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Abstract

We explore a connection between the Finslerian area functional based on the Busemann-
Hausdorff-volume form, and well-investigated Cartan functionals to solve Plateau’s problem in
Finsler 3-space, and prove higher regularity of solutions. Free and semi-free geometric boundary
value problems, as well as the Douglas problem in Finsler space can be dealt with in the same
way. We also provide a simple isoperimetric inequality for minimal surfaces in Finsler spaces.

Mathematics Subject Classification (2000): 44A12, 49Q05, 49Q10, 53A35, 53B40, 53C60

1 Introduction

The classic Plateau problem in Euclidean 3-space is concerned with finding a minimal surface, i.e., a
surface with vanishing mean curvature, spanned in a given closed Jordan curve Γ ⊂ R3.A particularly
successful approach to this problem is to minimize the area functional

areaB(X) :=

∫
B
|(Xu1 ∧Xu2)(u)| du (1.1)

in the class

C(Γ) := {X ∈W 1,2(B,R3) : X|∂B is a continuous and weakly monotonic1parametrization of Γ},

where B := {u = (u1, u2) ∈ R2 : |u| =
√

(u1)2 + (u2)2 < 1} denotes the open unit disk and
W 1,2(B,R3) the class of Sobolev mappings from B to R3 with square integrable first weak deriva-
tives. There are various ways to obtain area minimizing surfaces. Courant [9], e.g., minimized the
Dirichlet energy

D(X) :=
1

2

∫
B
|∇X(u)|2 du (1.2)

as the natural and particularly simple dominance functional of area. Outer variations of D establish
harmonicity and therefore smoothness of the minimizer’s coordinate functionsX1, X2, X3 onB, and
inner variations yield the conformality relations

|Xu1 |2 = |Xu2 |2 and Xu1 ·Xu2 = 0 on B. (1.3)

The combination of these properties leads to a simultaneous minimization of area and to vanishing
mean curvature of the minimizing surface. There is a huge amount of literature dealing with the
classic Plateau problem and related geometric boundary value problems in Euclidean space and also

1See [12, pp. 231–232] for the notion of weakly monotonic mappings on the boundary.
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in Riemannian manifolds; see, e.g., the monographs [37,38], [39], [12,13], [14–16], and the numerous
references therein.

Interestingly, nothing seems to be known about the Plateau problem for minimal surfaces in Finsler
manifolds, not even in Finsler spaces, which may have to do with the by far more complicated expres-
sion for the Finsler-area functional that does not seem to allow a straightforward generalization of
Courant’s method via minimization of appropriately chosen dominance functionals. It is the purpose
of this note to attack Plateau’s problem in Finsler 3-space by an alternative variational approach di-
rectly minimizing Finsler area.

For the precise definition of Finsler area let N = N n be an n-dimensional smooth manifold
with tangent bundle TN :=

⋃
x∈N TxN and its zero-section o := {(x, 0) ∈ TN }. A non-negative

function F ∈ C∞(TN \ o) is called a Finsler metric on N (so that (N , F ) becomes a Finsler
manifold) if F satisfies the conditions

(F1) F (x, ty) = tF (x, y) for all t > 0 and all (x, y) ∈ TN (homogeneity);

(F2) gij(x, y) :=
(
F 2/2)yiyj (x, y) form the coefficients of a positive definite matrix, the fundamen-

tal tensor, for all (x, y) ∈ TN \ o, where for given local coordinates x1, . . . , xn about x ∈ N ,
the yi, i = 1, . . . , n, denote the corresponding bundle coordinates via y = yi ∂

∂xi
|x ∈ TxN .

Here we sum over repeated Latin indices from 1 to n according to the Einstein summation
convention, and F (x, y) is written as F (x1, . . . , xn, y1, . . . , yn).

If F (x, y) = F (x,−y) for all (x, y) ∈ TN then F is called a reversible Finsler metric, and if there
are coordinates such that F depends only on y, then F is called a Minkowski metric.

Any C2-immersion X : Mm ↪→ N n from a smooth m-dimensional manifold M = Mm into
N induces a pulled-back Finsler metric X∗F on M via

(X∗F )(u, v) := F (X(u), dX|u(v)) for (u, v) ∈ TM .

Following Busemann [5] and Shen [45] we define the Busemann-Hausdorff volume form as the volume
ratio of the Euclidean and the Finslerian unit ball, i.e.,

dvolX∗F (u) := σX∗F (u)du1 ∧ . . . ∧ dum on M ,

where

σX∗F (u) :=
H m(Bm

1 (0))

H m({v = (v1, . . . , vm) ∈ Rm : X∗F (u, vδ ∂
∂uδ|u ) ≤ 1}

, (1.4)

with a summation over Greek indices from 1 to m in the denominator. Here H m denotes the m-
dimensional Hausdorff-measure. The Busemann-Hausdorff area or in short Finsler area2 of the im-
mersion X : M → N is then given by

areaFΩ(X) :=

∫
u∈Ω

dvolX∗F (u) (1.5)

for a measurable subset Ω ⊂M . Shen [45, Theorem 1.2] derived the first variation of this functional
which leads to the definition of Finsler-mean curvature, and critical immersions for areaFΩ are therefore
Finsler-minimal immersions, or simply minimal surfaces in (N , F ).

2Notice that the alternative Holmes-Thompson volume form (see [1]) leads to a different notion of Finslerian minimal
surfaces that we do not address here.
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As mentioned before, to the best of our knowledge, there is no contribution to solving the Fins-
lerian Plateau problem or any other related geometric boundary value problems for Finsler-minimal
surfaces, such as the Douglas problem (with boundary contours with at least two components), free,
or semi-free problems (prescribing a supporting set for part of the boundary values). What little is
known about Finsler-minimal graphs, or rotationally symmetric Finsler-minimal surfaces for very
specific Finsler structures, will be briefly described at the end of this introduction when we discuss
how sharp our additional assumptions on a general Finsler metric are.

To describe our variational approach to Finsler-minimal surfaces let us focus on Finsler spaces
and on co-dimension one, that is, N := Rm+1.

The key observation – in its original form due to H. Busemann [5, Section 7] in his search for
explicit volume formulas for intersection bodies in convex analysis – is, that one can rewrite the
integrand (1.4) of Finsler area in the following way.

Theorem 1.1 (Cartan area integrand). If N = Rm+1 and F = F (x, y) is a Finsler metric on Rm+1,
and X ∈ C1(M ,Rm+1) is an immersion from a smooth m-dimensional manifold M into Rm+1,
then we obtain for the Finsler area of an open subset Ω ⊂M with local coordinates (u1, . . . , um) :
Ω→ Ω̃ ⊂ Rm the expression

areaFΩ(X) =

∫
Ω̃
AF (X(u),

(∂X
∂u1
∧ . . . ∧ ∂X

∂um
)
(u)) du1 ∧ . . . ∧ dum, (1.6)

where

AF (x, Z) =
|Z|H m(Bm

1 (0))

H m({T ∈ Z⊥ ⊂ Rm+1 : F (x, T ) ≤ 1})
for (x, Z) ∈ Rm+1 × (Rm+1 \ {0}).

(1.7)

The integrand in (1.6) depends on the position vector X(u) and the normal direction (Xu1 ∧ . . .∧
Xum)(u), and from the specific form (1.7) one immediately deduces the positive homogeneity in its
second argument:

AF (x, tZ) = tAF (x, Z) for all (x, Z) ∈ Rm+1 × (Rm+1 \ {0}), t > 0. (H)

These properties identify AF as a Cartan integrand; see [31, p. 2]. Notice that if the Finsler metric
F equals the Euclidean metric E, that is, F (x, y) = E(y) := |y| for y ∈ Rm+1, then the expression
AF = AE reduces to the classic area integrand for hypersurfaces in Rm+1:

AF (x, Z) = AE(x, Z) = |Z| for all (x, Z) ∈ Rm+1 × (Rm+1 \ {0}).

Geometric boundary value problems for Cartan functionals on two-dimensional surfaces have been
investigated under two additional conditions; see [26, 27, 29, 31, 32]: a mild linear growth condition,
which in the present situation can be guaranteed by relatively harmless L∞-bounds on the underlying
Finsler structure F (see condition (D*) in our existence result, Theorem 1.2 below), and, more impor-
tantly, convexity in the second argument. So, the question arises: Is there a chance to find a sufficiently
large and interesting class of Finsler structures F so that the Cartan area integrand AF is convex in
its second argument? It turns out that in the the co-dimension one case and for reversible Finsler met-
rics, there is a result also due to Busemann [6, Theorem II, p. 28] (see Theorem 2.6), establishing
this convexity. Thus, for general non-reversible Finsler metrics F one is lead to think about some
sort of symmetrization of F in its second argument in order to have a chance to apply Busemann’s
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result at some stage. Rewriting the integrand AF by means of the area formula and using polar coor-
dinates (see Lemma 2.2) motivates the following particular kind of symmetrization, the m-harmonic
symmetrization3 Fsym of the Finsler structure F defined as

Fsym(x, y) :=

[
2

1
Fm(x,y) + 1

Fm(x,−y)

] 1
m

for (x, y) ∈ TN \ o, (1.8)

which by definition and by (F1) is an even and positively 1-homogeneous function of the y-variable,
and thus continuously extendible by zero to all of TN . Moreover, one can check that Fsym leads to
the same expression of the Cartan integrand, i.e., AF = AFsym (see Lemma 2.3). However, in general
Fsym is not a Finsler structure.

This motivates our General Assumption:

(GA) Let F (x, y) be a Finsler metric on N = Rm+1 such that its m-harmonic symmetrization
Fsym(x, y) is also a Finsler metric on Rm+1.

Notice that a reversible Finsler metric F automatically coincides with itsm-harmonic symmetrization
Fsym so that our general assumption (GA) is superfluous in reversible Finsler spaces.

This leads to the following existence result.

Theorem 1.2 (Plateau problem for Finsler area). Let F = F (x, y) be a Finsler metric on R3 satisfying
(GA), and assume in addition that

0 < mF := inf
R3×S2

F (·, ·) ≤ sup
R3×S2

F (·, ·) =: MF <∞. (D*)

Then for any given rectifiable Jordan curve Γ ⊂ R3 there exists a surface X ∈ C(Γ), such that

areaFB(X) = inf
C(Γ)

areaFB(·).

In addition, one has the conformality relations

|Xu1 |2 = |Xu2 |2 and Xu1 ·Xu1 = 0 L 2-a.e. on B, (1.9)

andX is of classC0,σ(B,R3)∩C0(B̄,R3)∩W 1,q(B,R3) for some q > 2, and for σ := (mF /MF )2 ∈
(0, 1].

A simple comparison argument leads to the following isoperimetric inequality for area-minimizing
surfaces in Finsler space:

Corollary 1.3 (Isoperimetric Inequality). Let F (x, y) be a Finsler metric on R3 satisfying the growth
condition (D*) in Theorem 1.2. Then any minimizer X ∈ C(Γ) of Finsler area areaFB satisfies the
simple isoperimetric inequality

areaFB(X) ≤
M2
F

4πm2
F

(
L F (Γ)

)2
, (1.10)

where L F :=
∫
F (Γ, Γ̇) denotes the Finslerian length of Γ.

3A possible connection to the harmonic symmetrization of weak Finsler structures in [42] remains to be investigated.
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Remarks. 1. Assumption (D*) in Theorem 1.2 is automatically satisfied in case of a Minkowski
metric F = F (y) since the defining properties (F1) and (F2) guarantee that any Finsler metric is
positive away from the zero-section of the tangent bundle, so that the positive minimum and maximum
of any Minkowski metric on the unit sphere is attained.

2. If Γ satisfies a chord-arc condition with respect to a three-point condition (see, e.g. [31, Theo-
rem 5.1]) one can establish Hölder continuity of the minimizer in Theorem 1.2 up to the boundary in
form of an a priori estimate, a fact that is well known for classic minimal surfaces in Euclidean space.

3. One can use the bridge between the Finsler world and Cartan functionals established here in
the same way to prove existence of Finsler-minimal surfaces solving other geometric boundary value
problems like free, or semi-free problems, where the boundary or parts of the boundary are prescribed
to be mapped to a given supporting set, such as a given torus, possibly with additional topological
constraints (like spanning the hole of the torus). For the solution of such geometric boundary value
problems for Cartan functionals see [27], or [11]. One can also prescribe more than one boundary
curve and control the topological connectedness of Finsler minimal surfaces spanning these more
complicated boundary contours under the so-called Douglas condition in the famous Dougals prob-
lem; see [33], [32] for details in the context of Cartan functionals.

4. Using the full strength of [6, Theorem II] one can extend the existence result, Theorem 1.2
to continuous weak Finsler metrics as defined in [42], [43] or [35], assuming also in our general
assumption (GA) that Fsym is merely a continuous weak Finsler metric which is only convex in its
second entry.

Notice that the Finsler-area minimizing surfacesX obtained in Theorem 1.2 are in general not im-
mersed. Branch points, i.e., parameters ū ∈ B with (Xu1 ∧Xu2)(ū) = 0 may occur, and it is an open
question under what circumstances area-minimizing surfaces in Finsler space (that are not graphs)
are immersed. This has to do with the fact that the area-minimizers in Theorem 1.2 are obtained as
solutions of the Plateau problem for the corresponding Cartan functional. General Cartan function-
als, however, do not possess nice Euler-Lagrange equations, in contrast to the elliptic pde-systems in
diagonal form obtained in the classic cases of minimal surfaces or surfaces of prescribed mean curva-
ture in Euclidean space, or even in Riemannian manifolds. Due to this lack of accessible variational
equations it is by no means obvious how to exclude branch points. Intimately connected to this is
the issue of possible higher regularity of Finsler-area minimizing surfaces. This is a delicate problem
and, in view of the current state of research depends on whether the corresponding Cartan functional
possesses a so-called perfect dominance function. Such a function is, roughly speaking, a Lagrangian
G(z, P ), that is positively 2-homogeneous, C2-smooth, and strictly convex in P ∈ R3×2 \ {0}, and
that dominates the Cartan integrand, and coincides with it on conformal entries; see Definition 3.11.
It was shown in [27, 29], and [30] that minimizers of Cartan functionals with a perfect dominance
function are of class W 2,2 and C1,α up to the boundary. According to [28, Theorem 1.3] there is a
fairly large class of Cartan integrands with a perfect dominance function, and we are going to exploit
this quantitative result in the present context to prove the following theorem about higher regularity
of Finsler-area minimizing surfaces.

