RHEINISCH-WESTFALISCHE TECHNISCHE HOCHSCHULE AACHEN
Institut fur Mathematik

Integral Menger curvature for
surfaces

by

Pawel Strzeleck:
Heiko von der Mosel

Report No. 36 2009

November 2009

LU L L ft f bt Ll 1

Institute for Mathematics, RWTH Aachen University

Templergraben 55, D-52062 Aachen
Germany



Integral Menger curvature for surfaces

Pawet Strzelecki, Heiko von der Mosel

November 18, 2009

Abstract

We develop the concept of integral Menger curvature for a large class of nonsmooth surfaces.
We prove uniform Ahlfors regularity and@!*-a-priori bound for surfaces for which this func-
tional is finite. In fact, it turns out that there is an explicit length sdale- 0 which depends
only on an upper bound for the integral Menger curvatute,(X) and the integrability expo-
nentp, andnot on the surface: itself; below that scale, each surface with energy smaller than
E looks like a nearly flat disc with the amount of bending controlled by the (loeg)jenergy.
Moreover, integral Menger curvature can be defined a priori for surfaces with self-intersections
or branch points; we prove that a posteriori all such singularities are excluded for surfaces with
finite integral Menger curvature. By means of slicing and iterative arguments we bootstrap the
Holder exponent\ up to the optimal onel = 1 — (8/p), thus establishing a new geometric
‘Morrey-Sobolev’ imbedding theorem.

As two of the various possible variational applications we prove the existence of surfaces in
given isotopy classes minimizing integral Menger curvature with a uniform bound on area, and of
area minimizing surfaces subjected to a uniform bound on integral Menger curvature.
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1 Introduction

For three different non-collinear pointsy, z € R™ the expression

[~ yllz — zlly — =]
R =
o) Alwyz)

(1.1)

where A(z, y, z) is the area of the triangle with vertices aty and z, provides the radius of the
uniquely defined circumcircle through y, and z. This gives rise to a family ointegral Menger
curvatures, that is, geometric curvature energies of the form

. 1 1 T 1 1 P
)= [ | | go—sar@armarc. p=1 a2

defined on one-dimensional Borel séisC R™. According to a remarkable result of J.Ceder [14]

such setsF with Hausdorff measure?’! (E) € (0,00) and with finite integral Menger curvature
M,(E) for somep > 2, arel-rectifiable in the sense of geometric measure theory. To be precise,
'-almost all of E is contained in a countable union of Lipschitz graphs. Ahlfors-reduae-
dimensional Borel setB C R? satisfying the local condition

My(ENB(E,r)) <Cr  forall ¢ € R% re(0,r) (1.3)

turn out to beuniformly rectifiable i.e., they are contained in the graph aie bi-Lipschitz map
f : R — R?; see [25, Theorem 39] referring to work of P. Jones. M. Melnikov and J. Verdera [21],
[22] realized that#> is a crucial quantity in harmonic analysis to characterize removable sets for
bounded analytic functions; see e.g. the surveys [19], [20], [38].

If one considers thez,-energy on rectifiable closed curvés = ~(S!) c R3 the following
geometric Morrey-Sobolev imbedding theoreas proven in [33, Theorem 1.2], and this result may
be viewed as a counterpart to J.@&der’s regularity result on a higher regularity level:

If .#,(~) is finite for some € (3, co] and if the arclength parametrizatidn of the curvey is a local
homeomorphism then(S!) is diffeomorphic to the unit circl8!, andI is a finite covering ofy(S*')
of classCt1—(3/p)

In fact, even the stronger local version holds true [33, Theorem 1.3], which may be viewed as a
geometric Morrey-space imbeddiagd whose superlinear growth assumption (1.4) is the counterpart
of (1.3):

If the arclength parametrizatioh is a local homeomorphism, and if

ds dt do
< Ot (1.4)
/B(Tl,r) /B(TQ,T) /B(Tg,r) R(I(s),I'(¢),T(0))

holds true for allr € (0, o] and all arclength parameters;, 7, 73, thenI" is aCl#-covering of the
imagev(S') which itself is diffeomorphic to the unit circle.

Coined after K. Menger who generalized expression (1.1) to metric spaces as a foundation of a metric coordinate free
geometry; see [23], [4].

2A set E of Hausdorff dimension is said to beAhlfors-regularif and only if there is a constar®z > 1 such that
Cz'R < " (EN B(x,R)) < CgRforeveryz € FandR > 0, whereB(z, R) denotes a closed ball of radids



From the results on one-dimensional sets and in particular on curves it becomes apparent that
integral Menger curvature#,, exhibits regularizing and self-avoidance effects (as already suggested
in [12] and [2]). These effects become stronger with increagijrig fact, one has

1 1
lim (A, r = =: ,
A ) = R (), T, T)) AP
o#£s#t#o

whereA[y] is the notion ofthicknesf ~ introduced by O. Gonzalez and J.H. Maddocks [12] who
were motivated by analytical and computational issues arising in the natural sciences such as the
modelling of knotted DNA molecules. In fact, it was shown in [13] and [29] that closed curves with
finite energyl //A[v], i.e. with positive thickness, aexactlythose embeddings with@'*-arclength
parametrization, which lead to variational applications for nonlinearly elastic curves and rods with
positive thickness; see also [30], [31]. We generalized this concept of thickness in [34] and [35] to a
fairly general class of nonsmooth surfaces- R™ with the central resulthat surfaces with positive
thicknessA[X] are in factC*!-manifolds with a uniform control on the size of the loc&t!-graph
patches depending only on the value/fX]. Uniform estimates on sequences then allow for the
treatment of various energy minimization problems in the context of thick (and therefore embedded)
surfaces of prescribed genus or isotopy class; see [35, Theorem 7.1].

In the present situation we ask the question:

Is it possible to extend the definition of integral Menger curvatuf for p < oo to
surfaces with similar regularizing and self-avoidance effects as in the curve case?

The most natural generalization of,, to two-dimensional closed surfacEsc R? would be to
replace the circumcircle radiu3(x, y, z) of three pointse, y, z in (1.2) by the circumsphere radius
R(&, x,y, z) of the tetrahedrof” := (£, z,y, z) spanned by the four non-coplanar poigts:, v, z.
This radius is given by

1 (23, 21 % 22} (1.5)
2R<T) | |21’222 X 23 + |22‘223 X z1 + ’23|221 X Z2 ’, .

wherez; = & — 2,29 = x — 2z, z3 = y — z. This would lead to the geometric curvature energy

/E /E /Z /Edﬁm(€)d«9§;((§)icji§y)d%2(z)’ w6)

which in principle would serve our purpose: all our results stated below extend to this energy. But
— although the integrand is trivially constantiif happens to be a round sphere — there are smooth
surfaces with straight nodal lines (such as the graph of the fungtieny) := xy) where the integrand
is not pointwise bounded; see Appendix B. This is a problem since we want to consider arbitrarily
largep, and we envision a whole family of integral Menger curvatures that are finiengrlosed
smooth surface faanyvalue ofp.

Rewriting (1.1) as

e —zlly—
2dist(z, Lgy)’
where L,, denotes the straight line throughand y, one is naively tempted to considéspoint-

integrandsof the form
(et e=s) )

R(z,y, z)
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where(z,, z) denotes the affin@-plane through generic non-collinear pointsy, = € R3. Here,
a > 1is a power and the functioh/ : R, x Ry x Ry — R4 is ameani.e. M is monotonically
increasing with respect to each variable and satisfies the inequality

min{a, b, c} < M(a,b,c) < max{a,b,c}.

Again, all our results that will be stated below would hold if we worked with integrands as in (1.7) for
a = 2. This is very similar to a suggestion of J.Geder [14, p. 833] who proposes a general integrand
for d-dimensional sets; faf = 2 his choice boils down to (1.7) with/ being the geometric mean and

a = 3. However, the situation for such integrands, due to the lack of symmetry w.r.t. permutations of
the 4 points, is even worse than for inverse powers of the circumsphere radius: for any choieel of
there are sufficiently large = p(«) such that even a round sphere has infinite energy. This singular
behaviour is caused by small tetrahedra for which the plane thraugh z) is almost perpendicular

to the surface. See Appendix B for more details.

Roughly speaking, the trouble with (1.5) or (1.7) for surfaces comes from the fact that various
‘obviously equivalent’ formulae foi /R for triangles (relying on the sine theorem) are no longer
equivalent for tetrahedra; to obtain a whole scale of surface integrands which penalize wrinkling,
folding, appearance of narrow tentacles, self-intersections etc. but stay bounded on smooth surfaces,
one should make a choice here. In their pioneering work [15, 16] dealingiwithtifiability and least
square approximation ef-regular measures, G. Lerman and J.T. Whitehouse suggest a whole series
of high-dimensional counterparts of the one-dimensional Menger curvature. Their ingenious discrete
curvatures are based, roughly speaking, on the so-called polar sine function scaled by some power of
the diameter of the simplex, and can be used to obtain powerful and very general characterizations of
rectifiability of measures. (In [16, Sec. 1.5 and 6] they also note that the integrand suggeséagtby L
does not fit into their setting.)

Motivated by this and by the explicit formula for the circumsphere radius, we are led to con-
sider anothed-point integrand with symmetry and with fewer cancellations in the denominator. For a
tetrahedror?” consider the function

V(T) . .
——— 2 ifthe vertices ofl" are not co-planar
K(T) = { A(T)(diamT)z "o Ve pana (1.8)

0 otherwise,

whereV (T') denotes the volume @f and A(T') stands for the total area, i.e., the sum of the areas of
all four triangular faces df". Thus, up to a constant facttiris the ratio of the minimal height &f to
the square of its diameter, which is similar but not identical to the numerous curvatures considered by
Lerman and Whitehouse in [16]. The difference is that/owacales like the inverse of length whereas
their d-dimensional curvatures, cf. e.g. the definitioncgf in [16, p. 327], ford = 2 scale like the
inverse of theeubeof length. Such scaling enforces too much singularity for our purposes; we explain
that in Remark 5.2 in Section 5.

This leads us to thimtegral Menger curvature for two-dimensional surfaces” R?,

My(%) = / / / / KP(T) ds#? @ d#* @ dA*? @ ds*(T), (1.9)
2JEJEJE
which is finite for anyC2-surface for any finite, since/C(T') is bounded on the set of all nondegen-
erate tetrahedra with vertices on such a surface; see Appendix A.

To keep a clear-cut situation in the introduction we state our results here for closed Lipschitz
surfaces only and refer the reader to Definition 2.4 in Section 2.2 for the considerably more general
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class.e/ of admissible surfaces, and to Sections 3, 5, and 6 for the corresponding theorems in full
generality. Let us just remark, however, that our admissibility classontains surfaces that are not
even topological submanifolds &°: e.g. a sphere with the north and south pole glued together. The
finiteness of #,(X) has therefore topological, measure-theoretic and analytical consequences.

Theorem 1.1 (Uniform Ahlfors regularity and a diameter bound). There exists an absolute con-
stanta. > 0 such that for anyp > 8, everyE > 0, and for every closed compact and connected
Lipschitz surfac& C R? with .#,(Z) < E the following estimates hold:

1
a’P\ p—8
oo (o
dlamE_<E> ,
c%%EﬂmLRﬁng forall z € ¥ and R € (0, (®/E)Y/®=9]  (1.10)

General Lipschitz surfaces may have conical singularities with a very small opening angle, but
finite .#,-energy controls uniformly the lower density quotient. These quantitative lower estimates
for diameter and density quotient resemble L. Simon'’s results [32, Lemma 1.1 and Corollary 1.3] for
smooth embedded two-dimensional surfaces of finite Willmore energy, derived by means of the first
variation formulas. Here, in contrast, we set up an intricate algorithm (see Theorem 3.3 and its proof
in Section 4), starting with a growing double cone and continuing with an increasingly complicated
growing set centrally symmetric to a surface point, to scan the possibly highly complex exterior and
interior domain bounded b¥. in search for three more complementing surface points to produce a
“nice” tetrahedron whose size is controlled in terms of the energy. Along the way, the construction
allows for large projections onto affireeplanes which leads to the uniform estimate (1.10).

The case) = 8 yields a result which may be interpreted as a two-dimensional variant of Fenchel’s
theorem on the total curvature of closed curves [10]:

Theorem 1.2 (Fenchel for surfaces)There is an absolute constap > 0 such that#Zg(3) > o
for any closed compact connected Lipschitz surfdce R3.

The exponenp = 8 is a limiting one here:#5 is scale invariant. Invoking scaling arguments, it
is easy to see that any cone over a smooth curve must have in#fenergy for every > 8.

Uniform control over the lower Ahlfors regularity constant as in Theorem 1.1 permits us to prove
the existence of a field of tangent planes for finite energy surfacgwinciding with the classical
tangent planes at points of differentiability 5, and quantitatively control its oscillation:

Theorem 1.3 (Oscillation of the tangent planes)For any closed compact and connected Lipschitz
surfaceX C R3 with .#,(%) < E for somep > 8 the tangent pland’, > is defined everywhere and
depends continuously an there are constants; = d;(p) > 0 and A = A(p) > 0 such that

HTLE,T,) < AEFT|z — y|7os (1.11)
whenevetz — y| < §;(p)E~Y/#=8),

One might compare this theorem with Allard’s famous regularity theorem [1, Theorem 8.19] for
varifolds: Supercritical integrability assumptions (with exponent dimension) on the generalized
mean curvature are replaced here by integrability assumptions on our four-point Menger curvature
integrand for p > 8 = 4. dimension — with possible extension to metric spaces, since our integrand
may be expressed in terms of distances only. To prove Theorem 1.3 (see Section 5 for all details), we



start with a technical lemma, ascertaining that the so-called P. Jnagnbers o, measuring the
distance fron to the best ‘approximating plane’ and defined by

Bs(z,7) :—inf{ sup M : FisanaffineQ—pIanethrougrx}, (1.12)
yeXNB(z,r) r

can be estimated bynst - (?—8)/(?+16) gt small scales. This estimate is uniform, i.e. depends only on

p and on the energy bounds, due to Theorem 1.1. For a wide cl&ssfehberg flat sets with vanishing
constant see G. David, C. Kenig and T. Toro [6] or D. Preiss, X. Tolsa and Toro [26], this would be
enough to guarantee the desired result. However, at this stage we cannot ensure that the surface we
consider is Reifenberg flat with vanishing constant; it might be just a Lipschitz surface with some
folds or conical singularities which are not explicitly excluded in Theorem 1.1. Reifenberg flatness,
introduced by E.R. Reifenberg [28] in his famous paper on the Plateau problem in high dimensions,
requires not only some control gfs, but also a stronger fact: one needs to know that the Hausdorff
distance between the approximating planesdamlsmall at small scales. To get such control, we use
some elements of the proof of Theorem 1.1 to guarantee the existence of large projeclicmstof
planes, and, proceeding iteratively, combine this with the dec#&sdb reach the desired conclusion.

The proof is presented in Section 5; it is self-contained and independent of [6] and [26].

Once Theorem 1.3 is established, we know that in a small scale, depending sqleindon the
energy bound, the surface is a graph @f & function. Slicing arguments similar to, but technically
more intricate than those in the proof of optimablter regularity for curves in [33, Theorem 1.3],
are employed in Section 6 to bootstrap th@der exponent from = (p — 8)/(p + 16) to (p — 8) /p
and prove

Theorem 1.4 (Optimal Holder exponent). Any closed, compact and connected Lipschitz surface
in R? with ./,(X) < E < oo for somep > 8 is an orientableC''~(8/P)-manifold with local graph
representations whose domain size is controlled solely in termisawfd p.

We expect that — 8/p is the optimal exponent, like the corresponding optimal expohen3/p
in the curve case in [33, Theorem 1.3]; see the example for curves in [36, Section 4.2].

The last section deals with sequences of surfaces with a uniform bound owheinergy. Using
a combination of Blaschke’s selection theorem and Vitali covering arguments with balls on the scale
of uniformly controlled local graph representations we can establish the following compactness result.

Theorem 1.5 (Compactness for surfaces with equibounded?,-energy). Let{¥;} be a sequence
of closed, compact and connected Lipschitz surfaces containin®? with

My(S;) < E forall jeN & sup#?(%;) < A,
JEN

for somep > 8. Then there is a compact!'~8/P-manifold ¥ without boundary embedded &?,
and a subsequengé, such that:;, converges t& in C', and such that

Mp(Y) < liminf A, (3;)
J—00

Instead of the uniform area bound one could also assume a uniform diameter bound.

Using this compactness result and the self-avoidance effects of integral Menger curvature we will
prove that one can minimize area in the class of closed, compact and connected Lipschitz surfaces of
fixed genus under the constraint of equibounded energy. For giZeN let M/, be a closed, compact
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and connected reference surface of geptisat is smoothly embedded &?, and consider the class
¢r(M,) of closed, compact and connected Lipschitz surfacesR? ambiently isotopic taV/, with
Mp(X) < Eforall X € €r(M,).

Theorem 1.6 (Area minimizers in a given isotopy class)For eachg € N, E > 0 and each fixed
reference surfac@/, the classéx(M,) contains a surface of least area.

We can also minimize the integral Menger curvatu# itself in a given isotopy class with a
uniform area bound, i.e. in the clag$,()/,) of closed, compact and connected Lipschitz surfaces
¥ C R3 ambiently isotopic taVZ, with J#%(%) < A < oc.

Theorem 1.7 (#),-minimizers in a given isotopy class).For eachg € N, A > 0, there exists a
surfaceX € ¢4 (M,) with
My(X) = inf M,.
p(X) ok
The proofs of Theorems 1.5-1.7 are given in Section 7.

Remark 1.8. It can be checked that our Theorems 1.1 and 1.2 can be proven for a large class of
integrands including the two-dimensiongft and other curvatures of Lerman and Whitehouse, and
even the one suggested bgder. (One just has to check what is the critical scaling-invariant exponent,
and work above this exponent.) However, Theorems 1.3 and 1.4, and consequently also Theorems 1.5,
1.6, and 1.7 seem to fail for any choice of integr&td7") which scales like the inverse of length to

some powet + s, s > 0. Such a choice enforces too much singularity for largend the methods we
employ to prove Wlder regularity of the unit normal show that the only surface witkZ dy finite

for all p would be (a piece of) the flat plane. See Remark 5.2 in Section 5.

Remark 1.9. Our work is related to the theory of uniformly rectifiable sets of G. David and S.
Semmes, see their monograph [8]. Numerous equivalent definitions of these sets involve subtle con-
ditions stating how well, in an average sense, the set can be approximated by planes. One of the deep
ideas behind this is to try and search for the analogies between classes of sets and function spaces. It
turns out then that various approximation or imbedding theorems for function spaces have geometric
counterparts for sets, see e.g. the introductory chapter of [8]. Speaking naively and vaguely, David
and Semmes work in the realm which corresponds to the subcritical case of the Sobolev imbedding
theorem: there is no smoothness but subtle tools are available to give nontrivial control of the rate
of approximation of a function by linear functions (or rather: a set by planes). Here, we are in the
supercritical realm. For exponents larger than the crifical 8 related to scale invariance, excluding
conical singularities, finiteness of our curvature integrands gives continuity of tangent planes, with
precise local control of the oscillation. Note that the exporleat8/p in Theorem 1.6 is computed
according to Sobolev’s recipe: the domain of integration has dimension 8 and we are dealing with the
p'th power of ‘curvature’.

Acknowledgement. The authors would like to thank the Deutsche Forschungsgemeinschaft, Polish
Ministry of Science and Higher Education, and the Centro di Ricerca Matematica Ennio De Giorgi
at the Scuola Normale Superiore in Pisa, in particular Professor Mariano Giaquinta, for generously
supporting this research. We are also grateful to Professor Gilad Lerman for his comments on an
earlier version of this paper which helped us to improve the presentation.



