj‖Γ
′
j‖C0([0,Lj ],R3) +

1

Θ3

≤ 1 +
1

Θ
+

1

Θ3
for all j ∈ N,(3.22)

which implies by the theorem of Arzelà-Ascoli the existence of a closed curve
γΘ ∈ C1,1(S1,R3) and a subsequence {γj} such that

γj −→ γΘ in C1(S1,R3) as j → ∞.

Hence γΘ maps S
1 into S

2 and has constant speed |γ′Θ| ≥ Θ because7 |γ′j | ≥ Θ
for all j by Lemma 3.4. In addition, △[γΘ] ≥ Θ, since it was proved in
[SvdM03a, Lemma 4] and [GdlL03, Lemma 5] that the thickness △[·] is upper
semi-continuous with respect to convergence in C0(S1,R3) subjected to a
uniform upper bound on length. Thus we have shown that γΘ ∈ CΘ. Since
the length functional L (·) is continuous with respect to C1-convergence we
conclude

sup
CΘ

L (·) ≥ L (γΘ) = lim
j→∞

L (γj) = sup
CΘ

L (·),

i.e., γΘ is a length maximising curve. That the prescribed thickness is at-
tained by any solution γΘ of Problem (P), i.e. △[γΘ] = Θ, is the content of
the next theorem, which then concludes the proof of Theorem 1.1.

7It is also possible to prove |γ′
Θ| ≥ 1 by comparing the length of the maximiser γΘ to

that of a great circle which has thickness 1 and is henceforth an admissible comparison
curve in CΘ for any Θ ∈ (0, 1].
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Theorem 3.5 (Thickness is attained). For any solution γΘ ∈ CΘ of Problem
(P) for Θ ∈ (0, 1] one has △[γΘ] = Θ.

Proof. There is nothing to prove for Θ = 1 since then the great circle with
thickness 1 is the unique solution (up to congruence). Assuming △[γΘ] > Θ
for some Θ ∈ (0, 1) we will first use Lemma 3.2 to show that variations
of the type (γΘ + ǫψ)/|γΘ + ǫψ| are admissible for ǫ sufficiently small, to
conclude with a variational argument that γΘ must be a great circle. Then
we construct a suitable comparison curve βΘ∗ with L (βΘ∗) > L (γΘ), which
contradicts the maximality of γΘ.

For brevity we set γ := γΘ for fixed Θ ∈ (0, 1) and L := L (γ), and we
may assume w.l.o.g. that |γ′| ≡ const. =: v on S

1; hence v = L/(2π).

We claim that for any ψ ∈ C∞
0 (S1,R3) there is some ǫ0 = ǫ0(ψ,△[γ]) > 0

such that for the curves

ηǫ :=
γ + ǫψ

|γ + ǫψ|
∈ C1,1(S1,R3)

we have △[ηǫ] > Θ for all |ǫ| ∈ [0, ǫ0].

For the proof of this claim we notice that |γ| = 1 so that γ · γ′ = 0 on
S

1, which implies

ηǫ −→ γ in C0(S1,R3) as ǫ→ 0, and

η′ǫ =
γ′ + ǫψ′

|γ + ǫψ|
−

(γ + ǫψ) · (γ′ + ǫψ′)
|γ + ǫψ|3

(γ + ǫψ)

−→ γ′ in C0(S1,R3) as ǫ→ 0.

As in the proof of Proposition 3.1 we use the fact that γ as a spherical
curve has normal curvature equal to −1, in other words, the arc-length
parametrisation Γ : [0, L] → S

2 of γ satisfies

Γ · Γ′′ = −1 a.e. on [0, L]

so that we obtain with

Γ′(s) =
γ′

|γ′|
(t(s)) =

γ′(t(s))
v

and

Γ′′ =
γ′′(t(s))

v

dt

ds
(s) =

γ′′(t(s))
v2

for the arc-length parameters s :=
∫ t(s)
0 |γ′(τ)| dτ = vt(s). It follows that

−1 = Γ · Γ′′ =
γ · γ′′

v2
,
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or

(3.23) γ · γ′′ = −v2,

which can be used to show the boundedness of η′′ǫ :

η′′ǫ =
γ′′ + ǫψ′′

|γ + ǫψ|
−

(γ′ + ǫψ′) · (γ + ǫψ)

|γ + ǫψ|3
(γ′ + ǫψ′)

−
|γ′ + ǫψ′|2 + (γ + ǫψ) · (γ′′ + ǫψ′′)

|γ + ǫψ|3
(γ + ǫψ)

−
3[(γ + ǫψ) · (γ′ + ǫψ′)]2

|γ + ǫψ|5
(γ + ǫψ) −

(γ + ǫψ) · (γ′ + ǫψ′)
|γ + ǫψ|3

(γ′ + ǫψ′).

Since ‖γ‖C1,1(S1,R3) is bounded, γ · γ′ = 0 and by (3.23) we deduce for the
curvature κǫ of ηǫ

lim sup
ǫ→0

‖κǫ‖L∞((0,2π)) = lim sup
ǫ→0

∥
∥
∥
∥

|η′′ǫ ∧ η′ǫ|
|η′ǫ|3

∥
∥
∥
∥

L∞((0,2π))

≤ ‖Γ′′‖L∞((0,2π),R3) ≤
1

△[γ]
.

Lemma 3.2 applied to γ = γΘ and γj := ηǫj for any subsequence ǫj → 0
gives

lim inf
j→∞

△[ηǫj ] ≥ △[γ] > Θ,

so that we indeed find ǫ0 = ǫ0(ψ,△[γ]) > 0 such that

△[ηǫ] > Θ for all |ǫ| ∈ [0, ǫ0],

which proves the claim.
Therefore we have ηǫ ∈ CΘ for all |ǫ| ∈ [0, ǫ0] and

L (γ) ≥ L (ηǫ) for all |ǫ| ∈ [0, ǫ0].

Since |γ + ǫψ| > 0 for all |ǫ| ≪ 1 and |γ| = 1 on S
1 we can calculate the

vanishing first variation of L at γ:

0 =
d

dǫ

[

L (ηǫ)
]

ǫ=0
=

∫ 2π

0

d

dǫ

[

|η′ǫ|
]

ǫ=0
dt

=

∫ 2π

0

η′ǫ
|η′ǫ|

·

[
d

dǫ
η′ǫ

]

ǫ=0

dt =

∫ 2π

0

γ′

v
·
d

dǫ

[

η′ǫ
]

ǫ=0
dt

= v−1

∫ 2π

0

[

γ′ · ψ′ − |γ′|2(γ · ψ) − (ψ · γ′ + γ · ψ′)(γ′ · γ)

−(γ′ · ψ)(γ · γ′) + 3(γ · γ′)2(γ · ψ)
]

dt

= v−1

∫ 2π

0

[

γ′ · ψ′ − v2(γ · ψ)
]

dt.
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Integrating by parts and applying the Fundamental Lemma in the calculus
of variations we obtain

γ′′ + v2γ = 0 a.e. on S
1.

Since γ ∈ C1,1 we obtain immediately γ′′ ∈ C1,1 and by the standard boot-
strap argument finally γ ∈ C∞(S1,R3). Transforming the equation into the
arc-length formulation we obtain

Γ′′ = −Γ on [0, L],

which has the great circles as their only solutions; see e.g. [doC76, p. 246].
Hence we have shown that if △[γ] > Θ for the solution γ = γΘ then γΘ is a
great circle.

For each τ ∈ [Θ2, 1) we will construct in Lemma 3.6 below a competitor
βτ ∈ Cτ with

L (βτ ) > 2π = L (γΘ)

so that we obtain for the special choice τ = Θ∗ := max{Θ2,Θ} a competi-
tor βτ ∈ CΘ∗ ⊂ CΘ, which leads to the desired contradiction against the
maximality of L (γΘ) in CΘ.

Lemma 3.6 (Explicit competitors βτ for τ ∈ [Θ2,Θ1]). For every τ ∈
[Θ2,Θ1] = [sin(π/4), 1] there is a closed curve βτ ∈ Cτ with

△[βτ ] = τ,

L (βτ ) = 8τ arccos

√

1 −
1

2τ2
,

V (βτ ) = 2τL (βτ ) = 16τ2 arccos

√

1 −
1

2τ2
.