For the precise statement we introduce for k = 0, 1, 2, . . . and functions g ∈ Ck(R3 \ {0}) the
semi-norms

ρk(g) := max{|Dαg(ξ)| : ξ ∈ S2, |α| ≤ k}. (1.11)

Theorem 1.4 (Higher regularity). There is a universal constant δ0 ∈ (0, 1) such that any Finsler-area
minimizing and conformally parametrized (see (1.9)) surface X ∈ C(Γ) is of class W 2,2

loc (B,R3) ∩
C1,α(B,R3) if the Finsler-structure F = F (x, y) satisfies

ρ2(F (x, ·)− | · |) < δ0 for all x ∈ R3. (1.12)
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Moreover, if in addition the boundary contour Γ is of class C4 one obtains X ∈ W 2,2(B,R3) ∩
C1,α(B̄,R3) and a constant c = c(Γ) depending only on Γ such that

‖X‖W 2,2(B,R3) + ‖X‖C1,α(B̄,R3) ≤ c(Γ).

Notice that condition (1.12) may be relaxed for the minimizers X of Finsler area obtained in
Theorem 1.2: If Γ satisfies a chord-arc condition, we obtain a priori estimates on the Hölder norm of
X on B̄, and therefore uniform L∞-bounds ‖X‖L∞(B,R3) ≤ R0, so that it is sufficient to assume the
inequality in (1.12) only for all x ∈ BR0(0) ⊂ R3.

Let us finally discuss our crucial general assumption (GA). Is it a natural assumption, and how
restrictive is it? Since generalized, i.e., possibly branched Finsler-minimal surfaces have apparently
not been treated in the literature so far, we return to Finsler-minimal immersions, for which the con-
nection between Finsler area and Cartan integrals turns out to be very useful to obtain a whole set of
new global results such as Bernstein theorems, enclosure results, uniqueness results, removability of
singularities, and new isoperimetric inequalities; see [41]. Also these results require (GA) as the only
essential assumption, and they extend the few results in the literature about Finsler-minimal graphs,
that had been established so far only in very specific Finsler spaces. Souza, Spruck and Tenenblat
considered the three-dimensional Minkowski-Randers space (R3, F ), where F has the special form
F (y) := |y|+ biy

i for some constant vector b ∈ R3, and they used pde-methods in [46] to prove that
any Finsler-minimal graph over a plane in that space is a plane if and only if 0 ≤ |b| < 1/

√
3. This

upper bound on the linear perturbation |b| is indeed sharp, since for |b| ∈ (1/
√

3, 1), where (R3, F )
is still a Finsler space (see e.g. [7, p. 4]), Souza and Tenenblat have presented a Finsler-minimal
cone with a point singularity4.This Bernstein theorem was later generalized by Cui and Shen [10] to
the more general setting of (α, β)-Minkowski spaces (Rm+1, F ) with F (y) := α(y)φ

[
β(y)/α(y)

]
with α(y) := |y| and the linear perturbation term β(y) := biy

i, and a positive smooth scalar func-
tion φ satisfying a particular differential equation to guarantee that F is at least a Finsler metric; see
e.g. [7, Lemma 1.1.2]. Cui and Shen present fairly complicated additional and more restrictive condi-
tions on φ (see condition (1) in [10, Theorem 1.1] or condition (4) of [10, Theorem 1.2]) that could
be verified only for a few specific choices of (α, β)-metrics, and only in dimension m = 2: for the
Minkowski-Randers case with φ(s) = 1 + s if |b| < 1/

√
3 (reproducing [46, Theorem 6]), for the

two-order metric with φ(s) = (1 + s)2 under the condition |b| < 1/
√

10, or for the Matsumoto metric
where φ(s) = (1 − s)−1 if |b| < 1/2. By direct calculation one can check that the threshold values
for |b| in these specific (α, β)-spaces are exactly those under which our general assumption (GA) is
automatically satisfied – (GA) does not hold if |b| is larger. Moreover, beyond these threshold values5

Cui and Shen have established the existence of Finsler-minimal cones with a point singularity in the
respective (α, β)-spaces, which indicates that our assumption (GA) for general Finsler metrics is not
only natural but also sharp. In addition, Cui and Shen present an example of an (α, β)-metric F allow-
ing a Bernstein result, where φ is of the form (1 +h(s))−1/m with an arbitrary odd smooth function h
with |h| < 1, but also in this case (GA) is trivially satisfied, since one can check that Fsym(y) = |y|.

For general Finsler metrics F (x, y) our general assumption (GA) may not be verified easily.
Therefore we conclude with a sufficient condition that guarantees that this assumption holds. This con-
dition involves the arithmetic symmetrization (with respect to y) Fs(x, y) := 1

2(F (x, y) + F (x,−y))

4Technically, the bound 1/
√
3 for |b| is the threshold beyond which the underlying pde ceases to be an elliptic equation;

see [46, p. 300]
5For the Matsumoto metric the threshold value for |b|, beyond which the pde fails to be elliptic and Fsym is no longer

Finsler, is actually 1, but the metric itself is only Finsler for |b| < 1/2.
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with its fundamental tensor
(gFs)ij := (F 2

s /2)yiyj ,

and antisymmetric part Fa of F given by Fa(x, y) := 1
2(F (x, y)− F (x,−y)).

Theorem 1.5. If the Finsler metric F = F (x, y) on Rm+1 with its arithmetic symmetrization Fs and
its antisymmetric part Fa satisfies the inequality

((Fa)yl(x, y)wl)2 <
1

m+ 1
(gFs)ij(x, y)wiwj for all w ∈ Rm+1, (1.13)

and if the matrix (Fa(x, y)(Fa)yiyj (x, y)) is negative semi-definite for all x ∈ Rm+1 and y ∈ Rm+1 \
{0}, then F satisfies assumption (GA).

Notice that the second condition is, of course, satisfied if the antisymmetric part Fa is linear
in y, which is, e.g., the case for the Minkowski-Randers metric F (y) = |y| + biy

i. In that case,
inequality (1.13) yields exactly the bound 1/

√
3 in dimension m = 2 that was also necessary to

deduce (GA) directly, and this bound is sharp in the sense discussed before. The same holds true
for the two-order metric F (y) = α(y)φ

[
β(y)/α(y)

]
, β(y) = biy

i for φ(s) = (1 + s)2, if |b| ∈
[0, 1/

√
10), but our sufficient condition, on the other hand, does not include the Matsumoto metric

φ(s) = (1 − s)−1, although we can directly verify (GA) for that metric if |b| < 1/2. Theorem 1.5
does, however, allow for more general Finsler structures because it permits an x-dependence, e.g.,
F (x, y) := Fr(x, y) + biy

i, where Fr is a reversible Finsler metric. Even without the x-dependence
our result is valid for more general Minkowski metrics than treated before, for instance the perturbed
quartic metric (see [3, p. 15])

Fr(y) :=

√√√√√
√√√√m+1∑

i=1

(yi)4 + ε

m+1∑
i=1

(yi)2 for ε > 0.

The present paper is structured as follows. In Section 2.1 we explore the connection between
Finsler area and Cartan functionals and prove Theorem 1.1. In addition, we represent the Cartan in-
tegrand AF with an integral formula (Lemma 2.2) which motivates the m-harmonic symmetrization.
That F and Fsym possess the same Cartan area integrand is shown in Lemma 2.3. Some quantita-
tive L∞-estimates and Busemann’s convexity result (Theorem 2.6) lead to the solution of Plateau’s
problem, i.e. to the proof of Theorem 1.2 in Section 2.2. In Section 3.1 we introduce and analyze
the (spherical) Radon transform since one may express the Cartan area integrand AF in terms of this
transformation (see Lemma 3.8). The material of this section, however, will also be useful for our
investigation on Finsler-minimal immersions; see [41]. In Section 3.2 we compare AF and its deriva-
tives up to second order with those of the classic area integrand in order to apply the regularity theory
for minimizers of Cartan functionals that is based on the concept of perfect dominance functions. To-
wards the end of Section 3.2 we prove Theorem 1.4; the lengthy calculation for the proof of Theorem
1.5 is deferred to Section 4.

Acknowledgment. Part of this work was completed during the second author’s stay at Tohoku
University at Sendai, Japan, in the Spring of 2011, and we would like to express our deepest gratitude
to Professor Seiki Nishikawa for his hospitality and interest. Some of the results are contained in the
first author’s thesis [40], who was partially supported by DFG grant Mo 966/3-1,2.
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2 Existence of Finsler-minimal surfaces

2.1 Representing Finsler area as a Cartan functional

The Finsler area (1.5) is by definition a parameter invariant integral, which implies by virtue of a
general result of Morrey [36, Ch. 9.1] in co-dimension one, i.e., for n = m + 1, that the Finsler-
area integrand (1.4) has special structure. In our context we are interested in the explicit form of that
structure. To deduce that structure we take for any point ξ ∈ N an open neighbourhood Wξ ⊂ N
containing ξ such that there is a smooth basis section {bi}m+1

i=1 in the tangent bundle TWξ ⊂ TN
and then a local coordinate chart u1, . . . , um on a suitable open neighbourhood Ωξ ⊂ M such that
the given immersion X : M → N satisfies X(Ωξ) ⊂ Wξ. Now we can express its differential
dX : TM → TN locally as

dX = Xi
δdu

δ ⊗ bi,

and we set∇X(u) := (Xi
δ(u)) ∈ R(m+1)×m for any u ∈ Ωξ, so that we obtain from (1.4)

σX∗F (u) =
H m(Bm

1 (0))

H m({v ∈ Rm : F (X(u), vδXi
δbi|X(u)) ≤ 1})

=: aFξ (X(u),∇X(u)),

where for x ∈Wξ and P = (P iδ) ∈ R(m+1)×m we have set

aFξ (x, P ) :=

{
H m(Bm1 (0))

H m({v∈Rm:F (x,vδP iδbi|x)≤1}) if rankP = m,

0 if rankP < m.
(2.1)

The following result was probably first shown by Busemann [5]; cf. [47, Chapter 7, p. 229].

Proposition 2.1. Let (N , F ) be a Finsler manifold of dimension n = m+ 1. For ξ ∈ N , Wξ ⊂ N ,
and a basis section {bi}m+1

i=1 on TWξ ⊂ TN chosen as above one can write

aFξ (x, P ) = AFξ (x, P1 ∧ . . . ∧ Pm) for x ∈Wξ and P = (P1|P2| . . . |Pm) ∈ R(m+1)×m,

where Pδ = (P iδ)
m+1
i=1 ⊂ Rm+1 for δ = 1, . . . ,m, denote the column vectors of the matrix P , and the

wedge product is given as usual by

P1 ∧ . . . ∧ Pm :=

m+1∑
i=1

det(ei|P1| . . . |Pm)ei

for the standard basis {ei}m+1
i=1 of Rm+1. The function AFξ : Wξ × Rm+1 → [0,∞) is defined by

AFξ (x, Z) :=

{ |Z|H m(Bm1 (0))

H m({T=(T 1,...,Tm+1)∈Z⊥:F (x,T ibi|x)≤1}) , for x ∈Wξ and Z 6= 0

0 for x ∈Wξ and Z = 0,
(2.2)

where Z⊥ := {T ∈ Rm+1 : T · Z = 0} denotes the orthogonal complement of the m-dimensional
subspace spanned by Z, and we have the homogeneity relation

AFξ (x, tZ) = tAFξ (x, Z) for all x ∈Wξ, t > 0, Z ∈ Rm+1. (2.3)
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Using the (globally defined) standard basis {e1, . . . , em+1} of Rm+1 we immediately deduce the
PROOF OF THEOREM 1.1. If N = Rm+1 and F = F (x, y) is a Finsler metric on Rm+1, and
X ∈ C1(M ,Rm+1) is an immersion from a smoothm-dimensional manifold M into Rm+1, then we
obtain for the Finsler area of an open subset Ω ⊂M formula (1.6) in local coordinates (u1, . . . , um) :
Ω→ Ω̃ ⊂ Rm, with the explicit expression (1.7) for the integrand AF as stated in Theorem 1.1. 2

PROOF OF PROPOSITION 2.1. It suffices to consider matrices P = (P1| . . . |Pm) ∈ R(m+1)×m of
full rank m. Then the linear mapping ` : Rm → Rm+1 given by

`(v) := vδPδ for v = (v1, . . . , vm) ∈ Rm,

has rank m, i.e., ` is injective.
For given x ∈Wξ we set

Vx := {v ∈ Rm : F (x, vδP iδbi|x) ≤ 1} and

Υx := {T ∈ Rm+1 : F (x, T ibi|x) ≤ 1 & (P1 ∧ . . . ∧ Pm) · T = 0},

and claim that `(Vx) = Υx.
Indeed, for T ∈ `(Vx) we find v = (v1, . . . , vm) ∈ Rm such that T = vδPδ and

1 ≥ F (x, vδP iδbi|x) = F (x, T ibi|x),

so that
(P1 ∧ . . . ∧ Pm) · T = vδ(P1 ∧ . . . ∧ Pm) · Pδ = 0,

i.e., T ∈ Υx. On the other hand, for T ∈ Υx we find

0 = (P1 ∧ . . . ∧ Pm) · T = det(T |P1| . . . |Pm)

so that T is a linear combination of the Pδ, δ = 1, . . . ,m, (since P = (P1| . . . |Pm) was assumed to
have full rank m), i.e., there are vδ ∈ R, δ = 1, . . . ,m, such that T = vδPδ. Hence

F (x, vδP iδbi|x) = F (x, T ibi|x) ≤ 1,

since we assumed T ∈ Υx. This implies v ∈ Vx and therefore T = `(v) ∈ `(Vx).
Next we claim that for arbitrary x ∈Wξ

H 0(Vx ∩ `−1(T )) = χΥx(T ) for all T ∈ Rm+1, (2.4)

where χA denotes the characteristic function of a set A ⊂ Rm+1.
To prove this we observe that for T 6∈ span{P1, . . . , Pm} we know that T 6∈ Υx, since

(P1 ∧ . . . ∧ Pm) · T = det(T |P1| · · · |Pm) 6= 0.

This implies (2.4) for such T . For T ∈ span{P1, . . . , Pm} , i.e., T = vδPδ for some v = (v1, . . . , vm) ∈
Rm, we distinguish two cases: If T ∈ Υx, in addition, we find

F (x, vδP iδbi|x) = F (x, T ibi|x) ≤ 1,

hence H 0(Vx ∩ `−1(T )) ≥ 1. We even have

H 0(Vx ∩ `−1(T )) = 1 = χΥx(T ),
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since ` is injective. If, finally, T 6∈ Υx but still in the span of the Pδ, δ = 1, . . . ,m, we know by
`(Vx) = Υx that Vx ∩ `−1(T ) = ∅ and therefore the identity (2.4) holds also in this case.