2 Notation. The class of admissible surfaces

2.1 Basic notation

Balls, planes and slabsB(a,r) denotes always thelosedball of radiusr, centered at.. When
a = 0 € R3, we often write justB,. instead ofB(0, ).

For non-collinear points, y, z € R? we denote by(z, y, z) the affine2-plane throughr, y, and
z. If H is a 2-plane inR?, thenry denotes the orthogonal projection ortb For an affine plane
F c R3 such tha0 ¢ F, we writeo to denote the central projection frabronto F.

If Fis an affine plane ifR3 andd > 0, then we denote the infinite slab abduby

Uy(F) = {y € R?: dist(y, F) < d}.
Cones.Lety € (0, %) andw € S%. We set
Clp,w) :={y € R |y~ w| = |y| cos o}

describing the infinite double-sided cone of opening aBgla&vhose axis is determined hy, and we
defineC, (¢, w) := B(0,7) N C (v, w). We also distinguish between the two conical halves

CHp,w) :={yeR>: y-w>|ylcosp},  C (pw):={yeR’: —y-w>|ylcosp},

and seCE (o, w) := B(0,7) N C*(p,w).
Rotations in R3. Throughout, we fix an orientation &3. Assume that;, v € S? are orthogonal and
uxv=w € S% We write R(p, w) to denote the rotation which, in the orthonormal basis, w),
is represented by the matrix

cosp —singp 0

sinp cosp O

0 0 1

Note that this formula gives in fact a linear map which does not depend on the choice of orthonormal
vectorsu, v with u x v = w.

SegmentsWhenever: € R3, s > 0 andw € S?, we set
Igw(z) ={z+tw: |t| <s}

(this is the segment of lengfs, centered at and parallel tav).
Tetrahedra. Since we deal with an integrand defined on quadruples of poiri&s jmnd in various
places we need to estimate that integrand on specific quadruples satisfying some additional conditions,
we introduce some notation now to shorten the statements of several results in Sec. 3—6.
By a tetrahedron7 we mean a quadruple of point§, = (g, 21, x2, x3) With z; € R? for
i = 0,1,2,3. By a triangleA we mean a triple of pointsd = (z¢, z1,2), z; € R3. We say that
A = A(T) is the base ol iff A = (z,y,2) andT = (z,y, z, w) for somex, y, z,w € R3.
ForT = (x0,x1, x2, x3) andT = (z, ), x5, x5) we set

I =7 = mig | o =il
oeSy |0<i<3
where|z; — ;| denotes the Euclidean norm afgis the symmetric group of all permutations of sets
with four elements. We writez,.(T') := {T": ||T — T"|| < r}.
To investigate the local and global behaviour of a surface, we often estimai,#snergy on
#-(T) N ¥ where eitherT' resembles, roughly speaking, a regular tetrahedron or at least its base
A(T) resembles, again roughly, a regular triangle. Here are the appropriate definitions.
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Definition 2.1. Letf € (0,1) andd > 0. We say thaf’ = (z¢, x1, z2, x3) is (0, d)—voluminous, and
write T' € ¥ (0, d), if and only if

(i) x; € B(xo,2d) foralli=1,2,3;

(i) 0d < |z; —z;| foralli+# j, wherei,j =0,1,2,3;
(ii)) (21 — 20,22 — w0) € [0, 7 — 0];
(iv) dist(xg, (xo,:cl,x2>) > 0d.

Definition 2.2. Letd € (0,1) andd > 0. We say thalA = (x,x1,x2) is (0, d)—wide, and write
A € .7(0,d), if and only if

() x; € B(wo,2d)fori=1,2;
(i) 0d < |x; —x;| fori# j, wherei,j =0,1,2;

(III) §($1 — X9, T2 — .T()) S [9,71’ — 9]

Remark 2.3. Similar classes of simplices have been used by Lerman and Whitehouse, see [16, Sec. 3].
The class ofl” with A(T") € .7 (0, d) differs from their class o?-separated tetrahedra as the minimal
face area of” with A(T") € .(6, d) does not have to be comparable to the squakéizofi 7. This

plays a role in Section 5 and Section 6.

2.2 The class of admissible surfaces
Throughout the paper we consider only compact and closed surfaces.

Definition 2.4. We say that a compact connected subset R? such that> = 9U for some bounded
domainU c R3 is an admissible surfacand writeX € .7, if the following two conditions are
satisfied:

(i) There exist a constarit’ = K (X) such that

0o > AAENB(z,r) > K 1r?  forallz € Xandallo < r < diam X;

(i) There exists a dense subi&t C > with the following property: for each € >* there exists a
vectory = v(z) € S? and a radiussy = &o(z) > 0 such that

B(z,80)N(z+C*(r/4,v)) C UU{z}, B(z,60) N (z+C~ (1/4,v)) C (R*\U)U{z}.

Condition (ii) seems to be rather rigid because of the symmetry requirement. We could have
used some smaller anglg instead ofpy, = /4 with the only effect that the absolute constants in
Theorems 3.1-3.3, 5.4, and 6.1 would change, but we stigk te 7/4 for the sake of simplicity.

Condition (i) excludes sharp cusps around an isolated poiht lodit allows for isolated conical
singularities and various cuspidal folds along arcs.

Note that this is a large class of surfaces, arid # <7, thenX does not have to be an embedded
topological manifold. Consider for example a sphere on which two distinct points have been identified,
or, more generally, a sphere willv distinct smooth arcs and identify pairs of these arcs.

Here are further examples.



Example 2.5 (! surfaces). If ¥ is aC'! manifold which bounds a domaiii, then¥ € <. One
can takeX* = ¥; by definition of differentiability, for each point € X condition (ii) is satisfied for
v(z) = the inner normal t& atx, and one can choose a uniform lower bound for the numféxs,
i.e. we can always pick &(x) > dp = dp(X) > 0.

Example 2.6 (Lipschitz surfaces).If > = 9U is a Lipschitz manifold, thedX € <. We can take

>* = the set of all points wherE has a classically defined tangent plane. By Rademacher’s theorem,
¥* is a set of full surface measure, hence it is dense. Obviolgly) does depend on € ¥* now. It

is an easy exercise to check (with a covering argument using compactrnesthat condition (i) is

also satisfied.

Example 2.7 (W22 surfaces). If ¥ = 09U is locally a graph of a¥2?2 function and condition (i)
is satisfied, thert: € 7. This follows from Toro’s [37] theorem on the existence of bi-Lipschitz
parametrizations for such surfaces.

Example 2.8. If a compact, connected surfake= 9U is locally a graph of amC?-function (see J.
Maly’s paper [18] for a definition of absolutely continuous functions of several variables) and if (i) is
satisfied — which is a necessary assumption as grapH€éffunctions may have cusps — th&nis
admissible. AC? functions are differentiable a.e. and this implies condition (ii) of Definition 2.4.)

2.3 The energy and two simple estimates of the integrand

As mentioned in the introduction, we consider the energy

Mp(X) = KP(T) du(T), e, (2.1)
24
where
& if the vertices ofl’ on X are not co-planar
K(T) = { A(T)(diam T)?2 P
0 otherwise

Here V(T) denotes the volume d¢f and A(T) the total area, i.e. the sum of the areas of all four
triangular faces of . For the sake of brevity we write

dp(&, x,y, 2) = doA*(€) do™(x) A (y) A (2). (2.2)
If T'= (x9,x1,x2,23) and one sets; = z; — xo fori = 1,2, 3, then we have
K(T) = é : 23 - (21 X 2) 2.3)

|21 X zo| + |22 X 23] + |21 X 23] + |(22 — 21) X (23 — 22)|| (diam T")?

We will mostly not work with (2.3) directly. In almost all proofs in Sections 3—6, we use iteratively
two simple estimates d€ on appropriate classes of tetrahedra.

Lemma2.9.1f T' e 7 (6,d), then

1
502
Lemma 2.10.If T = (zg,x1,x2,z3) IS such thatA(T) = (xg, z1,22) € L(0,d), 3 € B(xo,2d)
anddist(zs, (zo, x1,z2)) > Kd, then

K(T) > —=6%d~".

1 3 —1
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Proof of Lemma 2.9.Let T = (xg, x1, 2, x3), 2; := x; — x for i = 1,2, 3. Using conditions (ii)
and (iii) of Definition 2.1, we obtaifizy x 25| > 62d?sin§ > 26342 and by (iv)

23 - (zl X 22) Def. 21(|V)

= dist(z: > 4d. 2.4
o % 2a] ist(xs, (zo, x1,22)) > (2.4)
Therefore we can estimate
(2.4) 1 0d
]C(T) > 3(diamT)2 ’ 1+ |22 X 23] 4 |21 X 23] + [(z2—21) X (z3—22)|
|Z1><22| ‘21><22| |Z1><Z2|
S 1 0d
= 2 (2d)2 (4d)?
3(4d)? 142 e/mEE T @nee
o4 o4

1Rd[6° 1 127] ~ 50%d’

The proof of Lemma 2.10 is identical. One just replaces (2.4)iby(z3, (zo, 1, 22)) > kd.

3 From energy bounds to uniform Ahlfors regularity

The main result of this section is the following.

Theorem 3.1 (Energy bounds imply uniform Ahlfors regularity). There exists an absolute constant
a > 0 such that for every > 8, everyE > 0 and everyx € &/ with .#,(X) < E the following
holds:
Whenever: € ¥, then
A?*(B(z,R)NY) > 1R?*/2

for all radii

R < Ro(E,p) = <O§p>m. (3.1)

Note that the value oRy(E, p) depends orE andp, butnot onX itself, which is by no means
obvious. Even infinitely smooth surfaces can have long ‘fingers’ which contribute a lot to the diameter
but very little to the area. The point is that fixing an energy bofingle can be sure that ‘fingers’ can-
not appear ort at a scale smaller thaRy(E, p). Moreover, a general sequentg of C*°-surfaces
could in principle gradually form a tip approaching a cusp singularity-asoco (in fact, it is not diffi-
cult to produce examples of sequences of smooth surfaces with uniformly bounded area and infinitely
many cusp or hair-like singularities in the limit), whereas this cannot happen according to Theorem
3.1 for a sequence of smooth admissible surfaces with equibourieghergy.

This fact plays a crucial role later on, in the derivation of uniform estimates for the oscillation
of the tangent in Section 5. These estimates in turn allow us to prove in Section 7 compactness for
sequences of surfaces having equibounded energy.

The scale-invariant limiting cage = 8 leads to the following result which can be viewed as a
naive counterpart of the Gaul3—Bonnet theorem for closed surfaces, or the Fenchel theorem for closed
curves: one needs a fixed amount of energy to ‘close’ the surface. Our estimate of this necessary energy
guantum is by no means sharp; it would be interesting to know the optimal value of that constant.

11



Theorem 3.2. There exists an absolute constapt > 0 such that#g(X) > o for every surface
Yed.

The proof of both theorems relies on a preparatory technical result which might be of interest on
its own, since it allows us to find for any given admissible surface (no matter how “crooked” its shape
might look) a good tetrahedron with vertices on the surface, i.e. a voluminous tetrahedron in the sense
of Definition 2.1. This result is completely independent of Menger curvature, but in our context it will
allow us to prove#,-energy estimates from below.

Theorem 3.3 (Good tetrahedra with vertices or). There exist two absolute constants; € (0, 1)
such that
1>2n>40a >0 (3.2)

with the following property: For every surfacé € o and everyry € ¥* one can find a positive
stopping distancés(zy) € (do(zo), diam X| and a triple of pointqz1, z2,23) € X x 3 x X such
that

() T = (zg, z1,z2,23) € ¥V (n,ds(x0)),
(i) whenevel|T" — T'|| < adg(xo), we havel” € ¥ (1, 3d4(xo)).
Moreover, for eachr € (0, ds(z¢)] there is an affine plané/ = H (r) passing througlhr, such that
71(2 N Bz, ) D H N Bz, r/V2) (3.3)
and therefore we have

(2N B(xg,r)) > =r2  forall r e (0,ds(z0)]. (3.4)

oS

The proof of this result is elementary but tedious. We give it in the next section. We also state one
direct corollary of that proof for sake of further reference.

Proposition 3.4 (Large projections and forbidden conical sectors)Letp > 8, F > 0, anddU =
¥ € o with #,(X) < E. Assume thaR, = Ry(E, p) is given by(3.1). For eachz € ¥ andr < Ry
there exists a planél passing througl: and a unit vectow € S?, v L H, such that

D:=HNB(z,7/vV2) C mg(XnB(z,r)) (3.5)
int C;f (po,v) \ B(z,7/2) C U, (3.6)
int C;”(po,v) \ B(z,r/2) C R3\T, (3.7)

whereyy = /4.

In the remaining part of this section we show how to derive Theorems 3.1 and 3.2 from The-
orem 3.3. We begin with an auxiliary result which gives an estimate for the infimum of stopping
distances considered in Theorem 3.3. Note thatfaf classC', compact and closed, property (i)
below is obvious: we havés(z¢) > do(xg), and, as mentioned in Example 2.5, in this case one can
in fact choose a positiv&, independent of;.

Proposition 3.5. Assume thap > 8, ¥ € & and.#,(X) < co. Then

12



(i) The stopping distance&(x) given by Theorem 3.3 have a positive greatest lower bound,

d(X) == inf ds(zo) > 0.

roEX*

(i) We have
My(2) > a’Pd(D)P . (3.8)

PROOFE  To prove (i), we argue by contradiction. Assume #i@f) = 0 and set

1 o5P 1/(p—8)
i <K<z>4///p<z>> ’ (3.9)

where K (X)) is the constant from Definition 2.4 (i). Selec§ € X* with ds(z¢) =: dyp < €. Pick
x1, T2, x3 Whose existence is guaranteed by Theorem 3.3. Perturbing these points slightly, by at most
ady/2, we may assume that

5 EY, i=0,1,2,3: (3.10)
3
T = (9, x1,22,23) € ¥(n/2, §d0) : (3.11)
3
T —T| <ady/2 = T €V (n/2, §d0). (3.12)

Integrating over alll” close tol’, we now estimate the energy as follows:

a4 = | P (T) dia(T")
EZlm'(ﬂado/Q (T)

e (3 Lo () oo

1 g an4 P
- g =
~ K)o (502-26>
OéSp S—
> K(E)4d0 P asn/20 > «. (3.13)

(We have used Definition 2.4 (i) and Lemma 2.9 in the second inequality.)
This gives a contradiction with (3.9) and the choicelgfas (3.13) impliegly > 2e¢.

(i) Now we shall show that/(¥) is not only strictly positive, but has a lower bound depending only
on the energy. Fix > 0 small and pickeg € ¥* with dg := ds(z0) < (1+¢)d(X). As in the first part

of the proof, taker, z2, 23 given by Theorem 3.3. Perturbing these points slightly, we may assume
that (3.10)—(3.12) are satisfied. Moreover, by (3.2)

— < — < d(X) < ds(xy) fori =1,2,3,

so that by (3.4)
Oédo

%2(203(1'1,01(10/2)) > 3 <

2
> 2) ., i=0,1,2,3.

13



Using this information, we again estimate the energy as in (3.13), replacing now the carigtéht)
by an absolute oné€;. This yields

Upon lettinge — 0, we conclude the whole proof. a

Proof of Theorem 3.1:Inequality (3.8) implies that

(%) < o >M
> ——= :
— \Ap(%)
Combining this estimate with (3.4), we see that
2L N B(z,r)) > gr% r e (0,d(S)] (3.14)

holds for allx € ¥*. SinceX* is dense ir2, (3.14) must in fact hold foall x € X..

Proof of Theorem 3.2:We shall construct inductively a (possibly finite) sequence of tetrahedra with
vertices inX*.

Initially, we pick an arbitrary poinko = zj € %*. Letd; := ds(x((]l)) > 0. Use Theorem 3.3 and
density of¥* to find a tetrahedron

7 = (o oV, 2V, 28)) € ¥ (n/2,3d1/2) 0 (57 (3.15)
such that J
1T — Ty < % = T € ¥(n/2,3d1/2). (3.16)

Assume thafly, Ty, . .., Ty, have been already definefi, = (z{, 2\ 2§ 20y forj = 1,.. .|k,

so that the following properties are satisfied:

dj = dy(z§) < %, J=2,. .k (3.17)
T; € ¥ (n/2,3d;/2) N (T4 (3.18)
IT -7 <5 5 Tevn2.3d,/2); (3.19)
2 = x%” for somei(j) € {1,2,3}. (3.20)

(The last property simply means tHgtand7;_; have one vertex in common.) Now fgre ¥, let
R.(y) = sup{r > 0: #*(X N B(y,0)) > m*/2 forall g € (0,7]}.

We consider the following stopping condition:

R*(x(‘k)) > Ldk =

Z = =Tk foralli € {1,2,3}. (3.22)

For a fixed value o, there are two cases possible.
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Case 1. Conditiof3.21)does holdWe then estimate the energy, integrating over small balls centered
at vertices off,. This yields

(D) > /E o o @) dR(T)

> (g)4r,§ {5;2 (g)4 (:’,d,€/2)1}8 by Lemma 2.9

= v > 0,

where the constanf, dependnly on the choice ofx andn (note that the ratio/dy, = a/4 is
constant). This is the desired estimate#§ ().

Case 2. Conditiorg3.21)fails. Then we choosé& k) € {1, 2,3} such that by (3.2)

(k) _ ady,
Ry (z;00) <7k = e ﬁdk

We setz (") .= 522) anddy,.1 := dy(z{"""). The choice of(k) gives

dk+1 < Oédk/4 < dk/160. (322)

Again, we use Theorem 3.3 and densitytfto find the next tetrahedron

Tir = (@i, 2l 2V, 2y € v (n/2,3dy 40 /2) 0 ()
such that (3.19) is satisfied fgr= £+ 1. Thus, we have increased the length of sequence of tetrahedra
satisfying (3.17)—(3.20).

Note that if the stopping condition (3.21) is satisfied for sdme 1, 2, . . ., then we are done. The
only possibility left to consider is that (3.21) fails for eathWe then have an infinite sequence of
tetrahedra satisfying (3.17)—(3.20). To prove that this also gives the desired result, we shall show later
that
the sets ¥'N 4%, (Tx), k=1,2,...,  are pairwise disjoint. (3.23)

Assuming (3.23) for the moment, we have by Definition 2.4 (i) and Lemma 2.9
M3(X) > / du
() Z s,y ) )
=1 I A
K(x)*" {502( ) (3dx/2) }

T
= Kyl

k=

~
—

= +OO,

where~; denotes some constant dependimly on the choice ofv andn (again, note thaty /dy =
a/4 for eachk).

It remains to prove (3.23). Sing, € ¥(n/2, 3dy/2) for eachk, we have by virtue of Part (i) of
Definition 2.1

k k k k
2 = 2] = [alf)) — 2] < 34,
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so that (3.22) implies for each > k

|x(()m) — w(()k)| 3dg + 3dgy1 + - -

<
< 3dp(1+160"1 4160724 --.)
< dd. (3.24)

Form = k (3.24) holds trivially. Also by definition o#'(n/2, 3d;_1/2) we have

k k—1
g )

k-1 k—1
. (k=1) (k=)

‘xi(kq) )

Q 3dk,1

2 2

> 1badp_q asn > 20a.

(3.25)

v

Using (3.24), (3.25), and the conditidd;, < ad_1, we obtain

g™ — a2y ] 2 Jag? —ay V| = ey - ag)|
> 15adp_1 — 4d;
> ldadp_q
for eachm > k. The last inequality readily implies tha,, (xém)) andBTk_l(xék_l)) are disjoint
forall m > k, as

«@ ody,_
Tm + Te—1 = Z(dm +dk_1) < ; 1

Thus, the sets,,, (T,,) and%,, ., (T_1) are disjoint in(R3)4, which proves (3.23).