In particular, L (βτ ) ≥ 2π with equality if and only if βτ is a great circle,
i.e. if τ = Θ1 = 1.

Remark. Our construction will reveal a one-parameter family {βτ}
(parametrised by the prescribed thickness τ) continuously joining the unique
solutions for τ = Θ1 = 1 and τ = Θ2 (see Figure 3).

We strongly believe that these βτ provide the unique (but not sphere-
filling) solutions for every τ ∈ (Θ2,Θ1), which would extend our uniqueness
result, Theorem 1.3 to this continuous range of given thickness values. Up
to now, however, we have no proof for this conjecture. We only would like
to point out at this moment that the curves βτ are good candidates for the
maximisers for τ ∈ (Θ2,Θ1).

Proof of Lemma 3.6. To construct βτ for given τ ∈ [Θ2,Θ1] we
equipartition the equator of the S

2 by four distinct points Pi, i = 1, 2, 3, 4,
such that these four points are the vertices of a square of edge length 2H :=
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(a) (b)

3π

7
2 π

4π

0.7 0.75 0.8 0.85 0.9 0.95 1
τ

V
(β

τ)

(c) (d)

Figure 5: (a)–(c) Determining the thickness of βτ as described in Lemma 3.6. (d) The volume
V of the tubular neighbourhood of βτ .
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2 · 1√
2

in the plane E containing the equator. Now we take the plane vertical

to E which contains the straight segment P1P2 and rotate that plane about
the rotations axis through P1 and P2 until this rotated plane F intersected
with S

2 is a circle ∂Bτ of radius τ ; see Figure 5(a). Let α = α(τ) be the
angle between F and E, and we refer to the side-view in Figure 5(b) where
E is seen as a horizontal line, to obtain the geometric identities

a = H cosα, h = H sinα,

τ =
√

1 − h2 =
√

1 −H2 sin2 α.

In Figure 5(c) the plane F coincides with the drawing plane, and one can
read off the relation

L = 2τβ = 2τ arccos(a/τ),

where L denotes the length of the shorter circular arc on ∂Bτ with endpoints
P1 and P2. Repeating this process for the other edges P2P3, P3P4, and P4P1,
we obtain four such circular arcs each of length L. Reflecting two opposite
of these arcs across the equatorial plane E and taking the union of these
reflections with the two remaining arcs we obtain the desired C1,1-curve βτ

which by construction8 has length

4L = 8τ arccos(a/τ) = 8τ arccos

√

1 −
1

τ2
.

The thickness of βτ is realized exclusively by the local radius of curvature
τ of each circular arc, since neighbouring arcs are separated by the plane S
containing the normal disk of radius τ at the common endpoint. All normal
disks or radius τ centred on one of these arcs are not only mutually disjoint
but also completely contained in the half-space bounded by S that contains
the arc itself. (Compare with our argument to prove (2.1) in Section 2 in
the construction of the explicit solutions βn,k whose circular arcs were full
semicircles whereas the arcs to build βτ for τ ∈ (Θ2,Θ1) are strict subsets
of semicircles.) The normal disks of opposite arcs can also not intersect if

√

1 −H2 sin2 α = τ ≤ d :=
H

sinα
;

see Figure 5(b), which is true since the function

f(α) :=
1

2
− sin2 α+

1

2
sin4 α

8The circular arcs indeed have common tangent lines at the concatenation points Pi,

i = 1, 2, 3, 4, since the tangent vectors of the two arcs meeting at, say endpoint P1 are both
contained in the tangent plane TP1

S
2 both enclosing the same angle with E ∩ TP1

S
2, such

that the reflection across the line E ∩ TP1
S
2 produces the common tangent line through

P1 in TP1
S
2.
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satisfies f(π/2) = 0 and is monotonically decreasing on [0, π/2].
Thus we have shown △[βτ ] = τ and that a smooth and regular parametri-

sation of βτ is actually contained in the class Cτ . The formula for the volume
in the statement of the lemma is a direct consequence of Hotelling’s theorem,
see Proposition 3.1. The four arcs on the great circle each of length π/2
connecting neighbouring points in {P1, P2, P3, P4} are the shortest possible
connections on S

2 so that L ≥ π
2 ; hence L (βτ ) = 4L ≥ 2π with equality if

and only if βτ is the great circle, i.e. τ = Θ1 = 1.

We conclude this section by analysing how length and tube volume of
solutions depend on the given thickness.

Lemma 3.7. For given minimal thickness Θ ∈ (0, 1] let γΘ be a solution of
Problem (P), and define the function L : (0, 1] → [2π,∞) by L(Θ) := L (γΘ)
and V : (0, 1] → (0, 4π] by V (Θ) := V (Tarcsin Θ(γΘ)). Then

(i) L is a strictly decreasing function on (0, 1].

(ii) L(1) = 2π, and L(Θ) → ∞ as Θ → +0.

(iii) limh→+0L(Θ − h) = L(Θ) for Θ ∈ (0, 1].

(iv) L(Θ) = V (Θ)/(2Θ) is differentiable at almost every Θ ∈ (0, 1].

(v) 2π ≤ L(Θ) ≤ 2π/Θ and 4πΘ ≤ V (Θ) ≤ 4π for all Θ ∈ (0, 1].

(vi) The functions L and V are upper semicontinuous on (0, 1].

Proof. (i) For 0 < Θ < Θ′ ≤ 1 and the corresponding solutions γΘ ∈ CΘ

and γΘ′ ∈ CΘ′ for Problem (P) we have

(3.24) △[γΘ′ ] ≥ Θ′ > Θ

so that γΘ′ ∈ CΘ as well. Hence

L(Θ) = L (γΘ) ≥ L (γΘ′) = L(Θ′),

which proves that L is a decreasing function. If 0 < Θ < Θ′ < 1 we know
that γΘ′ is not the great circle, and we may assume that γΘ′ has constant
speed v = |γΘ′ | on S

1. Recalling the arguments in the proof of Theorem 3.5,
there must be a function ψ ∈ C∞

0 (S1,R3) such that

δL (γΘ′ , ψ) :=
d

dǫ

[

L

(
γΘ′ + ǫψ

|γΘ′ + ǫψ|

)]

ǫ=0

6= 0,

and since the first variation δL (γΘ′ , ·) is a linear functional we may assume
that

(3.25) δL (γΘ′ , ψ) = 1.
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Notice that (3.24) and the claim established in the proof of Theorem 3.5
imply

(3.26) △

[
γΘ′ + ǫψ

|γΘ′ + ǫψ|

]

> Θ, hence
γΘ′ + ǫψ

|γΘ′ + ǫψ|
∈ CΘ

for ǫ sufficiently small. One can check that there is an ǫ0 = ǫ0(ψ) > 0 such
that

d2

dǫ2

[

L

(
γΘ′ + ǫψ

|γΘ′ + ǫψ|

)]

is bounded uniformly in ǫ ∈ [−ǫ0, ǫ0], so that

L

(
γΘ′ + ǫψ

|γΘ′ + ǫψ|

)

= L (γΘ′) + ǫδL (γΘ′ , ψ) +O(ǫ2).

Hence by virtue of (3.25)

L

(
γΘ′ + ǫψ

|γΘ′ + ǫψ|

)

> L (γΘ′) for 0 < ǫ≪ 1,

which implies by (3.26)

L(Θ) = L (γΘ) ≥
(3.26)

L (

(
γΘ′ + ǫψ

|γΘ′ + ǫψ|

)

> L (γΘ′) = L(Θ′)

for all 0 < Θ < Θ′ < 1. If Θ < Θ′ = 1 we find Θ′′ ∈ (Θ,Θ′) so that according
to what we have just proved and the monotonicity observed in the beginning

L(Θ) > L(Θ′′) ≥ L(Θ′),

which finishes the proof of Part (i).

(ii) For the explicit solutions βn,k ∈ CΘn constructed in Theorem 1.2 we
have V (Tarcsin Θn(βn,k)) = 4π, and therefore by Proposition 3.1

L(Θn) = L (βn,k) =
V (Tarcsin Θn(βn,k))

2Θn
=

2π

Θn
=

2π

sin π
2n

→ ∞ as n→ ∞.

This together with the strict monotonicity shown in Part (i) establishes
L(Θ) → ∞ as Θ → +0.