We apply now the area formula (see. e.g. [17, Theorem 3.2.3]) to the linear mapping ` and use
(2.4) to deduce for arbitrary x ∈Wξ

H m(Vx) =

∫
v∈Vx

dLm(v) =
1

|P1 ∧ . . . ∧ Pm|

∫
v∈Vx

|P1 ∧ . . . ∧ Pm| dLm(v)

=
1

|P1 ∧ . . . ∧ Pm|

∫
v∈Vx

∣∣∣ ∂`
∂v1
∧ . . . ∧ ∂`

∂vm

∣∣∣ dLm(v)

=
1

|P1 ∧ . . . ∧ Pm|

∫
T∈Rm+1

H 0(Vx ∩ `−1(T )) dH m(T )

(2.4)
=

1

|P1 ∧ . . . ∧ Pm|

∫
T∈Rm+1

χΥx(T ) dH m(T ) =
1

|P1 ∧ . . . ∧ Pm|
H m(Υx),

which proves the proposition, since the homogeneity relation (2.3) follows immediately from (2.2). 2

Notice that the expression AF in (1.7) is well-defined on Rm+1 × (Rm+1 \ {0}) and can be
continuously extended by zero to all of Rm+1 × Rm+1 by virtue of the homogeneity relation (H), as
long as F is any continuous positively 1-homogeneous function on Rm+1 × Rm+1. The following
alternative representation of AF for such an F will turn out to be quite useful to transfer pointwise
bounds from F to AF (see Corollary 2.5) and to quantify the convexity of AF in the second variable;
see Section 3.2.

Lemma 2.2. Let F ∈ C0(Rm+1 × Rm+1) satisfy F (x, y) > 0 for y 6= 0, and

F (x, ty) = tF (x, y) for all t > 0, (x, y) ∈ Rm+1 × Rm+1. (2.5)

Then the expression AF defined in (1.7) can be rewritten as

AF (x, Z) =
|Z|H m−1(Sm−1(0))√

det(fδ · fσ)
∫
Sm−1

1
Fm(x,θκfκ) dH

m−1(θ)
for all (x, Z) ∈ Rm+1 × (Rm+1 \ {0}).

(2.6)
for any choice of basis {f1, . . . , fm} of the m-dimensional subspace Z⊥ ⊂ Rm+1.

PROOF: Applying the area formula [17, Theorem 3.2.3] to the linear mapping g : Rm → Rm+1

given by g(t) := tκfκ for t = (t1, . . . , tm) ∈ Rm with Jacobian determinant
√

det
[
Dg(t)TDg(t)

]
=√

det(fδ · fσ) independent of t, one calculates for the denominator of AF in (1.7)

H m({T ∈ Z⊥ : F (x, T ) ≤ 1}) =

∫
Rm+1

χ{T∈Rm+1:F (x,T )≤1, T ·Z=0}(z) dH
m(z)

=
√

det(fδ · fσ)

∫
Rm

χ{t∈Rm:F (x,tκfκ)≤1}(ζ) dLm(ζ)

=
√

det(fδ · fσ)

∫
Sm−1

∫ ∞
0

χ{rθ∈Rm:F (x,(rθ)κfκ)≤1}(sθ)s
m−1 dsdH m−1(θ)

=
√

det(fδ · fσ)

∫
Sm−1

∫ 1/F (x,θκfκ)

0
sm−1 dsdH m−1(θ)

=
√

det(fδ · fσ)

∫
Sm−1

1

mFm(x, θκfκ)
dH m−1(θ),
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where we have transformed to polar coordinates ζ = sθ for θ = ζ/|ζ| ∈ Sm−1 with dLm(ζ) =
sm−1dH m−1(θ), and we used (2.5) to write rF (x, θκfκ) = F (x, (rθ)κfκ) ≤ 1 in the defining set of
the characteristic function χ, and the identity H m(Sm−1) = mH m(Bm

1 (0)). 2

Them-symmetrization Fsym of a Finsler metric F leads to the same expressionAF as can be seen
in the following lemma.

Lemma 2.3. Let F = F (x, y) ∈ C0(Rm+1×Rm+1) be strictly positive as long as y 6= 0 and assume
that (2.5) holds true. Then

AF (x, Z) = AFsym(x, Z) for all (x, Z) ∈ Rm+1 × Rm+1. (2.7)

PROOF: By inspection of the definition (1.8) of Fsym one observes that the homogeneity condition
(2.5) on F implies that also Fsym is positively 1-homogeneous in y and thus extendible by zero to all
of Rm+1 × Rm+1, so that also AFsym is well-defined (replacing F by Fsym in (1.7)) and positively 1-
homogeneous on Rm+1× (Rm+1 \ {0}). HenceAFsym is also extendible by zero onto Rm+1×Rm+1.
Thus it suffices to prove (2.7) for Z 6= 0, so that Z⊥ ⊂ Rm+1 is an m-dimensional subspace of
Rm+1. If {fδ}mδ=1 is a basis of Z⊥ then so is {(−fδ)}mδ=1. Moreover fδ · fσ = (−fδ) · (−fσ) for all
δ, σ = 1, . . . ,m, so that

√
det(fδ · fσ) =

√
det((−fδ) · (−fσ)); hence we can use Lemma 2.2 twice

to compute

AF (x, Z) =
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

1
Fm(θκfκ) dH

m−1(θ)

=
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

dH m−1(θ)
2Fm(θκfκ) +

√
det((−fδ) · (−fσ))

∫
Sm−1

dH m−1(θ)
2Fm(−θκfκ)

=
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

[
1

2Fm(θκfκ) + 1
2Fm(−θκfκ)

]
dH m−1(θ)

=
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

[
21/m

( 1
Fm(θκfκ)

+ 1
Fm(−θκfκ)

)1/m

]−m
dH m−1(θ)

=
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

1
Fmsym(θκfκ) dH

m−1(θ)
= AFsym(x, Z).

2

2.2 Solving the Plateau problem

The existence of minimizing solutions for two-dimensional geometric boundary value problems in-
cluding the Plateau problem has been established for general Cartan functionals in [26,27,29]. These
functionals are double integrals of the form∫ ∫

B
C(X(u), (Xu1 ∧Xu2)(u)) du (2.8)

defined on mappings X : B ⊂ R2 → Rn for n ≥ 2, where the Cartan integrand (or parametric
integrand) C ∈ C0(Rn × RN ) is characterized by the homogeneity condition

C(x, tZ) = tC(x, Z) for all (x, Z) ∈ Rn × RN , t > 0. (H)
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(Here, N = n(n− 1)/2 denotes the dimension of the space of bivectors ξ ∧ η for ξ, η ∈ Rn.)
For the existence theory one requires, in addition, the existence of constants 0 < m1 < m2 such

that
m1|Z| ≤ C(x, Z) ≤ m2|Z| for all (x, Z) ∈ Rn × RN , (D)

and
Z 7→ C(x, Z) is convex for all x ∈ Rn. (C)

We have already observed in the introduction that (H) holds for the Finsler-area integrand AF , so it
suffices to prove (D) and (C) for AF .

Lemma 2.4. Let F1, F2 ∈ C0(Rm+1 × Rm+1) be strictly positive on Rm+1 × (Rm+1 \ {0}), each
satisfying the homogeneity relation (2.3). If for x ∈ Rm+1 there exist numbers 0 < c1(x) ≤ c2(x)
with

c1(x)F1(x, y) ≤ F2(x, y) ≤ c2(x)F1(x, y) for all y ∈ Rm+1,

then
m1(x)AF1(x, Z) ≤ AF2(x, Z) ≤ m2(x)AF1(x, Z) for all Z ∈ Rm+1, (2.9)

where m1(x) := cm1 (x) and m2(x) := cm2 (x).

PROOF: The statement is obvious for Z = 0 since then all terms in (2.9) vanish. For Z 6= 0
we choose a basis of the subspace Z⊥ ⊂ Rm+1 and use the representation (2.6) of Lemma 2.2 to
compute

m1(x)AF1(x, Z)
(2.6)
=

m1(x)|Z|H m(Sm−1)√
det(fδ · fσ)

∫
Sm−1

1
Fm1 (x,θκfκ) dH

m−1(θ)

=
|Z|H m(Sm−1)√

det(fδ · fσ)
∫
Sm−1

dH m−1(θ)
(c1(x)F1(x,θκfκ))m

≤ |Z|H m(Sm−1)√
det(fδ · fσ)

∫
Sm−1

dH m−1(θ)
Fm2 (x,θκfκ)

(2.6)
= AF2(x, Z).

The second inequality in (2.9) can be established in the same way. 2

Corollary 2.5. Let F be a Finsler metric on Rm+1 with

0 < c1 := inf
Rm+1×Sm

F (·, ·) ≤ sup
Rm+1×Sm

F (·, ·) = ‖F‖L∞(Rm+1×Sm) =: c2 <∞. (2.10)

Then
m1|Z| ≤ AF (x, Z) ≤ m2|Z| for all (x, Z) ∈ Rm+1 × Rm+1, (2.11)

where m1 := cm1 and m2 := cm2 .

Notice that the defining properties (F1), (F2) of any Finsler metric F = F (x, y) imply that
F (x, y) > 0 whenever y 6= 0 so that Assumption (2.10) is automatically satisfied if F = F (y) is
a Minkowski metric since then

0 < min
Sm

F (·) ≤ F (y) ≤ max
Sm

F (·) <∞

by continuity of F .
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PROOF OF COROLLARY 2.5. The homogeneity condition (F1) on F implies

c1|y| ≤ F (x, y/|y|)|y| (F1)
= F (x, y) ≤ c2|y|,

so that we can apply Lemma 2.4 to the functions F1(x, y) := |y| and F2(x, y) := F (x, y) and con-
stants ci(x) := ci for i = 1, 2, to obtain (2.11) from (2.9). 2

One easily checks that F and its m-harmonic symmetrization Fsym have the same pointwise
bounds; hence it does not make any difference whether one assumes (2.10) for F or for Fsym. The
following convexity result was first established by H. Busemann [6, Theorem II, p. 28] and can also
be found in the treatise of Thompson [47, Theorem 7.1.1].

Theorem 2.6 (Busemann). If F is a reversible Finsler metric on N = Rm+1 then the corresponding
expression AF = AF (x, Z) defined in (1.7) is convex in Z for any x ∈ Rm+1.

We omit Busemann’s proof and refer to the literature, but let us point out that his proof is of
geometric nature, and we do not see how to quantify the convexity directly from his arguments.
Nevertheless, Theorem 2.6 does serve us as a starting point of our quantitative analysis of convex-
ity properties via the spherical Radon transform and its inverse in our treatment of Finsler-minimal
immersion in [41]. At the present stage, however, Busemann’s theorem suffices to solve Plateau’s
problem in Finsler spaces.

PROOF OF THEOREM 1.2. Specifying Theorem 1.1 to the dimension m = 2, and taking the closure
B̄ of the unit disk B ≡ B1(0) ⊂ R2 as the base manifold M immersed into R3 via a mapping
Y ∈ C1(B̄,R3) we find for its Finsler area according to (1.6) the expression

areaFB(Y ) =

∫
B
AF (Y (u),

( ∂Y
∂u1
∧ ∂Y

∂u2

)
(u)) du1du2, (2.12)

with an integrand AF ∈ C0(R3 × R3) satisfying (H) (see (2.3) in Proposition 2.1). Consequently,
the Finsler area (2.12) can be identified with a Cartan functional with a Cartan integrand AF . The
Plateau problem described in the introduction now asks for (a priori possibly branched) minimizers of
that functional in the class C(Γ), where Γ is the prescribed rectifiable Jordan curve in R3.

The growth assumption (D*) leads by virtue of Corollary 2.5 to

m1|Z| ≤ AF (x, Z) ≤ m2|Z| for all (x, Z) ∈ R3 × R3, (D)

where 0 < m1 := m2
F ≤ M2

F =: m2 < ∞, so AF is a definite Cartan integrand if we speak in the
terminology of [31, Section 2]. Moreover, Theorem 2.6 yields

Z 7→ AF (x, Z) is convex for any x ∈ R3, (C)

if F is reversible, but we did not assume that in Theorem 1.2. However, the m-harmonic symmetriza-
tion Fsym is reversible so that (C) is valid forAFsym if Fsym itself is a Finsler metric. But this is exactly
our general assumption (GA). Now, with Lemma 2.3 we obtain also (C) for AF , so that we can ap-
ply [29, Theorem 1.4 & 1.5] (see also [26, Theorem 1]) to deduce the existence of a Finsler-area
minimizer X ∈ C(Γ) satisfying the conformality relations (1.9) and the additional regularity proper-
ties stated in Theorem 1.2. 2
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PROOF OF COROLLARY 1.3. The isoperimetric inequality can be established in a similar way as in
the proof of Theorem 3 in [8, p.628]. Let Y be a disk-type minimal surface bounded by the curve Γ.
Then the isoperimetric inequality for classic minimal surfaces [14, Theorem 1, p. 330] and the growth
condition mF |y| ≤ F (x, y) ≤MF |y| imply that for the Finslerian minimizer X we can conclude

areaFB(X) ≤ areaFB(Y ) ≤ m2A(Y ) ≤ m2

4π
(L (Γ))2 ≤ m2

4πm1
(L F (Γ))2 (2.13)

which proves the result. 2

3 Higher Regularity

3.1 Radon transform

Extending the spherical Radon transform [44] – for m = 2 also known as Funk transform [20] –
to positively homogenous functions on Rm+1 \ {0} we will formulate sufficient conditions on the
Finsler metric F to guarantee the ellipticity of the corresponding Cartan integrandAF , and moreover,
the existence of a corresponding perfect dominance function for AF leading to higher regularity of
minimizers of the Plateau problem; see Section 3.2.

Definition 3.1. The spherical Radon transform R̂ defined on the function spaceC0(Sm) of continuous
functions on the unit sphere Sm ⊂ Rm+1 is given as

R̂[f ](ζ) :=
1

H m−1(Sm−1)

∫
Sm∩ζ⊥

f(ω) dH m−1(ω) for f ∈ C0(Sm) and ζ ∈ Sm.

This and more general transformations of that kind have been investigated intensively within
geometric analysis, integral geometry, geometric tomography, and convex analysis by S. Helgason
[24,25], T.N. Bailey et al. [2], and many others; see e.g. [21, Appendix C], where some useful proper-
ties of the spherical Radon transform are listed and where explicit references to the literature is given,
in particular to the book of H. Groemer [23].

It turns out that the Cartan integrand AF defined in (1.7) may be rewritten in terms of the Radon
transform after extending R̂ suitably to the space of positively (−m)-homogeneous functions on
Rm+1 \ {0}; see Corollary 3.8 below. We set

R[g](Z) :=
1

|Z|
R̂
[
g|Sm

]( Z
|Z|

)
for g ∈ C0(Rm+1 \ {0}), Z ∈ Rm+1 \ {0}, (R)

which by definition is a (−1)-homogeneous function on Rm+1 \ {0}, and we will prove the following
useful representation formula.