The whole proof of Theorem 3.2 is complete now. O

4 Good tetrahedra: Proof of Theorem 3.3

The proof of Theorem 3.3 is lengthy but elementary. It is of algorithmic nature and, at each of finitely

many steps, requires a case inspection which from a geometric point of view is not so complicated

but nevertheless includes three different cases (and one of them has to be divided into three further

subcases). The crucial task is to find a triplg, x2, x3) such that thex;’s (: = 0,1, 2, 3) satisfy

conditions (i) and (3.3) of the theorem. Condition (ii) follows then from simple estimates based on

elementary linear algebra; for sake of completeness, we present the details of that part in Section 4.3.
Here are a few informal words about the main idea of the proof.

Assume for a while that = dU is of classC!. To find a candidate far;, we look at the surface
M, = 0B, N C, wherep > 0, B, is centered ako, andC is a double cone with vertex, fixed
opening angle, and axis given byx,), the normal ta> atz(. For smallp > 0, z is the only point
of $inC, := B,NC. (If £ € & is notC?, then the existence of an appropriate cone follows from
Part (ii) of Definition 2.4.)

Itis clear that ap increases, the growing coig, must hity for some (possibly largg) = p1 > 0,
atsomer; € ¥\ {zo}, 1 € M,,. If the point of the first hit;z{, is close to the center of one of the
two “lids” .#,, of the coneC,,, then we can use the fact that the two componé&ntsU ~ of int C,,,
are on two different sides &f to select a voluminous tetrahedron with two of its vertices@aand
x1, and all edges: p;. To convince yourself that this is indeed plausible, note that there are many
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segments perpendicular @.,,3, with one endpoint iU/ and the other ir/ ~; each such segment
intersectsy and therefore contains a candidate for one of the remaining vertices. And, as we shall
check later, many of those candidates are good enough for our purposes.

However, it might happen that for this particular intermediate
value ofp; > 0 — somewhere betweeatiam X and the infinites-
imal scale where a smooth is very close to the tangent plane —
most points ofS N B,, are very close to a fixed plan@ which
might be completely different frorfi,,%, due to a little kink of

L2 2 3} near toxg. In fact, such a plane might be tangenta6’, and
¥ N By, would look pretty flat at all length scales p;.

If this were the case, thery would be located close to the rim
of C' N B,,, and one could not expect to find a good tetrahedron

2 CﬂBp, with verticesz; € ¥ N B,, and edges: p;. But then, one might

rotateC' around an axis contained i}, X, away from such a plane
Fig. 1. A little kink determinesl;, . P to a new positior”’ chosen so that two connected components
of C" N (B, \ B, /») are still on two different sides dt. One could look for possible vertices of a
good tetrahedron i6” N B, for p > p1, enlarging the radiug until C' N (B, \ B,,) hits the surface
again. This would happen for some radjgs> p;.

It might turn out again that at scales comparabl@4darge portions o> are almost flat, close
to a single fixed plané”’ which is tangent t@C’ so that it is not at all evident how to indicate a
voluminous tetrahedron with vertices € ¥ N B,, and edges: p2. One could try then to iterate the
reasoning, rotating portions of the cones if necessary.

Several steps like that might be needed if, for examgpjewere at the end of a long tip that
spirals many times — in such cases the points tfat we hit, enlarging the consecutive cones, might
not convey enough information about the shape of the surface. We make all this precise (including
a stopping mechanism, a procedure which allows one to select appropriate rotations at each step
of the iteration, and a bound on the number of steps) in subsection 4.2, using Definition 2.4 (ii)
to construct the desired cones for small radii. Before, in subsection 4.1, we state two elementary
geometric lemmata which are then used to obtain (i) and (3.3) for various quadfuples, x2, z3).

Without loss of generality we suppose throughout Section 4athat (0,0, 0) € R3.

4.1 Slanted planes and good vertical segments

Suppose that we have a fixed a cdfie= C (o, v) in R?, wherev € S andyy € (0, Z]. We also fix
an auxiliary anglep; € (0, 5.

Throughout this subsection, we say that a segmnieist vertical (with respect to the con€’)
if I is parallel tov, i.e.,I = I;,(z) for somes > 0 andz € R3. Any planeP = (0,y1, y2)
whose unit normah satisfies) < |n - v| < 1 is calledslanted We say that/ is good (for P) iff
dist(I, P) =~ diam I, up to constants dependiogly on the angles;.

We state and prove two elementary lemmata which give quantitative estimates of the distance
between good vertical segmertand slanted planes spannedgnd two other pointgy, y». In the
first lemma bothy; have to be inC' N F, on the same affine plané whose normal equals the cone
axis of C, i.e. with unit normalhr = v. In the second lemma we keep one of this in C' and allow
the other one to belong to a portion@f, whereC’ is a cone congruent t0' but rotated by an angle
7 € (0,0/2].

To fix the whole setting, pick a radiys> 0. Seth = pcos ¢y andr = psin ¢y. Moreover, set
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H := v+ c R3 and letry: R? — H be the orthonormal projection ontd. Let o denote the
central projection frond to the affine pland” := H + hv.

Lemma 4.1 (Slanted planes and good vertical segments, IBuppose thaP = (0,y;,y2) C R3is
spanned by and two other pointg; # y2 € F N C,(po,v) such that there is an angleg; € (0, )
such that

™ > <I(7rH(y1),7rH(y2)) > ©1 and WH(yi) 7& 0 fori= 1, 2.

Then, there exists a poiate H N 9B, such that

dist(Ip,u(2), P) = cop, (4.1)
where the constant )
co := co(po, p1) = 5 (1 — cos %) sin 2¢p > 0. (4.2)

Proof. Let z; := my(y;) for i = 1, 2. Consider the
2-dimensional disk

D:=HNB, > z, 2.

Let~ := HNAdB, be the boundary ab in H. We
selectz € v suchthat | 2z —2; and the segment
[0, z] has a common point with the straight line
I which passes through andz,. By elementary
planar geometry, we have

d := dist(z,1)
> r <1 — cos %) (4.3)
= psingg (1 — cos %) .

Fig. 2. The setting in Lemma 4.1: a double cone and three
planesH, F', P. Now, letv denote the angle betweenand P. It

is easy to see that we have< i < g since
1 € (0,7/2] andy; # y2 € F N Cy(po,v). Thus,

dist(Ip (%), P) = dcosy > dcospg
(4.3) _ o1
> pcos g sin @g (1 — cos 7)
= Cop,
where the constan is given by (4.2). 0

Lemma 4.2 (Slanted planes and good vertical segments, llL.ety; € F'NB,, assumery (y1) # 0
and setu = 7w (y1) /|7 (y1)|- Letw := u x v and consider the family of rotatior, := R(syg, w),
wheres € |0, %]. Then, for any point

ys € U Ry (Cp(cpo,v) \ int Bp/2> suchthatys - u <0 < y2 - v (4.4)
s€[0,1/2]

there exists a point € H N 0B, such thatdist(/}, ,(2), (0,y1,42)) > cip. One can take:; =
01(4,00) = 1—16$in2g00 > 0.
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Proof. Consider the two-dimensional didk := F' N B, and its boundary circle = F' N 0B,. Note

that the radius oD equalsr = psin ¢g. The key point is to observe what the union of all the central

projectionso(Rs(D)), s € [0,1/2], looks like. The rest will follow from the previous lemma.
Without loss of generality we assume that (0,0,1) € S? andy; = (a,0,h) € R3 for some

a € (0,7]. Thenu = wg(y1)/|mu(y1)| = (1,0,0) andw = u x v = (0, —1, 0). In the standard basis

of R? — which is (u, —w, v) — the rotationsR, = R(spg, w) are given by

cosspg 0 —sinsyg
R, = 0 1 0
sinspg 0  cosspg

Now, consider the points = (0, —r, h) and
qg=(0,r,h)iny C F.Letp; = Rs(p) and
s = Rs(q), s € [0, 5]. Since the axis of ro-
tation containsw, the anglesd(ps, w) and
J(gs, —w) are constant for alf and equal
T — 0. Thus, ass goes from0 to 3, the
pointsp,, gs move along arcs of vertical cir-
cles ondC (5 — ¢o,w). Hence, the central
projectionss(ps) ando g (gs) trace arcs of

two branches of the hyperbola

r ::Fﬁ(?C(g — o, W) .

(In fact, ass goes from0 to %, the point
Fig. 3. The situation inF or(R,(x)) moves along a hyperbola i
for eachx € D, except ther’s that lie on
the diameter oD parallel tou.)
Note also that, for each € [0, 3], the central projectiom(R,(D)) is equal to an ellipséZ,
which is tangent to both arms dfator(ps) andor(gs).
Suppose now thaf, satisfies (4.4). Since

o1 (R (Cyl0,0) \ int B, o) ) = o(R,(D)),

and the planeP® = (0,y;,y2) contains the line through andys, we haveys := op(y2) € P.
ThereforeP = (0, y1,y3).

Asys - u < 0 < ys - v, the first coordinate of; = o (y2) is negative. Hence, the lifewhich
passes througiy andy; in F, and satisfies = P N F', contains a poing, € P N F on the diameter
of D whose endpoints arg andq. Thus,(0,y1,y2) = P = (0,y1,y4). If y4 is not in the center
of D (as on the figure above), then the desired claim follows from the previous Lemma, applied for
P =(0,y1,y4) andp; = /2. If y4 = the center oD, then the plané is vertical and one can take
e.g.z = my(p) to conclude the proof. In that case one has

dist(Ip(2), P) =1 = psingg > 1—% sin 2¢p = pey.
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4.2 Looking for good verticesz, xo, x3: the iteration

Throughout this subsection we assume that xy € ¥* C X = 9U, whereU € R? is bounded}
belongs to the clasg’ of all admissible surfaces as defined in Definition 2.4.¢jx= 7. Proceeding
iteratively, we shall construct four finite sequences:

e of compact, connected, centrally symmetric sefsCc 77 € S C 15 C So C --- C Sy_1 C
Tn C Sy C R3,

e of unit vectorsvy, ..., v, v5, ..., vy, € S? such thatd(v;,v]) = /2 = «/8 for each
i=0,...,N—1,

e of two-dimensional subspacés = (v;)* C R3,i =0,..., N,

e and of radiipy < p1 < -+ < pn, Wherepy =: ds(x0), SOpn Will provide the desired stopping
distance forrg as claimed in Theorem 3.3.

These sequences will be shown to satisfy the following properties:

(A) (Diameter of S; grows geometrically). We haveS; C B,, = B(0, p;) anddiam S; =
2p; fori =0,..., N. Moreover

pi >2pi—1 for i=1,... N. (4.5)

(B) (Large ‘conical caps’in.S; and T;).

Si\BpFl :Cpi(QO(),’Ui) \BPFI for i=1,..., N, (46)
and
Ti—i—l C Bpi and S; C ﬂ+1 for i = 0,...,N —1. (4.7)
(C) (Relation betweenS; and 7;,1). For eachi = 0,...,N — 1 there is a unit vector

w; L v; and a continuous one-parameter family of rotati®swith axis parallel tow;
and rotation angleyy, s € [0, 1/2], such that

T =50 | R(Culpov)\ intB, ). (4.8)
s€[0,1/2]

(D) (X does not enter the interior of S; or T;1).

YNnints; =
XN intTHl =

) for i=0,...,N, (4.9)
0 for i=0,...,N—1. (4.10)
Moreover, we have

YNOB, NC(po,vi) =0  forp; <r<2p;, i=0,...,N—1, (4.11)
and

OBy N CH(pg,v;) CU and 9By NC~ (pg,v;) CR3\T. (4.12)

forallt € (pi—1,p;) andi =1,..., N.
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(E) (Points of ¥\ {zo} on9S;). The intersectiort N 9B, N 0.S; is nonempty for each
i=1,...,N.

(F) (Big projections of B,, N X onto H;). Fort € [p;—1,pi],i=1,..., N we have
T, (30 Bt) O Hi N Bising, - (4.13)
Moreover, forr; = p;singg, i = 1,..., N,

I;0,(2), z€A;:=HN(B,\intB, ) contains atleastone pointdf (4.14)

9 B(x, p;)

9 B(x, p3)

Fig. 4. A possible outcome of the iterative construction. Harer z, is at the center of the picture and we have= 3.
The position of the disiB,., N Hz, containing the annulud, mentioned in Condition (4.14) of (F), is marked with a thick
line.

Once this is achieved, condition (E) implies that
H2(% N B(xg,r)) > A*(D*(0,7sin @) = 712 /2 for0 < r < pny =: ds(zo),

whereD?(p, s) denotes a planar disk with centeand radiuss. We shall also show that it is possible
to selectr; € By, (j = 1,2, 3) with the desired properties listed in Theorem 3.3.

Start of the iteration. We setSy := 0 andT} := 0, pp := 0 andv§ = v1 := v(xg), where
v(zo) € S?%is given by Definition 2.4 (ii). Fow, we take any unit vector with the angle condition
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I(vo, v3) = Y(vo,v1) = ¢o/2 = m/8. Then we have, := (vo)* andH; := (v1)+. Moreover, we
use the convention that our closed balls are defined as

B, =B(0,r):={y eR3: |y| <r}

so that the closed balB, of radius zero is the empty set. Notice that for a complete iteration start we
need to defing, andS; in order to check Conditions (4.5) in (A), (4.6) in (B), (4.9) and (4.12) for

1 = 1, Condition (E), and (4.13) and (4.14) constituting Condition (F). All the other conditions within
the list (A)—(D) are immediate far= 0. We set

K} = Ci(po, v1). (4.15)

With growing radiit the setsk! describe larger and larger double cones with constant opening angle
2¢¢ = m/2 and fixed axig;;. Now we define

pri=inf{t > po=0: SN K} NIB; # 0}, (4.16)

and notice that by definition of the set of admissible surfaces (see Definition 2.4 (ii)) one has
p1 > 0o(xg) > 0 = 2pg, Which takes care of (4.5) in Condition (A) for= 1. SetS; := Kgl, then
we see thatt; = C,, (po,v1) C By, with diam S; = 2py, so all properties of (A) hold for = 1.
Moreover,

S1= Cp1(90071)1) = Cpl(SOOavl) \ Bpo7

sinceB,,, = By = (), thus (4.6) in (B) holds fof = 1. The definition ofp; > 0 (see (4.16)) implies
(4.9) fori = 1, notice that intS; is the union of two disjoint open cones centrally symmetric to but
not containingry = 0 € X. For the proof of (4.12) fof = 1 we observe that for eache (0, p1) we
have by Definition ofy; that

BN C(pp,v1) CUU{0} and ByNC (pg,v1) C (R¥\T)uU{0}, (4.17)

which is even stronger than (4.12). Condition (E) holdsifer 1, too, by definition ofp; and the fact
thatX is a closed set. Far= 1 we will prove (4.14) even foall z € D; := H; N B,,, which would
immediately imply (4.13) of Condition (F)From (4.17) we also infer that every segmént,, (2),

for = € HyN(B,, \ {0}) with |z| < 71, has one endpoint iT, and the other i3\ U, which implies
that1 . ,, (z) intersects the closed surfakkin at least one point for these Forz = 0 = zp € X
this is trivially also true, and fot € D; with |z| = r; we approximate; — z ask — oo with points

zx € Dy and|z;| < 7 tofind asequencg, € X N1y, |, (2) which converges to some surface point
§ € XN 1,4, (2). This completes the proof of (4.14) even for ale H, N B,, and hence of (F) for
1= 1.

To summarize this first step, we have defined the Sgts 7, C S; C R?, the unit vectors
vo, v1,v5 € S with J(vo, vg) = ¢o/2, and the corresponding subspadés = (vo)t, and H; =
(v1)*, and finally radiipy = 0 < p; without having made the decision ¥ = 1 or N > 1. In
addition we have now proved the first two items in Condition (A)d#fet 0,1, and (4.5) fori = 1.
Moreover, we have verified (4.9) fer= 0, 1, and all other statements in the list of properties (B)—(F)
are established for the respective smallest indé&ote, however, that we have not defingdyet.

3Alternatively, one could look fot € (0, p;) at the (longer) vertical segments .., (2), ¥(t) := /2 — |2|?, whose
endpoints are contained &B; N C* (w0, v1), and indB; N C~ (o, v1), respectively, use (4.12) far= 1 as proved just
before, to conclude that, ;) ., intersectsy for eacht € (0, p1). This proves (4.13) fot € (0, p1), the statement for
t = 0 = po is trivial, and fort = p; use continuity, and the fact thatis a closed set. This is actually the argument we
repeat in the induction step— j + 1 later on, since there we have less explicit information atsgut
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Stopping criteria and the iteration step. For the decision whether to stop the iteration or to continue
it with step numbey + 1 for 5 > 1, we may now assume that the sets

S@CT1C51CTQCSQC'”CT]‘CSJ‘CR?’,

and unit vectorsy, .. ., vj, vg, . . ., vj_; With (v, vf) = @o/2fori=0,...,j— 1, are defined. We
also have at this point a sequence of ragdi= 0 < p; < --- < p; satisfying (4.5) fori = 1,..., 7.
The first two conditions in (A) may be assumed to holdifer 0, . .., j. In (B) we may suppose (4.6)
fori =1,...,7, in contrast to (4.7) which holds far= 0, ...,  — 1. Similarly, we may now work
with (4.8) in (C), (4.10) and (4.11) in (D) for all=0,...,5 — 1, whereas we may use (4.9) in (D)
fori=0,...,7,(4.12), Condition (E), and (4.13) and (4.14) in (F) now{det 1, ..., j.

Now we are going to study the various geometric situations that allow us to stop the iteration here,
in which case we seV := j, ds(zo) := p; = pn, SO that (3.3) and (3.4) stated in Theorem 3.3 can
be extracted for! := H; directly from Condition (F). Indeed, (4.13) for:= p; = py Yyields (3.3)
sinceyy = 7/4. How to find the remaining vertices , x2, x3 such that Statement (i) of Theorem 3.3
holds for the tetrahedrdll = (xg, 1, x2, x3) Will be explained later in detail for each case in which
we stop the iteration. Moreover, we will convince ourselves that the only case in which the iteration
cannot be stopped, can happen only finitely many times. But each time this happens we have to define
unit vectorsvy, vj1 € S?, with J(vj,v7) = wo/2, andHj 4 = (vj+1)+, a new radiug; 1, new
setsT; 1 C S;41 containingS;, and then check all the properties listed in (A)—(F).

The different geometric situations depend on how the surface hits the “roof” of the current cen-
trally symmetric set5;, that is, where the points of the nonempty intersection in Condition (E) lie:

Case 1. (Central hit.) By this we mean that N 95, N C(%(po, vj) is nonempty.

Case 2. (No central hit but nice distribution of intersection points.) By this we mean that Case 1
does not hold but there exist two different poinis xo € X N 9B, N C(po, vj) such that

I, (0(21)), 7a, (0(22))) = 7, (4.18)

ol 3

wherery; denotes the orthogonal projection onto the current pldne- (vj)i.

In Cases 1 and 2, we can find triples of poifits, x2, x3) with all the desired properties and stop the
iteration right away. Below, in paragraphs 4.2.1 and 4.2.2, we indicate how to selegistireeach
of these cases, and present the necessary estimates.