(iii) We consider the set of solutions γΘ−h ∈ CΘ−h for 0 < h < Θ/2 and
assume that all these curves have constant speed vh := |γ′Θ−h| > 0. As in
(3.21) in the proof of Theorem 1.1 we use [GMSvdM02, Lemma 2] to obtain
the uniform upper bound

‖Γh‖C1,1([0,L(Θ−h)],R3) ≤ 2 +
1

Θ − h
< 2 +

2

Θ
for all h ∈ (0,Θ/2)
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for the respective arc-length parametrisations Γh : [0, L(Θ − h)] → R
3 of

γΘ−h. In addition, Lemma 3.4 applied to γ := γΘ−h ∈ CΘ−h implies

(3.27)
Θ

2
< Θ − h ≤ |γ′Θ−h| = vh ≤

1

Θ − h
<

2

Θ
for all h ∈ (0,Θ/2),

so that one obtains similarly as in (3.22)

‖γΘ−h‖C1,1(S1,R3) ≤ ‖γΘ−h‖C0(S1,R3) + vh‖Γ
′
h‖C0([0,L(Θ−h],R3) +

v2
h

Θ − h

≤ 1 +
2

Θ
+

8

Θ3
for all h ∈ (0,Θ/2).

The theorem of Arzelà-Ascoli yields a subsequence hi → +0 and a curve
γ ∈ C1,1(S1,R3) such that

γΘ−hi
−→ γ in C1(S1,R3) as i→ ∞,

so that γ(S1) ⊂ S
2 and △[γ] ≥ Θ − ǫ for each ǫ > 0 (and hence △[γ] ≥ Θ)

by [SvdM03a, Lemma 4] and [GdlL03, Lemma 5]. Moreover, by (3.27)
v := |γ′| ≥ Θ/2 > 0 so that γ ∈ CΘ, hence

L (γ) ≤ L (γΘ) = L(Θ).

On the other hand, L is continuous in the C1-topology, i.e., from the mono-
tonicity shown in Part (i) we infer

L(Θ − hl) = L (γΘ−hl
)

l→∞
−→ L (γ) ≤ L(Θ) ≤

(i)
L(Θ − hi) for all i ∈ N,

which proves
lim
i→∞

L(Θ − hi) = L (γ) = L(Θ).

In particular, γ ∈ CΘ is also a solution to Problem (P).
By the subsequence principle we finally conclude

lim
h→+0

L(Θ − h) = L(Θ).

(Notice however, that a different subsequence h̃i → +0 could lead to a
different solution γ̃ 6= γ in the C1-limit γΘ−h̃i

→ γ̃ ∈ CΘ with L (γ̃) =
L (γ) = L(Θ).)

(iv) Proposition 3.1 applied to the solution γΘ ∈ CΘ of Problem (P)
gives

L(Θ) = L (γΘ) =
Prop. 3.1

V (Tarcsin Θ(γΘ))

2Θ
=
V (Θ)

2Θ
.

Since L : (0, 1] → [2π,∞) is (strictly) monotone, it is differentiable a.e. on
(0, 1].
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(v) By Proposition 3.1 we have

L(Θ) = L (γΘ) =
Prop. 3.1

V (Tarcsin Θ(γΘ))

2Θ

≤
4π

2Θ
=

2π

Θ
for all Θ ∈ (0, 1].

On the other hand, the great circle cg ∈ C1 ⊂ CΘ has length

2π = L (cg) ≤ L (γΘ) = L(Θ) for all Θ ∈ (0, 1].

The corresponding inequality for the volume V (Θ) follows now from Part
(iv).

(vi) For Θi → Θ ∈ (0, 1] as i→ ∞ consider a subsequence {Θj} ⊂ {Θi}
such that

L(Θj) → lim sup
i→∞

L(Θi) as j → ∞.

If there are infinitely many j such that Θj ≤ Θ then we obtain from Part
(iii)

lim sup
i→∞

L(Θi) = lim
j→∞

L(Θj) = L(Θ).

On the other hand, for all j with Θj > Θ we have by Part (i) L(Θ) > L(Θj)
such that

L(Θ) ≥ lim
j→∞

L(Θj) = lim sup
i→∞

L(Θi).

Part (iv) implies

lim sup
i→∞

V (Θi) =
(iv)

lim sup
i→∞

2ΘiL(Θi) ≤ 2ΘL(Θ) =
(iv)

V (Θ).

The lower bound for the volume V (Θ) = V (Tarcsin Θ(γΘ)) depicted in
Figure 3 improves the lower estimate in Lemma 3.7 (v) considerably, and is
established in

Lemma 3.8 (Lower volume bound for solutions). The function V : (0, 1] →
(0, 4π] is differentiable a.e. on (0, 1] and satisfies the estimate

4π

Θn
Θ ≤ V (Θ) ≤ 4π for all Θ ≤ Θn = sin

π

2n
, n ∈ N.

In particular, 4π ≥ V (Θ) ≥ 4πΘ/Θn for Θ ∈ (Θn+1,Θn], n ∈ N.

Notice that we can use Proposition 3.1 twice to interpret the lower bound
for V (Θ) as the volume of the tube TarcsinΘ(βn,k). In fact, for ϑ := arcsin Θ
one has

V (Tϑ(βn,k)) =
Prop.3.1

2ΘL (βn,k) =
Prop.3.1

2Θ
V (Tϑn(βn,k))

2Θn
=

4πΘ

Θn
.
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Proof. Combining Parts (i) and (iv) of Lemma 3.7 we obtain that V is
differentiable a.e. and satisfies

0 ≥ L′(Θ) =

(
V (Θ)

2Θ

)′
= −

1

2Θ2
V (Θ) +

1

2Θ
V ′(Θ) for a.e. Θ ∈ (0, 1],

i.e.,
1

2Θ
V ′(Θ) ≤

1

2Θ2
V (Θ) for a.e. Θ ∈ (0, 1].

Since V (Θ) ≥ 4πΘ > 0 for all Θ ∈ (0, 1] by Lemma 3.7 (v), we conclude

(log V (Θ))′ =
V ′(Θ)

V (Θ)
≤

1

Θ
for a.e. Θ ∈ (0, 1].

Integrating this inequality on [Θ,Θn] for Θ ∈ (0,Θn), n ∈ N, we obtain with
V (Θn) = 4π

log 4π − log V (Θ) = log V (Θn) − log V (Θ) ≤

∫ Θn

Θ

1

Θ
dΘ = log Θn − log Θ,

hence

4πe− log V (Θ) =
4π

V (Θ)
≤ Θne

− log Θ =
Θn

Θ
,

or
4π

Θn
Θ ≤ V (Θ).

Corollary 3.9. V (Θ) → 4π as Θ → +0.

Proof. For Θ ∈ (Θn+1,Θn] we have

V (Θ) ≥
4πΘ

Θn
>

4πΘn+1

Θn
= 4π

sin π
2n+2

sin π
2n

n→∞
−→ 4π.

This asymptotic behaviour of the volume confirms our intuition that it
is easier to cover the sphere with thin ropes than with thick ones – there
is simply more flexibility with long and thin ropes to “fill” the gaps on the
surface of the unit sphere.

4 Uniqueness

In the following we are going to work with geodesic balls

Bϑ(ξ) := {η ∈ S
2 : dist

S2(η, ξ) < ϑ}.

on the unit sphere. Furthermore, we will use the notation

Bϑ(ξ) := {η ∈ S
2 : dist

S2(η, ξ) ≤ ϑ},

∂Bϑ(ξ) := {η ∈ S
2 : dist

S2(η, ξ) = ϑ}.
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Proposition 4.1. Let γ : S
1 → S

2 be a closed rectifiable continuous curve
with positive thickness Θ := △[γ] > 0, ϑ := arcsin Θ ≤ π/2, and ξ ∈ S

2 such
that

(4.1) γ(S1) ∩ Bϑ(ξ) = ∅.

If there are two points P,Q ∈ ∂Bϑ(ξ) ∩ γ(S1) with 0 < dist
S2(P,Q) < 2ϑ,

then the shorter circular sub-arc of the geodesic circle ∂Bϑ(ξ) connecting P
and Q is contained in γ(S1).

