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Menger curvature as a knot energy

Paweł Strzelecki1,∗, Heiko von der Mosel2,∗∗

Abstract

Motivated by the suggestions of Gonzalez and Maddocks, and Banavar et al. to use geometrically de-
fined curvature energies to model self-avoidance phenomena for strands and sheets we give a self-contained
account, aimed at non-experts, on the state of art of the mathematics behind these energies. The basic build-
ing block, serving as a multipoint potential, is the circumradius of three points on a curve. The energies
we study are defined as averages of negative powers of that radius over all possible triples of points along
the curve (or via a mixture of averaging and maximization). For a suitable range of exponents, above the
scale invariant case, we establish self-avoidance and regularizing effects and discuss various applications
in geometric knot theory, as well as generalizations to surfaces and higher-dimensional submanifolds.
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3.3.3 The Möbius energy. A summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

∗Corresponding author. Partially supported by a grant from NCN.
∗∗Partially supported by the DFG grant Geometric curvature energies (Mo966/4-1).

Email addresses: pawelst@mimuw.edu.pl (Paweł Strzelecki), heiko@instmath.rwth-aachen.de (Heiko von der
Mosel)

1Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02–097 Warsaw, Poland
2Institut für Mathematik, RWTH Aachen University, Templergraben 55, D-52062 Aachen

Preprint submitted to Physics Reports January 18, 2013



4 Controlling knot invariants 23
4.1 Average crossing number estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Stick numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Packing problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Higher dimensions and open problems 31
5.1 Shapes of energy minimizers: numerical evidence and some conjectures . . . . . . . . . . 31
5.2 Energy landscape and flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Second thoughts about the energy landscape of Mp . . . . . . . . . . . . . . . . . 32
5.2.2 On the gradient flow for integral Menger curvature . . . . . . . . . . . . . . . . . 33

5.3 Energies of sheets, surfaces and submanifolds. . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 High-dimensional integral Menger curvatures . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Other high-dimensional energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Introduction

Mathematically, a knot is simply a continuous embedding of a circle into three-dimensional space,
where we do not distinguish between one such closed knotted curve and its deformations through space
avoiding any kind of self-intersections or cutting and glueing. Such admissible deformations are called am-
bient isotopies and belong to the basic tool set of knot theory. Knots occur in diverse branches of modern
physics or biology. Numerous microscopic and macroscopic examples of this particular connection be-
tween Mathematics and the Sciences come to mind, from the interplay between knot theory and statistical
or quantum physics, described e.g. in Louis H. Kauffman’s essay [42], and microscopic defect lines in chi-
ral nematic liquid-crystal colloids forming various knots and links3, to knotted field lines in hydrodynamics
and optics, and to polymer chains and knotted structures in DNA. A close interaction between ingenious
experiments and hard theory, drawing heavily from several branches of mathematics, including the calculus
of variations, nonlinear and geometric analysis, and topology, is present in most of that research.

On the mathematical side, modern knot theory produces numerous sophisticated knot invariants, which
can be viewed as mappings from the complicated space of all knots to some simpler space, for example
to the real numbers or to polynomials or groups. At present, none of the known invariants permits to
determine algorithmically the knot type of every given knot, or to decide whether two seemingly different
embeddings of a circle do indeed represent the same knot.

All this leads to a quest for knot recognition methods and to the desire to deform a given knot to a fairly
simple, optimal or model shape. One of the possible approaches is to simulate the physical movement of
knots under the influence of some sort of self-repelling potential. One of the most famous tools used for
serious experiments with pictures of different knot conformations is Robert Scharein’s KnotPlot program4.
The mathematical concept behind such intuitively appealing simulations of ambient isotopies is that of
a knot energy, proposed by Shinji Fukuhara [29], and later made more precise and investigated in depth
by various authors, see e.g. [68], [14], [78], [60]. Our main aim will be to describe mathematically the
properties of one such energy representing a whole family of geometrically defined self-avoidance energies,
that is particularly interesting (at least for us) because of its links both to modelling physical and biological
objects and to deep advances in abstract harmonic analysis, geometric measure theory and related branches
of mathematics.

For the purposes of this introduction, the reader is invited to think of a knot energy as a functional
defined on the space of all knotted curves in R3 that assigns some real number to each conformation of
every knot, in such a way that several natural conditions are satisfied. First, distinct knot types should be
separated by infinitely high energy walls. Then the gradient flow, following the path of steepest descent
in the energy landscape, will be confined to a single knot type. Secondly, it would be desirable to know

3This has actually been achieved experimentally, by using laser tweezers as a micromanipulation tool to produce all knot and link
types of up to six crossings, cf. Tkalec et al. [81].

4As the authors – both of them mathematicians by education, employment and experience – have learned during illuminating
contacts with members of the physics’ community at the Kavli Institute of Theoretical Physics in summer 2012, KnotPlot is widely
used by physicists, to manipulate knotted curves in order to recognize their knot types, and simply to produce illustrations.
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that a bound on the energy value restricts both the set of available knot types and the geometry of their
particular representatives: those that are particularly (or unnecessarily) complicated should correspond to
high energy values. Thirdly, ideally, the energy should distinguish different knot types, e.g. through distinct
minimal energy values on different knot types.

Numerical modelling of curves that avoid self-interpenetration leads to several challenges. For exam-
ple, the fact that a curve has no self-intersections cannot be deduced just from qualitative local properties
of its parametrization, such as local curvature, no matter how much is known about them. In addition, the
general problem that a numerical gradient flow gets trapped in a local minimum or even in some stable
but non-minimal critical point, seems to gain even more relevance in the presence of these nonlocal (and
highly nonlinear) interactions between different strands of a curve. Kauffman [43] points out some of the
caveats present behind numerical experiments with knots.

Oscar Gonzalez and John H. Maddocks [35], in search for ideal shapes of knots within the context of
DNA knotting, proposed the concept of a global radius of curvature which can be used to give a char-
acterization of thickness5. To define the global radius of curvature, one considers all triples of distinct
points x, y, z on a curve γ in R3, and for each of them computes the circumradius R(x, y, z), i.e. the radius
of the unique circle passing through x, y, z (– this circle degenerating to an infinite straight line if the three
points are collinear). Keeping one of the points fixed and varying the remaining two along the curve, one
computes the global radius of curvature as

%G[γ](x) := inf
y,z∈γ

z,x,y,z

R(x, y, z). (1)

The inverse, 1/%G[γ](x), is referred to as the global curvature of γ at x. The thickness 4[γ] of γ is defined
as the infimum of %G[γ](x) over all points x on the curve. It is clear that %G takes into account both the local
curvature of γ and its global properties: it is easy to see that if two nearly straight strands of γ run close to
each other, more or less parallelly, then global curvature must be large for many of the points x ∈ γ while
the classic local curvature is small at those points; see Figure 1. If, on the other hand, y and z tend to x
along the curve γ, then 1/R(x, y, z) tends to the local curvature of γ at x as long as γ is sufficiently smooth.

In Section 2 below, we describe in more detail the relations between thickness and classical curvature,
and the contrast between thickness and self-repulsion. Let us just say here that the intuitive suggestion in
the final section of [35] that ‘circumradius and global radius curvature . . . lead to families of integral knot
energies that do not require explicit regularization or mollification’ has been one of the starting points for
a research program that we have followed over nearly a decade, reaching a much better understanding of
these energies. One of them, the integral Menger curvature

Mp(γ) :=
∫
γ

∫
γ

∫
γ

dH 1(x) dH 1(y) dH 1(z)
R(x, y, z)p , (2)

where dH 1 denotes the integration with respect to the one-dimensional Hausdorff measure, i.e. the ar-
clength, will serve as a role model in the present paper: we shall explain several properties of related knot
energies, and the geometric reasons behind those properties, using the example of Mp.

To give the reader a glimpse of the smoothing properties of Mp, let us invoke the following analogy.
Imagine a closed, possibly nonsmooth and possibly self-intersecting curve of length 1 in a dark room;
you cannot see the curve but a scanning device can measure the radii R(x, y, z) for lots of randomly selected
triples of points and supply you with the statistics of the inverses 1/R. Then, using a Monte Carlo procedure,
you might be able to compute a reasonable approximation of Mp(γ) for various exponents p. Miraculously,
if that integral converges for p > 3, then you do know the following. First, the curve must be free of self-
intersections; it also has no corners or cusps: the tangent vector is defined everywhere and is continuous6.

5The term “thickness”, or ropelength as the quotient of length and thickness, comes from the following plain language statement
of a variational problem: suppose you have a fixed length of string or rope and want to tie a given knot; how thick can this rope be so
that your task is still possible?

6In particular, finite integral Menger curvature Mp, p > 3, of a loop γ implies that this loop cannot be topologically wild (which,
a priori, could happen if γ were just rectifiable and simple) and must be tame, cf. Freedman et al. [28, Section 4] where a similar
phenomenon is described for another knot energy, the Möbius energy EMöb, which we discuss briefly in Section 3.3.3.
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Figure 1: Two adjacent almost parallel strands of the curve cause 1/R to be high at many locations while
the classic local curvature remains moderate.

Secondly, the value of the Mp-energy explicitly defines the length scale r0 below which the curve is nearly
straight and does not bend too much, just like a rather stiff necklace with a certain number of (conical)
beads of fixed size. The knotting – if any – must happen beyond that scale; no little knots on γ can be seen
if you scan the balls of radius r0 or smaller. All this is linked to the control of geometry of the curve which
is strong enough to restrict the number of possible knot types the curve might form. You could obtain a
crude yet explicit estimate of that number. You could also estimate the number of sticks needed to build a
polygonal model of the knot the curve forms, and give an explicit bound for the average crossing number
of γ, i.e. for the average number of crossings that are seen in a projection of γ onto a plane. The limit as
p→ ∞ of Mp(γ)1/p gives 1/4[γ], the inverse of thickness, or the ropelength of the curve.