If neither Case 1 nor Case 2 occurs, then we have to deal with

Case 3. (Antipodal position.) ¥ N 9B, N C(%@O,Uj) is empty and forany two different points
r1, 79 € XN OBy, N C(po,v;) we have

(i, (o) i, (o (2)) < 5 - (4.19)

(Intuitively, Case 3 corresponds to the situation alluded to in the introduction to Section 4: at this
stage we have to take into account the possibility that most poinfsof3,. are close to some fixed
2-plane containing the segment with endpoirgsz;.) Now this third case is more complicated, we
will distinguish three further subcases, of which two will allow us to stop the iteration here. Only the
third subcase will force us to continue the iteration.
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To make this precise, let us fix some painte ¥ N 9B, N C(po,v;). Such a point does exist
according to Condition (E). Set; := 7y, (z1)/|mn, (z1)| andw; := u; x v;, and consider the family
of rotations

R! := R(spo,w;),  s€[0,4]. (4.20)
Consider the union of rotated conical caps
Gl = |J Ru(Cp(p0,vj) \int By, o),  t€0,3]. (4.22)
0<s<t
Let
to:==sup{t €[0,3]: G¢n (Z\S;) =0} (4.22)

(Intuitively: we rotate the conical cap “away from the intersectiom 9B, N C(po,v;)” and look
for new points ofY in the rotated set.) There are now three subcases possible. To describe them, let
v} == Ry/(v;) (this will be the new; 1 in the third subcase).

Subcase 3 (a).G{O N (X\S;) # 0. Thenj = N; we stop the iteration and select andzs, the
remaining vertices of a good tetrahedron, using Lemma 4.2 to obtain the desired estimates; see
subsection 4.2.3 for the computations.

Intuitively, Subcase 3 (a) corresponds to the situation where we initially suspect that the surface
might be similar to the one with a little kink (see Fig. 1 at the beginning of Section 4). Condition (4.19)
alone does not exclude this — but here, rotating a portion of the cone slightly, we find new paints of
and detect thaXl is not flat at scale;.

Subcase 3 (b).We havet, = 1/2 andG{/2 N(Z\ S;) = 0. However,

2N (Cop, (00, 05) \ Cp, (00, 07)) # 0. (4.23)
Again, j = N; we stop the iteration and selegt andxs. For details, see subsection 4.2.3.

Informally: here we rotate a portion of the cone slightly and do not find new points efow-
ever, there are other points of the surface at comparable distances, again allowing us to exclude the
possibility that> is close to being flat at scalg.

Subcase 3 (c).We havety = 1/2 and
G{/z N(Z\S;) = 0. (4.24)
Moreover, (4.23) is violated, i.e.,

XN (CZp]' (9007 ,U;) \ ij (SOOa U;)) = 0. (425)

If this is the case, then we are unable to exclude the possibility that (mo3t sf)nearly flat at
the given scale, and the iteration goes on. Welset := S; U GJI/Z, vit1 = v = Ryp(v;),
Hjyy := (vj41)", and
K7 = Cil(po, vjs1), (4.26)
and define
pir1 = nf{t > p; : XN KT N OB, #0}. (4.27)
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Notice that Condition (4.25) in the context of this subcase guaranteeg;that- 2p; which verifies
(4.5) in Condition (A) fori = j + 1. Now we define

Siv1 =T U (K1 \ intB,), (4.28)
and check that Conditions (A)—(F) are satisfied. Inde®d, c S; U K}, ¢ B,, UB,,,, by
Condition (A) fori = j, which implies that (A) holds fof = j + 1 as well. Next,

Sj+1\ By, = KZ:i \ By, = Cp11 (90, vj41) \ By,

sinceS; C B, by Condition (A) fori = j. Hence (4.6) holds for = j + 1. As G{ C B,, for all
t € [0,1/2] we haveT; 1 C S; U B, C B, because of Condition (A) for = j. The second item
in (4.7) is a direct consequence of the definition7ef ;, whence (4.7) holds for = j. Condition
(C) holds also fori = j by definition of T}, ;. Using (4.9) fori = j, (4.24), and the definition of
pj+1 > 2p; in (4.27) we infer that (4.9) holds for= j + 1, and (4.10) fori = j. Relation (4.11)
for eachr € (p;, pj+1] is an immediate consequence of (4.25). Fet p;, however, we have to use
(4.24) in combination with the fact that all surface pointeim 0B, N C(yo,v;) are in antipodal
position described by (4.19), so that 9B, N C(po,v}) = 0.

Now we turn to the proof of (4.12) far= j + 1. The definition (4.27) op; implies that

0B: N C+(g00, Ui+1) cU, or 0B: N C+(g00, Ui+1) c R? \U (4.29)
forallt € (p;, pj+1). Now (4.24) together with (4.12) implies that
8Bpj N C+(S007’Ui+1) cu,

which excludes the second alternative in (4.29). Condition (E) holdsoy + 1 by the definition of
pj+1 and the fact thak is a closed set. For the proof of (4.13) fo j + 1 we look fort € (p;, pj+1)
at the vertical segment&y ;) .., (2), ¥(t) := \/t? — |2]%, 2 € Btsing, N Hj+1. The endpoints of
these segments lie ilB; N C* (vp, vj41), and iNOB; N C~ (o, vj4+1), respectively. Now we use
(4.12) fori = j + 1 to conclude thaf) .,,, (z) intersectss for eacht € (p;, pj+1). This proves
(4.13) fort € (pj;, pj+1). Fort = p; andt = p; 1 use continuity, and the fact thatis a closed set.
Finally, to prove (4.14) for = j + 1 note that (4.5) together with (4.12) for= j + 1 imply that
the two endpoints of the vertical segmeiits ., for = € A;1, lie in the different open connected
componentd/ andR? \ U. This suffices to conclude that these segments intetseehich finishes
the proof of all conditions in the list (A)—(F) in the iteration step.

Since we have established Condition (E) in the iteration step and (4.5) holds, too, we can deduce
that Subcase 3 (c) can happen only finitely many times, depending on the pagitart and on the
shape and size Af:

diam > > p; > 2p;—1 > -+ > 2i71p1 > 2i7150($0),
whence the maximal number of iteration steps is bounded by
1 + log(diam 3 /dp(xz¢))/ log 2.

This concludes the Subcase 3 (c). Now we have to analyze the geometric situation in the remaining
Cases 1, 2, and 3 (a) and (b), to extract surface paintss, z3, so that the selected tetrahedron
T = (xg,x1,x2,23) (With o = 0) satisfies Part (i) of Theorem 3.3. Part (ii) then follows from an
easy perturbation argument; see Corollary 4.4.
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4.2.1 Case 1 (Central hit): the details
We fix a pointz; € XN dB,; such that

3
xl'vj ::l:ijOS’Yh ngyl S ZQ@O;

and we are going to select suitable pointsz3 € ¥ N B,, so that Condition (i) of Theorem 3.3
is satisfied. This will justify our decision to stop the iteration by having/$et= j andd,(zp) :=
p; = pn- Without loss of generality, rotating the coordinate system if necessary, let us suppose that
v; = (0,0,1) € R* andny, (z1) € H; is equidistant frome; := (0,7;,0) andz; := (0, —7;,0),
where we recall from Condition (F) far= j thatr; = p; sin ¢g. (In other words, we assume w.l.0.g.
that the second coordinate of is zero.)
Condition (4.14) in (F) for = j guarantees the existence of a paipte X N I, .. (22), where
hj = cos pg = r;. Now let P := (0, z1, x2). Thenmy, (z2) L z1 and we have

pjlzal|cos H(x1, x2)| = |z1 - 22| = |71 - (22 — 7R, (22))],
which yields

| cos J(z1, x2)| <

Thus, Definition 2.1 (jii) is satisfied fary = 0, z1, z2, for everyd < /4. To selectrs, we consider
two subcases.

Subcase 1 (a)lf the pointszy, 22 andwy, (z1) are collinear, then we simply have = (0, z1, z2).
We then use (F) foi = j to selectrs € X N Iy, 4, (23), wherezz := (r;,0,0) belongs to the
two-dimensional diskD; := D?(0,r;) in H;. Thus,

pjsingg < |z — x| < 2p; fork #i,k,1=0,1,2,3,

which establishes Conditions (i) and (ii) of Definition 2.1 tbr= ds(zo) = p; and anyd < sin g =
1/v/2 Finally, dist(x3, P) = r; = p;sin ¢, and this takes care of Part (iv) of Definition 2.1 so that
T = (z0, 21,72, 73) € ¥(n,ds(x0) for anyn < 1/+/2, i.e. in this subcase Part (i) of Theorem 3.3 is
satisfied for any; < 1/2.

Subcase 1 (b)If the pointsz, 29 andej (1) are non-collinear, then we consider the line segment
J := F; N B,, N P contained in the affine plang; := H; + hjv;. Sincezy € C (3o, v;) and

y1 = or;(71) € J, itis easy to check that, no matter whesghas been choser, (and P) contains
pointsys € F; such that

3 T
WUmw, (y2), 7H; (y1)) > arccos <cot ©p tan 4goo> > —.

5
Therefore, we may apply Lemma 4.1 witly = 7 andy; := 7/5 to select a points € X on one of
the vertical segments,; ,.(z), z € v; := the boundary oD; in Hj, so that

np; < dist(zs, P) and np; < |z — x| < 2p; fork #i,k,i=0,1,2,3.

wheren := 1/100 < 7/200 < 1(1 — cos &) = co(n/4,7/5) (and we used — cosz > 22/,
x € [0, 5], for the first inequality). This verifies Conditions (i), (ii), and (iv) of Definition 2.1 for
eachd < n = 1/100, and we have seen before that Part (iii) of that Definition holds fof &ll 7 /4.

Hence Part (i) of Theorem 3.3 is also satisfied/far= 1/100 in this subcase, which completes our

considerations for Case 1.
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4.2.2 Case 2 (No central hit but nice distribution of intersection points): the details

The setting. As in Case 1, we have stopped the iteration, Set= j, ds(xo) := p; = pn. Let
H; = (vj)*t andF; = H; + h;v;, and leto = o, denote the central projection frodrto F.
Recall that we now have

3
YN OB, OC(Z@O,UJ-) = (4.30)
but we assume that there aveo differentpointszy, x2 € ¥ N 9B, N C(yo,v;) such that
7T
I(a; (o (@), 7o (0(22))) = 3 (4.31)

Letyr = o(xk), k = 1,2. Since the plané = (0, x1,z2) = (0,41, y2), we can apply Lemma 4.1
with o9 = /4, p1 = % to select a third point; € X on a vertical segment, ., (z3) (using (4.14)

fori = j), wherezz € v; := 9B, N Hj, the outer boundary of; in H;. This gives

mp; <dist(zs, P) and  mip; < |z — x| < 2p; fork #4, k,i=0,1,2,3.

where now we have; = co(r/4,7/3) = (1 —cos §) = 1.

It remains to verify that the anglg(z1 — o, 2 — x9) = (21, x2) IS in [n2, ™ — 2] for some
absolute constang > 0 (possibly smaller than,), to verify Condition (iii) in Definition 2.1. This is
intuitively obvious but we give the details (without aiming at the best possible bounds).

Let us suppose first that the two scalar produgtsv; (k = 1, 2) have the same sign. Write
Tk = ug + Wi, ug = mp,(vp) fork=1,2,

and letay, := |wg|/p; = |wg|/|zk| for B = 1,2. Note that sincdz;| = |z2| = p; and (4.30) is
satisfied, we have in fact

T 3 5w
<sgin|=—-= = — =12 4.32
ak_81n<2 4§00> 167 k ) ( 3 )
Moreover, we have -
H(ur,uz) = 4 (0(21)), 7h, (0 (22))) = 3 (4.33)

(the first equality in (4.33) holds since the scalar products,ofk = 1,2, with v; are of the same
sign). Set) := J(z1,z2). Then, since the scalar produats- v; (k = 1,2) have the same sign, we
havew; - wy = |wi| - |wa| > 0, and therefore

T1-T uy - u2) + (wg - w uy| - |u2| cos J(u, u
0 <cosyp= TP (u-u) 2(1 2):\1!\2!2%(1 2) | aias
1] - 2 1% P2
1
< 5(1 - a%)l/g(l - a%)l/2 + aqas9 by (4.33)
()
< 1-0(-a)20-ad)? +ara)
< 1-2A by Young's inequality,

provided that we can choosec (0, §) so that(x) holds, i.e., equivalently,

Aajag < <; - A) (1—a®)?(1 —ad)'/2. (4.34)
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Now, (4.32) implies that the left-hand of (4.34) does not exckeuh? ?—g whereas the right-hand
side is certainly greater tha, — \) cos? 2Z. Thus, (4.34) holds for every < ;cos? 2T, e.g. for
A = 1 cos? T = £ and then with strict inequality. This givess € [0, 1), i.e.,

2 <Y = J(x1,12) <

|

for ny := arccos% ~ 0.505 > 1/4.

If the two scalar products,, - v; (k = 1,2) have different signs, we considés = —z». Since
the central projections(zy) ando(Z2) coincide, we can apply the previous reasoning t@ndz,,
to obtaing(z1, T2) € [n2, 5], .. J(z1, 22) € [5, 7 — n2].

With the choicen := min{ni,n2} = m = 1/4 we have verified that the tetrahedr@h =

(x0, 1, z2, x3) Satisfies all conditions of Definition 2.1, hence is of clasg), ds(zo) for n = 1/4,
which proves Part (i) of Theorem 3.3 also in Case 2. This concludes the proof in Case 2.

4.2.3 Case 3 (Antipodal position): the details

We deal with Subcases 3 (a) and 3(b), where we have stopped the iteration, have=set, with
stopping distancé,(zo) := p; = pn. Recall thatH; = (v;)*, F; = H; + hjv;, ando = oy, is the
central projection fron to F.

As in Case 2Y N 9B, N C(yo,v;) is nonempty but we have

3
Y N0B,, N C(Zﬁpoﬂlj) =0.

However, in this Case condition (4.18) is violated, f@. every twopointszi,z2 € ¥ N 9B, N
C(¢o,v;) we have

™
ﬁ(ﬂHj(U(xl)),TrHj(O'(xg))) < g (435)
We have already fixed; € ¥ N 9B, N C(po,v;) and assume now without loss of generality
thatv; = (0,0,1), z1 - v; > 0, andu := u; = 7y, (v1)/|7H, (71)] = (1,0,0). Hence the unit vector
w = w; = (0,—1,0) determines the axis of the rotatiof¥ defined in (4.20) which in turn were
used to rotate conical caps to obtain the ge&tsand the stopping rotational angle (see (4.21) and

(4.22)). On this basis the three subcases in Case 3 were distinguished. Let us describe in some detail
how we choose:, andzs in Subcase 3 (a) and (b).

Stopping the iteration in Subcase 3 (a)

Let us first note thaty > 0. To see this, set
X' i={yeR: (y-v;)(y-u) <0}, Y7 = X710 (Cp, (0,v;) \ intB, ),

and note that if?s(C), (¢0, v;) \ int B, /2) contains a new point of 33, i.e. a pointy € ¥\ S;, then
we have in facy € R¢(Y7). However, this cannot happen fearbitrarily close ta), as in Case 3 we
have

dist(Y7, XN X7) >0

due to (4.35), (4.9) and (4.12) for= j in (D), and (4.5) fori = j.
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We choosers € Gy, N (2 Kﬁj). It is easy to see that if; - v; andx; - v; have the same sign,
then

= 90 < 3, 2) < 3, v3) + 30 Rey (07)) + H(Reg 0,2
5

5
§800+t0900+900§§¢o=§ﬂ-

(4.36)

If the scalar products, - v; andz -v; have different signs, then (4.36) holds with= (—x) instead
of x4, so that in either case we have

13—67r < JH(xp,x9) < — %7‘( = %
and Condition (jii) of Definition 2.1 holds with := 37 /16.

Now, take P = (0,71,z2) = (0,0F,(z1), 0 (72)) and apply Lemma 4.2 in connection with
(4.14) fori = j in (F) to find the last good vertex; on one of the segmenfs . ,.(z), wherez runs
along the circley; bounding the diski; N B, 7; = p; sin pg. Thendist(xs, P) > c1(po)p; where
c1(p0) = 15 sin 2¢g = 1, which verifies Condition (iv) of Definition 2.1 witfi := 1/16. Conditions
(i) and (ii) of that definition are easily checked, so that= (xg,z1,z2,23) € ¥ (n,ds(zo) (and
therefore Part (i) of Theorem 3.3 is shown) fp= 1/16 in Subcase 3 (a).

m, (4.37)

Stopping the iteration in Subcase 3 (b)

Use (4.23) to select a point € X N (Cgpj (¢0,v7) \ Cp, (0, v]’.‘)).
Assume first that, - v > 0. Since, by the definition ok, andv; = R 5(v;), we have

H(@1,v7) = Hz1,v5) + H(v;,v]) € [Fo, 500,

and<(z2, vj) < o, two applications of the triangle inequality for the spherical metric give

I(21,22) € [390, 30] = [7/16,57/8]
in that case. Ifs - v; < 0, then we estimate the angigz,, —x2) in the same way. This yields
<I(.C61, xg) € [71’/16, 1571'/16],

no matter what is the sign af; - v7, which yields Condition (iii) of Definition 2.1 fof = m/16. Note
that this estimate for the angle implies an estimate for the distansg)(7/16) < |z2 — x1| being
part of Condition (ii) in Definition 2.1 fof) = sin 7/16.

To selectzs, we argue similarly to the proof of Lemma 4.2.
Consider the affine plang = F; = H; + hjv;, hj = pjcospg. Leto = o be the central
projection from0 to F'. Set
E =0 (Cyp, (00, v})) C F;

this is a filled ellipse inf’. We havey, = o(z2) € E. Consider now the poinf; = o(z1) € F. The
planeP = (0,x1, z2) is equal to(0, y1,y2). The straight lind = P N F passes throughy, y2, and
has to intersead E andi», where the straight line

ly:=P,NF  for Py:=(R(Tr/8,w)(v;))" = (Ryja(vy)) ",
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is tangent t@E in F', and the direction of; is perpendicular te; and tou = (1,0,0). Letys be that
point indE Nl — which in general contains two points — which is closegtpand let{y,} := laN1.
Then it is easy to see thagj lies onl betweenys andy,. Therefore] contains a poinys such that
(see the figure below)

<}(7rHj (ys), 7, (y1)) = ¢ := arccos [cot ©0 (tan g)} = arccos (tan g) =1.1437..., (4.38)

and we haveP = (0, 21, 2) = (0, y1,y5).

Fig. 5. The configuration inF" discussed above. The (slanted, dashed)ilipasses througf: = o(z1) and some other
point (not shown) belonging to the ellipge The four points depicted ahare, from right to lefty:, y4, ys andys. Note
thaty, is always situated between (which is on the boundary of the ellipse) apd The position ofys, which is chosen
on! so that the anglei(nx, (y1), 7w, (y5)) = ¢, may change, depending on the slopé ahd position ofy; = o(x1) (a
special case(z1) = z1 € F is shown here). For some positions:af considered in Subcase 3 (b), whieis not so close
to a tangent tdZ, we might obtain the ordeg, theny, € I2, thenys € OF, and finallyys satisfying (4.38).

Applying Lemma 4.1 withp, := ¢, we find a points € H; N9B,;, r; = pjsin o, and because
of (4.14) fori = j in (F) the last vertex; € I, ., (23)NX C B,, of agood tetrahedron. The estimate
from Lemma 4.1 gives now

dist(z3, P) > co(po, ¢)p; = 0.0795... - p;.
Sincecy (o, @) < cos(m/16), it is easy to see that all the distaneks := |z; — x|, i # k, satisfy

0.0795...-p; < dix < 3pj.

All the conditions of Definition 2.1 are verified now, and we conclude That (z¢, z1, 2, z3) €
Y (n,ds(x0)) for n := co(po, ¢) = 0.0795 andd,(xo) = p; = pn, Which implies the validity of Part
(i) of Theorem 3.3 for this last Case where the iteration was stopped. Part (ii) follows from Corollary
4.4 below. 0
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4.3 Estimates for perturbed tetrahedra
Lemma 4.3. Assume thatq = 0, z1, z2, z3 € R? satisfy
() nd < |z; —x;] <np~idforalli#j,i,j=0,1,2,3,
(i) dist(xs, (xg,x1,22)) > nd;
(i) n < <H(x1 —x0,22 —x0) < T —1)

wherer € (0, ) andd > 0. Then, there exists a numbet= (1) € (0,1/4) such that

nd (4.39)

N

dist (ys3, (yo, y1,y2)) >
whenever; € B.4(x;) fori =0,1,2,3.