Lemma 3.2. For g ∈ C0(Rm+1 \ {0}) one has the identity

R
[
g
]
(Z) =

1

|Z|H m−1(Sm−1)

∫
Sm−1

g(θκfκ) dH m−1(θ) for Z ∈ Rm+1 \ {0}, (3.1)

where {f1, . . . , fm} ⊂ Rm+1 is an arbitrary orthonormal basis of the subspace Z⊥ ⊂ Rm+1.
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This explicit representation of the extended Radon transform R
[
g
]

can be used to give a direct
proof of its continuity and differentiability as long as one inserts continuous or differentiable homo-
geneous functions g; see [40]. On the other hand, this fact can also be deduced from well-established
facts on the spherical Radon transform and more general transformations as in [24, Proposition 2.2,
p. 59] (see also [22, p. 118] and the short summary of results in [21, Appendix C]), so we will omit
the proof here:

Corollary 3.3. The extended Radon transformationR is a bounded linear map from C0(Rm+1 \{0})
to C0(Rm+1 \ {0}), and if g ∈ C1(Rm+1 \ {0}) thenR

[
g
]

is differentiable on Rm+1 \ {0}.

PROOF OF LEMMA 3.2. By means of local coordinate charts Sm−1 ⊂
⋃M
t=1 Vt ⊂ Rm and respective

coordinates yt = (y1
t , . . . , y

m−1
t ) : Vt → Ωt ⊂ Rm−1 we define the disjoint sets At := Vt −

⋃t−1
s=1 Vs

for t = 1, . . . ,M and use the characteristic functions χAt of the sets At to partition the integrand

g(θκfk) =

M∑
t=1

χAt(θ)g(θκfk) =:

M∑
t=1

gt(θ)

to find (cf. [4, p. 142])∫
Sm−1

g(θκfκ) dH m−1(θ) =

M∑
t=1

∫
Sm−1

gt(θ) dH
m−1(θ).

In each term on the right-hand side we apply the area formula [17, 3.2.3 (2)] with respect to the
(injective) transformation Tt : Ωt → Rm+1 given by Tt(yt) := θit(yt)fi for t = 1 . . . ,M to obtain∫

Sm−1

gt(θ) dH
m−1(θ) =

∫
Ωt

gt(θt(yt))
√

det(DθTt (yt)Dθt(yt)) dy
1
t · · · dym−1

t

=

∫
Rm+1

gt(θt(yt))|yt∈T−1
t (ζ) dH

m−1(ζ) =

∫
Rm+1

(χAt(θt(yt))g(θκt (yt)fκ))|yt∈T−1
t (ζ) dH

m−1(ζ)

=

∫
Rm+1

χSm∩Z⊥(ζ)(χAt(θt(yt))g(θκt (yt)fκ))|yt∈T−1
t (ζ) dH

m−1(ζ),

since θκt (yt)fκ = Tt(yt) = ζ for yt ∈ T−1
t (ζ), and because Tt(yt) ∈ Z⊥ and |Tt(yt)| = 1 by

definition of Tt. (Recall that the system {f1, . . . , fm} forms an orthonormal basis of Z⊥.) Now, for
yt ∈ T−1

t (ζ) one has Tt(yt) = θκt (yt)fκ = ζ ∈ Rm+1, and therefore

θt(yt) = (θ1
t (yt), . . . , θ

m
t (yt)) = (f1 · ζ, . . . , fm · ζ) =: ΦT ζ

for the matrix Φ := (f1| · · · |fm) ∈ R(m+1)×m with the orthonormal basis vectors fi, i = 1, . . . ,m,
as column vectors. This implies for any set A ⊂ Rm that θ = (θ1, . . . , θm) = ΦT ζ ∈ A if and only
if ζ ∈ ΦA := {ξ ∈ Rm+1 : ξ = Φa for some a ∈ A} since ΦTΦ = IdRm+1 . Hence the characteristic
functions satisfy χA(ΦT ζ) = χΦA(ζ), in particular we find

χAt(θt(yt))|yt∈T−1
t (ζ) = χΦAt(ζ),

where the sets ΦAt are also disjoint, since any ξ ∈ ΦAt ∩ ΦAσ for 1 ≤ t < σ ≤ M has the
representations ξ = Φat = Φaσ for some at ∈ At and aσ ∈ Aσ, which implies Φat = aitfi = aiσfi =
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Φaσ, i.e., at = aσ as the fi are linearly independent. But then at = aσ ∈ At ∩ Aσ = ∅, which is a
contradiction. Summarizing we conclude∫

Sm−1

g(θκfκ) dH m−1(θ) =

∫
Sm−1

M∑
t=1

gt(θ) dH
m−1(θ) =

M∑
t=1

∫
ΦAt

g(ζ) dH m−1(ζ)

=

∫
Sm∩Z⊥

g(ζ) dH m−1(ζ) =

∫
Sm∩(Z/|Z|)⊥

g(ζ) dH m−1(ζ),

since we have the disjoint union
⋃M
t=1 ΦAt = Φ(

⋃M
t=1At) = Φ(Sm−1) = Sm ∩ Z⊥. and therefore,

by definition (R) of the extended Radon transform,

1

|Z|H m−1(Sm−1)

∫
Sm−1

g(θκfκ) dH m−1(θ) = R
[
g
]
(Z) for Z ∈ Rm+1 \ {0}.

2

It turns out that the extended Radon transform enjoys a nice transformation behaviour under the
action of the special linear group SL(m+ 1) of (m+ 1)× (m+ 1)-matrices with determinant equal
to 1; see Corollary 3.5 below. More generally, one has the following transformation rule:

Lemma 3.4. For any (−m)-homogeneous function g ∈ C0(Rm+1 \ {0}) one has

R
[
g
]
◦ L = R

[
g ◦ (detL)1/mL−T

]
(3.2)

for every invertible matrix L ∈ R(m+1)×(m+1).

Corollary 3.5. For all L ∈ SL(m+ 1) and all (−m)-homogeneous functions g ∈ C0(Rm+1 \ {0})
one has

R
[
g
]
◦ L = R

[
g ◦ L−T

]
. (3.3)

PROOF: Relation (3.3) is an immediate consequence of Lemma 3.4 since detL = 1 for L ∈
SL(m+ 1). 2

PROOF OF LEMMA 3.4. By continuity ofR
[
·
]

it suffices to prove the lemma for C1-functions.
For an orthonormal basis {f1, . . . , fm} ⊂ Rm+1 of an m-dimensional subspace of Rm+1 we can

form the exterior product

f1 ∧ f2 ∧ . . . ∧ fm =
m+1∑
i=1

det(f1|f2| . . . |fm|ei)ei ∈ Rm+1,

where the ei denote the standard basis vectors of Rm+1, i = 1, . . . ,m+1, and we have (see, e.g., [18,
Ch. 2.6, p.14]

|f1 ∧ f2 ∧ . . . ∧ fm|2 = (f1 ∧ f2 ∧ . . . ∧ fm) · (f1 ∧ f2 ∧ . . . ∧ fm) = det(fi · fj) = 1.

Lemma 3.2 applied to the m-vector Z := f1 ∧ . . . ∧ fm (so that span{f1, . . . , fm} = Z⊥) yields

R
[
g
]
(f1 ∧ . . . ∧ fm) =

1

H m−1(Sm−1)

∫
Sm−1

g(θκfκ) dH m−1(θ)
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for any g ∈ C1(Rm+1 \ {0}). By means of the Gauß map ν : Sm−1 → Rm, which coincides with the
position vector at every point on Sm−1, i.e., ν(θ) = θ for any θ = (θ1, . . . , θm) ∈ Sm−1 ⊂ Rm we
can apply [19, Satz 3, p. 245] to rewrite the Radon transform in terms of differential forms:

R
[
g
]
(f1 ∧ . . . ∧ fm) =

1

H m−1(Sm−1)

∫
Sm−1

g(θκfκ)θsνs(θ) dH
m−1(θ)

=
1

H m−1(Sm−1)

∫
Sm−1

g(θκfκ)θs(−1)s−1 dθ1 ∧ . . . ∧ d̂θs ∧ . . . ∧ dθm

=: I
[
g
]
(F ), (3.4)

where F = (f1|f2| . . . |fm) ∈ R(m+1)×m assembles the orthonormal basis vectors f1, . . . , fm as
columns.

Now we claim that
I
[
g
]
(ΞB) =

1

detB
I
[
g
]
(Ξ) (3.5)

for any B = (bij) ∈ Rm×m with positive determinant, and Ξ := (ξ1|ξ2 . . . |ξm) ∈ R(m+1)×m,
where {ξ1, . . . , ξm} is an arbitrary set of m linearly independent vectors in Rm+1 replacing the fi,
i = 1, . . . ,m, in the defining integral for I

[
g
]
(·) in (3.4). Indeed, B represents the linear map β :

Rm → Rm with βi(x) = bijx
j for x = (x1, . . . , xm) ∈ Rm with inverse β−1(y) = aijy

j for
y = (y1, . . . , ym) ∈ Rm, where A = (aij) := B−1 ∈ Rm×m, and we have dβi = bijdx

j for
i = 1, . . . ,m, so that dθi = aiτ b

τ
j dθ

j = aiτdβ
τ , and θs = asσb

σ
j θ
j = bσj θ

jasσ = βσ(θ)asσ. By means
of the matrix

ΞB = (ξ1| . . . |ξm)B = (bt1ξt| . . . |btmξt) ∈ R(m+1)×m

we can write the left-hand side of (3.5) as

I
[
g
]
(ΞB) =

1

H m−1(Sm−1)

∫
Sm−1

g(θκbtκξt)θ
s(−1)s−1 dθ1 ∧ . . . ∧ d̂θs ∧ . . . ∧ dθm

=
1

H m−1(Sm−1)

∫
Sm−1

g(βt(θ)ξt)β
σ(θ)asσ(−1)s−1a1

τ1dβ
τ1 ∧ . . . ∧ âsτsdβτs ∧ . . . ∧ a

m
τmdβ

τm .

Now, it is a routine matter in computations with determinants to verify that the last integrand on the
right-hand side equals

1

detB
g(βt(θ)ξt)β

s(θ)(−1)s−1dβ1 ∧ . . . ∧ d̂βs ∧ . . . ∧ dβm,

which is the pull-back β∗ω of the form

ω(θ) =
1

detB
g(θtξt)θ

s(−1)s−1 dθ1 ∧ . . . ∧ d̂θs ∧ . . . ∧ dθm

under the linear mapping β. Since detB = detDβ > 0 by assumption we obtain by the transforma-
tion formula for differential forms (see, e.g., [19, Satz 1, p. 235])

I
[
g
]
(ΞB) =

1

H m−1(Sm−1)

∫
Sm−1

β∗ω =
1

H m−1(Sm−1)

∫
β(Sm−1)

ω

=
1

H m−1(Sm−1)

∫
Sm−1

ω =
1

detB
I
[
g
]
(Ξ),
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where we have used the fact that ω is a closed form and that the closed surface β(Sm−1) contains the
origin as the only singularity of the differential form ω in its interior, since β as a linear map maps
0 to 0; see, e.g., [19, Corollar, p. 257]. (Recall that g was assumed to be (−m)-homogeneous and of
class C1(Rm+1 \ {0}).) Hence the claim (3.5) is proved.

With arguments analogous to [36, pp. 349, 350] (or in more detail [48, pp. 7–11]) one can use
relation (3.5) for fixed g ∈ C1(Rm+1 \ {0}) to show that there is a (−1)-homogeneous function
J
[
g
]
(·) : Rm+1 → Rm+1 such that

I
[
g
]
(Ξ) = J

[
g
]
(ξ1 ∧ . . . ∧ ξm) for Ξ = (ξ1| . . . |ξm) ∈ R(m+1)×m, (3.6)

whenever ξ1, . . . , ξm ∈ Rm+1 are linearly independent.
For a hyperplane (ξ1 ∧ . . . ∧ ξm)⊥ ⊂ Rm+1, where ξ1, . . . , ξm ∈ Rm+1 are linearly independent

vectors, we can now choose an appropriately oriented orthonormal basis {f1, . . . , fm} ⊂ Rm+1, such
that

f1 ∧ . . . ∧ fm =
ξ1 ∧ . . . ∧ ξm
|ξ1 ∧ . . . ∧ ξm|

.

For the matrix F = (f1| . . . |fm) ∈ R(m+1)×m we consequently obtain by (−1)-homogeneity of
R
[
g
]
(·) and of J

[
g
]
(·)

R
[
g
]
(ξ1 ∧ . . . ∧ ξm) = R

[
g
]
(f1 ∧ . . . ∧ fm)

1

|ξ1 ∧ . . . ∧ ξm|
(3.4)
= I

[
g
]
(F )

1

|ξ1 ∧ . . . ∧ ξm|
(3.6)
= J

[
g
]
(f1 ∧ . . . ∧ fm)

1

|ξ1 ∧ . . . ∧ ξm|
= J

[
g
]
(ξ1 ∧ . . . ∧ ξm)

(3.6)
= I

[
g
]
(Ξ), (3.7)

which is relation (3.4) even for matrices Ξ = (ξ1| . . . |ξm) ∈ R(m+1)×m whose column vectors ξi,
i = 1, . . . ,m, are merely linearly independent.

According to the well-known formula

L(ξ1 ∧ . . . ∧ ξm) = (detL)(L−T ξ1) ∧ (L−T ξ2) ∧ . . . ∧ (L−T ξm)

= ((detL)
1
mL−T ξ1) ∧ . . . ((detL)

1
mL−T ξm)

for any invertible matrix L ∈ R(m+1)×(m+1) we can now conclude with (3.7) for matrices Ξ =
(ξ1| . . . |ξm) ∈ R(m+1)×m of maximal rank m,

R
[
g
]
(L(ξ1 ∧ . . . ∧ ξm)) = R

[
g
]
(((detL)

1
mL−T ξ1) ∧ . . . ((detL)

1
mL−T ξm))

(3.7)
= I

[
g
]
((detL)1/mL−TΞ)

=
1

H m−1(Sm−1)

∫
Sm−1

g(θκ(detL)
1
mL−T ξκ)θs(−1)s−1 dθ1 ∧ . . . ∧ d̂θs ∧ . . . ∧ dθm

= R
[
g ◦ (detL)1/mL−T

]
(ξ1 ∧ . . . ∧ ξm),

which proves the lemma, since forZ ∈ Rm+1\{0} and any appropriately oriented basis {ξ1, . . . , ξm} ⊂
Rm+1 of the subspace Z⊥ ⊂ Rm+1, we have

Z = |Z| ξ1 ∧ . . . ∧ ξm
|ξ1 ∧ . . . ∧ ξm|

,
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and therefore by (−1)-homogeneity

R
[
g
]
(LZ) = R

[
g
]
(L(ξ1 ∧ . . . ∧ ξm))

|ξ1 ∧ . . . ∧ ξm|
|Z|

= R
[
g ◦ (detL)1/mL−T

]
(ξ1 ∧ . . . ∧ ξm)

|ξ1 ∧ . . . ∧ ξm|
|Z|

= R
[
g ◦ (detL)1/mL−T

]( |Z|ξ1 ∧ . . . ∧ ξm
|ξ1 ∧ . . . ∧ ξm|

)
= R

[
g ◦ (detL)1/mL−T

]
(Z)

for any g ∈ C1(Rm+1 \ {0}) and therefore also for any g ∈ C0(Rm+1 \ {0}) by approximation. 2

The transformation behaviour (3.3) of R under the action of SL(m + 1) can be used to prove
valuable differentiation formulas for R restricted to a suitable class of homogeneous functions, since
the tangent space of SL(m + 1) seen as a smooth submanifold of R(m+1)×(m+1) ∼= R(m+1)2

can be
characterized as the set of trace-free matrices; see, e.g., [34, Lemma 8.15 & Example 8.34].