Proof. Recall from [GMSvdM02, Lemma 2] that the arc-length parametrisa-
tion Γ : SL → S

2 of γ (with length L := L (γ) > 0) is of class C1,1(SL,R
3),

which allows us in the following to speak of tangential properties of γ.
We set

ϑ0 := ϑ, ϑ1 :=
1

2
dist

S2(P,Q) < ϑ0,

ξ0 := ξ, ξ1 := cg(ϑ1),

where cg : [0, 2π] → S
2 denotes the unit speed parametrisation of the great

circle through P and Q with cg(0) = P and cg(2ϑ1) = Q. Thus P and Q
are antipodal points on the geodesic circle ∂Bϑ1(ξ1). Since by (4.1) γ is
tangent to the geodesic circle ∂Bϑ0(ξ0) at P and Q it cannot be tangent to
∂Bϑ1(ξ1) at P or Q. Hence Bϑ1(ξ1)∩γ(S

1) 6= ∅, and we consider the family
of geodesic balls Bϑs(ξs) defined by

ξs := c̃g(s) and ϑs := |P − ξs| for s ∈ [0, 1],

where c̃g : [0, 2π/dist
S2(ξ0, ξ1)] → S

2 is the constant speed parametrisation
of the great circle through ξ0 and ξ1 with c̃g(0) = ξ0, c̃g(1) = ξ1, and
|c̃g

′| ≡ dist
S2(ξ0, ξ1). We notice that ϑs < ϑ0 for all s ∈ (0, 1], and claim

that

(4.2) ∂Bϑs(ξs) ∩ γ(S
1) = {P,Q} for all s ∈ (0, 1].

Indeed, otherwise we would have (at least) three points of the curve on a
geodesic circle ∂Bϑs∗

(ξs∗) for some s∗ ∈ (0, 1], which is an Euclidean circle of
(Euclidean) radius sinϑs∗ < sinϑ0 = Θ = △[γ]. This, however, contradicts
the definition of △[γ] in (1.1).

By (4.1) γ is tangent to ∂Bϑ0(ξ0) at P and Q, and since the circular
arcs ∂Bϑs(ξs) sweep out the open region Bϑ1(ξ1) \ Bθ0(ξ0), i.e.,

Bϑ1(ξ1) \ Bϑ0(ξ0) ⊂
⋃

s∈(0,1]

∂Bϑs(ξs) \ Bϑ0(ξ0),

we conclude from (4.2) that the shorter sub-arc γ1 ⊂ γ connecting P and
Q must be equal to the shorter circular arc on ∂Bϑ0(ξ0) = ∂Bϑ(ξ) with
endpoints P and Q.
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Remark 4.2. An analogous statement also holds for closed space curves
γ : S

1 → R
3 with Θ := △[γ] > 0 [Ge04, Lemma 3.29]: If γ has empty

intersection with an Euclidean ball BΘ(x), such that the boundary ∂BΘ(x)
contains two non-antipodal curve points P and Q, then the shorter sub-arc
of the great circle connecting P and Q on ∂BΘ(x) is contained in γ(S1).
The fact that γ connects P and Q within the sphere ∂BΘ(x) can be proven
with a similar argument as in the proof of Proposition 4.1. This connecting
arc γPQ lies indeed on a great circle, because any triple of distinct curve
points x, y, and z on γPQ span a plane whose intersection with BΘ(x) is a
circle of radius at most Θ. This implies by Definition (1.1) of the thickness
△[γ] = Θ that this intersection circle must have radius Θ, i.e. is a great
circle, which is uniquely determined by x and y alone, so that any other
point z̃ on distinct from x, y, and z must lie on the same great circle.

Lemma 4.3 (Characterisation of sphere filling curves). For a closed recti-
fiable continuous curve γ : S

1 → S
2 with positive thickness Θ := △[γ] > 0,

ϑ := arcsin Θ ≤ π/2, the following two statements are equivalent:

(i) V (Tϑ(γ)) = 4π;

(ii) For any ξ ∈ S
2 such that Bϑ(ξ) ∩ γ(S1) = ∅ one of the following is

true:

(a) ∂Bϑ(ξ)∩γ(S1) = {P,Q} with dist
S2(P,Q) = 2ϑ (antipodal points);

(b) ∂Bϑ(ξ) ∩ γ(S1) = {semicircle of spherical radius ϑ};

(c) ∂Bϑ(ξ) ∩ γ(S1) = ∂Bϑ(ξ).

Proof. (i) ⇒ (ii). Let ξ ∈ S
2 be a point such that the open geodesic ball

Bϑ(ξ) has empty intersection with the curve γ(S1). We claim that

S := ∂Bϑ(ξ) ∩ γ(S1) 6= ∅.

Indeed, otherwise we could infer δ := dist
S2(ξ, γ(S1)) − ϑ > 0, so that

Tϑ(γ) ∩ Bδ(ξ) = ∅,

which implies

V (Tϑ(γ)) ≤ V (S2 \ Bδ(ξ)) < 4π

contradicting Assumption (i).

If the closed set S is contained in an open semicircle on ∂Bϑ(ξ) then
we find two points η, ζ ∈ S such that9

(4.3) 0 ≤ dist
S2(η, ζ) = max

S×S
dist

S2(·, ·) < 2ϑ.

9We also allow the coincidence η = ζ (in which case S = {η}) at this stage.
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Applying Proposition 4.1 we infer that the whole shorter sub-arc of ∂Bϑ(ξ)
connecting η and ζ is contained in S , and is (by (4.3)) consequently equal to
S . On this circular arc we find a point q ∈ S with dist

S2(q, η) = dist
S2(q, ζ),

which can be joined with the centre ξ by the unique unit speed geodesic
given by the great circle cg : [0, 2π] → S

2 with cg(0) = q, c′g(0) ⊥ S , and
cg(ϑ) = ξ.

We claim that there is a small number ǫ > 0, such that

δ := dist
S2(cg(ϑ + ǫ), γ(S1)) − ϑ > 0,

which would imply that

Tϑ(γ) ∩ Bδ(cg(ϑ + ǫ)) = ∅,

hence

V (Tϑ(γ)) ≤ V (S2 \ Bδ(cg(ϑ + ǫ))) < 4π

contradicting Assumption (i) and therefore ruling out the situation that S

is contained in any open semicircle.

To prove the claim we suppose to the contrary that there is a sequence
of curve points pn ∈ γ(S1) such that
(4.4)
dist

S2(cg(ϑ+ 1/n), γ(S1)) = dist
S2(cg(ϑ+ 1/n), pn) ≤ ϑ for all n ∈ N.

Since γ(S1) is compact we may assume that pn → p ∈ γ(S1) as n → ∞.
From Bϑ(ξ) ∩ γ(S1) = ∅ we infer from (4.4) as n→ ∞

ϑ ≤ dist
S2(ξ, p) = dist

S2(cg(ϑ), p) = lim
n→∞

dist
S2(cg(ϑ + 1/n), pn) ≤ ϑ,

i.e.,

(4.5) p ∈ ∂Bϑ(ξ) ∩ γ(S1) = S .

On the other hand, one has

dist
S2(x,S ) ≥

∣
∣
∣
∣

η + ζ

2
− ξ

∣
∣
∣
∣
=: c(η, ζ) > 0

for all x ∈ Bϑ(cg(ϑ+ 1/n))\Bϑ(ξ), since the circular arc S (with endpoints
η and ζ) is strictly shorter than πϑ. Consequently,

dist
S2(pn,S ) ≥ c(η, ζ) > 0 for all n ∈ N,

and hence

dist
S2(p,S ) ≥ c(η, ζ) > 0

contradicting (4.5), which proves the claim.
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Since we know now that S is not contained in any open semicircle on
∂Bϑ(ξ) we know that ♯S ≥ 3 unless S consists precisely of two antipodal
points which is case (a).

If S is contained in a closed semicircle it must contain the endpoints
p1, p2 of that semicircle (otherwise it would be contained in a different open
semicircle, which was excluded above). Since ♯S ≥ 3 we find (at least) one
point q ∈ S \ {p1, p2} so that

dist
S2(p1, q) < 2ϑ and dist

S2(q, p2) < 2ϑ.

Consequently, we can apply Proposition 4.1 to find that S equals the closed
semicircle with endpoints p1 and p2 which is case (b).

Finally we have to deal with the situation that S is not contained in
any closed semicircle. Consider q ∈ S and its antipodal point q′ ∈ ∂Bϑ(ξ).