Proof. W.l.0.g. we may assume thag = 0. Lety; = x; +v; with |v;| < edfori = 0,1, 2, 3; we shall
fix e € (0,1/4) later on. Since the left-hand side of (4.39) is invariant under translations, it is enough
to prove (4.39) for the quadrupleo, y1, y2, y3) shifted by—wg. Thus, from now on we suppose that

Yo =z = 0, yj = x; +w;, wherelw;| <2ed forj=1,2,3.
By (iii), (i), and the fact that) < 1/2, we have
d*n* < d*n?sinn < |x1 X xo| < |z1||22] < d*n=2.

Moreover,y; x y2 = (z1 X x2) + v, where the remainder vectorsatisfies by Assumption (i)

(i)
[v| = Jwy X 9 + 21 X wo 4+ wy X wa| < 2-2ed - dn~ ' 4 (2ed)* < d*n7 (4e + 4€?) < 5ed®n~!
the last inequality is satisfied for alle (0,1/4) and0 < n < 1). Thus,
n

3
ly1 X yo| < 5\901 X ]

if [v] < 2d%n* < %|z1 x 22/, and the last condition is satisfied whenever

10e < 7. (4.40)
Sinceyy = 0 = x, for all such choices of we have according to Assumption (ii)
. (Y3, y1 X y2)|
dist 3, (Y0, Y1, Y2 = ==z 77
(y <y vy >) \yl ><y2’
o 20lysy x )| o 2[(xs, 21 X 22))| R
B 3‘$1 X 562| - 3|.’E1 X $2|
@ 2
—-dn—R
= 3 n )
where, by the triangle inequality,
2
0<R < ———
SR s g x2|(\w3| 1| x| + |ws |v] + [a3] [v])

2
< g(d2774)71(2€d P 4 ed - d*nt +dnt - sed?nTY)
< 6edn®
as0 < n < 1 hencen* < 12 for the last inequality. Choosing = ¢(n) € (0,1/4) so small that
R < 6edn % < %dn in addition to the requirement in (4.40), we conclude the proof. O
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Corollary 4.4. Givend > 0 one finds for any; € (0,1/2) a constantv = «(n) € (0,7/20) such
that for all tetrahedral’ € ¥(n, d) one has

T e “//(g,;d) forall |T—T'| < ad.

We omit the proof since it relies on simple distance estimates using the triangle inequality and on
Lemma 4.3.

4.4 Large projections and forbidden conical sectors

It is clear that conditions (A)—(F) stated at the beginning of Section 4.2 combined with the lower
bound for stopping distances obtained in Proposition 3.5 imply the statement of Proposition 3.4 for
all pointsz € >*.

Using density of2* and closedness af it is easy to see that Proposition 3.4 does hold also for
allz e ¥\ X%

Indeed, fixx € ¥ andr < Ry = Ry(FE,p). Choose a sequenceof — z, z; € ¥*. For eachy;,
let H;, andv; be the plane and unit vector whose existence is given by Proposition 3.4 for points of
¥*. SetD; := H; N B(x;,7/v/?2).

Passing to subsequences if necessary, we can assunig, tradv; converge as — oo to a plane
H and a unit vector. We shall show thatl andwv satisfy the requirements of Proposition 3.4 for
andr.

For eachw € D := H N B(z,r/v/2) we selectw; € D; with |w; — z;| = |w — x| such that
w; — w asi — oo. By (3.5) applied forz;, 3 contains pointg; = w; + t;v; where the coefficients
satisfy

|t¢|2 <r?_ |w; — xi|2 =7’ |lw — :13\2.

Again, without loss of generality we can assume that: ¢t asi — oo, S0 that
Yi = w; +tiv; — y = w + tv, t? <r? —jw— x|
Itis clear thaty € ¥ N B(z,r) andny(y) = w so that (3.5) holds at.
Finally, if one of (3.6)—(3.7) were violated with our choicefdfandv, then the respective condi-
tion would be violated for;, r, H; andv; for all ¢ sufficiently large, a contradiction.
5 Uniform flatness and oscillation of the tangent planes
Throughout this section we assume that= JU is a closed, compact admissible surfac&i) with
Mp(Y) < E < o0

for somep > 8. As was shown before in Theorem 3.1, all siclare Ahlfors regular with bounds
depending only on the energy, i.e. there existfgn= Ry(E, p) > 0 whose precise value was given
in (3.1) such that

22N B(z,R)) > gRQ forallz € ¥ andR € (0, Ro). (5.1)

We shall show that each suéhis in fact a manifold of clas§''. To this end, we shall show that
the tangent plane t exists and satisfies an a priorblder estimate. This a priori estimate allows
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to coverX: by a finite number of balls, with radii depending only prand the bound for energy,
such that in each of these ballsis a graph of aC! function with Holder continuous derivatives, see
Corollary 5.7. This fact will be used also later in Section 7 when dealing with sequences of admissible
surfaces with equibounded energy.

Our aim in this section will be to estimate the so-calleda numberssee e.g. the introductory
chapter of [8],

Bs(x,r) := inf sup M :  Fis an affine plane through (5.2)
yeXNB(z,r) r

for small radiir and pointsz € ¥, and to show that
Bs(x,r) < C(E,p)r" (5.3)

wherex = k(p) = (p — 8)/(p + 16) > 0. One of the issues is that we want to have such estimates
forall r < Ry (FE,p) whereR;(E, p) is a constant that does not depend®an

Itis known that for the class of Reifenberg flat sets with vanishing constant uniform estimates like
(5.3) imply C1* regularity, cf. for example David, Kenig and Toro [6, Section 9], or Preiss, Tolsa and
Toro [26, Def. 1.2 and Prop. 2.4]. In our case, we a priori know &t .« and this information by
itself does not imply Reifenberg flatness. However, we establish (5.3) inductively; while doing that,
we can simultaneously ensure thais Reifenberg flat with a vanishing constant in a scale depending
only on the energy.

In order to show precisely what is the role of energy bounds, we give all details of that reasoning.
Everything is based on iterative applications of Proposition 3.4 and of the following simple lemma.

Lemma 5.1 (Flat boxes).Suppose that#,(X) < E for somep > 8. Then, for any given number
1 > n > 0 there exist two positive constards = £o(n) > 0 andc; = ¢1(n,p) > 0 such that
whenever a triple of pointd = (z¢, 1, z2) € X3 satisfies

A€ S (nd), d<R(E,p)
whereRy(E, p) is given by(3.1), then we have
YN B(x,3d) C Uza({z0,71,72)) (5.4)
for eache € (0,e(n)) which satisfies the balance condition
elTPP > ¢ (n,p)E. (5.5)

In other words, we have
Bs(xo,3d) <

(and also a slightly weaker inequaliti: (xg, d) < €) whenever we can find an appropriate triple of
points of% and (5.5) is satisfied. Note that the balance condition (5.5) is satisfiedfaE!/ (?16) jr
so that the ‘boxesB(zg, 3d) NU-q({(zo, z1, z2)) become indeed flatter and flatter as the sdale 0.

w| ™

Remark 5.2. This lemma and its iterative applications in the proof of Theorem 5.4 are one of the
main reasons behind our choice of definition4f,. The proof presented below shows that for any
integrandiC,(T") satisfying

hmin(T)

T~ —to—
Ks(T) (diam T')2+s’

s> 0,
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for which the scaling invariant exponent equ&l$1 + s), the appropriate balance condition replacing
(5.5) would be

gt6+p8=(1+9)P > Energy:= / Ko(TYP dp .
24

Forp > 8/(1+s) this would yield, instead of (5.3) above, an inequality of the fgkfiz:, 1) < r(5:P)
with x(s,p) = (p + sp — 8)/(p + 16). However, forp > 24/s we havex(s,p) > 1, and reasoning
as in the proof of Theorem 5.4 below one could show that the norntalisdHolder continuous with
exponenk(s, p) > 1, i.e. constant! Because of that we do not work withdfe curvature introduced
by Lerman and Whitehouse in [16]: for sufficiently largethe only surface with finite energy would
be a plane.

Proof. We argue by contradiction. Suppose that some point X N B(xg, 3d) does not belong to
Uca(P), P := (xo,x1,x2). Fixeg = g9(n) > 0 so small that it < ¢, then for all tetrahedr@” with
verticesz! € B(z;,¢%d),i = 0,1,2,3 one has

d d
dist(ah, (z(, 2, 25)) > % = % . % and  A(T) = (z(, 2}, 25) € S (n/2,3d/2). (5.6)
(An exercise, similar to the proof of Lemma 4.3, shows that one can takeyég.= n2/200.) Now,
sincee?d < d < Ro(FE, p), we have by (5.1)

H2(S N B, £2d)) > g(52d)2 > et

fori =0,1,2,3. Invoking Lemma 2.10 withx = /6 as suggested by (5.6), we obtain an estimate of
the integrand,

1 /m\3e 2 1 ne
K250 (3) 650 = wom g 7= Ok,

Integrating this inequality w.r.f” € ¥4 N %.2,4(T), we immediately obtain

E > ,//lp(Z)z/
240%52d(T)

= 7°P(18-10%) Pel0trgs P,

/ / 4 2\4 7735 b
P(T") dp(T -
K ( )d:u( >>(€d) (18~104d)
which is a contradiction to (5.5) if we choosg(n, p) = n~3P(18 - 104)P. O

Remark. From now on, we fix; > 0 to be the constant whose existence is asserted in Theorem 3.3,
and we write

c1(p) := c1(n, p) (5.7)
for that fixed value of.

Lemma 5.3 (Good triples of points ofY). Let¥X € &/, p > 8 and .Z,(X) < oo. Suppose that
reX,yeXand0 <d=|r—y| <ds(x), whereds(x) is the stopping distance from Theorem 3.3.
Then there exists a poiate ¥ N B(z, d) and an affine plané/ passing through: such that

(i) A=(x,y,2) € .¥(n,d), wheren is the constant from Theorem 3.3;

(i) 7a(X N B(x,d)) D HN B(x,dsinyg), wherepg = 7;
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(i) <(H, P) < af, whereP = (z,y, z) and

3

1
ag = g — arctan 7 =0.955... < —. (5.8)

w

Proof. W..0.g. we suppose that= 0 € R3. Applying Proposition 3.4, we find € S? andH = (v)*
such that (3.5), (3.6) and (3.7) do hold for= d = |= — y|, H andwv. In particular,

D:= HNB(z,d/V2) C 7g(B(z,d)NY), (5.9)

and by (3.6)—(3.7)
T < Ay — z,v) < 3: . (5.10)
By (5.9), for eachw in the boundary circle of the disk the segment (w Vaw ) (cf.
Section 2.1 for the definition) contains at least one point o€hoosew, € D such t(1atw0 —x 1

7y — x) and|wg — x| = d/+/2 and then choose any poiate ¥ N I(wg). We claim that the
conditions of the lemma are satisfied by that paiand H .

Indeed, we have € B(z,d) andmin(|z — z|, |z — y|) > d/v/2 > nd. By choice ofz andwyg, we
also have

(z—2) (y—2)=2-y=(2—7mu(2) (y—7a(y) =*lz —mu(2)|ly — ma(y)|.

(z.9)l = (|z=7u(2)|/12]) (jy—7r(Y)|/ly]) < (cospo)® = 3, sothat(z,y) € [§, F].
This implies thatA = (z,y, 2) is (n, d)-wide, i.e.A € . (n,d).

To check (iii), one solves an exercise in elementary geometry. For th&t let (z,y, z). Itis
enough to check tha§ > <¥(P,v;) > arctan(1/v/2) and then use}(P, H) = Z — J(P,v). To
compute(P,v), let F = H + hv, h = dcos py = d/+/2 and note that the distande= dist (i1, l2)
between the two straight linés:= PNF andly := {z+sv: s € R} L F satisfies) > h/v/2 = d/2.
This gives the desired estimate of the angle. O

Theorem 5.4 (Existence and oscillation of the tangent plane)Assume thakt € .« and.Z),(X) <
E for somep > 8. Then, for eachx € X there exists a unique plarig.3 (which we refer to atangent
plane of¥ atx) such that

dist(z', z + T,X) < C(p, E)|2’ — z|'™*  forall 2/ € £ N By, (2), (5.11)

wherex := (p — 8)/(p+ 16) > 0 anddo; = 41 (E,p) > 0. Moreover, there is a constant = A(p)
such that whenever,y € Y with0 < d = |z — y| < §1(E, p), then

HT,2, T,%) < A(p) EY®+16) gr. (5.12)

Remark 5.5. In fact a possible choice faf; (E, p) is

51(E.p) = min {1, Ro(E,p), (A2) " (cr () “"8)} , (5.13)

where Ry (E, p) is the absolute constant given (8.1) of Theorem 3.1¢; (p) is defined in(5.7), and
1 (7w *
po =1 (5 —g) -
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Proof of Theorem 5.4.Let us describe first a rough idea of the proof.
To begin, we use Lemma 5.3 and select ¥ N B(z,d) such that the tripleA = (z,y,2) €
< (n,d). Then, fixingd; (£, p) small and setting

dy ==d/10N="1, ey suchthaePdy? = ei(p)E for N =1,2,...,

we shall find triples of pointsA y = (z, yn, 2x) € X3, such thayy, 2y € B(x,2dy) and the angle
Y~ = Ay~ —x, zy —x) = § with a small error bounded by ) <y whereC' depends only op and
E. The crucial tool needed to selagt, zy is the knowledge that N B(x, d;) has large projections
onto some fixed plane.

Thus, an application of Lemma 5.1 shall give

XN B($,3dN) C UENdN (PN), Py = <a:,yN,zN). (514)

Moreover, we shall check that the plan@g satisfy<(Py+1, Py) < Cen, andP; is close toP, =
(x,y, z). Thus, the sequende ) of normal vectors tdPy is a Cauchy sequence §2. This allows
us to set the (affine) tangent plafte= T, > + x to be the limit plane of thé’y, and to prove that
P does not depend on the choicewgf, 2y and Py (which is by no means unique). (It is intuitively
clear thatP = lim Py should be equal to the affine tangent plan&tat all points where: a priori
happens to have a well defined tangent plane.) The whole reasoning gives

%:(TIE,P()) < 081 = C/dn.

Reversing the roles af andx, we run a similar iterative reasoning to obtain the above inequality with
x replaced byy. An application of the triangle inequality, combined with a routine examination of the
constants, ends the proof.

Let us now pass to the details.

Again, we assume for the sake of convenience that(. Set

d

dN = W, d:|ﬂs—y‘, N:1,2,...7 (515)
and lets y be defined by ‘
NPT =i (p)E,  N=1,2,... (5.16)
Note that )
ci1(p)EY ©+» 1\ 165
En = ( ld(f)p > (10 S0 as N - .

Moreover, by our choice af; in (5.13),

2003 en = 200(c(E)/PTOS ay,  we= T 8 o
N=1 N=1

p+16
0
Z 10—Nﬁ> dF

= 200(cy(p)E) /PO <
N=0

400
S p (Cl(p)E)l/(p—'—lG)dn
1
< o= (5-a). (5.17)



whereoj € (0, %) is given by (5.8). (We have uséd 10~7% = 10%/(10" — 1) < 2/ in the second
inequality above.) In particulary < 1 forall N € N.

Proceeding inductively, we shall define two sequences of pgiptsy € X which converge to
x = 0 and satisfy the following conditions for ea¢h=1,2, . ...

— < |ynl|, lzn] < 5 (5.18)

An initial plane Py and planesy = (0, yn, zn) satisfy ayn := 9(Pn, Pn-1) < 200ey. (5.19)
The angleyy := J(yn, 2n) € [0, 7] satisfie#yN — g‘ <6e1+40(e1+---+en-1). (5.20)

We shall also show that there exists a fixed pl&hégiven by an application of Lemma 5.3 at the first
step of the whole construction) throughsuch that, for eactv = 1,2, ...,

FH(B({L',CZN) N Z) D DH(x,dN/2) = B(l’,dN/Q) NH. (5.21)

Here is a short description of the order of arguments: we first apply Lemma 5.3 to Bgleet
then correct it slightly to have two poinig, z; satisfying (5.20). This is done in Steps 1 and 2 below.
Next, proceeding inductively, we first selegt . 1, zny 1 very close to the intersection of segments
[0, yn] and(0, zy] with the boundary 0bB,, ., (Step 3). Finally, we estimate the angle (Step 4)
and prove thaP’ = lim Py does not depend on the choicelef (Step 5).

Step 1.For givenz andy use Lemma 5.3 to seleete B;(X) and the plané? satisfying conditions
(i)—(iii) of that lemma. (Notice thafx — y| = d < 61(E,p) < Ro(E,p) < ds(x¢) by our choice
(5.13) and (3.8) in Proposition 3.5, so that Lemma 5.3 is indeed applicable.)

Let Py = (z,y, z) = (0, vy, z); by (iii), we have

1
ay =Py, H) < afy = g - arctanﬁ < g (5.22)
Lemma 5.1 givegs(z,d;) < £; . Set
Fy = {Zl S B(O,dl) : diSt(Z/,P()) < €1d1} =Ugqq, (Po) N By,. (5.23)

We know that™ N B(z,d;) C Fy. The goal will be to prove that one can chogsg zy so that for
Py = (x,yN, 2N)

XN B(x,dN) C Fy := {Zl S B(O,dN) : diSt(Z/,PN) < ENdN} = UgNdN(PN> N BdN (5.24)
also forN = 1,2..., and to provide an estimate fary = <(Py, Pv—_1) showing that for largeV

the center planes of the sety stabilize around a fixed affine plane.
Note that (5.21) forV = 1 follows from Lemma 5.3 (ii) sincein ¢y = 1/v/2 > 1/2.

Step 2 (choice ofP). We shall choosg, 21 with v1 = J(y1,21) = §, and we shall show that the
planeP; = (0,y1, z1) satisfiesy; = 4(P1, Py) < 12¢;. To this end, select a poin}) € Fj such that

ho := dist(zo, H) = dist(&, H) > 0.
0 ist(zo, H) max dis (&, H)

It is clear thatr, exists since is compact, and that, € 0By, ; see Figure 6.
Letag := J(x0, Py) denote the angle betweep and its orthogonal projectiomp, (zo) onto the
planeP,. We havesin o) = e1d;/d; = £1. Hencey < (7/2)sin ) < 2¢;.
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Fig. 6. The initial configuration inB(x, d1); cross-section by a plane which is perpendiculafitand Py. A priori, at this
stage we do not control the topology Bfand we cannot even be sure thats a graph oved (or ). The angleng is
marked with a triple line.