It is still an open problem to prove rigorously that the gradient flow of Mp does exist. However,
recent extensive numerical simulations of that flow by Tobias Hermes [38] indicate that unknotted curves
– including some not entirely trivial unknots – untangle and flow to round circles (see figures in Section 5).
A far reaching dream is that a profound analytic understanding of the gradient flow for Mp would help to
explore in detail its presumably very complex energy landscape over knot space. In addition, sending p to
infinity this might help to define and investigate analytically a gradient flow for the nonsmooth limit energy
ropelength, for which Jason Cantarella’s and Eric Rawdon’s algorithm RIDGERUNNER provides fascinating
numerical results [4].

The paper is organized as follows. In Section 2, we explain the regularizing and self-avoidance ef-
fects of Mp, and the geometry behind those effects. In Section 3, we show that those properties of Mp

can immediately be translated to simple features of the knot energy landscape: banning the pull-tight phe-
nomenon, existence of energy minimizers in each knot class, bounds on the number of knot classes under
each energy level etc. We also compare the properties of integral Menger curvature to those of several
other knot energies, including a repulsive potential introduced by Jun O’Hara [58], also known as Möbius
energy, which can be viewed as a regularization of self-repulsion via electrostatic forces. In Section 4
we investigate in more detail how Menger curvature controls the geometry of a knot: we obtain the stick
number estimates and explain why two curves of bounded Mp-energy that are sufficiently close to each
other in space simply as point sets, i.e. close w.r.t. the so-called Hausdorff distance, do represent the same
knot. (Do bear in mind that the closedness itself is by no means sufficient here: one of the curves might
wind around the other one, forming lots of extra little knots). Finally, in Section 5 we discuss some of
the open problems, in particular the regularity and shape of minimizers, and the existence of the flow, and
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mention several generalizations of such geometric curvature energies to surfaces and higher dimensional
submanifolds.

At the end of this introduction, to avoid the misleading impression that integral Menger curvature is
related first and foremost to knots and simulations of the physical models and their ambient isotopies, let us
digress and mention a deep, purely mathematical link between Menger curvature and complex analysis. In
the late XIXth century Paul Painlevé has been studying the problem of removable singularities of bounded
analytic functions: suppose you have a compact set K in the complex plane C; under which circumstances
can all bounded analytic functions f : C \ K → C be extended to analytic functions defined on all of C? In
other words and in light of the classic Liouville theorem, what are the necessary and sufficient conditions
on K implying that all bounded analytic functions f : C \K → C are constant? Such sets have been termed
removable for bounded analytic functions. Every student learns in a basic course on analytic functions that
isolated point singularities are removable. It is a bit more complicated, but still on the level of exercises for
a graduate course in complex analysis, to see that (a) each compact set K with H 1(K) = 0 is removable,
(b) no continuous arc of non-zero length is removable. In the 1960’s Anatoli G. Vitushkin conjectured
that a compact set K with 0 < H 1(K) < ∞ is removable if and only if it is purely unrectifiable, i.e. if its
projections to almost every straight line have zero length. (Examples of such sets include certain analogues
of the Cantor set in the plane).

After more than three decades, Vitushkin’s conjecture has been proved due to mutual efforts and discov-
eries of several mathematicians, including Mark S. Melnikov, Xavier Tolsa, Joan Verdera, Pertti Mattila,
Guy David and others. The story is now well-documented in research papers and surveys, see e.g. [23],
[82] or [53]. The gist is that to define analytic functions by means of their boundary values one uses the
Cauchy integral formula for a curve (or a set) K; this leads to a question for what sets K this formula defines
a linear operator with good properties, like boundedness on L2 etc. Two of the key steps in the solution
of Vitushkin’s conjecture were the discovery by Melnikov and Verdera that the L2-norm of the Cauchy
integral along a curve γ is intimately related to the integral Menger curvature M2(γ) of that curve, and the
contribution by Jean-Christophe Léger who proved that finiteness of the integral Menger curvature M2(E)
of a one-dimensional Borel set E ⊂ C, i.e. the condition

M2(E) =

∫∫∫
E×E×E

1
R2(x, y, z)

dH 1(x) dH 1(y) dH 1(z) < ∞,

implies that E is rectifiable. This means that E is contained – up to a negligible subset of one-dimensional
measure zero – in a union of countably many C1-curves.

If the reader is a physicist, then he or she should bear in mind that to a randomly selected mathemati-
cian the name ‘Menger curvature’ might only ring the (complex analytic) bells hinted at in the previous
paragraph. However, as many other mathematical tools, integral Menger curvature serves more than just
one purpose.

2. Self-avoidance and regularizing effects

Since we are interested in different conformations of knots, i.e., specific curves in R3, and the plain
term ‘curve’ is ambiguous even inside mathematics, let us make it more precise for our purposes. Ev-
erywhere below, we consider the class C of all closed and rectifiable curves γ ⊂ R3 whose length, i.e.,
one-dimensional Hausdorff measure H 1(γ), is equal to 1. Moreover, for technical reasons we assume
that all curves in C contain a fixed point, say the origin in R3, and that all loops in C are parametrized by
arclength defined on the interval [0, 1], that is, γ : [0, 1]→ R3 is Lipschitz continuous with |γ′| = 1 almost
everywhere7 and γ(0) = γ(1). The curves in C will sometimes be referred to as (unit) loops. If γ is injective
on [0, 1), then we say that γ is simple.

In other words, the class C contains – up to scaling, which might be necessary to fix the length – about
every planar curve that one can physically draw, and about every curve in R3 that one can imagine. Corners,
cusps and self-intersections are a priori allowed.

7By Rademacher’s theorem, the tangent γ′(t) is defined for almost every parameter t ∈ [0, 1], since γ is Lipschitz.
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(a) Local curvature κ(z) obtained as the inverse of
the local radius of curvature r(z) of the osculating
circle of γ at z. (b) Menger curvature 1/R(x, y, z) depends on the

triple of points on γ.

Figure 2: Local curvature κ(z) vs. Menger curvature of x, y, z.

We shall often use the name γ both for the parametrization itself and for the image γ([0, 1]) ⊂ R3,
hoping that this does not create too much ambiguity, and using a clear, explicit distinction between the two
whenever necessary.

2.1. Between thickness and classical curvature
The notion of classic local curvature at a point z = γ(s) for a curve γ ∈ C requires more smoothness: if

γ happens to be twice continuously differentiable (in mathematical terms we write γ ∈ C2), then the local
curvature at z is given by κ(z) := |γ′′(s)|. A more geometric way of determining local curvature at the point
z ∈ γ is to search for the best local approximation of the curve γ near z by circles. The so-called osculating
circle will do the job: it is tangent to γ at z, approximates γ nicely up to second order locally near z, and its
radius r(z), the local radius of curvature at z, equals the inverse local curvature; see Figure 2 (a).

In contrast to this local function, that depends on single curve points only, Karl Menger [55] considered
the circumradius R(x, y, z) of three curve points x, y, z ∈ γ with the knowledge that the coalescent limit of
R(x, y, z) as x and y tend to z coincides with the local radius of curvature r(z) if γ is sufficiently smooth.
Besides that, Menger was aware of the fact that there is an elementary formula for the circumradius solely
in terms of the mutual distances of the points x, y, and z. By means of multipoint functions such as the
circumradius Menger indeed intended to develop a purely metric geometry in contrast to classic differ-
ential geometry8. Motivated by computational issues in the modelling of DNA, Gonzalez and Maddocks
reconsidered in [35] the circumradius function, but with a focus on capturing global features of the curve
by searching for the minimal circumradius that one can find upon varying the two points y, z along γ, to
obtain the global radius of curvature %G[γ](x) at x (see (1)), or even thickness

4[γ] = inf
x,y,z,x

R(x, y, z) (3)

by varying all three points along the curve. Let us add to Menger’s two insights at this point a third simple
observation: in contrast to local curvature neither the circumradius, nor the global radius of curvature or
thickness require any smoothness of the curve. Each of them is well-defined on the class C of unit loops.
From the perspective of the calculus of variations this is crucial: very often one is forced to enlarge classic

8Metric geometry in the sense of Menger is not part of the present survey, for further reading in that direction see, e.g. the treatise
of Leonard M. Blumenthal and Menger [13], in particular Chapter 10.
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function spaces to more general spaces, for instance to so-called Sobolev spaces where derivatives exist
only in a weak integral sense, in order to actually find minimizers of given energies. Only afterwards
one can try to prove higher regularity of the minimizer. Likewise for optimization problems involving
geometric objects: the larger the class of objects, the more likely it is that the mathematical search for
minimizing configurations turns out successful.

In view of all these facts one is tempted to say that the circumradius, and minimization over selections
of its arguments, might lead to geometrically defined energies that capture both local properties (like local
curvature) and global behaviour of curves. This interplay between local and global control is reflected
in the following theorem [20], [36], which has served as the basis for analytic investigations on ideal
configurations of knots and links.

Theorem 2.1 (Thick curves are C1,1-manifolds). Unit loops γ ∈ C with a positive thickness 4[γ] are em-
bedded and continuously differentiable with a Lipschitz continuous tangent vector. Moreover, the curvature
of γ is defined and bounded almost everywhere by 1/4[γ].

So, in mathematical terms, one finds that thick curves are, in fact, one-dimensional C1,1-submanifolds
of Euclidean 3-space, where the notation C1,1 reflects the regularity of the tangent vector γ′: it exists
everywhere and is Lipschitz continuous with the estimate

|γ′(s) − γ′(t)| ≤
1
4[γ]

|s − t| for all s, t ∈ [0, 1], (4)

where here, and in the following, |s − t| denotes the intrinsic distance of the points γ(s) and γ(t) along the
curve, that is, the length of the shortest subarc of γ connecting γ(s) and γ(t). Since Lipschitz continuous
functions are – according to a classic theorem by Hans A. Rademacher – differentiable almost everywhere,
one finds that local curvature κ(s) = |γ′′(s)| is defined and bounded by ropelength 1/4[γ] for almost every
parameter s ∈ [0, 1]. In other words, the energy ropelength controls local curvature and guarantees an
embedding.