If q′ ∈ S then we find on each of the two open semicircles C1, C2 ⊂
∂Bϑ(ξ) bounded by q and q′ (at least) one point of S , say p1 ∈ S ∩ C1

and p2 ∈ S ∩C2. Otherwise S would be contained in one of the two closed
semicircles Ci ∪ {q, q′}, i = 1, 2.

Since p1 and p2 are not antipodal to q or q′ we can apply Proposition 4.1
to connect q and q′ with p1 and p2 by circular arcs contained in S , which
proves S = ∂Bϑ(ξ), i.e. we are in situation (c).

If, on the other hand, q′ 6∈ S we have dist
S2(q′,S ) > 0, and we can take

the largest open circular arc C on ∂Bϑ(ξ) \ S containing q′. By definition
this arc has endpoints p1, p2 ∈ S , and C is strictly shorter than a semicircle,
since otherwise S would be contained in a closed semicircle. Thus we can
apply Proposition 4.1 to p1 and p2, to p1 and q, and to p2 and q, respectively,
to find that the circular arcs on ∂Bϑ(ξ) connecting p1 and p2, p1 and q, and
p2 and q, are contained in S , which proves S = ∂Bϑ(ξ) also in this case.
So we are in situation (c) again.

(ii) ⇒ (i). For any ξ ∈ S
2 with dist

S2(ξ, γ(S1)) ≥ ϑ and with (a), or (b),
or (c) we infer the existence of a point pξ ∈ γ(S1) with dist

S2(ξ, pξ) = ϑ.
Hence

S
2 ⊂ Tϑ(γ) ⊂ S

2,

which implies

4π = V (Tϑ(γ)) = V (Tϑ(γ)).

Lemma 4.4 (Characteristic patterns of sphere filling curves I). Let γ :
S

1 → S
2 be a closed rectifiable continuous curve with positive thickness Θ :=

△[γ] > 0, ϑ := arcsin Θ ≤ π/2 such that V (Tϑ(γ)) = 4π. Suppose that there
is a plane E ⊂ R

3 containing 0 ∈ R
3 such that

k := ♯(E ∩ γ(S1)) <∞.
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Moreover, assume that the intersection

{p1, . . . , pk} := E ∩ γ(S1)

satisfies

(i) dist
S2(pl, pl+1) = 2ϑ for all l = 1, . . . , k, where we set pk+1 := p1.

(ii) γ intersects E orthogonally at each point pl, l = 1, . . . , k.

Then k = 2n for some n ∈ N, and γ(S1) contains a semicircle of (Euclidean)
radius Θ in each of the two half-spaces bounded by E.

Proof. The positive thickness Θ guarantees that γ is simple, and since γ is
also closed, we find that k is even and write k =: 2n for some n ∈ N.

E cuts the sphere S
2 into two hemispheres S

w and S
e (both taken to be

relatively closed in S
2.) It suffices to give the argument for S

w.

Every intersection point pl ∈ E ∩ γ(S1) is connected by the curve γ
within S

w to some other intersection point pm ∈ E ∩ γ(S1), l 6= m. Since S
w

is homeomorphic to a flat disk and γ is simple, we find two distinct points
pi, pj ∈ E ∩ γ(S1) with dist

S
2(pi, pj) = 2ϑ such that the closed sub-arc

γ̃ ⊂ S
w ∩ γ connecting pi and pj within S

w satisfies γ̃ ∩ E = {pi, pj}.
We consider the geodesic ball Bϑ(ξ) that contains pi and pj as antipodal

points in its boundary ∂Bϑ(ξ). Since γ intersects E orthogonally in pi and
pj it is tangent to ∂Bϑ(ξ) in pi and pj . The spherical torus property (ST)
(see Remark 2.3) implies that

(4.6) γ(S1) ∩ Bϑ(ξ) = ∅.

If γ̃∩∂Bϑ(ξ)\{pi, pj} 6= ∅ then there is (at least) one point q ∈ γ̃∩∂Bϑ(ξ)
with

0 < dist
S
2(q, pi) < 2ϑ and 0 < dist

S
2(q, pj) < 2ϑ,

so that we can apply Proposition 4.1 to pi and q, and to pj and q, to find
that γ(S1) contains the closed semicircle ∂Bϑ(ξ)∩ S

w, which has Euclidean
radius Θ = sinϑ, and we are done.

If γ̃ ∩ ∂Bϑ(ξ) = {pi, pj} we argue as follows. For an arbitrary q ∈ γ̃ we
consider the unit speed geodesic ηq : [0, 2π] → S

2 starting in q perpendicu-
larly to γ̃, i.e. with

ηq(0) = q, η′q(0) ⊥ γ at q, |η′q| ≡ 1 on [0, 2π],

so that for 0 < ǫ ≪ 1 the point ηq(ǫ) is contained in the open spherical
region R ⊂ S

2 bounded by the curve γ̃ ∪ (∂Bϑ(ξ) ∩ S
e). Notice first that

ηpi(2ϑ) = pj, ηpj (2ϑ) = pi, and also that R ∩ γ(S1) = ∅ by our choice of the
points pi, pj , and by (4.6).
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We infer from the spherical torus property (ST) as before that for q ∈ γ̃
we have

(4.7) γ(S1) ∩ Bϑ(ηq(ϑ)) = ∅.

Relation (4.7) readily implies

(4.8) Bϑ(ηq(ϑ)) ⊂ R for all q ∈ γ̃.

Since V (Tϑ(γ)) = 4π, we obtain by Lemma 4.3 either

(4.9) ∂Bϑ(ηq(ϑ)) ∩ γ(S1) = {q, ηq(2ϑ)} (antipodal points),

a case which will be excluded later, or (in case (b) or (c) of Lemma 4.3)
γ(S1) contains a semicircle

Sq := ∂Bϑ(ηq(ϑ)) ∩ γ(S1) ∋ q

of spherical radius ϑ and therefore of Euclidean radius Θ = sinϑ.

In that case we have

(4.10) Sq ∩ S
w ⊂ γ̃

because γ̃ is the connected sub-arc of γ ∩ S
w containing the point q.

We claim that

(4.11) Sq ∩ (Se \E) = ∅,

which means Sq ⊂ S
w, i.e. the conclusion of the proof.

To show (4.11) we assume that there is some point q̃ ∈ Sq ∩ (Se \ E),
which implies that pi ∈ Sq or pj ∈ Sq by (4.10) and by connectivity of Sq and
γ̃ whose endpoints are pi and pj. Relation (4.6) implies that Sq is tangent
to ∂Bϑ(ξ) at pi or pj. For Sq is a semicircle of spherical radius ϑ we have
either Sq ⊂ ∂Bϑ(ξ) contradicting the fact that q 6∈ ∂Bϑ(ξ), or

∂Bϑ(ξ) ∩ ∂Bϑ(ηq(ϑ)) = pi or = pj.

In that case we conclude with (4.7) that ηq(ϑ) 6∈ R contradicting (4.8),
which proves (4.11).

Finally we need to exclude option (4.9) to finish the whole proof. Since
positive thickness Θ = △[γ] implies that the arc-length parametrisation of γ
is of class C1,1, in particular that the tangent vector is continuous, we infer
that the antipodal mapping

f : γ̃ −→ S
2, q 7→ f(q) := ηq(2ϑ)
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is continuous. Moreover, f(q) ∈ γ̃ for all q ∈ γ̃, which can be seen as follows.
According to (4.9) we have f(q) ∈ γ(S1) which yields by (4.6) the relation
f(q) 6∈ Bϑ(ξ). This together with (4.8) implies that

f(q) ∈
[

∂Bϑ(ξ) ∩ S
e
]

∪
[

S
w ∩ R

]

, .

where R denotes the relative closure of R as a subset of S
2. If, however,

f(q) were contained in ∂Bϑ(ξ) ∩ S
e then we could conclude by (4.6) that γ

is tangent to ∂Bϑ(ξ) in f(q), which implies that q as the antipodal point of
f(q) is also contained in ∂Bϑ(ξ), a contradiction.