Now, since2e; < 2003 ey < (% — of) by (5.17), we can use (5.22) twice to obtain

5.22 1
ho = dysinady + o) 22 dy sin(ag, + G —at)
3 1 5.22 3
= d Sin(1a8+1%) (< )dl sing :dl\g. (5.25)

This implies that each straight lire= [(w) which is perpendicular té/ and passes through a point
w in the disk

Do = Dy (0,79) = HN By, wherer3 + h3 = d2,
intersects the finite slaby along a segment of length2ly, wheree d; /ly = cos o), which gives
lo = (e1d1)/ cosafy < 2e1d; by virtue of (5.22). Since? = d2 — h} > d3/4 according to (5.25),
we haveD := Dg(0,d;/2) C Dy in H. Choose two points;, b; in the circle which bound® in
H so thata; L b andb; € Py N H. Take the lined(aq), I(b1) passing through these points and
perpendicular td{, and select

y1 € XN l(al) N Fy, z1 €XN l(bl) N Fy (5.26)

(such points do exist sincén B(x, d;) C Fy and the projection of N B(x,d;) onto H containsD
by (5.21) already verified faN = 1).
Note thaty}, zj = b1 given by

{vit =ll@)nk, {a}t=Ub)NH (5.27)
satisfyy] L 21. Leto := (v}, y1), 6o := (2], z1). We have
e1dy
(d1/2) —lo

361

Yo <tanty <

aSlo < 2e1dy (528)

IN
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sincee; < Y en < (200)"'ug < 1/12 by (5.17). Similarly, we havean 6, < 3¢, so that both
anglesiyy andf, do not exceede;. Therefore0 < 71 = J(y1,21) < I(y1,9]) + (Y, 1) +
J(21, 21) satisfies

”Yl - g) < 9o + 6y < beq, (5.29)

which gives (5.20) fotNV = 1. By choice ofay, b1, (5.18) is satisfied folv = 1. Thus, the triangle
A = (z,y1,21) is (n,d)-wide, i.e.A € L (n,d) for n :== min{1/2,7 — (7/2 4+ 6¢1)} = 1/2 (by
(5.17)), andd := d; < Ry(FE,p). Consequently, by virtue of (5.16) we can derive (5.24)0k= 1
with the help of Lemma 5.1.

Finally, normalizingy}, z; € Py, we easily check that

aq = <1(P1,P0) < 12¢4 for P1 = <x,y1,21>, (530)
which gives (5.19) fotV = 1. Moreover, by (5.30), (5.22), and (5.17) we have

(5.30)(5.22) 6.17) 1 (5.22)
AP H) < AP, Py) + ) 2 1261 +05 < (g - ag) vap < w3,

To summarize, we have now proven (5.18), (5.19), (5.20), (5.21), and (5.24) ferl.

Step 3 (induction).Suppose now thaf, ..., yn, 21, - - . , 2y have already been selected so that con-
ditions (5.18), (5.19), (5.20), (5.21), and (5.24) are satisfied foer1, ..., N. Note that since (5.24)
is satisfied for all indices up t&, we have

ﬁg(.%’,dj) S g5 = O(d?), ] = 1, .. .,N. (531)

We shall select two new pointgy.1, zy+1 such that (5.18), (5.19), (5.20), (5.21) and (5.24) are
satisfied withlV replaced byV + 1.
Choose first two auxiliary points,

{yf/\/'+l} = [O7yN] ﬁaB(OadN+l)7 {Z§\7+1} = [Ova] maB(OdeJrl) (532)
SincePy = (0,yn, zn), We haveyy_ , 2y, € Pn N Bay,, C Fy.Fixazy € Fy such that

hy = dist(zy, H) = max dist(§, H).
§EFN

Setdy := 4(Pn, H), &y := J(zn, Py). We note that:y € By, and by (5.17)
: (5.17) 1 .
047\[ = arcsiney < 2eny <21 < 1 (g — ao) .

Applying the triangle inequality and using the induction hypothesis (5.19) ug,tand (5.22), we
estimate

ay = H(Pn,H) (5.33)
I(Po, H) + (P, Py) + 4(P2, P1) + -+ + I(Pn, Pn-1)
ag+ar+--+ay

1

* m *
o5+ (g - ao) by (5.22), (5.19), and (5.17).

IN

IN
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Thus,oy + o, < af + 3 (5 — o)) < % and, as in the second step, we have

hy = dysin(ay + o) < dy sin — = alN\/g

— N>1.
3 27 -

Hence,d% = h% + r% for somery > dy/2; as previously, we conclude that each straight line
[ = I(w) which is perpendicular té/ and passes through a pointin the disk

Dy = DH(O,TN) = HﬂBrN,

intersects the finite slabx along a segment of length 2iy, whereeydy /In = cos <(Pn, H),
which givesly < 2endy by virtue of (5.33). Moreover, by (5.21) (which, by the inductive assump-
tion, holds forN), each segmenft(w) for w € Dy (0, dy/2) vertical to H must contain at least one
point of X.

We now choosey i1, z2y+1 € Fiv N X such that

Ta(YN+1) = TH YN 1) s Tr(zN1) = TH(ZN 1) - (5.34)

To establish the desired estimateqdfPy 1, Py ), we show first that

¢N = <I(yN+17yN) < 205Na (535)
On = J(2n11,2n) < 20en. (5.36)
(5.37)

Indeed,

5.32
tanyy = tan J(yni1,YN) 622 tan S(yn+1, Yn11)
5NdN
dyvy1 — In
ENdN

dn11/2

where the last inequality holds sinte < 2endy < 2e1dy < dn /300 < dn41/2; remember that
261 <23 pen < (100) g < (100) "1 /12 < 1/300 by (5.17).

Thus,yy < tanyy < 20ey. Similarly, 0y < tanfy < 20ey. This proves (5.35) and (5.36).
Moreover, the triangle inequality gives an estimate of the amgle, = J(yn+1, 28+1)s

<

= 20ep,

VN1 — W] < On + ¥y < 40ey, (5.38)
and consequently
m s
"YNJrl -3 < "YN - 5) + 40e .

By induction, this inequality implies (5.20) witlV replaced byV + 1. We also have

dn+1
2

3dn41
2 M

<dni1 —IN <|yn+1] <dngr +In <

and a similar estimate fgey 1|, which gives (5.18) withV replaced byV + 1. Therefore the triangle
A = (2,yN+1,2N+1) 1S (M1, dN41)-wide, i.e. A € L (m,dn+1) for g1 := min{l/2, (7/2) —
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50) yen} = 1/2 according to (5.17). Sincg; = 1/2 > n = the constant from Theorem 3.3,
Lemma 5.1 is again applicable to obtain

XN B3dN+1 - U5N+1dN+1 (PN—H) s

which implies (5.24) withV replaced byV + 1.

To check (5.21) withV + 1 instead ofN, we fixz € ¥ N (Bgy \ Bay.,,) and estimatéry (z)|.
Since there € Fiy = U. 4y (Pn) N By and the angley, = J(Py, H) satisfies (5.33), we check
thatsin(<(z, Pn)) < endn/|z| < endn/dn+1 and consequently

Imu(2)| = [z]cos 9(z, H)
d
> |z|cos <a§v + arcsin N>
dn 1
> |z| cos(aly + 20ey) asdy = 10dn+1
> |z|cos g by (5.17) and (5.33)
> dny1/2.

Since by the inductive assumption ((5.21) up to indéxthe projectionry (X N By, ) contains the
whole diskD (0, dx/2), we do obtainty (XN By, ) O D (0,dn41/2).

It remains to verify (5.19) withV replaced byN + 1, i.e., the desired inequality for the angle
an+1 = $(Pn41, Pn).
Step 4. Estimates ofy . We normalize the vectors spanniffgand set:; := y;/|y;|, w; := z;/|2;] .
We also sef/; = |u; x w;|, noting that by (5.20) which we already have shown to hold up'te 1,
and by (5.17) that

EATHETY
so that
2
12Mj=sm7j2{ forall j=1,...,N+1. (5.39)
Now, we compute the difference of unit normalsRg ., and Py,
u X w u X w
N+1 N+l  UN N T+,
lun+1 X wni1]  Jun X wy|
where
T, = My (un+1 X WN41 — UN X WN)
' MyMp -1 ’
My — My
T = ——uny X wy.
MyMpy 1

Sinceuy,wy € S?, we can use (5.35), (5.36) (which yield the estimatesof | — uy andwy 41 —
wy), and in addition (5.39) and (5.38), to obtain

(5.39)
Tl < V2luns1 X wygr — un X wy)|
< V2(Jlunt1 — un| + lwng — wn)))
< 40V2en < 60ey;
(5.39) _ : . ,
Tz < 2|sinyy — sinyn41] sincesin is 1-Lipschitz
(5.38)

< 2w —n41| < 80en.
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This implies
ant1 = I(Pn41, Py) < 140ey, (5.40)

i.e., (5.19) holds also withV replaced byV + 1.
Finally, a computation similar to (5.33) shows that

I(H,Pyyy) < 7/3. (5.41)

To summarize, under the inductive hypothesis that (5.18), (5.19), (5.20), (5.21), and (5.24) hold up to
N, we have shown that (5.18), (5.19), (5.20), (5.21), and (5.24) do hold Dp+to1, which yields
(5.18)—(5.21) and (5.24) for alV € N by the induction principle.

Step 5 (existence and uniqueness tifn Py). The unit vectors.y = yn/|yn| andwy = zn/|2n/|
spanning the affine plane3y with unit normalsvy := uy x wy satisfy J(uy,wy) = yv €

(15—27r, %77) for all N, so that subsequences again denoted hyandw,y converge to unit vectors

u,w € S with J(u,v) € [, ] spanning a limiting affine plan® with unit normal vector
v :=u X w, SO that we can salfy — P asN — oo. Since allPy containz = 0 so doesP. As in

(5.17), summing the tail of a geometric series, we obtain by (5.19):

(P, Py) = lim (P, Py) < D a1 <200 ) g
e j=N j=N+1
(5.19) 4
R (ern) ) Vs
= Cy(p)EY@PHOg% . forall N=0,1,2,... (5.42)
In particular,
H(P, Po) < Co(p) BV PHOdf = Cy(p) BV P19, (5.43)

However, as we cannot a priori claim thatis a graph overH, the choice ofyy and zy for
small values ofV does not have to be unique. Suppose that for two different choices of sequences
yn,zn € X andyly, 2 € X (satisfying (5.18)—(5.20), and (5.24) for &l € N), we obtain

Py = (z,yn, 2n) — P, Py = (z,yy,2y) = P/ as N — oo,
but P # P’ andr/2 > (P, P') = ¥ > 0. Fix N so large that y < 9/10 and
max ((P, Py), 4P, Py)) < 9/10.

Sinceyly € Py anddn/2 < |yiy| < 3dn/2 by(5.18), we obtainy(yy, P’) < 9/10. Hence, the
angle betweeny,, and Py cannot be too smalki(yy, P) > J(P’, P) — 4y, P’) > 99/10 and
AUy, PN) = Yy, P) — (P, Pn) > 49/5. Therefore,

: . dy 2 49 _ dnv
dist(yly, Pr) = |yin| sin J(yly, Pr) > T~ & > == > 2endy,

which is a contradiction to
>N B(:r, 3dN) C UgNdN(PN),

as|yly| <3dn/2 < 3dy. Thus,P = lim Py is unique and does not depend on the choicegof .
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We setP =: x + T, X to define the tangent plarie. X of ¥ at the pointz, and we set.,(z) := v
to obtain a well-defined unit normal © at z; the estimate (5.42) gives in fact (5.11) (justifying the
term “tangent plane”)

diSt(l‘l, P) < 2endy + dysin ﬁ(P, PN)
EYPHO O(df"), N — oo, foralla’ € B(z,dy)NY,  (5.44)
where the constant in ‘big O’ above depends onlyon
Step 6 (conclusion of the proof)Reversing the roles aof andy, running the whole procedure one

more time, and using (5.43) twice, we obtain

A2, T,Y) < HTX, Po) + APy, T,X) < 205(p)EY P10 gr. (5.45)

We state one corollary which easily follows from the last result and its proof. It tells us that it is
not really important how we choodg); there are many choices which give a similar approximation
of T,,X.

Corollary 5.6. Assume thall € </ and.#,(X) < E for somep > 8. LetT, > andd; = 6;(E,p) > 0
be given by Theorem 5.4.

Whenever, y, ¢ € Y with0 < d = |z —y| < §1(E,p),d/2 < |z — (| < dandJ({—=z,y—x) €
[r/3,2m/3], thenT,X and the planeP = (x,y, () satisfy

YTEP) < Cp) B0, w= Lt (549

where the constant’;(p) depends only op.

Proof. We use the notation introduced in the proof of Theorem 5.4. Sirigey, Py) < EV/(@+16) s

by (5.43), it is enough to show that the angjéF,, P) does not exceed a constant multiple of
EY®+16)dr Noting thatd/2 < |¢ — z| < d = d; and(¢ belongs to the slab’,, 4, (F), we eas-

ily compute this angle and finish the proof. The computational details, very similar to the proof of
(5.40), are left to the reader. O

In order to deal with sequences of surfaces with equibounded energy in Section 7 we establish a
local graph representation of one such surtacé finite .#),-energy on a scale completely determined
by the energy valuez,(3) and with a priori estimates on tt@"*-norm of the graph function.

Corollary 5.7. Assume thap > 8, .#,(¥) < E < co. Then there exist two constants< a(p) <
1 < A(p) < oo, such that for each € X there is a function

1
Ty — (T@) ~R
with the following properties:
() £(0)=0,V[f(0)=(0,0),

(i) [VF () — Vi (2)| < AQ)E7 |y — o555,
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(i) If Ry = Ry (E,p) :=a(p)E~"/?=8) < Ry(E,p) (WhereRy(FE, p) has been defined i{8.1) of
Theorem 3.1) and if
Oy) ==z +(y, f(y), yeTT=R

then
®(D3p,) C [Blz, R) N3] € @(Dry), (5.47)

whereDpr, = B(0, R1) N T, X is a disk inT,,% around0 € T,%, and
DB (y1) — DB(ya)| < A(p)ET |y; — 12| 7775. (5.48)

In particular, ¥ is an orientableC'!*-manifold forx = (p — 8)/(p + 16).

Proof. Basically, we mimic here the proof of Theorem 5.1 from [35]. (In [35], we knew that the
surface cannot penetrate two ballsfiaedradius, touching: at every point; this is replaced here by
angle estimates (5.42) and (5.43), and the existence of forbidden conical sectors, cf. Proposition 3.4.)
Fix = € 3. Without loss of generality suppose that 0.

Step 1 (the definition of /). We use the notation from the proof of Theorem 5.4. Recall the the plane
P =z + T, (used tadefineT . X2) has been obtained as a limit of planeg satisfying (5.42); for all
x,y € X with |z —y| = d < §;(F, p) given by (5.13) we had the angle estimate (5.45). Using (5.44),
one can easily show that

dist(z', P) < Ay (p)EY/ PH16) gl+s (5.49)

whenever’ € B(z,d) N X for somed < §;(E, p). We shall use this estimate and Proposition 3.4 to
show that ifr < a(p)d1(E, p) for a sufficiently small constant(p) € (0,1), then

(mp(B(z,4r/3) N X)) contains the dislD, := B(z,r) N P. (5.50)

Indeed, otherwise there would be a point D, and a segment = I, ,,(z) L P (we fix a unit
vectorS? 5 w L P) of length

2h = 2A,(p)EY P10 (47 /3)1 1"

r
100

such thatf N3 = (). By (5.49) all points of in B(z,d), d = 4r/3, are in fact located in the thin
slabUy (P). Thus, it is easy to use Proposition 3.4, (3.6)—(3.7), and check that — no matter what is
the angle betwee® and the vector given by that Proposition — the seig'i(@o, v) \ B, contain

two open ballsB* which are in twadifferentcomponents of3(z, d) \ U, (P). Hence,

< if a(p) is small enough

BT C Cf (¢o,v) N U, B~ C C5 . (p0,v) N (R3\T)

Now, one could use the segmdnto construct a curve which contains no pointobut nevertheless
joins a point inB~ to a point inB*. This is a contradiction proving (5.50).

Next, using (5.45), one proves thag is injective onB(x, 4r/3) N P. Otherwise, there would be
apointz’ € P,4r/3 > |2/ — x| = p > 0, and a segmertt := I ,,(2") with

B = Ay (p)El/(p+16)p1+/{ < p/lOO
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such that!’” N X would contain two different pointg; # y». Then, lettingP, = 7,3, v1 = (y1 —
x)/|ly1 — x| andve = (y2 — y1)/|y2 — y1|, we would use (5.45) to obtain

J(v1,v2) < H(vr, P) + (P, P1) + (P, 02)
< Ay(p) BV @10 pr

< % if a(p) is small enough.

Sincev, L P we have on the other hand for sufficiently smelb)
J(v1,v2) > 5~ J(P,vy) > 5 A3(p)E1/(p+16)pn N %

a contradiction.
Fory € U, whereU denotes the interior i®® of 7p(X N B(z, 4r/3) we now define

-1
f(y) - (WP‘ZHB(:L‘AT/S) (y) ’

and let®(y) be defined by the formula given in Part (jii) of the Corollary. Note tiab D, by (5.50).
It is clear thatf(0) = 0 andV f(0) = (0,0). The differentiability off at other points follows from
(5.49) which implies that fop — 0 Graphf N B(z, o) is trapped in a flat slab of heightS o'+~
around dixedplane (depending on but independent from).

Step 2 (bounds for|V f]). The vectonV f (y), —1) is parallel to the normal direction 0 atxz when
y = wp(x). Takingy € U, we have by (5.12) of Theorem 5.4

a(y) = I(Tp) S, ToX) < /4
Sincetana(y) = |V f(y)|, we have|Vf(y)| < 1 everywhere inD,. Thus, f is Lipschitz with
Lipschitz constant 1.
Step 3 (the oscillation ofV f). Fix two pointsy;,y2 € U and seta = D1 f(y1), b = Daf(y1),
¢ = D1f(y2), d = Daf(y2) whereD; stands for the-th partial derivative. The angle between the
tangent planes to atz; = ®(y;), i = 1, 2, satisfies
AV N2 . 2
e — (a—c)*+ (b—d)* + (ad — be)
(1+a2+b2)(1+ 2+ d?)
S02) (a—c)?+(b—d)® _ |Df(y1) = Df (o)l
- 4 B 4 '
An upper bound forx is also given by (5.12). Combining the two, and noting that — xzs| <

2|ly1 — y2|, we obtain the desired estimate far, y» € U and conclude the proof, extendirfgo the
whole tangent plane by well-known extension theorems; see e.g. [11, Chapter 6.9]. O

(5.51)

Remark 5.8. Assume that some absolute small constgnis given a priori, sayy = ﬁ Then,
shrinkinga(p) in the previous corollary if necessary, we have above/foy, € Drg,

V) = V)| < A)EFS|y - ol 75 < Ap) BT (2R)) 5

p=8 _
< 2A(p)Esa(p)riis (E‘l/(p‘s))”“" = 24(p)a(p)¥75 < eo.

Remark 5.9. It is now clear that ifS € .o with .Z,(¥) < oo for somep > 8, thenX = JU is a
closed, compact surface of clag$". Thus,X is orientable and has a well defined global norma,

For a discussion of issues related to orientability, we refer the reader to [17] and to Dubrovin,
Fomenko and Novikov's monograph, [9, Chapter 1].
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6 Improved Holder regularity of the Gauld map

In this section we prove

Theorem 6.1. Let ¥ € «/; assume thap > 8 and.Z,(¥) < E < oo. ThenX is an orientable
manifold of clasg”!*(X) for A = 1 — §. Moreover, the unit normats; satisfies the local estimate

1/
ns(@1) — ns(22)] < C () ( /[E Kr du) L1 — ol 6.1)

ﬂB(I1,10|x17I2|)]4

for all 71,2 € ¥ such thafz) — x2| < 62(E,p) == as(p) B~/ P9,

Remark. Once (6.1) is established, the global estimatg(z1) —nx(z2)| < const|xz; —x2|* follows.

Before passing to the proof of the theorem, let us explain informally what is the main qualitative
difference between the estimates in Sections 5 and 6. In Section 5, to prove that the surface is in
fact C1*, we were iteratively estimating the contribution to the energy of tetrahedra with vertices on
patches that were very small when compared with the edges of those tetrahedra. A priori, this might
be a tiny fraction of#,(X). Now, knowing already that locally the surface is a (fta)* graph, we
can use a slicing argument to gather more information from energy estimates — this time, considering
not just an insignificant portion of the local energy but the whole local energy to improve the estimates
of the oscillation of the normal vector.

The whole idea is, roughly speaking, similar to the proof of Theorem 1.2 in our joint paper with
Marta Szumaska, see [33, Section 6]. Since the result is local, we first use Theorem 5.4 to consider
only a small piece ok which is a (very) flat graph over some plane, and then we use the energy to
improve the Hblder exponent from = (p — 8)/(p + 16)to A =1 — % > K.