Theorem 3.6. Let k ∈ N and g ∈ Ck(Rm+1 \ {0}) be positively (−m)-homogeneous. Then the
Radon transform R

[
g
]

is of class Ck(Rm+1 \ {0}), and one has or Z = (Z1, . . . , Zm+1), y =
(y1, . . . , ym+1) ∈ Rm+1 \ {0}:

Zτ1 · · ·Zτk
∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]
(Z) = (−1)kR

[ ∂

∂yτ1
· · · ∂

∂yτk
(yσ1 · · · yσkg)

]
(Z), (3.8)

where we have set Zj := δjtZ
t.

PROOF: We will prove this statement by induction over k ∈ N. Notice first, however, that for
a differentiable curve α : (−ε0, ε0) → SL(m + 1) with α(0) = IdRm+1 and α′(0) = V ∈
TIdRm+1SL(m+ 1) ⊂ R(m+1)×(m+1), i.e., with traceV = 0, we can exploit (3.3) to find

R
[
g
]
◦ α(t) = R

[
g ◦ (α(t))−T

]
for all t ∈ (−ε0, ε0).

According to Corollary 3.3 the left-hand side is differentiable as a function of t on (−ε0, ε0), so that
upon differentiation with respect to t at t = 0 we obtain

d

dt |t=0

{
R
[
g
]
◦ α(t)(Z)

}
=

d

dt |t=0

{
R
[
g ◦ (α(t))−T

]
(Z)
}

(3.9)

for arbitrary Z ∈ Rm+1 \ {0}. The left-hand side of this identity can be computed as

d

dt |t=0

{
R
[
g
]
◦ α(t)(Z)

}
=

d

dt |t=0

{
R
[
g
]
(α(t)Z)

}
=

∂

∂Zi
R
[
g
]
(Z)

d

dt |t=0

(αij(t)Z
j) =

∂

∂Zi
R
[
g
]
(Z)V i

j Z
j ,

whereas the right-hand side of (3.9) yields (because of the linearity ofR[·])
d

dt |t=0

{
R
[
g ◦ (α(t))−T

]
(Z)
}

= R
[ d
dt |t=0

{g ◦ (α(t))−T
]
(Z)

= R
[ ∂
∂yi

g(·)((α−T )′(0))ijy
j
]
(Z)

= R
[ ∂
∂yi

g(·)(−V T )ijy
j
]
(Z)

= −R
[
(V T )ijy

j ∂

∂yi
g(·)
]
(Z),
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where we have used that

0 =
d

dt |t=0

IdRm+1 =
d

dt |t=0

{
α(t)−Tα(t)T

}
= (α−T )′(0) + α′(0)T .

Setting W := V T and recalling that Zj = δjtZ
t we can thus rewrite (3.9) as

W j
i Zj

∂

∂Zi
R
[
g
]
(Z) = −R

[
W i
jy
j ∂

∂yi
g(·)
]
(Z) for g ∈ Ck(Rm+1 \ {0}). (3.10)

This relations holds for any trace-free matrix W ∈ R(m+1)×(m+1).
In addition, we will also use the (−1)-homogeneity ofR

[
g
]

and the Euler identity to obtain

Zi
∂

∂Zi
R
[
g
]
(Z) = −R

[
g
]
(Z) for Z ∈ Rm+1 \ {0}. (3.11)

Now we are in the position to prove (3.8) for k = 1. We choose for fixed τ, σ ∈ {1, . . . ,m + 1} the
trace-free matrix

W := (W i
j ) := (δiτδ

σ
j −

1

m+ 1
δijδ

σ
τ )

to deduce by means of (3.11) for the left-hand side of formula (3.10)

W j
i Zj

∂

∂Zi
R
[
g
]
(Z) = (δjτδ

σ
i −

1

m+ 1
δji δ

σ
τ )Zj

∂

∂Zi
R
[
g
]
(Z)

= Zτ
∂

∂Zσ
R
[
g
]
(Z)− 1

m+ 1
Zi

∂

∂Zi
R
[
g
]
(Z)δστ

(3.11)
= Zτ

∂

∂Zσ
R
[
g
]
(Z) +

1

m+ 1
R
[
g
]
(Z)δστ , (3.12)

whereas for the right-hand side of (3.10) one computes with the homogeneity of g

−R
[
W i
jy
j ∂

∂yi
g(·)
]
(Z) = −R

[
(δiτδ

σ
j −

1

m+ 1
δijδ

σ
τ )yj

∂

∂yi
g(·)
]
(Z)

= −R
[
yσ

∂

∂yτ
g(·)− 1

m+ 1
yi

∂

∂yi
g(·)δστ

]
(Z)

= −R
[
yσ

∂

∂yτ
g(·) +

m

m+ 1
g(·)δστ

]
(Z)

= −R
[ ∂

∂yτ
(
yσg(·)

)
− δστ g(·) +

m

m+ 1
g(·)δστ

]
(Z)

= −R
[ ∂

∂yτ
(
yσg(·)

)
− 1

m+ 1
g(·)δστ

]
(Z)

= −R
[ ∂

∂yτ
(
yσg(·)

)]
(Z) +

δστ
m+ 1

R
[
g
]
(Z),

which together with (3.12) leads to

Zτ
∂

∂Zσ
R
[
g
]
(Z) = −R

[ ∂

∂yτ
(
yσg(·)

)]
(Z),

that is, the desired identity (3.8) for k = 1 establishing the induction hypothesis. Let us now assume
for the induction step that (3.8) holds true for l = 1, . . . , k, and we shall prove it also for l = k + 1.
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Repeatedly applying the product rule and by virtue of the induction hypothesis for l = k and for l = 1,
we find

Zτ1 · · ·Zτk+1

∂

∂Zσ1

· · · ∂

∂Zσk+1

R
[
g
]
(Z)

+
k∑
l=1

δτlσk+1
Zτ1 · · ·Zτl−1

ẐτlZτl+1
· · ·Zτk+1

∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]
(Z)

= Zτk+1

∂

∂Zσk+1

{
Zτ1 · · ·Zτk

∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]}

(Z)

(3.8) for l = k
= Zτk+1

∂

∂Zσk+1

{
(−1)kR

[ ∂

∂yτ1
· · · ∂

∂yτk
(yσ1 · · · yσkg)

]}
(Z)

(3.8) for l = 1
= (−1)k+1R

[ ∂

∂yτk+1

(
yσk+1

∂

∂yτ1
· · · ∂

∂yτk
(yσ1 · · · yσkg)

)]
(Z).

Using the product rule one can carry out the differentiation on the right-hand side to obtain

Zτ1 · · ·Zτk+1

∂

∂Zσ1

· · · ∂

∂Zσk+1

R
[
g
]
(Z)

= (−1)k+1

{
R
[ ∂

∂yτ1
· · · ∂

∂yτk+1
(yσ1 · · · yσkyσk+1g)

]
(Z)

−(−1)k+1R

[
k∑
l=1

δ
σk+1
τl

∂

∂yτ1
· · · ∂

∂yτl−1

∂̂

∂yτl
∂

∂yτl+1
· · · ∂

∂yτk+1
(yσ1 · · · yσkg)

]
(Z)

}

= (−1)k+1R
[ ∂

∂yτ1
· · · ∂

∂yτk+1
(yσ1 · · · yσkyσk+1g)

]
(Z)

+(−1)k+2
k∑
l=1

δ
σk+1
τl R

[
∂

∂yτ1
· · · ∂

∂yτl−1

∂̂

∂yτl
∂

∂yτl+1
· · · ∂

∂yτk+1
(yσ1 · · · yσkg)

]
(Z)

(3.8) for l = k
= (−1)k+1R

[ ∂

∂yτ1
· · · ∂

∂yτk+1
(yσ1 · · · yσkyσk+1g)

]
(Z)

+(−1)2k+2
k∑
l=1

δ
σk+1
τl Zτ1 · · ·Zτl−1

Ẑσk+1
Zτl+1

· · ·Zτk+1

∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]
(Z),

which proves (3.8). 2

For a function g ∈ Ck(Rm+1 \ {0}) we recall from (1.11) the semi-norms (here for arbitrary
dimension m ≥ 2)

ρl(g) := max{|Dαg(ξ)| : ξ ∈ Sm, |α| ≤ l} (3.13)

for l = 0, 1, . . . , k.

Corollary 3.7. There is a constant C = C(m, k) such that for any (−m)-homogeneous function
g ∈ Ck(Rm+1 \ {0}) one has

ρk(R
[
g
]
) ≤ C(m, k)ρk(g). (3.14)

PROOF: By definition ofR one has

|R
[
g
]
(Z)| ≤ 1

|Z|
max

Sm∩Z⊥
|g| ≤ 1

|Z|
max
Sm
|g|. (3.15)
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Contracting (3.8) in Theorem 3.6 by multiplication with Zτ1 · · ·Zτk and summing over τ1, . . . , τk
from 1 to m+ 1 we obtain

∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]
(Z) = (−1)k

Zτ1 · · ·Zτk
|Z|2k

R
[ ∂

∂yτ1
· · · ∂

∂yτk
(yσ1 · · · yσkg(y)

]
(Z). (3.16)

Combining (3.16) with (3.15) leads to∣∣∣ ∂

∂Zσ1

· · · ∂

∂Zσk
R
[
g
]
(Z)
∣∣∣ ≤ 1

|Z|k
(m+ 1)k max

(i1,...,ik)
1≤i1,...,ik≤m+1

∣∣∣R[ ∂

∂yi1
· · · ∂

∂yik
(yσ1 · · · yσkg(y))

]
(Z)
∣∣∣

(3.15)
≤ 1

|Z|k+1
(m+ 1)k max

(i1,...,ik)
1≤i1,...,ik≤m+1

max
Sm

∣∣∣ ∂

∂yi1
· · · ∂

∂yik
(yσ1 · · · yσkg(y))

∣∣∣. (3.17)

Now for any choice i1, . . . , ik ∈ {1, . . . ,m+ 1} one can write by the product rule

∣∣∣ ∂

∂yi1
· · · ∂

∂yik
(yσ1 · · · yσkg(y))

∣∣∣ =
∣∣∣Dα

y (yβg(y))
∣∣∣ =

∣∣∣∣∣∣
∑

0≤γ≤α

(
α
γ

)
Dγ
y (yβ)Dα−γ

y g(y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

0≤γ≤α

(
α
γ

)
Dγ
y (yβ)ρ|α−γ|(g)

∣∣∣∣∣∣
for some multi-indices α, β ∈ Nm+1 with |α| = |β| = k and y ∈ Sm. Hence (3.17) becomes with
this notation∣∣∣Dβ

ZR
[
g
]
(Z)
∣∣∣ ≤ 1

|Z|k+1
(m+ 1)kρk(g) max

y∈Sm

∣∣∣∣∣∣
∑

0≤γ≤α

(
α
γ

)
Dγ
y (yβ)

∣∣∣∣∣∣ =:
ρk(g)

|Z|k+1
C(m, k, β),

which implies the result with C(m, k) := max|β|≤k C(m, k, β). 2

3.2 Existence of a perfect dominance function for the Finsler-area integrand

One further conclusion from Lemma 3.2 is that the Cartan integrand AF defined in (1.7) can be
rewritten in terms of the Radon transform:

Corollary 3.8. Let F ∈ C0(Rm+1 ×Rm+1) satisfy F (x, y) > 0 for y 6= 0, and F (x, ty) = tF (x, y)
for all t > 0, (x, y) ∈ Rm+1 × Rm+1. Then

AF (x, Z) =
1

R
[
F−m(x, ·)

]
(Z)

for (x, Z) ∈ Rm+1 × (Rm+1 \ {0}). (3.18)

PROOF: According to Lemma 2.2 we can write

AF (x, Z) =
|Z|H m(Bm

1 (0))∫
Sm−1

1
mFm(x,θκfκ) dH

m−1(θ)

for an orthonormal basis {f1, . . . , fm} of the subspace Z⊥ ⊂ Rm+1. Now apply Lemma 3.2 to
the function g := F−m(x, ·) for any fixed x ∈ Rm+1, and use the identity mH m(Bm

1 (0)) =
H m−1(Sm−1) to conclude. 2
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Lemma 3.9. For every fixed x ∈ Rm+1 there is a constant C = C(m, k,m2(x), c1(x)) depending
only on the dimension m, the order of differentiation k ∈ N ∪ {0}, the constant m2(x) from Lemma
2.4, and on the lower bound c1(x) := infSm F (x, ·) on F (x, ·), such that

ρk(| · | − AF (x, ·)) ≤ C(m, k,m2(x), c1(x))ρk(| · | − F (x, ·))ρ̂2k2+mk−1
k (F (x, ·)), (3.19)

where we set ρ̂k(f) := max{1, ρk(f)}.

PROOF: We start with some general observations for functions f, g, h ∈ Ck(Rm+1 \ {0}) with
f, g > 0 on the unit sphere Sm. Henceforth, C(m, k) will denote generic constants depending on m
and k that may change from line to line.

By the product rule we have

Dα(fg) =
∑

0≤β≤α

(
α
β

)
DβfDα−βg,

so that for |α| ≤ k

|Dα(fg)| ≤
∑

0≤β≤α

(
α
β

)
ρ|β|(f)ρ|α−β|(g)

≤ ρk(f)ρk(g)
∑

0≤β≤α

(
α
β

)
=: C(m, k)ρk(f)ρk(g),

which implies
ρk(fg) ≤ C(m, k)ρk(f)ρk(g). (3.20)

Inductively we obtain

|Dα(fm)| ≤ C(m, k)ρk(f)ρk(f
m−1) ≤ C2(m, k)ρ2

k(f)ρk(f
m−2) ≤ · · · ≤ Cm(m, k)ρmk (f),

whence
ρk(f

m) ≤ Cm(m, k)ρmk (f). (3.21)

One also has

Dα
( h
fg

)
=

∑
0≤β≤α

(
α
β

)
DβhDα−β

( 1

fg

)
=

∑
0≤β≤α

(
α
β

)
Dβh

∑
0≤γ≤α−β

(
α− β
γ

)
Dγ
( 1

f

)
Dα−β−γ

(1

g

)
. (3.22)

To estimate some of the derivative terms we set

f0 := min{1,min
Sm

f} and recall ρ̂k(f) := max{1, ρk(f)}.