The geometric essence of the proof of this theorem is the following, which will at the end also justify
the use of the word “thickness” for 4[γ]. Assume that θ := 4[γ] is positive and, for simplicity, that γ ⊂ R3

is embedded9, and consider two distinct points x = γ(s) and y = γ(t) of differentiability sufficiently close
to each other. (By Rademacher’s theorem one has many choices for these points, since almost every curve
point is a point where the tangent vector exists, since γ is Lipschitz continuous.) Then we look at all three-
dimensional open balls of radius θ that contain x and y in their respective boundary sphere. It turns out
that γ intersects the union of all these balls only in their intersection, which forms a lens-shaped region;
see Figure 3 (a). Indeed, any point z ∈ γ contained in that union but not in the lens would lead to a triple
x, y, z ∈ γ with circumradius R(x, y, z) < θ contradicting the very definition of thickness (see (3)). Having
trapped the curve γ locally in such lens-shaped regions immediately confines the tangents at x and y to the
smallest double-cone with axis through x − y and containing the lens, which leads to inequality (4). This
uniform estimate can be readily extended to all pairs of parameters, since the parameters of differentiability
form a dense set in [0, 1].

In addition, if y tends to x along the curve, then this union of balls tends to a degenerate torus, an open
horn torus tangent to γ at x, which contains by the previous argument no curve point; see Figure 3 (b).
So, the curve is equipped with a collar of such horn tori, see Figure 3 (c), which implies the existence of
a tubular neighbourhood in which the next-point projection onto the curve is uniquely defined. In other
words, this tubular neighbourhood consists of the disjoint union of open planar disks of uniform radius θ,
each of which is centered at and normal to the curve; see Figure 3 (d). This surrounding tube serves as an
exact excluded volume constraint, and this is a consequence of finite ropelength 1/4[γ].

There are numerous variational applications of Theorem 2.1, the most prominent of which is the exis-
tence of ideal knots and links, i.e., minimizers of ropelength within given knot or link classes [20], [36],
[33]; see Figure 4.

9If one rewrites the definition of thickness 4[γ] in terms of an appropriate maximization over arclength parameters, one immedi-
ately observes that the arclength parametrization is injective for positive thickness; see [36, Definition 1 & Lemma 1]
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(a) (b) (c) (d)

Figure 3: Thick curves are C1,1-manifolds. (a) A cross section of all balls of radius θ containing x and y on
their boundaries. Any curve point z in the lightly shaded region would lead to a circumradius R(x, y, z) < θ.
(b) The limiting position of the balls in (a) as y approaches x along γ. (c) A horn torus whose cross section
is shown in (b); the curve does not penetrate its interior. (d) The tubular neighbourhood of γ is formed by
disjoint disks of radius θ, centered on γ.

Alternatively, one can deal with elastic rods of prescribed thickness minimizing nonlinear elastic ener-
gies such as in [36]. Or one can investigate various packing problems for long and slender objects with a
prescribed minimal thickness. As a particularly beautiful albeit mathematically idealized example, let us
mention the search for the longest rope on the unit sphere, which boils down to the maximization of length
among all (closed or open) curves on the unit sphere that have a prescribed minimal thickness. For an infi-
nite number of given thickness values one can explicitly construct the solutions and prove their uniqueness
up to rigid rotations [32, 31]; see Figure 5 and the animation for the construction in [30].

The draw back of thickness as a steric constraint and of its energy counterpart ropelength is that, as a
functional acting on the space of curves, it is nonsmooth because of the pointwise maximizations involved.
This has serious consequences for regularity considerations: it is highly nontrivial to apply appropriate
tools from nonsmooth analysis to derive necessary conditions for minimality or criticality, e.g. Euler-
Lagrange equations; see the investigations of ropelength criticality in [67], [18, 19, 17], or for nonlinearly
elastic rods in [65].

Consequently, one is naturally lead to the question if one can relax this energy functional by replacing
one or several maximizations by an averaging process to increase smoothness of the functional. On the
other hand, upon taking average values or integrating instead of taking pointwise maxima of 1/R(x, y, z) one
might loose a lot of control over the regularity and the shape of curves. How much geometric information
one actually has to give up in this relaxation and how much control is still present is the topic of the next
sections.

2.2. Shape control. Examples.

Contrary to thickness, integral Menger curvature (2) does not directly control the parametrization of
a curve γ : [0, 1] → R3; it does control the shape of the image of γ. Here is a trivial example. A doubly
covered circle γ0 of length 1

2 would have finite Mp-energy for all p, since the circumradius R is simply
constant for all triples of pairwise distinct points on γ. Nevertheless, this information alone is not enough to
conclude that the image of γ0 has no multiply covered arcs. This is one of the reasons behind the definition
of C: the requirement that H 1(γ) = 1 be equal to the length of the parameter domain does exclude multiple
covering of whole arcs. It is not really restrictive, as we shall explain shortly.

It is clear that for p = 3 integral Menger curvature M3 is scale invariant. If one scales a given curve
by a factor λ > 0, then the length, i.e., the measure in each of the three integrals in (2), scales also by λ
whereas the integrand 1/Rp scales by λ−p, i.e. the triple integral (2) remains unchanged for p = 3.

How do corners or cusps influence the value of integral Menger curvature? As a first step, one tries to
compute the Mp-energy for a polygonal line. Assume first we deal with the scale invariant p = 3. Take a
polygon which consists just of two different segments with one common endpoint, say γ1 = [0, x] ∪ [0, y]
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(a) (b)

(c)

Figure 4: (a) At present only numerical approximations of the ideal trefoil are known [6, 22, 4]. (b) Under
natural symmetry assumptions the ideal Borromean rings are one of the most complex analytically known
ideal shapes [69] (cf. [18]). (c) The depicted ideal link consists of six components and is a member of
a whole family. For instance, the configuration stays ideal when rotating the loop on the left out of the
drawing plane [20]; reprinted with permission from [18].

(a) (b) (c)

Figure 5: Longest ropes for various prescribed thickness parameters. All curves are visualized as tubes of
a fixed radius, which coincides with the actual prescribed thickness value only for the last curve in (c).
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for two points x, y ∈ R3 that are not on the same straight line through the origin, so that γ1 has a true corner
at 0. Subdividing each of the segments into smaller disjoint pieces, scaled down geometrically, and then
expanding the triple integral Mp into a series and dropping some of the terms (the non-diagonal ones), we
see that

Mp(γ1) ≥Mp([x/2, x] ∪ [y/2, y]) + · · · + Mp([x/2n+1, x/2n] ∪ [y/2n+1, y/2n]) + · · · (5)

However, for p = 3 all the terms of the series on the right-hand side are equal due to scale invariance of
M3, and they are nonzero, so that M3(γ1) is infinite. The same reasoning works for every polygonal line γ
with at least one true corner, since one may simply neglect all parts of γ but the two segments forming the
corner, say γ1 ⊂ γ, and estimate M3(γ) ≥M3(γ1), which diverges as seen above. For p > 3 this blow-up
of energy is even more drastic: the terms of the series in (5) grow to infinity. For p < 3 this argument fails;
Sebastian Scholtes [64] shows all polygons have finite Mp-energy if and only if p < 3.

A more technical variant of the above reasoning would show that Mp(γ) is infinite for each curve
γ : [0, 1] → R3 which is piecewise smooth, except at corners where the tangent vector has different one-
sided limits. One would also guess that a cusp – a point where two arcs of a piecewise smooth curve γ meet
tangentially – should also lead to the blow-up of integral Menger curvature, even more drastically than a
corner, since the integrand blows up even faster in the neighbourhood of a cusp. Thus, one would expect
that curves with Mp finite for some p ≥ 3 have no self-intersections (each self-intersection would produce
a corner or a cusp). This is indeed the case, as the following topological result proven in [71] shows.

Theorem 2.2. All unit loops γ ∈ C with Mp(γ) < ∞ for some p ≥ 3 are homeomorphic to a circle.

We shall explain the mechanism of the proof of Theorem 2.2 in the next subsection, but let us point out
here that arbitrary closed curves in arclength parametrization with finite Mp-energy but not necessarily in
the class C do not quite have to behave like that. Indeed, integral Menger curvature does not penalize any
parametrization that multiply traces out certain parts of the curve – as long as the image looks nice. The ef-
fect of finite energy then is that this image is either homeomorphic to a circle or to a closed segment, which
obviously is a manifold with nonempty boundary. To see that the latter might indeed happen, recall from
the beginning of this subsection the doubly-covered semicircle, a smooth one-dimensional submanifold
homeomorphic to a closed segment.

2.3. Regularization and the geometry behind it

For p > 3, finiteness of Mp(γ) implies much more about the regularity of γ′, and the reader should
compare this result to Theorem 2.1 where integral Menger curvature is replaced by ropelength 1/4[γ].

Theorem 2.3. If p > 3 and γ ∈ C satisfies Mp(γ) ≤ E < ∞, then γ′ is defined everywhere and satisfies the
uniform estimate

|γ′(t) − γ′(s)| ≤ C(p)
(∫ t

s

∫ t

s

∫ t

s

1
Rp

)1/p
|t − s|1−

3
p , s < t, (6)

whenever t and s are close enough, i.e. |t − s| < δ(p)E−1/(p−3). The two constants δ(p) and C(p) depend
only on p.