Therefore f(q) ∈ S
w ∩ R. Since f(q) ∈ γ(S1) and since

γ(S1) ∩
[

S
w ∩ R

]

= γ̃

we have shown that f is a continuous mapping from γ̃ to γ̃, and we may
apply Brouwer’s fixed point theorem to infer the existence of a point q∗ ∈ γ̃
with

ηq∗(2ϑ) = f(q∗) = q∗ = ηq∗(0),

which would imply

(4.12) 2ϑ = 2π

because ηq∗ parametrises a great circle on S
2 with unit speed. But (4.12) is

absurd since we assumed ϑ ≤ π/2.

Lemma 4.5 (Characteristic patterns of sphere filling curves II). Let γ :
S

1 → S
2 be a closed rectifiable continuous curve with positive thickness Θ :=

△[γ] > 0, ϑ := arcsin Θ ≤ π/2 such that V (Tϑ(γ)) = 4π. Suppose that
there is a point ξ ∈ S

2 such that the intersection ∂Bϑ(ξ) ∩ γ(S1) contains
an open semicircle S, and let S

w ⊂ S
2 be the hemisphere containing S such

that ∂S
w intersects ∂Bϑ(ξ) orthogonally. Then there exists an n ∈ N such

that ϑ = π/(2n), and

(4.13) γ(S1) ∩ S
w =

n⋃

i=1

∂B(2i−1)ϑ(ξ) ∩ S
w.

In other words, if γ contains one semicircle S = S
w ∩ ∂Bϑ(ξ), then

γ(S1) ∩ S
w consists of a whole stack of latitudinal semicircles with mutual

spherical distance 2ϑ.

Proof. If ϑ = π/2 we find n = 1 and γ(S1) = ∂Bϑ(ξ) is the only admissible
curve, and (4.13) follows.

For ϑ ∈ (0, π/2) there exists n = n(ϑ) ∈ N \ {1} so that

ϑ ∈

[
π

2n
,

π

2(n − 1)

)

.
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We will show that ϑ = π/(2n) and that (4.13) holds. Notice first that
the spherical torus property (ST) (see Remark 2.2) applied to any point
q ∈ S1 := S implies

(4.14) γ(S1) ∩ Bϑ(ξ) = ∅.

For an arbitrary point p ∈ S1 consider the unit speed geodesic ηp : [0, 2π] →
S

2 starting in p in the direction orthogonal to S1, i.e. with

ηp(0) = p, η′p(0) ⊥ S1 at p, |η′p| ≡ 1 on [0, 2π],

so that for all s ∈ (0, 2π − 2ϑ) the point ηp(s) is contained in the open

region S
2 \Bϑ(ξ). Hence S1 and therefore γ is tangent to the geodesic circle

∂Bϑ(ηp(ϑ)) in the point p. This implies by means of the spherical torus
property (ST)

(4.15) Bϑ(ηp(ϑ)) ∩ γ(S1) = ∅ for all p ∈ S1.

According to Lemma 4.3 there is at least one point

p̃ ∈ ∂Bϑ(ηp(ϑ)) ∩ γ(S1) \ {p}.

If p̃ is not antipodal to p on ∂Bϑ(ηp(ϑ)), i.e. if p̃ 6= ηp(2ϑ), then p and p̃ are
contained in a closed semicircle by virtue of options (b) and (c) in Lemma
4.3. Therefore we find a point

q ∈ ∂Bϑ(ηp(ϑ)) ∩ γ(S1) \ {p}

sufficiently close to p such that the unit speed geodesic τq : [0, 2π] → S
2

with τq(0) = q, τ ′q(0) ⊥ ∂Bϑ(ηp(ϑ)) at q, τq(s) ∈ S
2 \ Bϑ(ηp(ϑ)) for all

s ∈ (0, 2π − 2ϑ), intersects S1 sufficiently early, i.e., such that

τq(σ) ∈ S1 ⊂ γ(S1) for some σ ∈ (0, ϑ).

But this implies
γ(S1) ∩ Bϑ(τq(ϑ)) 6= ∅

contradicting the spherical torus property (ST) at the point q ∈ γ(S1).
Hence we have shown that

∂Bϑ(ηp(ϑ)) ∩ γ(S1) = {p, ηp(2ϑ)} for all p ∈ S1.

Since S1 is a semicircle contained in ∂Bϑ(ξ) the set

S2 :=
⋃

p∈S1

ηp(2ϑ) ⊂ γ(S1)

is an open semicircle contained in ∂B3ϑ(ξ) unless ϑ = π/3 (hence n = 2) in
which case S2 degenerates to a single point, namely the antipodal point ξ̄
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of ξ. But this is absurd taking (4.15) into account, since γ is a closed curve
with a continuous tangent.

We proceed with this construction by setting

Si :=
⋃

p∈S1

ηp(2(i− 1)ϑ) for i = 3, . . . , n,

and we have

η′p(2(i − 2)ϑ) ⊥ Si−1 at the points ηp(2(i − 2)ϑ) for i = 3, . . . , n,

so that for all s ∈ (2(i − 2)ϑ, 2π − 2(i − 2)ϑ) the point ηp(s) is contained

in S
2 \ B2(i−2)ϑ(ξ). Hence Si−1 and therefore γ is tangent to each of the

geodesic circles ∂Bϑ(ηp((2i−3)ϑ)) in the point ηp(2(i−2)ϑ) for i = 3, . . . , n,
which implies by means of the spherical torus property (ST)

(4.16) Bϑ(ηp((2i− 3)ϑ)) ∩ γ(S1) = ∅ for all p ∈ S1, i = 3, . . . , n.

Using Lemma 4.3 as before we can prove for each p ∈ S1 that

∂Bϑ(ηp((2i−3)ϑ))∩γ(S1) = {ηp(2(i−2)ϑ), ηp((2i−2)ϑ)} for i = 3, . . . , n.

Each of the sets Si, is an open semicircle contained in ∂B(2i−1)ϑ(ξ) ∩ S
w,

i = 1, . . . , n− 1, since

ϑ+ (2i− 2)ϑ ≤ (2n− 3)ϑ <
2n− 3

2n− 2
π < π for all i = 1, . . . , n− 1.

If ϑ = π/(2n−1) then Sn degenerates to a single point (since ϑ+(2n−2)ϑ =
π) which contradicts (4.16) for i = n in combination with the fact that γ is
closed and has a continuous tangent.

If ϑ ∈ (π/(2n − 1), π/(2n − 2)) then ϑ + (2n − 2)ϑ = (2n − 1)ϑ > π, so
that Sn ⊂ S

e is an open semicircle of spherical radius (2n − 1)ϑ − π < ϑ
about the antipodal point ξ̄ of ξ, contradicting the definition of thickness
Θ = △[γ] = sinϑ.

If ϑ ∈ (π/(2n), π/(2n − 1)) then ϑ + (2n − 2)ϑ < π, hence Sn ⊂ S
w

is an open semicircle of spherical radius π − (2n − 1)ϑ < ϑ about ξ̄, again
contradicting the definition of thickness.

The only remaining angle is ϑ = π/(2n), so that Sn ⊂ S
w is an open

semicircle of spherical radius π − (2n − 1)ϑ = π/(2n) about ξ̄, and we have
(4.13) in virtue of (4.16), if we add the endpoints of the open semicircles Si,
i = 1, . . . , n, using the continuity of γ.

Now we conclude this section with the

Proof of Theorem 1.4. If ϑ = π/2 we find n = 1, and the only
possible solution is the equator β1,0, and we are done.
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For ϑ ∈ (0, π/2) there is k = k(ϑ) ∈ N \ {1, 2} such that 2(k − 1)ϑ <
2π ≤ 2kϑ.

First we are going to prove that there is a closed semicircle S contained
in γ(S1). For this purpose we fix p ∈ γ(S1) and define ηp : [0, 2π] → S

2 to
be the unit speed geodesic starting in p in the direction orthogonal to γ, i.e.
with

ηp(0) = p, η′p(0) ⊥ γ at p, |η′p| ≡ 1 on [0, 2π].

The torus property (T) applied to p implies

(4.17) γ(S1) ∩ Bϑ(ηp(ϑ)) = ∅.

According to Lemma 4.3 either ηp(2ϑ) 6∈ γ(S1) in which case p is contained
in a closed semicircle S ⊂ Bϑ(ηp(ϑ)) with

(4.18) S ⊂ γ(S1),

or ηp(2ϑ) ∈ γ(S1). In the latter case (4.17) implies that γ is tangent to
∂Bϑ(ηp(ϑ)), i.e.