Proof of Theorem 6.1. Step 1. The settingWV.l.0.g. we consider a portion &f which is a graph of
f:R? 5 5Qp — R, whereQ is some fixed (small) cube centered)dh R? and f € C1* satisfies
V f(0) = (0,0) and has a very small Lipschitz constant, say

‘f(x)_f(y)‘ §80]m—yl, xay€5Q0- (62)
By an abuse of notation, we write;(x) to denote the normal t& at the pointF'(x) € 3, where
F:R?>5Q0 3 x+— (z, f(z)) € R? (6.3)

is the local parametrization &f given by the graph of, compare with Corollary 5.7. To ensure (6.2),
just use Remark 5.8.

We shall writelC(zo, 1, 22, x3) to denote the integrand o#,, (without the powep) evaluated at
the tetrahedron with four verticds(x;) € X for z; in the domain of the parametrizatidn

Since (6.2) implies thdV f| < ¢, we also haveF'(z) — F(y)| < (1 +9)|x — y|*; hence

(1+e0)22(U) > A*(ENF(U)) > #*(np2 (SN F(U))) = #*(U) (6.4)
for every open sel/ C 50Q)q. For the sake of convenience, we assume in the whole proof
1
It is an easy computation to check that for every two paintg € 5Q)¢ we have
(1 =220)[Vf(z) = V(y)| < |ns(z) —ns(y)] < (1+20)|Vf(z) = V)l (6.6)
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We fix an orthonormal basig;, e, e3) of R? so thatey, eo are parallel to the sides @f.

Step 2.Set, forr < diam Qg < 1, and any subsef C Qg

®i(r,S) 1= max [ns(y) —nx(z)],
y¥,2€Qo0NS

i(.5) = max V() - V().
Y,2€QoNS

o*(r,5) = @7(r,5) + 03(r,5),

where|| - || denotes thé> norm inRR?, i.e. ||z|| := max(|x1], |x2]) for z = (21, z2). ShrinkingQy if
necessary, we may assume that

@* (diam Qo, Qo) < 1o 6.7)

(by continuity ofny, and of V f.)
As in [33, Section 6], we want to prove the following

Key estimate.Assume that, v € Qg and letQ(u,v) := the cube centered & + v)/2 and having
edge lengti2|u — v|. There exist positive numbeds = 55(E, p) = aa(p)E~Y#=8) andC(p) > 0
such that whenevér < |u — v| < dq, then

2|u — |
N

whereN is a (fixed) large natural number such tiat/2)~ > 240 and

E(u,v) ::/ KPdp .
[F(Q(u,v))NE]*

One should view the second term on the right-hand side of (6.8) as the main one. The first one is just
an error term that can be iterated away by scaling the distances down to zero.

We now postpone the proof of (6.8) for a second and show that it yields the desired result upon
iteration.

Note that (6.6) and (6.5) impl¢* < 3®7. Moreover, ifu,v € B(a, R) and|ju —v|| = r < R,

then@(u,v) C B(*5%, V2 |u —v|) € B(*“£%,2|lu — v||) C B(a, R+ 2r). Thus, denoting

1/p
Mp<a7p) = (/ ]de/,b) ) a€Q07/0>07
[F(B(a,p))Nx]*

and taking the supremum overv € B(a, R) with |u — v| < r < R, one checks that (6.8) implies

ns(u) = nx(v)] < 400 ( Q) + CEIE@ ) Pu—vl,  (68)

®*(r,B(a,R)) < 1209*(r/n,B(a,R+ 2r)) (6.9)
+3C(p)My(a, R+ 2r) 1, n=N/2.

A technigue which is standard in PDE allows to get rid of the first term on the right-hand side of this
inequality. Indeed, upon iteration (6.9) implies

®*(r, B(a,R)) < 1207 ®*(r/n’, B(a, R + 20;)

21 7120\¢
+3C’(1D)Mp(a,R+20]-)7“A <> , j=1,2,...
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where
7j—1
oj = an*" < 2r.
=0
Asn? = (§)* > (§)F > 240, we obtainl 20/n* < 1/2 which implies}_,(120/n*)" < 2 and hence
®*(r, B(a, R)) < 1207®*(r/n’, B(a, R + 4r)) + 6C(p) M, (a, R + 4r) r* ji=1,2,...

Now by Corollary 5.7 we have a prio®*(r,S) < ®*(r,Qy) < Cr" for every setS C Qo and
r < diam QQg. Thus,

1207 ®*(r/n’, B(a, R+ 4r)) < Cr"(lQO/n“)j < Crrod
by choice of N. Passing to the limif — oo and settingR = r, we obtain
®*(r, B(a,r)) < 6 C(p)M,(a,5r)r (6.10)

and this oscillation estimate immediately implies the desiréltler estimate (6.1) for the unit normal
vector. In the remaining part of the proof, we just verify (6.8).

Step 3: bad and good parameterskErom now on, we assume that# v € g are fixed. We pick
the subcub&) = Q(u, v) of 5Q with edges parallel to those @fy, so that the center @(u, v) is at
(u+ v)/2 and the edge of)(u, v) equal2|u — v|. Set

m=(20N)"2,  Cp=m"", (6.11)

and consider the sets b&d parameterslefined as follows:

Yo = {xo€Q: H*(S1(x0)) > mlu —v|*}, (6.12)

Yi(zo) = {x1€Q: H%(Da(x0,71)) > mlu —v|*}, (6.13)
Yo(zo,21) = {x2€Q: H*(D3(x0,x1,22)) > mlu —v|?}, (6.14)
Y3(xo,x1,22) = {z€Q: K(xo,z1,22,2) > (CmE(u,v))l/p|u — o787}, (6.15)

A word of informal explanation to motivate the above choidésie already knewthaty. is of class
C'*, A = 1 — 8/p, then close ta; we would have lots of tetrahedra with two perpendicular edges
of the base having lengts |u — v|, and the height< |u — v|'**. For such tetrahedra our curvature
integrand does not exceed, roughly, a multipléwof- v|*~1 = |u — v|~8/P. Of course, there is no
reason to believe a priori that it is indeed the case. But it helps, as we shall check, to look at tetrahedra
that violate this naive estimate, and to try and estimate how many of them there are.

We first estimate the measureXy. Using (6.4) which gives a comparisond@#2 on XN F(5Q)
with the Lebesgue measurefip,, we obtain

Buo = [ [ [ KP (w0, 01, 23, 2) AL AL AACL A
Yo JX1(z0) J X2 (x0,21) J X3(z0,21,22)

> CpE(u,v)m?lu —v|22%(%)
= Blu,v)mu— o] 25,

which yields
u—vf?
400N?2

H*(%0) < mlu —v|* = < |Qu,v)| = 4lu —v|*. (6.16)
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Step 4: auxiliary good points.In a small neighbourhood of we selectzy € Q(u,v) \ Yo SO
that||zo — u|| < (20N)~t|u — v|. Oncexy is chosen, we seleat; € Q(u,v) \ 1 (wo) and then
x2 € Q(u,v) \ Xa2(xo, 1) SO that

u—"v s

| N | and %:(IQ — o, T1 — l’o) ~ —.

2
More precisely, let)(xo) be the cube with one vertex a§ and two other vertices at

|21 — @ol| = [|w2 — 0| =

al ‘= x +‘U_U|e ao ‘=X +|U_U|e
1 -— &0 N 1, 2 .— L0 N 2.
We selectr;, x9 € Q(x) such that
€ Qo) \ Ti(we), o —anf < Y (6.17)
I To 1 0/, 1 all| > 20N7 .
u —v
22 € Qlao) \ Salwoz1),  |lws —as] < ’20 o (6.18)

(See also the figure below.) Singg ¢ Xy, we can use (6.12)—(6.13) to check that z- satisfying
(6.17)—(6.18) do exist.

a
Q(u,V) Q(xﬂ)
°X,
Ve
Yo
Jj 0(x9)
Xo . o
u
Xx;°®
X, a

Fig. 7. The position of auxiliary good parameters in the domairf dfeft: Q(u, v) and two subcube®(zo), Q(yo), with
lower left-hand corners at, yo. Right: Q(z0) magnified. We fixzo & %o, close tou, andz1, 22 are selected in the little
shaded subcubes @J(zo). Since the Lipschitz constant g¢fis small,X is a flat graph ovef)(u, v). Thus, the vectors
v; == F(z;) — F(z0) (j = 1,2) are nearly orthogonal and have lengths very closeite v|/N = the edge of(x),
see Step 5 below for the details.

In a fully analogous way we selegg, y1, y2 close tov — using (6.16) initially again but then
by defining sets21 (o), X2(vo,y1), and X3(yo, y1,y2) as in (6.13), (6.14), and (6.15). Thug, €
Qu,v) \ Zo, y1 € Qyo) \ X1(yo) andyz € Q(yo) \ X2(yo,y1), whereQ(yo) is a copy ofQ(zo)
translated by, — x¢, satisfy

|u =]

lu — vl
llyr — voll = [ly2 — wol| = N I(y2 — Yo, y1 — Yo) =

20N

|y

Iyo — vl <
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Then we selP, := (F'(zo), F(x1), F(x2)), Py := (F(y0), F(y1), F(y2)), and we letr,, n,, denote
the unit normal vectors of these two planes. By the triangle inequality,

Inx(u) —ns(v)] < |ns(u) —ns(zo)| + ns(2o) — nal
+ g — ny|

+ Iny — nx(yo)| + [n=(yo) — nx(v)].

The non-obvious term is the middle orje,, — n,| < (P, P,); the remaining four terms give a

small contribution which does not exceed a constant multip*920 |u — v|/N, Q(u,v)). But due

to the choice of3 the planes”, and P, turn out to be almost parallel: their anglesis|u — o]
Sinceu,v are now fixed and will not change till the end of the proof, from now we use the

abbreviations

O (r) = 07 (r,Q(u,v)), O*(r) = 2*(r,Q(u,v)) .
We shall check that

Inx(x0) — nz| < 169*(2lu —v|/N), (6.19)
Ins(vo) —ny| < 169*(2lu —v|/N), (6.20)
ne —ny| < Klu—uv*. (6.21)

Combining these estimates with the obvious ones,
[ns(u) —ns(zo)| < @ (Ju—v[/N),  [nn(v) —nx(yo)| < @ (Ju —v[/N),
and using monotonicity ob*, one immediately obtains (6.8).
Step 5: proofs of(6.19)and (6.20) We only prove (6.19); the other proof is identical. Let
vj = F(x;) — F(xo), j=12.

By the fundamental theorem of calculus,
1
b= [ G+t o)) (o — o) d
0

1
—  VF(zo)(x; — w0) + /0 (VF (20 + t(xj — 20)) — VF(20))(; — o) dt
= wj+o; for j=1,2 (6.22)

where the error terms; satisfy

1
ol < | [ (TF@+ ta; —20) = V(o)) dife; = aa)
< ®*(2Ju —v|/N) diam Q(xo)
< 20%(2lu — v|/N) |“N”|, j=1,2. (6.23)

With w; = VF(x¢) - (z; — 20), j = 1,2 we have

V1 X V2 w1 X w2

nx (7o) (6.24)

Ng = +— = —=.
1 2 1 2
|v1 X g lwy X w
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To estimate the difference of these two vectors, we first estifeatdw;| and the anglesi(vi, v2),
J(wy,ws). This is an elementary computation; we give some details b&low.

Using the fact thatV f| is bounded by, < 1/100 by Remark 5.8 and (6.5),; — xz¢p andxs — z
are close to two perpendicular sides(@fz,), and both error terms; are smaller thafw. — v|/50N
by (6.7), one can check that

2 1= 0 < minlug), ) < mae(fogl, ) < 2122
— mini |v; w; maXxi (U4 ws; —
10 N — J I = IOV =10 N
forj=1,2.
Note also that, cf. Figure 7 and (6.2),
3
Ju— 2| [u — V2
vj = N €; +;ajz‘€i, laji| < 0N
which yields
Ju— vl - Ju— vf?
[v1 - v2| = N (a12 + az1) + ;au@i < GN?

Taking the estimates of; into account one more time, we obtdin; - ws| < 2|u — v|?/(9N?).
Combining the inequalities for these two scalar products with the estimates of lengths of the vectors,
we conclude that

max(|cos H(ur, )] | cos J(wn, ws)]) < 2 (10)2 .

=9 \9
Hence,
4 (10\*] 15
. . S |4 (10 15 _
m1n<sm<)(v1,Ug),sm<)(wl,w2)> >, 01 [81 <9> ] > 16 (6.25)
Now,
A =01 X vy —wyp X wy = |v1 X v2|ny — |wi X walnx(xo) . (6.26)

Asv; = wj + oj and|w;| < 11ju — v|/(10N), we have

(6.23) 11 1 —v|?
41 < ol ual + oal ol + ol ool 2 [+ 35+ 5 282l a0
* ‘U_U‘Q
< 69*(2lu—wv|/N) N2

by (6.23) and (6.7). On the other hand, applying the triangle inequality, using (6.25), and the estimates
luj] > 9)u — v|/(10N) for j = 1,2, we obtain first

(6.27)

0y x ’(6.>25) 9\? 15 |u — v|? N 3u— v
U] XV — | — -
L 10) 16 N? 4 N2

“If you do not want to check the details of our arithmetic, please note the following: Wi wseyto fix the scale and to
control the ratio ofliam Q(x¢) anddiam Q(u, v). Thus,N does notnfluence the ratio of lengths of, v, w1, w2 (which
are all = |u — v|/N) and the angles between these vectors (which are absolute since we assume (6.2) and (6.7)).
Therefore, the constant6’ in (6.19)—(6.20) is not really important. Any absolute constant would be fine; one would just
have to adjustV to derive (6.10) from (6.8).
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and then, using the second identity fdiin (6.26),

Al = |Jor x v2|(ne — nx(20)) + ns(wo)(Jvr X va| — w1 X wal)|
> |v1 X vg||ng — nx(xo)| — |v1 X v2 — wy X wo|

3 ju —v|?

4 N2

Combining the lower and the upper estimate fowe obtain

Y

[ne = nx(2o)| - [A].

u— ]
N2

-1
8 ¥
Ing —nx(xo)| < §|A] ( > < 169*(2|u — v|/N),

which yields (6.19).

Step 6: proof of (6.21) If P, is parallel toP,, there is nothing to prove. Let us then suppose that these
planes intersect and denote their angleyyTo show thaty, < |u — v|*, we use again the definition
of bad sets. Note that for

G: =Q(u,v)\ (23(960,%1,132) U 23(y05y13y2)) (6.28)

we have by (6.14)

H(G) > |Qu,v)| — 2m|u — v|* = (2Ju — v|)* — 2m|u — v|* > |u — v|? (6.29)

by choice ofm. Therefore, as\ — 1 = —8/p, for all z € G we have according to (6.15) the two
inequalities
K(xo, 1,29, 2) < Kolu —v[*™1, K(yo, 41,42, 2) < Kolu — o[}, (6.30)
where
Ko = Ko(p, E(u,v)) = (20N)¥PE(u,v)'/?

= Cu(p)B(u,v)"/?,

as we have in fact chosew depending only om = (p — 8)/(p + 16).

We are now going to use formula (2.3) f&ir to estimate the distance frofi(z) to the planes
P, and P,. Settingv; := F(x;) — F(x¢) for j = 1,2 (as in the previous step of the proof), and
vs := F(z) — F(z0), we obtain for the tetrahedrdh := (F(x¢), F(z1), F(z2), F(2))

lug| < (14 e9)|z — xo| < 2]u —v|, diam T < 2|u — v

by virtue of (6.5). Since they;| for j = 1, 2 have been estimated before, this yields an estimate of the
area ofT’,

QA(T) = ‘1}1><’U2‘—|—‘U2><’U3‘—|—‘U1X’U3|—|—‘(Ug—1}1)><(1}3—’l}2>’
11\ ? |u — v|? 11 |u —v|
< — 4 ( —= diam T
= (10) CEEE TV A At
1 2
< 5|qu| asnN > 1. (6.31)
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Thus

dist(F(2), Py) |v1 x vg]

3(diamT)2  2A(T)
6.27) dist(F(2), Py) 1
> W(QA(T))
- N2|ju—v|2

K(zo,z1, 22, 2)

(6.32)

For the last inequality we have simply used (6.31) and the inequality (N/2)® > 240 which
follows from our initial choice ofN. Since the pointgy, y1,y2 have been chosen analogously to
o, 21, X2, it is clear that we also have

dist(F(z), P,)

]C(y07y17y27z) > NZ‘U—U‘Q (633)
Combining (6.30)—(6.33), we obtain
max (dist(F(2), Py),dist(F(2), Py)) < N?Kolu —v[*™ (6.34)

= Cs(p)Eu,v)"Plu—ov'™, zed.

We shall show that the combination of (6.29) and (6.34) implies|that- n,| < o = J(Py, Py) is
estimated by a constant multiple jaf— v|* thus establishing (6.21) as the only missing ingredient for
the proof of the key estimate (6.8).

Indeed, consider an affine plafiewhich is perpendicular both t&, andP,. Let 7p denote the
orthogonal projection ont@. By (6.34) above, we see thap(F(G)) is a subset of a rhombu’
contained in the plan®. The height of this rhombus is equal to

h=2-Cs(p)E(u,v)"/?|u — v|+*
and the (acute) angle @t is vy, so that the longer diagonal &f equals

h B 205(p)E(u,v)1/p\u — |1+

- sin(y0/2) sin(70/2)

Therefore, the self'(G) is contained in a cylindefy with axis! := P, N P, and radiusD /2,

F(G)cCy: ={w: dist(w,l) < D/2}. (6.35)

The orthogonal projection ofy onto the plane containing the domain fpf(recall thatF'(z) =
(z, f(x)) parametrizes a portion &f that we consider) gives us a stipof width D. This strip must
contain all good parametetse G, so that, taking (6.29) into account, we have

3DJu —v| > 2V2Du —v| = D diamQ(u,v)
> areaofSNQu,v) > #*G) > |u—v|?.

Hence,D > |u — v|/3, so that

9 20 E 1/p EEPNIEDY
S <sin = ) Bl 0) Pl = ol 2 Gy () B(w, 0
T

| A
- 2 D

u— ",
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and hence
Ing —ny| < 7o < 67C5(p)E(u, v) Flu —v|*

which establishes (6.21) and therefore concludes the whole proof. Note that we have obtained the key
estimate (6.8) witl'(p) = 6w C5(p) depending only om, as desired. O
Applying the above result, one can sharpen Corollary 5.7 as follows.

Corollary 6.2. Assume thap > 8, .#,(¥) < E < oo. Then there exist two constants< a(p) <
1 < A(p) < oo, such that for eachr € ¥ there is a function

1
Ty — (TJCz) ~R

with the following properties:
(i) f(0)=0,Vf(0)=(0,0),
(i) For Ry = Ry (E,p) := a(p)E~Y#=3) we have the estimate

5 .1
IV f(y1) — VI(y2)| < Ap) (SN Bz, 10Ry)) 7 [yr — yo | 78/P, Y1,y2 € B(x, Ry)

(i) The map
O(y) =z +(y, [(v), yeTE=R,

satisfies .
(I)(D%f%l) - B(w,Rl) NnXc (I)(DRI), (6.36)

whereD; = B(0, R)) NT,% is a disk inT,> aroundo € 7,3, and

|D®(y1) — D®(y2)| < A(p)#,(X N Bz, 10R1))|y1 — yo| 18P, y1,y2 € Bz, Ry).
(6.37)

Of course, in (i) and (iii) one can replac#, (X N ...) by the total energy of the surface thus
providing clear-cut a priori estimates to be used in the next section.