Moreover, this is as good as it gets: for each Hölder exponent α > 1 − 3
p there is a simple curve with

Mp(γ) < ∞ for which γ′ fails to satisfy the Hölder estimate |γ′(s) − γ′(t)| . |t − s|α. Specific examples
of such curves are given in Marta Szumańska’s PhD Thesis [79]; see also [48]. We know in fact that such
behaviour is typical, since more recent work of Simon Blatt and Sławomir Kolasiński [8, 11] characterizes
finite energy curves as exactly those embedded curves that belong to certain fractional Sobolev spaces,
which embed into the classic function space C1,1−(3/p) but not into any better C1,α. For those readers who
are more familiar with the standard (nonfractional) Sobolev spaces, we mention an analogy:10 one can
interpret the integrand 1/R as a very weak form of discrete curvature, so that one may compare (Mp(γ))1/p

to the Lp-norm of second derivatives of (a sufficiently smooth curve) γ on a three-dimensional domain

10This is how Theorem 2.3 was discovered, in fact.
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because of the three one-dimensional integrations in Mp. If this Lp-norm is finite for some p > 3 then the
classic Morrey-Sobolev embedding theorem [2, Theorem 5.4] implies that γ is indeed of class C1,1−(3/p).
So, with this close analogy to function spaces in mind, one may view Theorem 2.3 as a geometric variant
of the Morrey-Sobolev embedding theorem. However, a word of warning is appropriate: In contrast to
ropelength, integral Menger curvature Mp does not control the classical curvature of γ. It can happen that
Mp of γ is finite for some p > 3 yet the classical curvature of γ is nowhere defined.

Let us also mention another way to interpret inequality (6). The term |t−s|−3/p corresponds to averaging
of the integral; thus, (6) can be rewritten as

|γ′(t) − γ′(s)| ≤ C(p)
( 1
meas

(
[s, t]3) ∫∫∫

[s,t]3

1
Rp

)1/p
|t − s| . (7)

In other words, if Mp(γ) is finite for some p > 3, then – in the arclength parametrization – the oscillation
of the unit tangent vector γ′ is controlled by the increments of length, up to a factor which depends only
on the average value of the integral Menger curvature of that piece of the curve which is relevant, since
the integration in (7) is performed only along the cube [s, t]3 in the domain of all triples of parameters
corresponding to the arc from γ(s) to γ(t). So, the proof of Theorem 2.3 is somewhat semi-local: we take
into account the fact that R is a multipoint function, which secures embeddedness of the curve, but for the
energy estimates leading to (7) we use only the energy contribution of a fairly small portion of the curve.
We will see later in Section 4 that one can use larger parts of the curve to control specific knot invariants
by means of finite integral Menger curvature.

Even if the statement of Theorem 2.3 is purely analytic, the proof and the ideas behind it are again
geometric as was the case, albeit in a much simpler way, for the proof of Theorem 2.1. Let us explain some
of the ideas now: during this explanation we shall encounter several consequences of finite energy that
pave the way towards more sophisticated knot-theoretic properties of integral Menger curvature presented
in Sections 3 and 4.

2.3.1. Beta numbers and their decay
The first step of the proof of Theorem 2.3 is to see that a curve of finite energy is (locally) confined in

relatively thin and narrow tubes (for p > 3 these tubes become thinner and thinner when scaling down).
From deep mathematical work of Peter Jones [40] (see also the far reaching extensions in the monograph
of Guy David and Stephen Semmes [24]) in harmonic analysis we import the technical notion of beta
numbers defined as

βγ(x, d) := inf
{

sup
y∈γ∩B(x,d)

dist(y,G)
d

: G is a straight line through x
}

for x ∈ γ and d > 0. (8)

In plain words, βγ(x, d) measures how thin the thinnest cylinder is that contains the portion of γ in a given
ball B(x, d) of radius d centered at x ∈ γ. Dividing by d makes it dimension free: we just want to know
what is the ratio of the radius to the height of that cylinder.

It turns out that control of the energy value Mp(γ) balances the scale below which the beta numbers,
i.e., the widths of these cylinders, are well-controlled.

Lemma 2.4. Fix p ≥ 3. Let Mp(γ) be finite. There exists a constant c0 = c0(p) > 0 such that if ε < 0.001
and d < diam γ satisfies the balance condition

ε6+pd3−p ≥ c0(p)Mp(γ) , (9)

then
βγ(x, d) ≤ ε for each x ∈ γ.

Applying this lemma for ε and d such that the balance condition holds with an equality sign, we obtain

β(x, d) ≤ ε =
(
c0(p)Mp(γ)dp−3

) 1
6+p . dκ with κ = (p − 3)/(p + 6).

One proves Lemma 2.4 by contradiction, checking that if the narrowest tube containing γ in a given
ball were too thick, than the Mp-energy of γ would be too large. Indeed, if we had β(x, d) > ε for some
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(a) If ε < βγ(x, d), then (any) tube of length 2d and
radius εd is too narrow to contain γ ∩ B(x, d).

(b) For ε sufficiently small the angle at which
the base of the tube in (a) is seen from the center
of the tube is (roughly) ε, as tan φ = εd/d = ε.

(c) Slight perturbations of the vertices do not
change 1/R too much, so all triangles based on
three arbitrary points within small balls of ra-
dius ε2d about x, y, and z, contribute similarly
to the energy.

Figure 6: Beta numbers and the proof of Lemma 2.4.

d < diam γ, then – see Figures 6 (a) and (c) – we would find three points x, y, z ∈ γ ∩ B(x, d) forming a
triangle with base d and height larger than εd. For these three points, by elementary geometry,

1
R(x, y, z)

=
2 · height
|x − z| · |y − z|

&
εd
d2 =

ε

d
. (10)

It is clear that the same estimate holds up to an absolute constant when we replace x, y, z by their sufficiently
close respective neighbours, staying in the balls of radius ε2d � εd � d centered around x, y, z. Thus,
estimating the total energy Mp(γ) by the portion coming from three little arcs near x, y and z — obviously,
each of them of length at least ε2d — we obtain (see Figure 6 (c))

Mp(γ) >
∫∫∫

three little arcs

1
Rp & (ε2d)3 ·

(
ε

d

)p
= ε6+pd3−p, (11)

a contradiction to the balance condition.

Remark. In the scale invariant case p = 3 we have p + 6 = 9, p − 3 = 0. Lemma 2.4 yields then the
following:

sup
x∈γ

βγ(x, d) . ω(d), d ≤ diam γ, (12)

where

ω(d) := sup
(∫

A1

∫
A2

∫
A3

1
R3

)1/9
, (13)

the supremum being taken over all triples of subsets A1, A2, A3 ⊂ γ with H 1(Ai) < d. In particular,

sup
x∈γ

βγ(x, d)→ 0 as d → 0.
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This is enough to prove Theorem 2.2, via an iterative analysis of beta numbers at small scales, see [77,
Thm. 1.4] for details.

2.3.2. Scaling down: tilting tubes and double cones
As explained above, the condition Mp(γ) < ∞ for p > 3 yields

βγ(x, d) . dκ for x ∈ γ and κ =
p−3
p+6 ∈ (0, 1). (14)

Thus, if d goes to 0 geometrically, then βγ(x, d) does the same. This observation allows to iterate Lemma 2.4
and learn more about the geometry of curves with finite energy. This is the second step of proof of Theo-
rem 2.3.

Let us fix a point x ∈ γ and a number d < diam γ/2. There is another point y = y0 of γ on the surface
of the sphere ∂B(x, d). Now, follow the curve from y0 towards x and define yn, n = 1, 2, . . ., as the points
where γ hits the sphere ∂B(x, d/2n) for the first time. Write Tn to denote the narrowest tube which contains
γ ∩ B(x, d/2n−1) and has the line through x and yn as its axis of rotation. Then, by (14), Tn has the ratio
of its radius to height at most proportional to (d/2n−1)κ. Inequality (14) specifies how much the tubes T1,
T2, . . . can tilt as the curve approaches x. Since the axis of Tn+1 is determined by the point yn ∈ Tn, and for
small angles φ we have φ ≈ tan φ, the maximum total tilt angle is controlled, up to a constant depending
only on p and the energy of γ, by

dκ +

(d
2

)κ
+

(d
4

)κ
+ · · · . dκ

(we simply sum a geometric series). This is a small number if one starts the iteration in a sufficiently small
scale d.

In fact, since the tilting tubes Tn that contain pieces of γ in B(x, d/2n) get infinitely thin as n→ ∞, one
can deduce that γ ∩ B(x, d) is contained in a double cone with vertex at x, the axis of rotation determined
by any point y ∈ ∂B(x, d/2) and the opening angle proportional to dκ. Replacing the roles of x and y, one
checks that the curve at small scales must be trapped in the intersection of two double cones with vertices
at x, y ∈ γ, common axis of rotation given by the line through x and y, and the opening angle ≈ |x − y|κ, see
Figure 7.

Figure 7: The (d0, ϕ)–diamond property: at small scales, the curve is trapped in a conical region and does
not meander back and forth: each cross section of the cones contains exactly one point of the curve.

Even more is true. Since the situation persists at all scales smaller than a threshold value determined
by the energy, one can check that in fact in each double cone the intersection of the curve and each plane
perpendicular to the cone axis can consist of only one point. Thus, the curve does not meander back and
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forth. Since this property is the key to several other geometric, analytic and topological consequences, it
merits a name.

For x , y ∈ R3 and ϕ ∈ (0, π2 ) we denote by Cϕ(x; y) the double cone whose vertex is at the point x,
with cone axis passing through y, and with opening angle ϕ, or in mathematical terms,

Cϕ(x; y) := {z ∈ R3 \ {x} : ∃ t , 0 such that <)(t(z − x), y − x) <
ϕ

2
} ∪ {x}.

Definition 2.5 (Diamond property). We say that a curve γ ∈ C has the diamond property at scale d0
and with angle ϕ ∈ (0, π/2), in short the (d0, ϕ)–diamond property, if and only if for each couple of points
x, y ∈ γ with |x − y| = d ≤ d0 two conditions are satisfied: we have

γ ∩ B2d(x) ∩ B2d(y) ⊂ Cϕ(x; y) ∩Cϕ(y; x) (15)

(cf. Figure 7), and moreover each plane a + (x− y)⊥, where a ∈ B2d(x)∩ B2d(y), contains exactly one point
of γ ∩ B2d(x) ∩ B2d(y).

Using this language, one easily translates the geometric considerations above to the following.