η′p(2ϑ) ⊥ γ at ηp(2ϑ).

In this way we investigate the whole collection of balls

Bϑ(ηp((2i − 1)ϑ)) for i = 1, . . . , k,

and we claim that either we find a closed semicircle S on one of the geodesic
circles ∂Bϑ(ηp((2i − 1)ϑ)), i = 1, . . . , k, or ϑ = π/k, and

(4.19) ηp(2iϑ) ∈ γ(S1), ηp(2kϑ) = p, η′p(2iϑ) ⊥ γ at ηp(2iϑ)

for i = 1, . . . , k. But (4.19) describes exactly the situation assumed in Lemma
4.4 so that we can conclude the existence of a closed semicircle S of spherical
radius ϑ in each of the two hemispheres bounded by ηp([0, 2π]).

To prove the claim we assume that none of the circles ∂Bϑ(ηp((2i−1)ϑ)),
i = 1, . . . , k, contains a closed semicircle S ⊂ γ(S1). Then we can apply
Lemma 4.2 and the torus property successively – as demonstrated once
above for i = 1 – to conclude that

(4.20) γ(S1) ∩
k⋃

i=1

Bϑ(ηp((2i− 1)ϑ)) = ∅.

This implies that 2π = 2kϑ since the inequality

(2k − 2)ϑ < 2π < 2kϑ

leads to a contradiction: If (2k − 1)ϑ ≥ 2π then (2k − 1)ϑ − 2π < ϑ which
implies

(4.21) p ∈ Bϑ((2k − 1)ϑ)
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contradicting (4.20). If (2k− 1)ϑ < 2π then 2π− (2k− 1)ϑ < ϑ which leads
to (4.21) as well, again contradicting (4.20). Hence we have shown ϑ = π/k
and the properties (4.19) follows from our construction. As in the proof of
Lemma 4.4 we find k = 2n for some n ∈ N\{1} since γ is simple and closed.

Having established the existence of a closed semicircle S contained in
γ(S1) ∩ Bϑ(ηp((2j − 1)ϑ)) for (at least) one j ∈ {1, . . . , 2n} we can use
Lemma 4.5 to conclude that

γ(S1) ∩ S
w =

n⋃

i=1

∂B(2i−1)ϑ(ηp((2j − 1)ϑ)) ∩ S
w,

where S
w denotes the hemisphere containing S such that ∂S

w intersects
∂Bϑ(ηp((2j − 1)ϑ)) orthogonally.

With that knowledge we observe that the intersection γ(S1) ∩ ∂S
w con-

sists of 2n equidistant points in which γ intersects the plane containing S
w

orthogonally. Therefore Lemma 4.4 is applicable to conclude the existence
of an open semicircle S∗ of spherical radius ϑ contained in γ(S1)∩S

e, where
S

e := S
2 \ S

w. Again by Lemma 4.5 one finds that also

γ(S1) ∩ S
e =

n⋃

i=1

∂B(2i−1)ϑξ) ∩ S
e for some ξ ∈ S

e.

But we have shown in Section 2 that the only possible closed and simple
curves made of two stacks of equidistant latitudinal semicircles are the curves
βn,k.

5 Open curves

We now want to sketch that a similar construction is also possible for open
curves. A tubular neighbourhood of an open curve γ in R

3 consists of three
parts: A half-ball cap at the beginning and at the end of the curve and a
middle part, consisting of the disjoint union of normal discs of given radius
centred at the curve.

Problem (P’). Given a constant Ω ∈ (0, 1] find a curve γΩ in the class

C′
Ω := {γ ∈ C1,1(I,R3) : |γ| = 1 & |γ′| > 0 on I,△[γ] ≥ Ω, |γ(1)−γ(0)| ≥ 2Ω}

with I = [0, 1] such that L (γΩ) = supC′
Ω

L .

With only slight modifications using the additional assumption on the
endpoints of the curves in competition one can prove as in Theorem 1.1 the
existence of solutions for Problem (P’) for any given Ω ∈ (0, 1]. Here, the
crucial C1,1-estimate from [GMSvdM02, Lemma 2] for closed curves leading
to (3.21) in the proof of Theorem 1.1 is replaced by the corresponding C1,1-
estimate proved in [Ge04, Satz 2.14] for open curves.
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A variant of Proposition 3.1 (Hotelling’s theorem) for open curves implies
that the volume of the middle part is again proportional to the length of the
curve, while the volume of the caps stays fixed for fixed radius.

For certain values ωm = π/m, 2 ≤ m ∈ N, of spherical thickness one can
perform a similar construction as in the case of closed curves. There are in
fact 2 slightly different situations, depending on whether m is even or odd.

(i) For m even, consider m/2 semicircles with spherical distance 2ωm

stacked up on the western hemisphere as described in the introduction.
For the eastern hemisphere we take the north pole as a single point,
together with m/2 − 1 stacked up semicircles with spherical distance
2ωm, and finally the south pole as a second single point. After turning
the eastern hemisphere by the angle ωm all endpoints of the western
semicircles match with the semicircle endpoints and the two single
points on the eastern hemisphere. Turning further by the amount of
k · 2ωm, k ∈ {0, . . . ,m/2 − 1}, one can try to construct a single open
connected curve αm,k. Note that the first member of this family (for
m = 2, k = 0) is a semi great-circle, which is easily seen to be the
unique solution for thickness ω2 = π/2.

(ii) For m odd, start with a single point C0 in the north pole, then stack
up (m− 1)/2 circles Ci of spherical radius 2ωm around the north pole
with the last circle Cm−1 around the south pole of spherical radius
ωm. The discontinuous curve has a tubular neighbourhood of spherical
thickness ωm (note that the neighbourhood about the point C0 is just
a geodesic ball). Next cut the sphere along a longitude (cutting C0

in two ‘half-points’) and turn by k · 2ωm. We denote this possibly
discontinuous curve again by αm,k.

As in the proof of Lemma 2.1 one can show that the tubular neighbour-
hood remains a tubular neighbourhood of the same spherical radius after
the turning process and the neighbourhoods of the ‘half-points’ form the
spherical caps about the endpoints of the curve. To investigate under which
circumstances the resulting curves αm,k constitute one open connected arc
we use the same algebraic methods as in Section 2.

Lemma 5.1. For every even m ∈ N and k ∈ {0, . . . ,m/2−1} with gcd(2k−
1,m) = 1 the appropriately re-parametrised curve αm,k : I → S

2 is a con-
nected open, piecewise circular curve whose constant speed parametrisation
is of class C1,1(I,R3) satisfying

△[αn,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m/2 − 1} the curves αm,k1 and αm,k2

are not equivalent. There are ϕ(m) distinct open connected curves for each
m.



H. Gerlach & H. von der Mosel 45

Proof. As mentioned above only the algebraic arguments need to be adjusted
to the present situation of open curves. Set n := m/2 ∈ N. First consider
the western hemisphere S

w and number the 2n endpoints of the (all proper)
semi-circles counter-clockwise from 0 to 2n−1, such that checkpoint number
i and 2n−i−1 correspond to the i-th semicircle (i = 0, · · · , n−1); see Figure
4. For the eastern hemisphere Se number the points from 0 to 2n−1, where
0 and n correspond to the single points, while i and 2n − i correspond to
the endpoints of the i-th semi-circle (i = 1, · · · , n − 1). When turning the
hemisphere S

e by multiples of 2ω2n the curve closes again in a nice C1-
fashion (note that S

e was already turned once by ω2n to align the endpoints
during construction). Since there are only two endpoints, we will arrive at
one open curve and possible several closed curves.

The semicircles on S
w connect the checkpoints to n pairs, which is a

permutation on the checkpoints

w(i) ≡ −i− 1 mod 2n,

so if we pass through checkpoint i along the curve we will next pass through
checkpoint w(i). Similarly the eastern hemisphere defines

e(i) ≡ −i mod 2n.

The twist by k · 2ωn is again described by

tk(i) ≡ i+ k mod 2n.

As we pass along the curve αm,k we run alternately through the semicircles
on each hemisphere. If we just entered a hemisphere through checkpoint i
we will enter it the next time at the checkpoint t−k ◦ e ◦ tk ◦ w(i). For q we
find the formula

q(i) ≡ t−k ◦ e ◦ tk ◦ w(i) ≡ −((−i− 1) + k) − k ≡ i− (2k − 1) mod 2n

and after l-steps
ql(i) ≡ i− (2k − 1)l mod 2n.