Claim: For all k = 0, 1, 2, . . . and p ≥ 1 there is a constant C(m, k, p) such that∣∣∣Dα
( 1

fp

)
(ξ)
∣∣∣ ≤ C(m, k, p)

fk+p
0

ρ̂kk(f) for all ξ ∈ Sm, |α| ≤ k. (3.23)
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We prove this claim by induction over k and notice that for k = 0 this is a trivial consequence from
the definition of f0 and ρ̂k. For the induction step we may assume that for all l = 0, . . . , k there is a
constant C(n, l) such that∣∣∣Dᾱ

( 1

fp

)
(ξ)
∣∣∣ ≤ C(m, l, p)

f l+p0

ρ̂ll(f) for all |ᾱ| ≤ l.

For a multi-index α with |α| ≤ k + 1 we find a standard basis vector el and a multi-index ᾱ with
|ᾱ| ≤ k such that α = ᾱ+ el. Then we compute at ξ ∈ Sm∣∣∣Dα

( 1

fp

)∣∣∣ =
∣∣∣Dᾱ∂l

( 1

fp

)∣∣∣ =
∣∣∣Dᾱ

(
− p

fp+1
∂lf
)∣∣∣ =

∣∣∣ ∑
0≤β≤ᾱ

(
ᾱ
β

)
Dβ
( p

fp+1

)
Dᾱ−β

(
∂lf
)∣∣∣

=
∣∣∣ p

fp+1
Dᾱ∂lf +

∑
0≤β≤ᾱ
β 6=0

(
ᾱ
β

)
Dβ
( p

fp+1

)
Dᾱ−β

(
∂lf
)∣∣∣

=
∣∣∣ p

fp+1
Dᾱ∂lf +

∑
0≤β≤ᾱ
β 6=0

(
ᾱ
β

) ∑
0≤γ≤β

(
β
γ

)
Dγ
( p
fp

)
Dβ−γ

( 1

f

)Dᾱ−β
(
∂lf
)∣∣∣.

Using the induction hypothesis in each of the summands and the definition of f0 and ρ̂k we arrive at∣∣∣Dα
( 1

fp

)
(ξ)
∣∣∣ ≤ p

fp+1
0

ρ̂k+1(f)

+
∑

0≤β≤ᾱ
β 6=0

(
ᾱ
β

) ∑
0≤γ≤β

(
β
γ

)
C(m, |γ|, p)
f
|γ|+p
0

ρ̂
|γ|
|γ|(f)

C(m, |β − γ|, 1)

f
|β−γ|+1
0

ρ̂
|β−γ|
|β−γ|(f)

 ρ̂|α−β|+1(f)

≤ p

fp+1
0

ρ̂k+1(f) +
∑

0≤β≤ᾱ
β 6=0

(
ᾱ
β

) ∑
0≤γ≤β

(
β
γ

) C(m, |γ|, p)C(m, |β − γ|, 1)ρ̂
|β|
|β|(f)

f
|β|+p+1
0

 ρ̂k+1(f)

at ξ ∈ Sm, which implies the claim since |β| ≤ |ᾱ| ≤ k and f0 ≤ 1, ρ̂k(f) ≥ 1.
As an immediate consequence of (3.21)–(3.23) we estimate∣∣∣Dα
( h
fg

)
(ξ)
∣∣∣ ≤ ρk(h)

∑
0≤β≤α

(
α
β

) ∑
0≤γ≤α−β

(
α− β
γ

)
C(m, |γ|, 1)

f
|γ|+1
0

ρ̂
|γ|
|γ|(f)

∣∣∣Dα−β−γ
( 1

g(ξ)

)∣∣∣
≤

ρk(h)ρ̂kk(f)

fk+1
0

∑
0≤β≤α

(
α
β

) ∑
0≤γ≤α−β

C(m, |γ|, 1)

(
α− β
γ

) ∣∣∣Dα−β−γ
( 1

g(ξ)

)∣∣∣
=: C(m, k, g)

ρk(h)ρ̂kk(f)

fk+1
0

for all |α| ≤ k, and ξ ∈ Sm (3.24)

so that for q ≥ 1∣∣∣Dα
( 1

f q
− 1

gq

)
(ξ)
∣∣∣ =

∣∣∣Dα
(gq − f q

f qgq

)
(ξ)
∣∣∣

(3.24)
≤ C(m, k, gq)

ρk(g
q − f q)ρ̂kk(f q)
f
q(k+1)
0

for all ξ ∈ Sm (3.25)
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Using (3.21) and the identity

gq − f q = (g − f)(gq−1 + fgq−2 + · · ·+ f q−1)

one obtains (with new constants C(q, k, g)) the inequality∣∣∣Dα
( 1

f q
− 1

gq

)
(ξ)
∣∣∣ ≤ C(m, k, q, g)ρk(g − f)ρ̂qkk (f)

[
1 + ρ̂k(f) + · · ·+ ρ̂q−1

k (f)
] 1

f
q(k+1)
0

≤ C(m, k, q, g)ρk(g − f)ρ̂
(q+1)k−1
k (f)

1

f
q(k+1)
0

for all ξ ∈ Sm. (3.26)

After these preparations we are ready to prove (3.19). To estimate ρk(| · | − AF (x, ·)) for fixed x ∈
Rm+1, where the derivatives are taken with respect to Z ∈ Rm+1 \ {0} we first write by means of
(3.18)

Dα
(
| · | − AF (x, ·)

)
(3.18)
= Dα

(
1

R
[
| · |−m

] − 1

R
[
F−m(x, ·)

])

= Dα

(
R
[
F−m(x, ·)− | · |−m

]
R
[
| · |−m

]
R
[
F−m(x, ·)

]) .
(Here we used linearity of the Radon transformR

[
·
]
.)

According to Corollary 3.8 and Corollary 2.5 one has

R
[
F−m(x, ·)

]
(Z) =

1

AF (x, Z)
≥ 1

m2(x)|Z|
for all Z ∈ Rm+1 \ {0}, (3.27)

so that we can use (3.24) for h := R
[
F−m(x, ·)− | · |−m

]
, f := R

[
F−m(x, ·)

]
, and g := R

[
| · |−m

]
for fixed x ∈ Rm+1 to obtain

ρk(| · | − AF (x, ·))
(3.26)
≤ C(m, k, 1,m2(x))ρk(R

[
F−m(x, ·)− | · |−m

]
)ρ̂2k−1
k (R

[
F−m(x, ·)

]
)

(3.14)
≤ C ′(m, k, 1,m2(x))ρk(F

−m(x, ·)− | · |−m)ρ̂2k−1
k (F−m(x, ·));

the last inequality follows from (3.14).
We estimate further by means of (3.26) and (3.23) for f := F (x, ·) and g := | · | and q := m to

find for fixed x ∈ Rm+1

ρk(| · | −AF (x, ·)) ≤ C(m, k,m2(x), c1(x))ρk(| · | − F (x, ·))ρ̂(m+1)k−1
k (F (x, ·))ρ̂k(2k−1)

k (F (x, ·)),

where now the constant depends also on c1(x) = infSm F (x, ·), which is (3.19). 2

In order to apply the existing regularity theory for (possibly branched) minimizers of Cartan func-
tionals to the Finslerian area functional areaF we need to prove that under suitable conditions on the
underlying Finsler metric F the Cartan integrand AF satisfies the following parametric ellipticity
condition (formulated in the general target dimension n with N := n(n− 1)/2, cf. [28, p. 298]):

Definition 3.10 ((Parametric) ellipticity). A Cartan integrand C = C(x, Z) ∈ C2(Rn × RN \ {0})
(satisfying (H) on p. 11) is called elliptic if and only if for every R0 > 0 there is some number
λC(R0) > 0 such that the Hessian CZZ(x, Z) − λC(R0)AEZZ(x, Z) is positive semi-definite6 for all
(x, Z) ∈ BR0(0)× (RN \ {0}).

6The stronger form of uniform ellipticity, i.e., a positive definite Hessian CZZ(x, Z) cannot be expected because of the
homogeneity (H), which implies CZZ(x, Z)Z = 0.
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(Recall from the introduction that AE(Z) = |Z| denotes the classic area integrand generated by
the Euclidean metric E(y) := |y| in place of a general Finsler metric F (x, y).)

The concept of a dominance function was introduced in [28] for Cartan functionals on two-
dimensional domains (but for surfaces in any co-dimension, i.e. with n ≥ 2). Denote by

c(x, p) := C(x, p1 ∧ p2) for p = (p1, p2) ∈ Rn × Rn ' R2n, x ∈ Rn,

the associated Lagrangian of C.

Definition 3.11 (Perfect dominance function [28, Definition 1.2]). A perfect dominance function for
the Cartan integrand C with associated Lagrangian c is a function G ∈ C0(Rn × R2n) ∩ C2(Rn ×
(R2n \ {0})) satisfying the following conditions for x ∈ Rn and p = (p1, p2) ∈ R2n:

(D1) c(x, p) ≤ G(x, p) with

(D2) c(x, p) = G(x, p) if and only if |p1|2 = |p2|2 and p1 · p2 = 0;

(D3) G(x, tp) = t2G(x, p) for all t > 0;

(D4) there are constants 0 < µ1 ≤ µ2 such that µ1|p|2 ≤ G(x, p) ≤ µ2|p|2;

(E) for any R0 > 0 there is a constant λG(R0) > 0 such that

ξ ·Gpp(x, p)ξ ≥ λG(R0)|ξ|2 for |x| ≤ R0, p 6= 0, ξ ∈ R2n.

We quote from [28] the following quantitative sufficient criterion for the existence of a perfect
dominance function.

Theorem 3.12 (Perfect dominance function, Thm. 1.3 in [28]). Let C∗ ∈ C0(Rn × RN ) ∩ C2(Rn ×
(RN \ {0})) be a Cartan integrand satisfying conditions (H), (D) (see pages 11, 12) with constants
m1(C∗),m2(C∗). In addition, let C∗ be elliptic in the sense of Definition 3.10 with

λ(C∗) := inf
R0∈(0,∞]

λC∗(R0) > 0. (3.28)

Then for
k > k0(C∗) := 2[m2(C∗)−min{λ(C∗),m1(C∗)/2}] (3.29)

the Cartan integrand C defined by

C(x, Z) := k|Z|+ C∗(x, Z) (3.30)

possesses a perfect dominance function.

We can use this result and the scale invariance in Definition 3.11 to quantify the C2-deviation of
a general Cartan integrand C(x, Z) from the classic area integrand A(Z) := |Z| that is tolerable for
the existence of a perfect dominance function for C.

Corollary 3.13. If

δ := sup
x∈Rn
{ρ2(C(x, ·)−A(·))} < 1

5
, (3.31)

then C possesses a perfect dominance function.
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PROOF: For Z ∈ RN \ {0} and x ∈ Rn one estimates

1

|Z|
C(x, Z)

(H)
= C(x, Z/|Z|) ≥ 1−

∣∣∣C(x, Z/|Z|)− |Z/|Z||∣∣∣
≥ 1− ρ0(C(x, ·)−A(·))
≥ 1− δ,

which implies RC(x, Z) ≥ R(1− δ)|Z| for any scaling factor R > 0. Thus if we take R > (1− δ)−1

we obtain
RC(x, Z)−A(Z) ≥ [R(1− δ)− 1]|Z| > 0 for all Z 6= 0,

and similarly,
RC(x, Z)−A(Z) ≤ [R(1 + δ)− 1]|Z| for all Z ∈ RN .

Hence for each R > (1 − δ)−1 we obtain a new Cartan integrand CR(x, Z) := RC(x, Z) − A(Z)
(satisfying the homogeneity condition (H)) and the growth condition (D) with constants

0 < m1(CR) := R(1− δ)− 1 ≤ m2(CR) := R(1 + δ)− 1. (3.32)

Regarding the parametric ellipticity we estimate for fixed x ∈ Rn and Z ∈ RN \ {0}

|Z|ξ · CZZ(x, Z)ξ = ξ · CZZ(x, Z/|Z|)ξ ≥ ξ · AZZ(Z/|Z|)ξ −
∣∣∣ξ · [CZZ(x, Z/|Z|)−AZZ(Z/|Z|)

]
ξ
∣∣∣

≥ ξ · AZZ(Z/|Z|)ξ − |ΠZ⊥ξ|2ρ2(C(x, ·)−A(·)) = |ΠZ⊥ξ|2(1− δ),

which implies for any scaling factor R > 0

|Z|ξ ·RCZZ(x, Z)ξ ≥ R(1− δ)|ΠZ⊥ξ|2,

where ΠZ⊥ denotes the orthogonal projection onto the (N − 1)-dimensional subspace Z⊥. Hence the
Cartan integrand CR(x, Z) = RC(x, Z) − A(Z) is an elliptic parametric integrand in the sense of
Definition 3.10, even with the uniform estimate

λ(CR −A) ≥ R(1− δ)− 1 > 0 (3.33)

as long as R > (1− δ)−1.
Now we write the scaled Cartan integrand CR as

CR(x, Z) = A(Z) + (CR(x, Z)−A(Z)) =: A(Z) + C∗R(x, Z),

which is of the form (3.30) with k = 1. By virtue of (3.32) and (3.33) one can calculate the quantity
k0(C∗R) in (3.29) of Theorem 3.12 as

k0(C∗R) = 2[m2(C∗R)− 1

2
m1(C∗R)]

≤ 2[R(1 + δ)− 1− R(1− δ)− 1

2
] = R+ 3Rδ − 1. (3.34)

As R tends to (1 − δ)−1 from above the right hand side of the last estimate tends to 4δ/(1 − δ),
which is less than one, since δ < 1/5 by assumption (3.31). Hence we can find a scaling factor R0

greater but sufficiently close to (1 − δ)−1 such that k0(C∗R0
) < 1 = k so that according to Theorem

3.12 the scaled Cartan integrand CR0 = R0C possesses a perfect dominance function. All defining
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properties of a perfect dominance function in Definition 3.11 are scale invariant which implies that
also the original Cartan integrand C possesses a perfect dominance function. 2

PROOF OF THEOREM 1.4. Assume at first that

ρ2(F (x, ·)− | · |) < 1/2. (3.35)

Then
F (x, y) ≥ |y| − |F (x, y)− |y|| > |y| − 1

2
=

1

2
for all x ∈ R3, y ∈ S2

so that the quantity c1(x) = infS2 F (x, ·) appearing in Lemma 3.9 is bounded from below by 1/2.
Analogously, one finds c2(x) < 3/2, which implies m1(x) > 1/4 and m2(x) < 9/4; see Lemma 2.4.
Thus the constant C in (3.19) of Lemma 3.9 depends only on k, since we have fixed the dimension
m = 2. Moreover, again by our initial assumption (3.35), one finds for any multi-index α ∈ N3 with
|α| ≤ 2 and any x ∈ R3

|Dα
yF (x, y)| ≤ ρ2(| · |) + ρ2(| · | − F (x, y)) ≤ C +

1

2
for all y ∈ S2,

so that ρ2(F (x, ·)) ≤ C + 1/2. These observations under the initial assumption (3.35) reduce (3.19)
in Lemma 3.9 for m = 2 and k = 2 to the estimate

ρ2(A(·)−AF (x, ·)) ≤ Cρ2(| · | − F (x, ·)) for all x ∈ R3

with a universal and uniform constant C. Choosing now δ0 < 1/(5C) in (1.12) of Theorem 1.4 one
finds according to Corollary 3.13 a perfect dominance function for the Cartan integrand AF , and we
conclude with Theorem 1.9 in [29] and Theorem 1.1 in [30]. 2

4 Proof of Theorem 1.5

We start this section with an auxiliary lemma involving binomial coefficients(
n
k

)
for n ∈ N, k ∈ Z,

where we set (
n
k

)
= 0 if k > n or if k < 0.