Proposition 2.6 (Energy bounds imply the diamond property). Let γ ∈ C and 0 < E < ∞. Assume that
Mp(γ) ≤ E for some p > 3. Then, there exist constants δ = δ(p) ∈ (0, 1) and c(p) < ∞ (both depending
only on p) such that γ has the (d0, ϕ)–diamond property for each couple of numbers (d0, ϕ) satisfying

d0 ≤ δ(p)E−1/(p−3), ϕ ≥ c(p)E1/(p+6)dκ0 , (16)

where κ = (p − 3)/(p + 6).

Note that condition (16) means that one can choose the ‘trapping cones’ in Figure 7 with angle ϕ ≈
|x − y|κ. Take two points x = γ(t) and y = γ′(s) where γ′ exists. Since γ′, existing a.e. by the classic
theorem of Rademacher, is a unit vector for an arclength parametrization, the oscillation |γ′(t) − γ′(s)| is
controlled by the opening angle of the cones. Using this observation, one checks that γ′ satisfies

|γ′(t) − γ′(s)| . |t − s|κ (17)

for all t, s in a set of full measure in [0, 1]. Such a set is necessarily dense. Thus, γ′ can be uniquely
extended to a function which still satisfies the same Hölder estimate. Elementary real analysis shows that
this unique extension coincides with the derivative of γ not just almost everywhere but in fact everywhere.
Notice the difference to the proof of Theorem 2.1, where we could use a bound on ropelength: There we
were able to trap the curve in lens-shaped regions to obtain (4), here we used cruder trapping cones to
establish the uniform estimate (17) which is much weaker than (4).

In order to finish the proof of Theorem 2.3, one basically has to improve now the Hölder exponent of
γ′ from κ = (p− 3)/(p + 6) to the (optimal) α = (p− 3)/p. This is the third and last step of the proof. Here
is a word of informal explanation. Suppose that a curve is just C1,α for α = 1 − 3/p and not any smoother,
say γ locally looks like the graph of x 7→ |x|2−(3/p) near zero. We would then expect that typical points γ(ti)
(i = 1, 2) with |t1 − t2| ≈ d can be located roughly at the distance d1+α from the tangent line at γ(s) when
|γ(s)− γ(ti)| ≈ d ≈ |s− ti| ≈ d. But then, again typically, 1/R(γ(t1), γ(t2), γ(s)) would not exceed a constant
multiple of d1+α/d2 = d−3/p, just by elementary geometry and formula (10); see Figure 8.

As we know nothing about the existence of γ′′, there are no a priori upper bounds for 1/R that we
might use, even locally. However, expecting C1,α to be the optimal classic function space for finite energy
curves, it is illustrative to look at the sets of ‘bad points’ where the model bound 1/R . d−3/p is violated. A
measure theoretic argument, mathematically known as slicing, indeed, shows that there are ‘not too many’
such bad points at all scales, and this is enough to conclude, since one can use the many ‘good points’ to
determine that γ does not deviate too much from its secants. We refer the reader to [71] for the details.

2.3.3. Necklaces of disjoint cones
Leaving Theorem 2.3 and local properties of γ′ aside, let us still assume p > 3 and stick to the situation

depicted in Figure 7 in order to see that it has some global consequences. Obviously, one can imagine a
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Figure 8: The location of typical triples on the nonsmooth graph of the function x 7→ |x|2−(3/p)

sequence of such small double cones – trapping the neighbouring short arcs of γ – positioned along the
whole curve, with vertices evenly spaced, at sufficiently small distances, proportional to d ∝ E−1/(p−3),
where E is some constant larger than the energy Mp(γ). Think now about three of the neighbouring
vertices: they do determine two double cones with a common tip. The (d0, ϕ)–diamond property implies
that the angle between the axes of these two double cones must be small. To see that, look back at Figure 7
and note that if we add a third point z ∈ γ with |z − y| ≤ |x − y| to the right of y, then z must be inside the
double cone Cϕ(y; x) with vertex at y and axis given v = x − y. Thus, the angle between the axes of two
neighbouring cones, i.e. between the vectors z− y and y− x determined by the three consecutive vertices of
the cones, is at most ϕ

2 . (The assumption |z−y| ≤ |y− x| is not restrictive at all, as we may always relabel the
points and call them z, y, x instead of x, y, z). Thus, going from one cone to another one, the curve cannot
make sharp turns. This is why – despite the lack of control of the local curvature, since the curves of finite
Mp-energy do not have to be C2 – integral Menger curvature does yield the means to control how much
the curve bends.

There is more to it. If the vertices x1, x2 . . . , xN , xN=1 = x1 of the cones are evenly spaced along the
curve, at distances |xi − xi+1| ≡ d ∝ E−1/(p−3), then each ball Bd(xi) contains only the arcs of γ coming from
the two double cones with common vertex at xi, see Figure 9. The arcs contained in all the other double
cones but these two must not enter Bd(xi). A relatively simple argument that we are going to skip in order
to avoid technicalities implies that all such double cones along the curve must have disjoint interiors, as
depicted on Figure 9.

Let us give, however, a precise statement of that property, since we will refer to it in the sequel. Here is
the necessary notation. For x , y ∈ R3 we denote the closed halfspace

H+(x; y) : = {z ∈ R3 : 〈z − x, y − x〉 ≥ 0} (18)

(y is contained in the interior of H+(x; y), x is on its boundary, and the boundary plane is perpendicular to
x − y). ‘Double cones’ with fixed opening angles 1

4 are denoted by

K(x, y) : = C1/4(x; y) ∩C1/4(y; x) ∩ H+(x; y) ∩ H+(y; x) . (19)

Then, the following holds.

Lemma 2.7 (Necklace of disjoint double cones). Suppose that γ ∈ C is simple and has the (d0,
1
4 )–

diamond property. If 0 = t1 < . . . < tN < 1 = tN+1 and xi = γ(ti) are such that |xi+1 − xi| ≤ d0, then the open
double cones

Ki = int K(xi, xi+1) and K j = int K(x j, x j+1)

are disjoint whenever i , j (mod N). Moreover, the vectors vi = xi+1 − xi satisfy <)(vi+1, vi) < 1/8.

Remark 2.8. The number 1/4 in the lemma has been chosen just for the sake of simplicity. The result
holds in fact for any angle ϕ ≤ 1

4 , with 1
8 replaced by ϕ/2.
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Figure 9: The intuitive meaning of the “Necklace Lemma 2.7”: small double cones with vertices along
the curve have pairwise disjoint interiors. Moreover, different strands of the necklace stay well away from
each other.

One can view the Necklace Lemma as a sort of ‘weak excluded volume constraint’ of curves γ with
Mp(γ) < ∞. It is not an exact excluded volume constraint as described in Section 2.1 for curves with finite
ropelength. Here, we have no uniform tube consisting of the disjoint union of uniformly sized normal disks,
and we have no unique next-point projection onto the curve in a neighbourhood of curves with finite integral
Menger curvature. Already Herbert Federer [26] has shown that such an exact excluded volume constraint,
in Federer’s terminology positive reach, is equivalent to C1,1-smoothness, which generally we do not have
for curves with bounded integral Menger curvature. Nevertheless, this weaker form of excluded volume
by the necklace of disjoint double cones can be used to derive crude but explicit bounds on the average
number of crossings and on the so-called stick number in terms of integral Menger curvature. We shall
return to that point in Sections 4.1 and 4.2.

3. Applications in geometric knot theory

Let us now specify in more detail what is meant by a knot energy. We follow here the definition of
O’Hara, cf. [59, Def. 1.1].

3.1. Being charge: the definition of a knot energy

The crucial requirement of the definition is that you are not allowed to change the knot class if the
energy stays bounded; each knot class is surrounded by infinite energy barriers as visualized in Figure 10.
Mathematically, a functional E : C → [−∞,∞] that is finite on all simple smooth loops γ ∈ C with the
property that E (γi) tends to +∞ as i→ ∞ on any sequence of simple loops γi ∈ C that converges uniformly
to a limit curve with at least one self-intersection, is called self-repulsive or charge. If E is self-repulsive
and bounded from below, it is called a knot energy.

Now, integral Menger curvature Mp is certainly bounded from below, and it is finite on simple smooth
loops since then 1/R is bounded. (A priori and according to (10), 1/R might blow up locally, when all the
points coalesce, but recall that if the curve is at least C2, then 1/R(x, y, z) tends to the local curvature κ(z)
as x, y→ z, and local curvature is bounded for C2-curves !)
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Figure 10: The concept of a knot energy E : C → [−∞,∞]: infinitely high walls separate the loops
representing different knots.

To see that Mp is charge, we employ reductio ad absurdum11. Assume that a sequence of simple unit
loops {γi} ⊂ C with uniformly bounded energy Mp(γi) ≤ E < ∞, converges uniformly, that is, in the
supremum norm to γ̃ which is not a simple loop. All the γi have the diamond property in the same scale d0,
dictated by E, and form a bounded subset in the space C1,α([0, 1]), α = (p−3)/p, of C1 curves having their
derivatives Hölder continuous with exponent α. It is then a simple exercise in analysis to use Theorems 2.2
and 2.3 to prove the following.

Lemma 3.1 (Quantitative self-avoidance). There exists a number δ = δ(E) > 0, such that for all curves
γ ∈ C with Mp(γ) < E we have

|γ(s) − γ(t)| > min
{
δ,
|s − t|

2
}
. (20)

(Recall that |s− t| denotes the intrinsic distance between γ(s) and γ(t) on the curve. One can check that
the statement is satisfied with some number δ ∝ E−1/(p−3).) Intuitively, the lemma ascertains that (a) locally,
in a scale solely dictated by the energy, γ is nearly straight, (b) bounds on the energy prevent distant strands
of the curve from being too close to each other.

Now, as γ̃ = lim γi is not simple, there exist two parameters s , t ∈ [0, 1) such that γ̃(s) = γ̃(t). For
sufficiently large i we have

min
{
δ,
|s − t|

2
}
> |γi(s) − γ̃(s)| + |γi(t) − γ̃(t)|,

as the left-hand side is positive and the right-hand side goes to zero as i→ ∞. However, since γ̃(s) = γ̃(t),
by the triangle inequality the right-hand side exceeds |γi(s) − γi(t)|. This contradicts the quantitative self-
avoidance of γi, cf. Lemma 3.1.