In order to see whether αm,k is one connected open curve, we start at check-
point 0 (which is one end) and note through which checkpoints we pass.
The run has to be reflected at the other endpoint, so that we pass through
the curve in two directions, passing each checkpoint on the component, not
only even or odd ones like in Lemma 2.1. So αm,k is one connected open
curve if and only if q consists of one cycle of length 2n. By Lemma 2.2 this
is the case if and only if gcd(2k − 1, 2n) = 1.

To count the solutions, note that gcd(2k, 2n) ≥ 2 and therefore

#{k ∈ {1, · · · , n} : gcd(2k − 1, 2n) = 1} =

#{k ∈ {1, · · · , 2n − 1} : gcd(k, 2n) = 1} = ϕ(m).(5.1)

Each of the αm,k is easily seen to be unique up to rigid motions.
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Lemma 5.2. For every odd m ∈ N and k ∈ {0, . . . ,m−1} with gcd(2k,m) =
1 the appropriately re-parametrised curve αm,k : I → S

2 is a connected open,
piecewise circular curve whose constant speed parametrisation is of class
C1,1(I,R3) satisfying

△[αn,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m − 1} the curves αm,k1 and αm,k2

are not equivalent. There are ϕ(m) distinct open connected curves for each
m.

Proof. Set n := (m − 1)/2 ∈ N. Like in the proof of Lemma 5.1 we check
the order in which the curve passes certain checkpoints and if we can reach
every checkpoint in one run.

First consider the western hemisphere S
w and number the 2n + 1 end-

points of the semicircles counter-clockwise from 0 to 2n, such that the
checkpoint numbers i and 2n + 1 − i correspond to the i-th semicircle
(i = 1, · · · , n − 1) and i = 0 corresponds to the single point. When turn-
ing the hemisphere S

e by multiples of 2ωn the curve closes again in a nice
C1-fashion. Since there are only two endpoints, we will end up with at
most one open connected curve and possibly several closed curves. In the
extreme case k = 0 the open curve degenerates to a point and we have n
closed circles.

The semicircles and the single point on the western hemisphere act again
as a permutation c(i) ≡ −i mod 2n + 1 on the checkpoints. The turn by
k · 2ωn is again described by tk(i) ≡ i+ k mod 2n+1. As we pass along the
curve αm,k we run alternately through the semicircles on each hemisphere.
If we just entered a hemisphere through checkpoint i we will enter it the
next time at the checkpoint t−k ◦ c ◦ tk ◦ c(i). For q we find the formula

q(i) ≡ t−k ◦ c ◦ tk ◦ c(i) ≡ −((−i) + k) − k ≡ i− 2k mod 2n+ 1

and after l-steps
ql(i) ≡ i− 2kl mod 2n + 1.

In order to see whether αm,k is one connected open curve, we start at check-
point 0 (which is one endpoint) and note through which checkpoints we pass.
The run has to be reflected at the other endpoint, so that we pass through
the curve in two directions, passing each checkpoint on the component, not
only even or odd ones like in Lemma 2.1. So αm,k is one connected open
curve if and only if q consists of one cycle of length m = 2n+ 1. By Lemma
2.2 this is the case if and only if gcd(2k, 2n+1) = gcd(2k,m) = 1. To count
the number of solutions, note that gcd(2k, 2n + 1) = gcd(k, 2n + 1) since
2n+ 1 is odd and therefore

#{k ∈ {1, · · · ,m− 1} : gcd(2k,m) = 1} =

#{k ∈ {1, · · · ,m− 1} : gcd(k,m) = 1} = ϕ(m).(5.2)
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Again we can use the fact, that the tubular neighbourhood of αm,k cover
the whole sphere to prove that they are the unique solutions:

Lemma 5.3 (Characterisation of open sphere filling curves). For an open
rectifiable continuous curve γ : I → S

2 with positive thickness Ω := △[γ] ∈
(0, 1), ω := arcsin Ω ∈ (0, π/2), and with |γ(0) − γ(1)| ≥ 2Ω the following
two statements are equivalent:

(i) V (Tω(γ)) = 4π;

(ii) For any ξ ∈ S
2 such that Bω(ξ)∩γ(I) = ∅ one of the following is true:

(a) ∂Bω(ξ)∩γ(I) = {P,Q} with dist
S2(P,Q) = 2ω (antipodal points);

γ is tangential to ∂Bω(ξ) in at least one of the points P or Q;

(b) ∂Bω(ξ) ∩ γ(S1) = {semicircle of spherical radius ω}.

Proof. The situation for open curves γ differs from that in Proposition 4.1
only in the possibility that apart from γ connecting two points along ∂Bω(ξ)
these two points could both be two endpoints of great arcs on γ (cf. [Ge04,
Satz 3.27]). However this case can not happen here since we have |γ(1) −
γ(0)| ≥ 2Ω.

The cases (ii) ⇒ (i) and (i) ⇒ (b) and the first part of (a) are proved
as in Lemma 4.3. If P or Q is an inner point of γ the tangency is evident.
Assume that P and Q are the endpoints of γ both not tangential. Then we
could consider the great circle η : (−π, π) → S

2, η(0) = ρ intersecting the
shorter great arc from P to Q orthogonally in ρ. Then Bω+ǫ(η(ǫ)) would
not intersect γ for small ǫ > 0 which would contradict Part (i).

Theorem 5.4 (Sphere filling open thick curves). If V (Tω(γ)) = 4π for
ω ∈ (0, π/2] and some open curve γ ∈ C′

Ω with Ω = sinω ∈ (0, 1], then there
is some m ∈ N and k ∈ {0, . . . ,m/2} with gcd(2k − 1,m) = 1 if m is even,
or k ∈ {0, . . . ,m− 1} with gcd(2k,m) = 1 if m is odd, such that

(i) ω = ωm,

(ii) △[γ] = Ωm, where Ωm = sinωm,

(iii) γ = αm,k.

Proof. We will only sketch the proof since the proof for open curves is slightly
easier than for closed curves. Indeed, we have two natural points to start
our construction if we equip γ with an orientation, namely the start- and
endpoints of the curve. Let ηp,t be the unit speed great-circle going through
ηp,t(0) = p ∈ S

2 with η′p,t = t ∈ S
2. By Lemma 5.3 we have ηγ(0),t(2ω) ∈ γ(I)

for t · γ′(0) ≤ 0. If ω = π/2 then ηγ(0),t(2ω) = γ(1) is the other endpoint,
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(a) (b) (c)

(d) (e) (f)

Figure 6: Open curves αm,k that maximise length for prescribed thicknesses ωm = π/m: (a)
m = 3, k = 1; (b) m = 5, k = 1; (c) m = 25, k = 6; (d) m = 4, k = 0; (e) m = 6, k = 0; (f)
m = 26, k = 6. Note that the endpoints of the curve are always antipodal for m even. Only the
curves (c) and (f) are depicted with full thickness.

and γ = α1,0 (otherwise we would have |γ(0) − γ(1)| < Ω contradicting the
fact that γ ∈ C′

Ω). If ω < π/2 the set {ηγ(0),t(2ω) : t · γ′(0) ≤ 0, t ∈ S
2} will

be a semicircle. Like in Lemma 4.5 we can continue this process stacking up
semi-circles until we either arrive at

(i) a semi-circle of spherical radius ω, which implies ω = π/m for some
odd m ∈ N.

(ii) or a single point, which has to be γ(1). This implies ω = π/m for
some even m ∈ N.

In case (i) we can redo the construction with the endpoint and find the two
hemispheres each filled with (m−1)/2 stacked up semi-circles and one single
point. Therefore γ must be equivalent to αm,k for some odd m and some
k ∈ N. In case (ii) both end caps are contained in one hemisphere, and in
the boundary of this hemisphere we find the characteristic pattern, so we
can apply Lemma 4.4 and then 4.5 to see that the other hemisphere must
consist of stacked up semi-circles, so γ is again equivalent to αm,k for an even
m and some k ∈ N. In both cases (i) and (ii) the additional restrictions on
k depending on whether m is even or odd are derived in Lemmas 5.1 and
5.2.
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