Lemma 4.1. Let m ∈ N and a ∈ (0, 1/
√
m− 1) if m > 1, then

f(a,m) :=

bm
2
c∑

k=0

{(
m

2k + 1

)
−
(
m
2k

)}
a2k ≥ 0. (4.1)

If m is odd or if m = 2, it suffices to have a ∈ (0, 1).
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PROOF: We distinguish the cases m = 2q+ 1, m = 2(2q+ 1), and m = 4q, for some q ∈ N∪{0},
and we can assume that m > 1 since for m = 1 the statement is trivially true.

Case I. m = 2q + 1 for some q ∈ N. We write

2f(a,m) = 2

q∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
a2k −

q∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
a2k

+

q∑
k=0

{(
m

m− (2k + 1)

)
−
(

m
m− 2k

)}
a2k,

where we used the well-known identity(
n
k

)
=

(
n

n− k

)
(4.2)

in the last sum. Inserting m = 2q + 1 and substituting l := q − k we can rewrite the last sum as

q∑
l=0

{(
m
2l

)
−
(

m
2l + 1

)}
a2(q−l)

to obtain

2f(a,m) =

q∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
(a2k − a2(q−k)).

Since 0 < a < 1 we realize that the second factor is nonnegative if and only if 2(q − k) ≥ 2k ⇔
q ≥ 2k, which is exactly the inequality that ensures that the first factor is nonnegative by means of the
general identity (

n
k

)
−
(

n
k − 1

)
=
n+ 1− 2k

n+ 1

(
n+ 1
k

)
. (4.3)

If 2(q − k) < 2k ⇔ q < 2k, both factors in the k-th term of the sum are negative, which proves
2f(a,m) ≥ 0 for odd m ∈ N, if a ∈ (0, 1).

Case II. m = 2(2q + 1) for some q ∈ N ∪ {0}. We extract the last term of the sum and write

f(a,m) =

2q∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
a2k − am

=

2q∑
k=0

{
m

m− (2k + 1)

(
m− 1
2k + 1

)
− m

m− 2k

(
m− 1

2k

)}
− am,

where we used the general identity (
n
k

)
=

n

n− k

(
n− 1
k

)
(4.4)

for all binomial terms. Separating the first term (k = 0) and using the trivial inequality

m

m− (2k + 1)
≥ m

m− 2k
for k = 1, . . . , 2q, (4.5)
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we obtain

f(a,m) ≥ 1 +

2q∑
k=0

m

m− 2k

{(
m− 1
2k + 1

)
−
(
m− 1

2k

)}
a2k − am, (4.6)

since

m

m− (2 · 0 + 1)

(
m− 1

2 · 0 + 1

)
− m

m− 2 · 0

(
m− 1
2 · 0

)
= m− 1

= 1 +
m

m− 2 · 0

(
m− 1

2 · 0 + 1

)
− m

m− 2 · 0

(
m− 1
2 · 0

)
.

According to (4.3) the terms in the sum in (4.6) are nonnegative if and only if k ≤ q and negative for
k > q, so that we can split the sum in two: one summing over k from 0 to q, and the other from q + 1
to 2q. Rewriting the second sum by means of (4.2) as

2q∑
k=q+1

m

m− 2k

{(
m− 1

m− 1− (2k + 1)

)
−
(

m− 1
m− 1− 2k

)}
a2k,

which upon substituting l := 2q − k yields

q−1∑
l=0

m

m− 2(2q − l)

{(
m− 1

2l

)
−
(
m− 1
2l + 1

)}
a2(2q−l),

so that (4.6) becomes

f(a,m) ≥ 1− am

+

q−1∑
k=0

{(
m− 1
2k + 1

)
−
(
m− 1

2k

)}[
m

m− 2k
a2k − m

m− 2(2q − k)
a2(2q−k)

]
, (4.7)

since the isolated term for k = q vanishes according to (4.3) in this case:(
m− 1
2q + 1

)
−
(
m− 1

2q

)
(4.3)
=

m− 2(2q + 1)

m

(
m

2q + 1

)
= 0.

Also, by (4.3), all binomial differences in (4.7) are positive7, since 0 ≤ k < q. For the same range
k = 0, 1 . . . , q − 1 one also estimates

m

m− 2k
a2k − m

m− 2(2q − k)
a2(2q−k) ≥ m

m− 2k
a2k − m

2
a2(2q−k)

>
m

m− 2k
a2k − m

2(m− 1)
a4q−2k−2

>

[
m

m− 2k
− a4q−4k−2

]
a2k >

2k

m− 2k
a2k ≥ 0,

sincem > 1. Here we used the assumption (m−1)a2 < 1 for the first time. Consequently, f(a,m) >
1− am > 0.

7If q = 0⇔ m = 2, the sum in (4.7) vanishes altogether, so that f(a,m) ≥ 1− am > 0 for every a ∈ (0, 1).
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Case III. m = 2(2q) = 4q for some q ∈ N. In this case we isolate the terms for k = 0,
k = bm/2c = 2q, and k = 2q − 1 from the remaining sum in the expression for f(a,m), and use
(4.4) and (4.5) as in Case II to deduce

f(a,m) ≥ (m− 1)a0 +

2q−2∑
k=1

m

m− 2k

{(
m− 1
2k + 1

)
−
(
m− 1

2k

)}
a2k

+

{(
m

m− 1

)
−
(

m
m− 2

)}
am−2 − am. (4.8)

Now we split the remaining sum in (4.8) in half, and in the second sum from k = q to k = 2q − 2 we
use (4.2) and the substitution l := 2q − k − 1 to obtain

2q−2∑
k=q

m

m− 2k

{(
m− 1

m− 1− (2k + 1)

)
−
(

m− 1
m− 1− 2k

)}
a2k

=

q−1∑
l=1

m

m− 2(2q − l − 1)

{(
m− 1

2l

)
−
(
m− 1
2l + 1

)}
a2(2q−l−1).

Inserting this into (4.8) we arrive at

f(a,m) ≥ (m− 1) +

[
m− m(m− 1)

2

]
am−2 − am

+

q−1∑
k=1

{(
m− 1
2k + 1

)
−
(
m− 1

2k

)}[
m

m− 2k
a2k − m

m− 2(2q − k − 1)
a2(2q−k−1)

]
. (4.9)

As in Case II the remaining binomial differences are positive for k < q, and for the last term we
estimate

m

m− 2(2q − k − 1)
≤ m

m− 2(2q − 2)
=
m

2
for k = 1, . . . , q − 1,

so that by means of the assumption (m− 1)a2 < 1

m

m− 2k
a2k − m

m− 2(2q − k − 1)
a2(2q−k−1) ≥ m

m− 2k
a2k − m

2
am−2k−2

>
m

m− 2k
a2k − m

2(m− 1)
am−2k−4

>

[
m

m− 2k
− am−4k−4

]
a2k ≥

[
m

m− 2k
− 1

]
a2k > 0 for k = 1, . . . , q − 1.

Consequently, we have the final estimate

f(a,m) > (m− 1) +
3m−m2

2
am−2 − am > (m− 1) +

(3−m)m

2(m− 1)
am−4 − am

> (m− 1) +
3−m

2
am−4 − am >

m+ 1

2
− am > 0,

since (m− 1)a2 < 1, and because m ≥ 4 in this case. 2
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PROOF OF THEOREM 1.5. Since f := Fsym is automatically as smooth as F and satisfies the
homogeneity condition (F1) it is enough to show that its fundamental tensor gfij := (f2/2)ij =

(F 2
sym)ij is positive definite on the slit tangent bundle Rm+1× (Rm+1 \{0}); see condition (F2) in the

introduction. For that purpose we fix (x, y) ∈ Rm+1 × (Rm+1 \ {0}), and by scaling we can assume
without loss of generality that the symmetric part Fs of F satisfies Fs(x, y) = 1, which we will use
later to apply Lemma 4.1.

For any w ∈ Rm+1 there exist α, β ∈ R such that w = αy + βξ for some vector ξ satisfying
ξ · (Fs)y(x, y) = 0, since one easily checks that Fs > 0 and that Fs is positively 1-homogeneous,
which implies that the m-dimensional subspace (Fs)y(x, y)⊥ together with y span all of Rm+1. One
can also show that Fs itself is a Finsler structure, a fact which we will use later on in the proof.

In order to evaluate the quadratic form

gfijw
iwj = α2gfijy

iyj + 2αβgfijy
iξj + β2gfijξ

iξj (4.10)

at (x, y) we look at the pure and mixed terms separately. Wherever we can we will omit the fixed
argument (x, y).

By virtue of (F1) for f = Fsym we immediately obtain

gfijy
iyj = yi(fyifyj + ffyiyj )y

j (F1)
= f2. (4.11)

Before handling the mixed terms in (4.10) let us compute convenient formulas for them-harmonic
symmetrization f of F . Differentiating the defining formula (1.8) with respect to yj we deduce

(fm)yj = mfm−1fyj = − 2

(F−m(x, y) + F−m(x,−y))2

[−mFyj (x, y)

Fm+1(x, y)
+
mFyj (x,−y)

Fm+1(x,−y)

]
= −m

2
f2m

[
Fyj (x,−y)

Fm+1(x,−y)
−

Fyj (x, y)

Fm+1(x, y)

]
,

which implies

fyj =
1

2
fm+1

[
Fyj (x, y)

Fm+1(x, y)
−

Fyj (x,−y)

Fm+1(x,−y)

]
. (4.12)

Differentiating (4.12) with respect to yi leads to the following formula for the Hessian of f at (x, y).

fyiyj =
m+ 1

2
fmfyi

[
Fyj (x, y)

Fm+1(x, y)
−

Fyj (x,−y)

Fm+1(x,−y)

]
+
fm+1

2

(
Fyiyj (x, y)

Fm+1(x, y)
+
Fyiyj (x,−y)

Fm+1(x,−y)

−
(m+ 1)Fyj (x, y)Fyi(x, y)

Fm+2(x, y)
−

(m+ 1)Fyj (x,−y)Fyi(x,−y)

Fm+2(x,−y)

)
(4.12)
=

m+ 1

4
f2m+1

[
Fyj (x, y)

Fm+1(x, y)
−

Fyj (x,−y)

Fm+1(x,−y)

] [
Fyi(x, y)

Fm+1(x, y)
−

Fyi(x,−y)

Fm+1(x,−y)

]
(4.13)

+
fm+1

2

(
Fyiyj (x, y)

Fm+1(x, y)
+
Fyiyj (x,−y)

Fm+1(x,−y)
− (m+ 1)

[
Fyj (x, y)Fyi(x, y)

Fm+2(x, y)
+
Fyj (x,−y)Fyi(x,−y)

Fm+2(x,−y)

])
Concerning the mixed term in (4.10) we use (4.12), the identities yifyi = f , Fyiyj (x, y)yi = 0 both
due to (F1) for f and F , respectively, and ξ ⊥ (Fs)y(x, y) = −(Fs)y(x,−y) to find

gfijy
iξj

(4.12)
=

1

2
fm+2

[
Fyj (x, y)

Fm+1(x, y)
−

Fyj (x,−y)

Fm+1(x,−y)

]
ξj

=
1

2
fm+2

[
1

Fm+1(x, y)
− 1

Fm+1(x,−y)

]
(Fa)y(x, y) · ξ, (4.14)
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where we also used that the gradient (Fa)y of the antisymmetric part is symmetric with respect to its
second entry.

For the last term in (4.10) we use (4.12) and (4.13) to compute

gfijξ
iξj =

m+ 2

4
f2m+2

[
1

Fm+1(x, y)
− 1

Fm+1(x,−y)

]2 (
(Fa)y(x, y) · ξ

)2

+
1

2
fm+2

{
Fyiyj (x, y)ξiξj

Fm+1(x, y)
+
Fyiyj (x,−y)ξiξj

Fm+1(x,−y)

−(m+ 1)

[
1

Fm+2(x, y)
+

1

Fm+2(x,−y)

](
(Fa)y(x, y) · ξ

)2
}
. (4.15)

Inserting (4.11), (4.14), and (4.15) into (4.10) we can write for any ε > 0

gfijw
iwj =

{
αεf +

β

2ε
fm+1

[
1

Fm+1(x, y)
− 1

Fm+1(x,−y)

]
(Fa)y(x, y) · ξ

}2

+ (1− ε2)α2f2

+
β2

4

{(
m+ 2− 1

ε2

)
f2m+2

[
1

Fm+1(x, y)
− 1

Fm+1(x,−y)

]2 (
(Fa)y(x, y) · ξ

)2
}

+
β2fm+2

2

{
Fyiyj (x, y)ξiξj

Fm+1(x, y)
+
Fyiyj (x,−y)ξiξj

Fm+1(x,−y)

−(m+ 1)

[
1

Fm+2(x, y)
+

1

Fm+2(x,−y)

](
(Fa)y(x, y) · ξ

)2
}
. (4.16)

We should mention at this stage that the now obvious condition(
(Fa)y(x, y) · ξ

)2
<

1

m+ 1
ξ · F (x, y)Fyy(x, y)ξ for all ξ ∈ (Fs)y(x, y)⊥

to guarantee a positive right-hand side in (4.16) (for 1 ≥ ε2 ≥ 1
m+2 ) would be too restrictive as one

can easily check in case of the Minkowski-Randers metric F (x, y) = |y|+ biy
i for m = 2.