So, Mp is indeed charge, and therefore it is a knot energy.

3.2. First impressions of the energy landscape

Let us now investigate a few other knot-theoretic properties of Mp that can be easily obtained from
Theorem 2.3 and the geometric machinery described in Section 2.

11In G.H. Hardy’s words: It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a
piece, but a mathematician offers the game.
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Figure 11: The pull-tight phenomenon

3.2.1. Pull-tight phenomenon
For some knot energies E (we shall come to the examples later) knots can pull tight in a convergent

sequence of loops for which E stays uniformly bounded from above. This pull-tight phenomenon is char-
acterized by the presence of nontrivially knotted arcs Ai ⊂ γi of a fixed knot type, each Ai being a fragment
of a loop γi in a sequence (γi) ⊂ C, with the additional property

Ai ⊂ Bi ≡ B(xi, ri) ⊂ R3, such that ri → 0 as i→ ∞; (21)

see [60, Definition 1.3] and Figure 11. In principle this phenomenon could be the cause why minimizing
sequences for E on a fixed knot class converge to a limit that is embedded itself but in a different knot
class. Think of it as a particularly nasty way of tunnelling from one knot class to another: you deform the
curve so that it does not cross itself, and in the limit you have again a simple curve which, alas, represents
a different knot since a small, topologically nontrivial, part of the original knot has been pulled tight to
single point.

It should be clear by now that the pull tight phenomenon cannot happen for sequences of curves with
uniformly bounded integral Menger curvature. If Mp(γ) < E, and we look at any of the balls B(x, d)
centered on γ, with radius d ∝ E−1/(p−3), then – due to the diamond property and Proposition 2.6 – the arc
of γ contained in B(x, d) is nearly straight, and has only one common point with each cross-section of the
small double cone determined by two of its endpoints. So, unlike in (21), knotting cannot happen at small
length scales.

Thus, for the integral Menger curvature Mp with p > 3, the energy walls between different knot
classes are indeed infinitely high and the ‘pull-tight’ tunnelling is forbidden. Any knot energy E with that
more specific property, namely, such that E (γi) tends to +∞ on every sequence {γi} ⊂ C with a pull-tight
phenomenon, is called tight. In particular, Mp is tight for p > 3.

3.2.2. Existence of minimizers in all knot classes
A knot energy E is minimizable12 if in each knot class there is at least one representative in Cminimiz-

ing E within this knot class.
For functionals defined on infinite dimensional spaces, the standard way to prove existence of mini-

mizers is to mix two ingredients: compactness of the energy sub-levels in an appropriate topology, and
continuity or lower semicontinuity of the function in that topology. (In some cases, it is a delicate art
to decide which topology is appropriate: ideally, it should have many compact sets and allow for many
functions to be lower semicontinuous. An improvement in one direction is often a sacrifice in the other.)
Luckily, for Mp considered on all simple unit loops, the situation is rather straightforward – thanks to our
uniform estimate in Theorem 2.3.

Let us fix a knot class [K]. To minimize Mp on a given knot class [K] within C, note first that by
rescaling a smooth and regular representative of [K] to length one and reparametrizing by arclength, we
find a representative of [K] in C. In particular, there certainly exists a minimizing sequence {γi} ⊂ C with
γi ∈ [K] for all i ∈ N, such that

lim
i→∞

Mp(γi) = inf
C∩[K]

Mp.

12O’Hara calls this property minimizer producing; see [60, Definition 1.2].

18



The right-hand side is finite since Mp is nonnegative. Therefore, there is a constant E which serves as a
common upper bound for all the energy values, Mp(γi) ≤ E for all i ∈ N. Now, Theorem 2.3 yields the
crucial uniform bound

‖γi‖C1,α([0,1],R3) ≤ C(p, E), α = 1 −
3
p
.

Thus, the sequences γi and γ′i are equicontinuous, and by the elementary compactness theorem of Arzela-
Ascoli we can extract a subsequence {γik } ⊂ {γi} such that γik converges to γ in C1, so that in particular
|γ′| ≡ 1.

Since we already know that all curves with finite integral Menger curvature are simple, and that Mp is
charge, the limit curve γ is injective. Hence

H 1(γ) =

∫ 1

0
|γ′(s)| ds = lim

k→∞

∫ 1

0
|γ′ik (s)| ds = lim

k→∞
H 1(γik ) = 1

because of the continuity of the curve length with respect to C1 convergence. Therefore the limit curve γ
is a simple loop in C ∩C1([0, 1],R3). To conclude, one would now like to estimate

Mp(γ) ≤ lim inf
k→∞

Mp(γik ) = inf
C∩[K]

Mp.

Indeed, there is nothing dangerous here: the circumradius R(·, ·, ·) is clearly continuous at all triples of pair-
wise distinct non-collinear points in R3, so that, for a sequence of γik converging in C1 to γ, the inequality
above follows from Fatou’s lemma of Lebesgue integration theory.

3.2.3. Finite number of knot classes under each energy level
At this stage, one can quickly see that there are only finitely many distinct knot types under each fixed

energy level Mp(γ) < E. We shall prove that now using reductio ad absurdum again. An alternate proof,
using the stick number bounds, or explicitly bounding the average crossing number, shall be discussed later
on.

So, let us assume the contrary: for some E and some p > 3, there are infinitely many pairwise distinct
knot types [Ki] with representatives γi ∈ C such that Mp(γi) ≤ E for all i ∈ N. Again, as in the last
subsection, we invoke Theorem 2.3 and Arzela-Ascoli to extract a subsequence γik → γ in the C1-topology.
Since we already know that Mp is lower semicontinuous with respect to the C1-convergence, the inequality
Mp(γ) ≤ E follows. In particular, γ is a simple loop since its integral Menger curvature is finite.

To reach a contradiction, let us recall that isotopy type is stable under C1-convergence. In the C2-
category one finds this result, e.g., in Morris Hirsch’s book [39, Chapter 8], whereas the only published
proofs in C1 we are aware of, are in the papers by Philipp Reiter [61] and by Simon Blatt in higher
dimensions [7]. Anyway, [γ] = [γik ] for all sufficiently large indices k ∈ N, contradicting the assumption
that all γik represent pairwise different knot types.

A knot energy E which has only finitely many knot types under each energy level is called strong. To
summarize the contents of Section 3.2, we state the following.

Theorem 3.2. For each p > 3, Mp is a charge, minimizable, tight, and strong knot energy.

It should be clear that the Hölder regularity of γ′ obtained in Theorem 2.3 is the crucial analytic tool
here: this is why sequences of curves under each energy level must contain subsequences that converge
not just uniformly but in the more restrictive C1 topology which preserves length and the isotopy type of
simple loops. Without Theorem 2.3 we would be lost.

There are, however, simple knot-theoretic questions concerning Mp that we cannot answer yet. What
do the local and global minimizers look like? Can Mp distinguish a knot from an unknot? Both questions
are imprecise; we take them up – in comparison to some other knot energies – in the next section.

3.3. Comparison to other knot energies
Once you have a knot energy E , it would be desirable to know that it can – at the very least – distinguish

a knot from an unknot, and that global minima of the energy have a particularly symmetric shape, making
the unknottedness obvious. We refer to the following two properties of knot energies:
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(i) A knot energy E distinguishes the unknot or is called unknot-detecting if the infimum of E over the
trivial knots (the “unknots”) in C is strictly less than the infimum of E over the nontrivial knots in C.

(ii) A knot energy E is called basic if the round circle (of length one) is the unique minimizer of E in C.

We do not know whether integral Menger curvature Mp, p > 3, has these properties. The main difficulty
we have faced when trying to obtain an answer (which we conjecture to be positive in both cases: we are
tempted to believe that Mp is basic and does detect the unknots, and there is some numerical evidence for
that which we will discuss in Section 5) is the fact that the integrand 1/Rp in Mp as a multipoint function is
very nonlocal: Already the slightest perturbation of a small arc of a curve affects 1/R globally. This makes
any comparison argument rather difficult.

The same questions – of being basic or unknot-detecting – have been much easier to decide for other
knot energies, including several other relatives of global curvature and ropelength, and the Möbius invariant
energy of O’Hara, the so-called Möbius energy, studied also by Michael H. Freedman, Zheng-Xu He, and
Zhenghan Wang [28].

3.3.1. Knot energies interpolating between ropelength and integral Menger curvature
The global radius of curvature %G[γ](x), defined in (1), is obtained by the infimization of R(x, y, z) with

respect to all points y, z ∈ γ \ {x}. Obviously, we have R ≥ %G[γ] ≥ 4[γ]. There is one more natural
intermediate radius, namely

%[γ](x, y) := inf
z∈γ

z,x,y,z

R(x, y, z). (22)

Repeated integrations over inverse powers of all these radii with respect to the remaining variables lead to
other Menger curvature energies, as already suggested by Gonzalez and Maddocks in [35, Section 6],

Ip(γ) :=
∫
γ

∫
γ

dH 1(x)dH 1(y)
%[γ](x, y)p , (23)

and

Up(γ) :=
∫
γ

dH 1(x)
%G[γ](x)p , (24)

where the integration is taken with respect to the one-dimensional Hausdorff-measure H 1. Since

R(x, y, z) ≥ %[γ](x, y) ≥ %G[γ](x) ≥ 4[γ],

the energy values on a fixed loop γ ∈ C are ordered as

M 1/p
p (γ) ≤ I 1/p

p (γ) ≤ U 1/p
p (γ) ≤

1
4[γ]

for all p ≥ 1 (25)

with the limits
lim
p→∞

M 1/p
p (γ) = lim

p→∞
I 1/p

p (γ) = lim
p→∞

U 1/p
p (γ) =

1
4[γ]