7 Sequences of equibounded”,-energy

The main issue of this final Section is the proof of the following compactness theorem for admissi-
ble surfaces of equibounded energy with a uniform area bound. Notice that such an additional area
bound is necessary as the example of larger and larger spheres shows.:et5(0, p). For any
tetrahedrorf” (with non-coplanar vertices) we estimate

1
K(T) > ——, 7.1
where R(T') denotes the radius of the circumspherelof= (xg, z1, 22, x3). There is an explicit
formula,
I (23,21 % 22)|
QR(T) ‘ ‘Z1’222 X z3 + ‘2’2’22’3 X 21+ ’23‘22’1 X 29 ‘ ’
where we have set; = z; — xg for ¢ = 1,2, 3; this formula can be compared to (2.3) in order to
obtain (7.1). Hence,

My(Sp) 2 p5P =0 asp — oo.
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Theorem 7.1. Let¥; € </ be a sequence of admissible surfaces. Assumé:; for eachj € N and
let £ > 0, p < 8 be constants such tha#,(¥;) < E for all j € N. In addition, assume that

sup #%(%;) < H < 0.

Then there is a compaﬂl’l_%-manifoldz and a subsequend&;/) C (X;) such thatZ; — ¥ in
Hausdorff distance ag — oo and moreover

My(Z) < liminf #,(S;), — H*(Z) = lim H#*(Z).

j!'—00 j!'—00

Remark. The proof of this result will reveal that the limit surfageis equipped with a nice graph
representation as described in Corollary 6.2, with norms and patch sizes uniformly controlled solely
in terms of & andp.

Proof of Theorem 7.1. Step 1We fix j € N and look at the covering

Ej C U B(x,Rl),
Z‘EEj

where nowR; := R, (E, p) < Ro(E, p) is the radius defined in Corollary 6.2, aRg(E, p) appeared
in (3.1) of Theorem 3.1. By means of Vitali’'s covering Lemma we extract a subfamily of pairwise
disjoint ballsB(xy, R1), i € X, such that

% € | JB(x,5Ry). (7.2)
k

Using Theorem 3.1 for any numbarf of these disjoint balls (appropriately numbered) and summing
with respect td:, we infer

N
N- gR% <Y *(Bay, Ri) NE)) < #(S)) < H,
k=1

which means that there can be at mstl /(7 R?)| such disjoint balls. Therefore, (7.2) leads to the
estimaté

2H -
diam ¥; < N diam B(0,5R;) < 2 10R; =: Ryp. (7.3)
Ty

Since0 € 33, for all j € N, we find that the family{¥;} is contained in the closed ba(0, Ry).

Step 2.Apply Blaschke’s selection theorem [27] to find a compactset B(0, Ry) and a subse-
qguence (still labeled with) such that

Y, =X asj — oo (7.4)

in the Hausdorff distance. Fix > 0 small (to be specified later) and assume now that (for a further
subsequence)

1
dist - (X;,%) < 5aRl forall j € N, (7.5)

SNotice thatR, depends ot and (viaR:) also onE andp.
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wheredist (-, -) denotes the Hausdorff distance. Next, we form an open neighbourhood of the limit
set,
S C Booer, (%) € | Bly,100eRy),
yeY

and use Vitali's lemma again to extract a subfafitf disjoint balls B(y;, 100eR;), y; € ¥ for
l=1,2,..., N such that

N
S C Boger, (3) € | B(wi,500eR;) . (7.6)
=1

Now, eachy, € X is a limit of somey] € ¥, and according to (7.5) we hayg — /| < 1eR; for
all=1,...,Nand allj € N. Therefore for each fixed € N the ballsB(y;,99¢R,) are pairwise

disjoint, S|nce|yl — Y > Iyl - yml - Iyl =yl = lym — ym| > 200eR; — 2 -12e Ry = 199¢R;.
Moreover, we have

2

(75) N
S C Bep,a(%) C Boger, (%) € | Blyi, 5002 Ry) U (y7,501eRy) (7.7)
=1 =1
for each fixed; € N, sincely — ylj| <ly—wul+|u— y{y < 501eR; by (7.5) for everyy €
B(y;,500e R;). Using again Theorem 3.1 for a fixgd= N and summing w.r.t. td, we deduce

N - (99eR:)* < " Byl 99 R) N%)) < #7%(3y) < H,

whence the bound/ < [2Hr~'(99sR;)~2] for the number of disjoint ball®(y/, 99¢ R; ) for each
fixede > 0.

Step 3.We consider the unit normabs{ = ny, (ylj) € S? and select subsequences finitely many
timessothatforall=1,... N

n{—>nl€SQ asj — oo,
and for given smalb > 0 (to be specified below)
Ind —m| <§ foralljeNandall =1,2,...,N. (7.8)
Now fix & > 0 so small thaR000cR; < R; and

B(y],2000sR;) N %, € & (DY),

where®’ (y) := v + (v, f/ (v)), y € DI T,;%; ~ R” s the local graph representation X

1
neary{ on the two-dimensional dlslf)”1 = B(O,Rl) NT,;i%5 whose existence is established in
l
Corollary 6.2. If we choose now > 0 sufficiently small (depending o) then we can arrange that

B(y;,1000eR) NS; € &) (D%Rl),

®SinceY is compact, we can assume w.l.0.g. that this subfamiiite.
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whered] (y) := y/ + (v, f{ (v)) fory € DL, ¢ := B(0,§R1) N (m)*, and f] on thefixed disk

DéR1/6

the plang(n;)- ~ R2. (That this is indeed possible is a straightforward but a bit tedious exercise.)
The new graph functions

is obtained fromflj by slightly tilting the domain offlj, i.e. by tilting the pland“yj ¥; towards
l

fle )t o Dip s — R
continue to be of clags ™ for A = 1—8/p with uniform estimates for the oscillation of their gradients

as in Corollary 6.2 (we use the assumptiomp .#,(¥X;) < E) so that we may apply the theorem

of Arzela—Ascoli for each = 1,2,..., N to obtain subsequencg‘?/ — fiin C! asj’ — oo.
The limit functions f; satisfy the same uniforrd’™* estimates. Thusy is covered byN graphs
®(y) =y + (v, fily)), I = 1,2,..., N, by virtue of the Hausdorff convergence (7.4) and e

convergence of thé{’ asj’ — oo. Moreover,
B(y1,1000eR1) N %2 = &;(Dip, /6) N B(yi, 1000eRy).

Now (7.6) implies that for each € X there exists ah € {1,2,..., N} such that the set

(7.6)
N B(y,500eR;) C B(y;, 1000eR;) NS

so that
£ N B(y,500eR1) = ®1(Dp, 5) N By, 5002 Ry ).

In particular, the limit surfac& is also aC'* manifold for\ = 1 — 8/p.

Step 4 (lower semicontinuity of.#,). This follows from Fatou’s lemma combined with the following
properties of the integrand:

K(T) = lim K(T3) whenevell; — T andK(T) > 0, (7.9)

1—00

K(T) < liminf K(T;) whenevell; — T andK(T") = 0. (7.10)

71— 00

The argument is standard and uses a partition of unity in a neighbourhaadaaf sketch it briefly.
Take functions); € C§°(B(1000eRy),l = 1,2,..., N, such that such that

N N
=1 on c| By, 500eRy). (7.11)
=1 =1

This gives)  ¢; = 1 on eachX; for j large. Inserting

3 , N
=1 ()
i=0 M;=1
into the integral#,(3;/) = f(zj/)4 K dp. we write this integral as a sum of* quadruple integrals,
each of them over a product of four little patches>on. Next, we use thé’s constructed in Step 2 to
parametrize these integrals; the parametetmapped tor;) belong tofixedlittle disks D% of radius
5R;/6 contained in tangent spaceso Sincei){' — ®; in C, it is easy to see that all products

of ¢y, o (I){;(Zi)' and all terms where the surface measdis€?(z;) is expressed byz;, converge.
Combining this with (7.9)—(7.10), invoking Fatou’s lemma and subadditivityrofnf, we see that

liminf .#,(X;) > the sum oflim inf s of N* terms> .7,,(X).
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A similar argument shows tha#’?(%;/) — 5%(X); one just replacek by 1 in the above reasoning
and simply passes to the limit, using té convergence of parametrizations. 0

Proof of Theorems 1.6 and 1.7This follows easily from Theorem 7.1. The two classgs )/,;) and

€ 4(M,) of surfacesS which are ambiently isotopic to a fixed closed, compact, connected, smoothly
embedded reference surfat€, of genusg and satisfy.#,(X) < E, or #%(X) < A, respectively,

are nonempty. (Just take dd, of classC? to ensure, by Proposition A.1, tha#,(M,) is finite;
scaling)M, if necessary we can make its energy smaller thaor its area smaller thad.) Thus, one

can take a sequeneg contained ir6g (M), orin€4(M,), respectively, which is minimizing for the
area functional, or for#,. Applying Theorem 7.1, we obtain a subsequencg pfvhich converges

to someX in C. Since isotopy classes are stable undéiconvergence, see [3], the limiting surface

¥ belongs td6’k (M), or resp. t06a(M,).

A Finiteness of energy ofC?-surfaces

As before, T = (xg,z1, 72, x3) Stands for a tetrahedron 3. V(T') is the volume ofl" and A(T)

denotes the total area @f, i.e. the sum of areas of the four triangular faces. Recall that
V(T)

A(T) (diam T)%

K(T) = (A.1)
Proposition A.1. If ¥ c R? is a compact, embedded surface of cladsthen there exists a constant
C = C(X) such that

K(T) < C foreachT e x4

This obviously implies that,(X) < co whenevei is of classC?.

Proof. ComparingA(T') with the maximum of areas of the faces, we obtain

hnin(T')

1 hmin(T) 1
<KT) < -——7~-7—7—%
KT < 3 (diamT')2’

12 (diam T)2 —
whereh,in (') stands for the minimal height &f, i.e. for the minimal distance aof; to the affine
plane spanned by the other thregs, i = 0, 1,2, 3. Sincehnin(T) < diam 7, it is enough to show
that/C(7T") is bounded whediam 7" < dj for somed, = dy(X) sufficiently small.

Thus, from now on we fix @, > 0 such that for each: € X the intersectior N B(x, 2d))
coincides with a graph of &@2-function defined of: + 7,3, and

dist(y, z + T, %) < Ay — z|?, y € XN B(x,2dy). (A.2)

Remark. (A.2) is the only thing we need from th&2-property. Such an estimate holds 16t!-
surfaces, too. If one represents such a surface locally by a fungtio6'*:! normalized tog(0) = 0
andVg(0) = 0 then the Lipschitz continuity o¥ ¢ implies a quadratic height excess as in (A.2).

W.l.o.g. we can assume thatly < 1.

Lemma A.2. LetT = (xz¢, z1, 2, z3) be an arbitrary tetrahedron, with angles of the faces denoted
by aij, 4,5 = 0,1,2,3, i # j so thatw,; is the angle at:; on the face which is opposite 9. Then,
two cases are possible:

(i) Atleastone of the;; € [T, 57);
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i)y All a;; € (0,7)U (5%, 7).

In the latter case, eight of the;; are small, i.e. belong t¢0, 5) and the remaining four are large,

i.e., belong t %”, 7). Moreover, there is one large angle on each face and either O or 2 such angles
at each vertex of .

Proof of the lemma.We have

> ay=m foreachi=0,1,23 (A.3)
0<j<3,j#i
S aye(0,2r)  foreachj =0,1,2,3, (A.4)
0<i<3,i#j
Qij + o > o for each permutatio(y, j, £, [) of (0, 1,2, 3). (A.5)

(The last condition amounts to the triangle inequality for the spherical metric.)
Now, suppose that Case (i) does not hold. If there were at most three large angles, then the sum of
all o;; would be strictly smaller than

37r+9g=47r,

a contradiction. Similarly, if there were at least 5 large angles, the sum of all anglésvotild be

strictly larger thandw. Thus, if (i) fails, 7" must have precisely 4 large angles. By (A.3) and the
pigeon-hole principle, there is precisely one such angle on each face. Furthermore, if there is a large
angle at some vertex, then by (A.5) at least one of the remaining angles at this vertex must also be
large. Since the sum of all angles at each vertex is smallerzhawe have precisely either O or 2

large angles at each vertex. O

Now, fix T € X4 with d = diam T < dy = do(X).

1. If Case (i) of the lemma holds fdf, we can assume w.l.0.g. thay = 0, the tangent plane
Tp2 = {(a,b,0) | a,b € R} is horizontal, and(z1,z2) € [%,5]. Let P := (20,21, 72). A
computation shows that there is an absolute constasuich that

IP,T,,%) < c1Ad

(which is a small angle ifly is chosen sufficiently small). Therefore, sintiet(x3, T,,, %) < Ad?, we
have
dist(z3, P) < cpAd?,

which yieldsiC(T') < ¢ A.

2. Suppose now Case (ii) holds fér W.I.0.g. we can assume that all angles@belong to(0, 7/9).
We can also assume that all these angles exegéd for some constants, since otherwise there
exists a vertex and an edgeBfwith mutual distanceS d? and we are done.

As before, we choose coordinates so that= 0 and7,,> = {(a,b,0) | a,b € R} is horizontal.
Let 77 stands for the orthogonal projection orfig, 3.

Fori = 1,2, 3, letl; be the straight line throughy andz;. Set alsar], := 7y (x;), di = |x; — xo],
d; = |z} — zo| andl] = np(l;) (i = 1,2,3). Finally, seth; = |z; — | = dist(z;, zo + T, X). We
have

hi < Ad?,  d;<d; <2d,.
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Permuting the numbering of;, z2, 3, we can moreover assume that# 5 (if all projections of
edges meeting at, onto the tangent plane coincide, theii7") = K(T) = 0), and that the angle
v = (x5 — x, 2] — w0) is the largest of all the angley(x’; — xo, ), — o), Wherej, k = 1,2, 3. Set
P := (z9, 1, r3). Note that if 3; denotes the angle betwegrandl,, thensin 3; < Ad?/d; = Ad; <
Ad <« 1.

Let! C P be the straight line such thaty(I) = I, = mr(l2). The crucial observation is that
the angle betweehand!), is at mostcy; Ad for some absolute constant (here we use the piece of
information that all angles ¢f atz are small). Using this, we estimate

dist(we, P) < |wg — ab| + dist(x)h,1) aslC P
< Ad3 + dysin (15, 1)
< C5Ad2 .
Thus,hmin(T) < c5Ad?. This yields the desired estimate/6{T'). O

Remark. ForY. in C?, the bound that we obtain fd¢(T") is of the form

where A is the maximum of theC2-norms of functions that give a graph descriptiorsbin finitely
many small patches.

B Other integrands

In [14], J.C. Leger suggests an integrand that could serve as a counterpart for integral Menger cur-
vature of one-dimensional sets, to obtain rectifiability criteria in higher dimensions! Eoe, his
suggestion is to use the cube of

dist(x3, (zo, 1, v2))

2
szo w3 —

Kr(zo,x1, 22, 23) = (B.1)

We are going to show th&t; and some of its relatives are not suitable for our purposes for a simple
reason: even for a round sphere, the energy given by theorm of such an integrand would be
infinite for all sufficiently largep! This surprising effect is due to the fact thd, is not a symmetric
function of its variables.

To be more precise, let

dist(¢, (z,y, 2))
|§ - I|, |§ - y|’ |§ - Z|)a

wherea > 1 is a parameter anl/ : R, x Ry x Ry — R, is homogeneous of degree 1, monotone
nondecreasing w.r.t. each of the three variables, and satisfies

(B.2)

f(x7 y? Z? 5) = M(

min(t,r,s) < M(t,r,s) < max(t,r,s) fort,r,s > 0. (B.3)

Note that suchF coincides with J.C. &ger'sky, if M(t,r,s) = V/trs is the geometric mean and
a = 3.
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Proposition B.1. Whenevefta — 1)p > 12, then

/// Flx,y,2,6)P dA?(x) dA? (y) dA%(2) dA? (€) = +o0.

Proof. We follow a suggestion of K. Oleszkiewicz (to whom we are grateful for a brief sketch of this
proof) and consider the behaviourBfon such quadruples of nearby poiKisy, z, £) for which the
plane(z,y, z) is very different from the tangent planegtlt turns out that

/ / F(x,y, 2, 6P dA?(x) dA?(y) d#?*(z) = +oo  foreacht € S2.
s2 Js2 Js2

To check this, suppose without loss of generality that (0,0,1). Fix a smalle € (0,1) and
rn=2"2"forn=1,2,3,.... Consider the setd,, C S? x S? x S?,
A, = (B(an,grg) N SQ) X (B(bn,arz) N SQ) X (B(cn,gr%) N SQ) , (B.4)

where

an = (rn,0,v/1—72), (B.5)

by = (rn,2rp,\/1—5r2), (B.6)

cn = (rp,—2rp,\/1—5r2). (B.7)

Note that fore € (0,1) all A,, are pairwise disjoint. We shall show that whenever a triple of points
(z,y,2) € Ay, then the plané® = (z,y, ) is almost perpendicular t6;S? (the angle differs from
/2 at most by a fixed constant multiple of and

dist(&, P) > 1y, /2, FP(z,y,2,6) > A- Tg(l—oc)

for some constanfi depending ore, p anda butnotonn. Let v, := b, — an, Wy = ¢, — an
(n=1,2,...).Sincey/1 —z =1 —x/2 + O(x?) asz — 0, we have

vp, = (0, 27y, —27",21 + O(rﬁ)), wy, = (0, =27, —27‘72I + O(rfl)) )
A computation shows that
Up i= Uy X Wy, = (—872,0,0) + ey, len| < Oy,
where(] is an absolute constant. Therefore,

Un

(_17070)+fn7 ‘fn| SCQT%,

7 Junl

again with some absolute constarit Now, let(z,y, z) € A, and letv], := y — x, w), := z — z. By
triangle inequality, we have

max(|v, — V|, |wp, — w,|) < 2er?,
so that another elementary computation showsdhat= (v], x w},)/|v}, x w],| satisfies

lon — | < Cse, n=123,...
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for e sufficiently small. Moreover,

diSt(§7 <xay7 Z>) = ’(g_x) O.’:L’
= (¢ = an) +(an —2)) - (o0 + (07, — on)]
> ry — Cher, = %n (B.8)
if we chooses = 1/2Cy. By (B.3), we also have
M€ =z, | =yl [€—2]) mmn,  (z,9,2) € An, n=1,2,3,... (B.9)

Combining (B.8) and (B.9), we estimate

/ / F(z,y, 2, &P dA*(x) A (y) dA> ()
52 Js2 Js?

(‘T:yvz)eAn}
p

,
2 > (reri)’ g

Tn

> i // /{ Fla,y, 2, &) do* (@) dA2(y) dH(2)

n=1
Z(Tn)12+(lfa)p
n=1

= 400 for (a« — 1)p > 12.

Q

This completes the proof. O

Remark. One can check that a similar argument shows that

/U/U/U/U]:p:—'_oo if (« —1)p > 12

wheneverU is a patch of of a2 surfaceX c R? such that the Gaussian curvatureddfs strictly
positive onU'.

The phenomenon described in Proposition B.1 does not appear for the integrand

ICR(x7 y? Z’ 5) = 1/R($, y7 275) J

whereR(z,y, z,£) denotes the radius of a circumsphere of four points of the surface — we simply
havel/R = const for all quadruples of pairwise distinct points of a round sphere. However, one can
easily find examples of smooth surfaces for whiglkR — oo at some points: take e.g. the graph of
f(x,y) = xy near 0. It contains two straight lines and for evéry 0 there are lots of triangles with

all vertices on these lines, all angles (say)r/6 and diametex §. For each such triangl& one can

take a spheré& which has the circumcircle ak as the equatorial circle. The radius®fs < ¢ and.S
intersects the graph gfat infinitely many points that are not coplanar with vertice@of
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