Now we focus on the last three lines of the expression (4.16) for gfijw
iwj , with the common factor

β2

2 f
m+2, and define for

2δ ≡ 2δ(m, ε) :=
m+ 2

2
− 1

2ε2
and B :=

(
(Fa)y(x, y) · ξ

)2
(4.17)

the term

P (y, δ,m) := 2δfm
[

1

Fm+1(x, y)
− 1

Fm+1(x,−y)

]2

B (4.18)

+
1

Fm+2(x, y)
{F (x, y)Fyiyj (x, y)ξiξj − (m+ 1)B}

+
1

Fm+2(x,−y)
{F (x,−y)Fyiyj (x,−y)ξiξj − (m+ 1)B}.

To prove the theorem it will be sufficient in view of (4.16) to show that a suitably rescaled variant
of P (y, δ,m) for some choice of ε (which determines δ = δ(m, ε) according to (4.17)) is strictly
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positive. For a more detailed analysis of this expression we need to use the splitting F = Fs + Fa in
the definition of the m-harmonic symmetrization f = Fsym to compute

fm =
2

1
Fm(x,y) + 1

Fm(x,−y)

=
2Fm(x, y)Fm(x,−y)

Fm(x,−y) + Fm(x, y)
, (4.19)

where

Fm(x, y) =
m∑
k=0

(
m
k

)
F ka (x, y)Fm−ks (x, y),

and by symmetry of Fs and asymmetry of Fa in y

Fm(x,−y) = ((−1)Fa(x, y) + Fs(x, y))m =

m∑
k=0

(
m
k

)
(−1)kF ka (x, y)Fm−ks (x, y),

such that

0 < Fm(x,−y) + Fm(x, y) =
m∑
k=0

(
m
k

)
F ka (x, y)Fm−ks (x, y)

(
(−1)k + 1k

)

= 2

bm
2
c∑

l=0

(
m
2l

)
F 2l
a (x, y)Fm−2l

s (x, y).

Inserting this last expression into (4.19) and the resulting term into (4.18) we find for

Q(y, δ,m) := Fm+2(x, y)Fm+2(x,−y)

bm
2
c∑

l=0

(
m
2l

)
F 2l
a (x, y)Fm−2l

s (x, y)P (y, δ,m)

the formula

Q(y, δ,m) = 2δ
(
Fm+1(x, y)− Fm+1(x,−y)

)2
B (4.20)

+

bm
2
c∑

l=0

(
m
2l

)
F 2l
a (x, y)Fm−2l

s

{
Fm+2(x,−y)

[
F (x, y)Fyiyj (x, y)ξiξj − (m+ 1)B

]
+Fm+2(x, y)

[
F (x,−y)Fyiyj (x,−y)ξiξj − (m+ 1)B

]}
With the same splitting F = Fs + Fa as before we can express the square

(
Fm+1(x, y)− Fm+1(x,−y)

)2
= 4

bm2 c∑
l=0

(
m+ 1
2l + 1

)
F 2l+1
a (x, y)Fm−2l

s

2

,

and the powers

Fm+2(x,−y) =
m+2∑
k=0

(
m+ 2
k

)
(−1)kF ka (x, y)Fm+2−k

s (x, y),
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and

Fm+2(x, y) =

m+2∑
k=0

(
m+ 2
k

)
F ka (x, y)Fm+2−k

s (x, y),

as well as the Hessian expressions

Fyiyj (x, y)F (x, y) = (Fs(x, y) + Fa(x, y))
[
(Fs)yiyj (x, y) + (Fa)yiyj (x, y)

]
,

Fyiyj (x,−y)F (x,−y) = (Fs(x, y)− Fa(x, y))
[
(Fs)yiyj (x, y)− (Fa)yiyj (x, y)

]
to rewrite (4.20) as

Q(y, δ,m) = H +B

8δ

bm2 c∑
l=0

(
m+ 1
2l + 1

)
F 2l+1
a Fm−2l

s

2

(4.21)

−(m+ 1)

bm
2
c∑

l=0

(
m
2l

)
F 2l
a F

m−2l
s

m+2∑
k=0

(
m+ 2
k

)
F ka F

m+2−k
s

(
(−1)k + 1k

) ,

where the fixed argument (x, y) is suppressed from now on, and where we have abbreviated all terms
involving the Hessians (Fs)yiyj and (Fa)yiyj by H , which may be written as

H =

bm
2
c∑

l=0

(
m
2l

)
F 2l
a F

m−2l
s

{
m+2∑
k=0

(
m+ 2
k

)
F ka F

m+2−k
s (4.22)

·
([
Fs(Fs)yiyj + Fa(Fa)yiyj

]
((−1)k + 1k)−

[
Fs(Fa)yiyj + Fa(Fs)yiyj

]
(1k − (−1)k)

)}
.

With the identities

m+2∑
k=0

(
m+ 2
k

)
F ka F

m+2−k
s ((−1)k + 1k) = 2

bm
2
c+1∑

n=0

(
m+ 2

2n

)
F 2n
a Fm+2−2n

s (4.23)

and

m+2∑
k=0

(
m+ 2
k

)
F ka F

m+2−k
s (1k − (−1)k) = 2

bm−1
2
c+1∑

l=0

(
m+ 2
2l + 1

)
F 2l+1
a Fm+2−(2l+1)

s

= 2

bm+1
2
c+1∑

n=0

(
m+ 2
2n− 1

)
F 2n−1
a Fm+2−(2n−1)

s

(recall that the binomial for n = 0 vanishes in the last sum), we can regroup

FaF
2n−1
a Fm+2−(2n−1)

s = F 2n
a Fm−2n

s Fs

to summarize all terms within the braces in (4.22) involving the symmetric Hessian (Fs)yy as

2

bm+1
2
c+1∑

n=0

{(
m+ 2

2n

)
−
(

m+ 2
2n− 1

)}
F 2n
a Fm+2−2n

s

(
Fs(Fs)yiyjξ

iξj
)
,
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where we also used the fact that(
m+ 2

2n

)
= 0 for n = bm+ 1

2
c+ 1.

In an analogous fashion we can summarize all terms involving the asymmetric Hessian (Fa)yy in
(4.22) to obtain

H = 2

bm
2
c∑

l=0

(
m
2l

)
F 2l
a F

m−2l
s

{(
Fs(Fs)yiyjξ

iξj
)

(4.24)

·
bm+1

2
c+1∑

n=0

{(
m+ 2

2n

)
−
(

m+ 2
2n− 1

)}
F 2n
a Fm+2−2n

s

+
(
Fa(Fa)yiyjξ

iξj
) bm2 c+1∑

n=0

{(
m+ 2

2n

)
−
(

m+ 2
2n+ 1

)}
F 2n
a Fm+2−2n

s

}
.

Recall our initial scaling Fs = Fs(x, y) = 1, which implies |Fa| = |Fa(x, y)| < 1 since F (x, y) > 0
and F (x,−y) > 0 lead to |Fa| < Fs by definition. But the assumption of Theorem 1.5 implies more:
If one takes w := y in (1.13), one can use homogeneity to find

F 2
a (x, y) =

(
(Fa)y(x, y) · y

)2 (1.13)
<

1

m+ 1
(gFs)ij(x, y)yiyj

=
1

m+ 1

(
(Fs)y · y

)2
= F 2

s (x, y) =
1

m+ 1
, (4.25)

so that one can apply Lemma 4.1 for a := |Fa(x, y)| < (m + 1)−1/2 replacing the m in that lemma
by m + 2 to find that the last line in (4.24) is non-negative since the matrix Fa(Fa)yy is negative
semi-definite by assumption8.

We use the resulting inequality for H and fix ε := 1 in (4.16) such that 8δ = 2(m+ 1) by means
of (4.17) to obtain comparable terms in (4.21) to estimate

1

2
Q ≡ 1

2
Q(y,

m+ 1

4
,m) ≥ (m+ 1)B


bm2 c∑
l=0

(
m+ 1
2l + 1

)
F 2l+1
a

2

−
bm

2
c∑

l=0

(
m
2l

)
F 2l
a

bm
2
c+1∑

n=0

(
m+ 2

2n

)
F 2n
a

 (4.26)

+(Fs)yiyjξ
iξj
bm

2
c∑

l=0

(
m
2l

)
F 2l
a

bm+1
2
c+1∑

n=0

{(
m+ 2

2n

)
−
(

m+ 2
2n− 1

)}
F 2n
a .

One can check directly by virtue of (1.13) that Q > 0 if Fa(y) happens to vanish, since then

Q/2 = −(m+ 1)B + (Fs)yiyjξ
iξj = −(m+ 1)B + gFsij ξ

iξj
(1.13)
> 0,

(recall that ξ ∈ (Fs)
⊥
y ) so that we may assume from now on that |Fa| ∈ (0, (m+ 1)−1/2).

8If Fa(x, y) happens to vanish then Lemma 4.1 is not applicable but the last line in (4.24) vanishes anyway
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To produce comparable terms in the first term on the right-hand side of (4.26) we use the well-
known binomial identity (

n+ 1
k + 1

)
=

(
n

k + 1

)
+

(
n
k

)
(4.27)

to write for the first sum on the right-hand side of (4.26)bm2 c∑
l=0

(
m+ 1
2l + 1

)
F 2l+1
a

2

=

bm2 c∑
l=0

(
m

2l + 1

)
F 2l+1
a

2

+ 2

bm
2
c∑

l=0

(
m
2l

)
F 2l+1
a

bm
2
c∑

n=0

(
m

2n+ 1

)
F 2n+1
a +

bm2 c∑
l=0

(
m
2l

)
F 2l+1
a

2

. (4.28)

Substituting 2n+ 1 = 2k − 1 in the product of sums in the second line and regrouping the powers of
Fa we can rewrite this product as

2

bm
2
c∑

l=0

(
m
2l

)
F 2l
a

bm
2
c+1∑

k=0

(
m

2k − 1

)
F 2k
a .

Similarly, the substitution 2l = 2k − 2 for the last square of sums in (4.28) leads tobm2 c∑
l=0

(
m+ 1
2l + 1

)
F 2l+1
a

2

−
bm

2
c∑

l=0

(
m
2l

)
F 2l
a

bm
2
c+1∑

k=0

(
m+ 2

2k

)
F 2k
a =

bm2 c∑
l=0

(
m

2l + 1

)
F 2l+1
a

2

−
bm

2
c∑

l=0

(
m
2l

)
F 2l
a


bm

2
c+1∑

k=0

{(
m+ 2

2k

)
− 2

(
m

2k − 1

)
−
(

m
2k − 2

)}
F 2k
a

 , (4.29)

where one can use successively the binomial identities

2

(
m

2k − 1

)
+

(
m

2k − 2

)
=

(
m

2k − 1

)
+

(
m

2k − 1

)
+

(
m

2k − 2

)
=

(
m

2k − 1

)
+

(
m+ 1
2k − 1

)
,

and then (
m+ 2

2k

)
−
(
m+ 1
2k − 1

)
=

(
m+ 1

2k

)
,

and finally (
m+ 1

2k

)
−
(

m
2k − 1

)
=

(
m
2k

)
to deducebm2 c∑

l=0

(
m+ 1
2l + 1

)
F 2l+1
a

2

−
bm

2
c∑

l=0

(
m
2l

)
F 2l
a

bm
2
c+1∑

k=0

(
m+ 2

2k

)
F 2k
a

=

bm2 c∑
l=0

(
m

2l + 1

)
F 2l+1
a

2

−

bm2 c∑
l=0

(
m
2l

)
F 2l
a

2

, (4.30)
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the right-hand side of which is negative since F 2
a < (m+ 1)−1 which can be used in each term of the

left sum to obtain (
m

2l + 1

)
F 2
a <

(
m
2l

)
for each l = 0, . . . , bm/2c. We have used before that our central assumption (1.13) leads to (m +
1)B < (Fs)yiyjξ

iξj which in combination with (4.26) and (4.30) leads to the strict inequality

1

2
Q > (Fs)yiyjξ

iξj


bm2 c∑
l=0

(
m

2l + 1

)
F 2l+1
a

2

+

bm
2
c∑

l=0

(
m
2l

)
F 2l
a

bm+1
2

+1c∑
k=0

{(
m+ 2

2k

)
−
(
m+ 2
2k − 1

)
−
(
m
2k

)}
F 2k
a

 , (4.31)

where we have also used that for n > bm/2c the binomial
(

m
2n

)
vanishes. Repeatedly using (4.27)

we can reduce the difference of three binomials in (4.31) to(
m

2k − 1

)
−
(
m+ 1
2k − 2

)
,

and the substitution 2k − 1 = 2l + 1 then leads to
bm+1

2
c∑

l=0

{(
m

2l + 1

)
−
(
m+ 1

2l

)}
F 2l+2
a

for the last sum in (4.31). Now adding and subtracting equal products of sums we arrive at

1

2
Q > (Fs)yiyjξ

iξj


bm

2
c∑

l=0

(
m

2l + 1

)
F 2l+1
a

bm2 c∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
F 2k+1
a


+

bm
2
c∑

l=0

(
m
2l

)
F 2l+1
a

bm+1
2
c∑

k=0

{(
m

2k + 1

)
+

(
m
2k

)

−
(
m+ 1

2k

)
+

(
m

2k + 1

)
−
(
m
2k

)}
F 2k+2
a

]}
.

Using (4.27) for the first two binomials in the last sum, and a shift of indices as before allows us to
take out a factor

bm
2
c∑

k=0

{(
m

2k + 1

)
−
(
m
2k

)}
F 2k+1
a

and regroup powers of Fa to obtain

1

2
Q > (Fs)yiyjξ

iξj


bm

2
c∑

l=0

(
m+ 1
2l + 1

)
F 2l
a

bm2 c∑
k=0

{(
m

2k + 1

)
−
(
m
2k

)}
F 2k+2
a


+

bm
2
c∑

l=0

(
m
2l

)
F 2l
a

bm+1
2
c∑

k=0

{(
m+ 1
2k + 1

)
−
(
m+ 1

2k

)}
F 2k+2
a

 .
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Both sums over k on the right-hand side are non-negative according to Lemma 4.1, which finally
proves Theorem 1.5 2
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[20] Paul Funk. Über eine geometrische Anwendung der Abelschen Integralgleichung. Math. Ann.,
77(1):129–135, 1915.

[21] Richard J. Gardner. Geometric tomography, volume 58 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, 1995.

[22] Paul Goodey and Wolfgang Weil. Centrally symmetric convex bodies and Radon transforms on
higher order Grassmannians. Mathematika, 38(1):117–133, 1991.

[23] H. Groemer. Geometric applications of Fourier series and spherical harmonics, volume 61 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1996.

[24] Sigurdur Helgason. The Radon transform, volume 5 of Progress in Mathematics. Birkhäuser
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[44] Johann Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
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