, (26)

and each of the sequences {M 1/p
p (γ)}, {I 1/p

p (γ)}, {U 1/p
p (γ)} is nondecreasing as p → ∞ on a fixed loop

γ ∈ C. Allowing higher order contact of circles (or spheres) to a given loop γ ∈ C one defines various other
radii as discussed in detail in [34]. A particular example is the tangent-point radius

rtp[γ](x, y) (27)

defined as the radius of the unique circle through x, y ∈ γ that is tangent to γ at the point x. For loops
γ ∈ C this is a correct definition for almost every x ∈ γ. This leads to the corresponding tangent-point and
symmetrized tangent-point energy (as mentioned in [35, Section 6])

Ep(γ) :=
∫
γ

∫
γ

dH 1(x)dH 1(y)
rtp[γ](x, y)p , E sym

p (γ) :=
∫
γ

∫
γ

dH 1(x)dH 1(y)(
rtp[γ](x, y)rtp[γ](y, x)

)p/2 , (28)
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to complement the list of Menger curvature energies on C. As the tangent–point radius rtp[γ](x, y) is
certainly not smaller13 than the double radius %[γ](x, y) defined by (22), we can complement the order of
integrals in (25) by the following inequalities

(E sym
p )1/p(γ) ≤ E 1/p

p (γ) ≤ I 1/p
p (γ) ≤ U 1/p

p (γ) ≤
1
4[γ]

for all p ≥ 1 ; (29)

the leftmost inequality follows easily from ab ≤ (a2 + b2)/2.
The self-avoidance and regularization properties, described for the integral Menger curvature Mp in

Section 2, persist for the curvature-related energies mentioned above. The overall scheme of reasoning that
one uses to check this is, basically, pretty similar to the one described in Section 2.3; one has to adjust
numerous technical details and we shall not dwell too much on that. Let us just mention two notable
differences.

The first one, rather obvious, is that the scale invariant exponents are different.
For all the energies that involve double integration, i.e. for Ip, Ep and E sym

p , the scale invariant exponent
is p = 2. The analogue of Theorem 2.2 holds: one can prove that if any of these double integral energies
of a Lipschitz curve γ is finite for some p ≥ 2, then the image of γ is a one-dimensional topological
manifold. If Ip, Ep or E sym

p is finite for a loop γ ∈ C and p > 2, then γ′ exists everywhere and is Hölder
continuous with exponent α2 = 1 − 2

p ; see [70, 77, 41]. Counterparts of the (d0, ϕ)-diamond property, cf.
Proposition 2.6, do also hold, for distances d0 and angles ϕ satisfying an appropriate variant of the balance
condition (16), namely

d0 . E−1/(p−2), ϕ & E1/(p+4)dκ2
0 , where κ2 = (p − 2)/(p + 4),

and where E denotes the upper bound for a given knot energy. The reader who wishes to think just in
terms of pictures is again invited to visualize the necklace of double cones from Figure 9. Quantitatively,
the relation between the energy bound E and the size and proportion of the cones is (formally) different.
Qualitatively, the picture is the same for Ip, Ep and E sym

p : the energy value specifies a scale d0 below
which there is no knotting, the curve is nearly straight. Moreover, the energy controls the bending (though
it does not control the second derivative at all) at small and intermediate length scales. Thus, the following
is true.

Theorem 3.3. Assume p > 2. Each of the three energies Ip, Ep and E sym
p is charge, minimizable, tight

and strong.

For Up, i.e., for the integral of p-th power of the global curvature κG[γ](x) = 1/%G[γ](x), the scale
invariant exponent is p = 1. Here, one can show, cf. [74], that all curves γ ∈ C are simple and have
continuous tangents, also for p = 1. It turns out that the integrability of global curvature prevents self-
intersections14 and yields good control of the oscillations of the tangent vector, via the uniform estimate

|γ′(s) − γ′(t)| ≤
∫ t

s

1
%G(γ(τ))

dτ ≤ |s − t|1−
1
p

(∫ t

s

1
%G(γ(τ))p dτ

)1/p
≤ |s − t|1−

1
p Up(γ)1/p .

This is a source of one contrast between Up and other energies discussed above: due to the left-most
inequality, γ′ : [0, 1] → R3 is an absolutely continuous function, therefore the second derivative γ′′ exists
almost everywhere on [0, 1]. Thus, finiteness of Up-energy implies that the local curvature of γ is defined
almost everywhere, and is dominated by the global curvature κG = 1/%G. However, assuming p = 1 is not
enough for compactness arguments similar to those that we have earlier described for Mp. For p > 1 the
following holds.

Theorem 3.4. Assume p > 1. The Up-energy is charge, minimizable, tight and strong.

13One deals with a limit z→ x in the definition of rtp(x, y) instead of the infimum over all z in the definition of %[γ](x, y).
14The reader might try and prove it by hand; if the curve has a double point, then the integral

∫
κG diverges at least as fast as

∫
(1/x)

near 0.
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The second important difference between the integral Menger curvature Mp and all the other energies
related to the circumradius R via a mixture of maximizations and integrations is that in all the cases different
from Mp it is easier – due to maximization which carries strict global pointwise information and not just
the averaged one – to control the behaviour of Up, Ip, Ep and E sym

p on some curves. As a consequence,
the following results hold [80].

Theorem 3.5. Assume that p > 2. The energies Ip, Ep and E sym
p are basic.

Theorem 3.6. Assume that p ≥ 1. The energy Up is basic and unknot-detecting.

The main ingredient behind Theorem 3.5 is the relation between E sym
2 and the average crossing number;

we shall come back to that in Section 4. For Up, being basic is related to a simple isoperimetric inequality,
see [74, Section 3]. To see why Up does detect the unknots, we need to compare it with yet another
well-known energy, the total curvature.

3.3.2. The total curvature
To see that Up does detect the unknots, one has to quote a celebrated result in classic differential

geometry: the Farý–Milnor theorem [25, 56] which ascertains that for a nontrivially knotted curve the total
curvature, defined as the integral of the absolute value of curvature along the curve,

T K(γ) :=
∫ 1

0
|κ(s)| ds, γ ∈ C,

must be at least 4π, whereas for the unknots the absolute minimum of
∫
|κ| is equal to 2π. Since we already

know that 1/%G dominates the local curvature, it is easy to conclude that

4π ≤
∫
γ

|κ| ds ≤ U1(γ) ≤ Up(γ)1/p for each nontrivially knotted γ ∈ C, p ≥ 1,

whereas, since Up is basic,

inf
{
Up(γ)1/p : γ ∈ C is unknotted

}
= Up(round circle)1/p = 2π.

Thus, Up is unknot-detecting because it is minimized (only) by round circles and it dominates the total
curvature which is unknot-detecting by Farý–Milnor theorem.

Notice that total curvature itself is not a reasonable knot energy: being unknot-detecting is its only prop-
erty from the list we have discussed so far. Since the curvature κ is determined locally by the parametriza-
tion of the curve, T K does not even detect self-intersections. On the class of simple loops in C it is neither
charge, nor strong, nor minimizable. It certainly is not basic, as it only measures the amount of turning:
each convex curve γ in the plane has the total curvature of 2π according to a well-known theorem of Werner
Fenchel.

3.3.3. The Möbius energy. A summary.
One of the first knot energies studied in detail was the Möbius energy, introduced by O’Hara in [58],

EMöb(γ) :=
∫ 1

0

∫ 1

0

{
1

|γ(s) − γ(t)|2
−

1
|s − t|2

}
ds dt for γ ∈ C, (30)

which is nonnegative, since the intrinsic distance |s − t| of the two curve points γ(s), γ(t) always dominates
the extrinsic Euclidean distance |γ(s)−γ(t)|. (The term 1/|γ(s)−γ(t)|2 alone, modelling the situation where
each two curve points repel each other with a force analogous to the electrostatic one, would produce a
divergent integral, hence the regularization15). That this energy is indeed self-repulsive is proven in [59,
Theorem 1.1] and [28, Lemma 1.2]. However, O’Hara observed in [59, Theorem 3.1] that the Möbius
energy is not tight. This is related to the property behind the name of this energy: EMöb is Möbius invari-
ant, i.e. invariant under all transformations of the curve which belong to the Möbius group, generated by
scalings, translations and inversions of R3 with respect to spheres.

15There is certainly some ambiguity of what kind of regularization one should work with for repulsive potentials, and this ambiguity
is one of the central arguments of Jayanth R. Banavar et al. [5] to propose serious analytic (and numerical) research for global curvature
and integral Menger curvature.
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Is the energy: Mp>3 Ip>2 Up>1 Ep>2 E sym
p>2 1/4 EMöb T K

charge Yes Yes Yes Yes Yes Yes Yes No
minimizable Yes Yes Yes Yes Yes Yes No No

tight Yes Yes Yes Yes Yes Yes No No
strong Yes Yes Yes Yes Yes Yes Yes No

unknot-detecting ? Yes Yes Yes Yes Yes Yes Yes
basic ? ? Yes ? ? Yes Yes No

Table 1: The comparison of integral Menger curvature (and other energies related to the global radius of
curvature) to ropelength 1/4, Möbius energy of O’Hara and total curvature.

Freedman, He and Wang [28] used this invariance to establish the existence of EMöb-minimizing knots
but only restricted to prime knot classes. They have shown that 1

2πEMöb(γ) dominates the minimal number
of crossings of the knot that is represented by γ; this implies that EMöb is strong. Finally, they have also
demonstrated that loops minimizing EMöb must be of class C1,1 (= have Lipschitz continuous derivative).
Later on, He [37] improved this, demonstrating – via heavy analytic methods applied to the gradient flow
of EMöb – that all loops minimizing EMöb are in fact infinitely smooth. Simon Blatt, Philipp Reiter, and
Armin Schikorra have very recently shown that even all critical points of EMöb are C∞-smooth [12].

The properties of the energies E : C → R discussed so far are summarized in a compact way in Table 1.
All the presented properties concerning ropelength 1/4 can be derived from the corresponding properties
of Up, but they were established long before Menger curvatures were systematically studied; see, e.g.,
[14, 15, 52, 20, 36, 66].

4. Controlling knot invariants

In this section, we explain in more detail how integral Menger curvature is related to other quantities,
considered in knot classic theory and geometric knot theory.

4.1. Average crossing number estimates

The average crossing number of a knotted loop γ ∈ C is defined as follows. For each unit vector v ∈ S2

one projects γ orthogonally onto the two-dimensional plane Pv = (v)⊥ perpendicular to v, and counts the
number n(γ, v) of crossings of the planar curve obtained in Pv. The average crossing number acn γ is
defined simply as the average of n(γ, v) over all directions v ∈ S2, i.e.

acn (γ) =
1

4π

∫
S2

n(γ, v) dH 2(v) . (31)

As Freedman, He and Wang explain in [28, Section 3], there is another – often more handy – formula
for acn(γ). Namely, one has

acn (γ) =
1

4π

∫∫
[0,1]×[0,1]

∣∣∣ det(γ′(s), γ′(t), γ(s) − γ(t))
∣∣∣

|γ(s) − γ(t)|3
ds dt for any γ ∈ C. (32)

To see that both formulas define the same quantity, identify [0, 1] with the circle S = R/Z of length one,
and take the map

F : S × S \ {(t, t) : t ∈ [0, 1]} → S2, F(s, t) =
γ(s) − γ(t)
|γ(s) − γ(t)|

.

A computation shows that the absolute value of the Jacobian determinant of this map is equal to the inte-
grand in (32). Therefore, the right-hand side of (32) is just the area covered by F on the unit sphere S2 –
counting (unsigned) multiplicities – divided by 4π, i.e. by the area of S2. On the other hand, for a fixed
vector v ∈ S2, the number n(γ, v) of crossings of the projection of γ onto Pv = (v)⊥ is equal to the number
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(a) A round circle always projects to an ellipse
(b) A projection of an unknot can have many cross-
ings

Figure 12: The average crossing number is not a topological invariant.

of points in the preimage F−1({v}). Thus, according to the area formula [27, Theorem 3.2.3] one computes
in (31) and (32) in fact the same area and then divides by 4π.

Please note that the average crossing number is not a topological invariant of a knot. A flat circle γ0
has acn (γ0) = 0; a complicated unknot can have the average crossing number as high as one wishes. The
crossing number of a knot is the minimum of n(γ, v) over all simple loops γ representing that knot and
over all directions v ∈ S2. For simple loops γ ∈ C, the average crossing number obviously dominates the
crossing number of the knot-type represented by γ, and the crossing number is a knot invariant.

To see that bounds on integral Menger curvature Mp, or in fact on any of the energies Ip, Ep and
E sym

p discussed in the previous section, imply rough but direct bounds on the crossing number, we shall
discuss a crude estimate of the average crossing number for curves that have the diamond property. Here
is a technical statement.

Proposition 4.1. Let γ ∈ C. Assume that there exists d1 such that for each d ≤ d1 the curve γ satisfies
the

(
d, ϕ(d)

)
-diamond property, where ϕ(d) = Adα for some α ∈ ( 1

2 , 1] and ϕ(d1) ≤ 1
4 . Then the average

crossing number of the curve is finite and there exist two absolute constants c1 and c2 such that

acn(γ) <
A2c1

2α − 1
d2α−1

1 + c2d
− 4

3
1 . (33)

Before translating this estimate into an inequality, relating the energy bounds directly to the average
crossing number, let us mention that the general idea of proof of (33) is analogous to Gregory Buck and
Jonathan Simon’s papers [14, Cor. 4.1] and [15, Cor. 2.1]. We split the integral expressing the average
crossing number into two parts; one of them, the local contribution, can be controlled using the local
smoothness properties of the curve; the other one takes into account the interactions of distant portions of
the curve. These long-range interactions have not really been taken into account to prove our key-estimate
(6) in Theorem 2.3, but the diamond property as a weak excluded volume constraint can be used here.
Indeed, Lemma 2.7 and the necklaces of double cones provides an excluded volume that prevents tight
stuffing of many strands in nested thin spherical shells. Such stuffing would contribute a lot to the average
crossing number.

More precisely, let us split
acn(γ) = Iclose + Idistant
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where

Iclose =
1

4π

∫
S1

∫
{t∈S1 : |s−t|≤d1}

∣∣∣ det(γ′(s), γ′(t), γ(s) − γ(t))
∣∣∣

|γ(s) − γ(t)|3
dt ds

and

Idistant =
1

4π

∫
S1

∫
{t∈S1 : |s−t|>d1}

∣∣∣ det(γ′(s), γ′(t), γ(s) − γ(t))
∣∣∣

|γ(s) − γ(t)|3
dt ds .

It is easy to estimate the local term Iclose. Since the curve γ satisfies the (d, ϕ)-diamond property, the arc of
γ between γ(s) and γ(t) is trapped in the double cone with vertices at γ(s) and γ(t) and the opening angle
ϕ = A|γ(s) − γ(t)|α. Thus, the three unit vectors w1 = γ′(s), w2 = γ′(t) and w3 = (γ(s) − γ(t))/|γ(s) − γ(t)|
belong to the same cone with opening angle ϕ, and therefore, using the geometric interpretation of the
determinant as the volume of the parallelepiped spanned by three vectors, one quickly obtains

| det(γ′(s), γ′(t), γ(s) − γ(t))| ≤ |γ(s) − γ(t)| sin2 ϕ ≤ A2|γ(s) − γ(t)|1+2α.

where, by assumption, we can use ϕ = C|γ(s) − γ(t)|α. Thus, for |s − t| ≤ d1, when the curve points γ(s)
and γ(t) are at a distance at most d1, the integrand in (32) is at most

A2|γ(s) − γ(t)|2α−2 .

Since at small distances γ is nearly straight, we have in fact |γ(s) − γ(t)| ≈ |s − t| in this regime, and
Therefore,

Iclose .
∫
S1

∫ s+d1

s−d1

|s − t|2α−2dt ds = 2
d2α−1

1

2α − 1
.

(Here, to obtain convergence, the assumption α > 1
2 on the local Hölder exponent of the derivative is

necessary). This estimate of Iclose corresponds to the first term on the right hand side of (33).
Here is the rough idea how to the estimate the integral Idistant. We split this integral into the terms so

that in each term the distance |γ(s) − γ(t)| is roughly constant, equal to a fixed multiple of d1, and then use
a brute force estimate of the determinant, yielding

Idistant =
1

4π

N∑
k=1

∫
S1

∫
{t∈S1 : |γ(s)−γ(t)|≈k·d1}

| det(γ′(s), γ′(t), γ(s) − γ(t))|
|γ(s) − γ(t)|3

dt ds

.
N∑

k=1

∫
S1

∫
{t∈S1 : |γ(s)−γ(t)|≈k·d1}

|γ(s) − γ(t)|−2 dt ds.

To see how large the above sum is, we do three things. First, we assume the worst case scenario: the curve
is packed as densely as possible around each of its points γ(s). (Then, the integrand |γ(s) − γ(t)|−2 is large
on sets that are as large as possible.) Second, we fix a necklace of double cones along γ, with vertices xi

at distances between d1/2 and d1, and fixed opening angles equal to 1
4 . The length of γ in a spherical shell

S k = {t ∈ S1 : |γ(s) − γ(t)| ≈ k · d1} having the fixed point γ(s) as its center and the radii, say, (k − 1)d1
and (k + 1)d1 is, roughly, proportional to Nk · d1 where Nk is the number of double cones of the necklace
falling into S k. Third, since the cones in the necklace are disjoint, the sum of their volumes – which is
proportional to the total length of the axes times d2

1 , i.e. to Nkd3
1 – cannot exceed the volume of the shell

which is proportional to (kd1)2 · d1. Comparing these two estimates, we conclude that

length of γ ∩ S k ≈ Nk · d1 ≤ k2 d1 . (34)

Plugging this inequality into the sum that dominates the integral Idistant and noting that in each term of that
sum |γ(s) − γ(t)|−2 ≈ (kd1)−2, we obtain

Idistant .
N∑

k=1

∫
S1

∫
{t∈S1 : |γ(s)−γ(t)|≈k·d1}

|γ(s) − γ(t)|−2 dt ds .
1
d1
· N. (35)
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The last step is to estimate the number N of the terms in the sum we just dealt with. The worst case scenario
(of dense packing) we assumed means that the length of γ in S k in (34) is in fact proportional to k2d1. Then,
computing the total length of the loop gives

H 1(γ) = 1 .
N∑

k=1

k2d1 . N3d1,

which means that the worst scenario of dense packing occurs for N ∝ d−1/3
1 , and (35) translates to

Idistant .
1
d1
· N . d−4/3

1 ,

up to an absolute constant. This is the second term of the inequality (33).
Using the quantitative relation between the energy bounds for Mp and the sizes of the double cones,

stated earlier in Proposition 2.6, one can express the constants d1 and A from Proposition 4.1 as

d1 = δ(p)E−β, A = c(p)Eαβ,

where β = 1/(p − 3) and α = (p − 3)/(p + 6). Inserting the above quantities into formula (33), and next
using the elementary inequality Eβ ≤ 1 + E4β/3, we obtain the following direct corollary.

Corollary 4.2. Let γ ∈ C and 0 < E < ∞. If Mp(γ) < E for some p > 12 then there exist constants c1(p)
and c2(p), such that

acn(γ) < c1(p) + c2(p)E
4

3(p−3) . (36)

Notice that the requirement p > 12 guarantees that the assumption α > 1/2 in Proposition 4.1 is
satisfied, which was necessary to control the local contribution Iclose of the average crossing number. In
addition, one can compare inequality (36) with the corresponding average crossing number estimate in
terms of ropelength of Buck and Simon [14, Corollary 4.1] and [15, Corollary 2.1]:

acn(γ) ≤
11
4π
·

(
1
4[γ]

)4/3

. (37)

Although our constants c1(p) and c2(p) in (36) are quite large (in comparison to the 11/(4π) in (37)) we see
the characteristic power 4/3 for the energy in both estimates: as p → ∞ in (36), the energy term behaves
like E4/(3p), which bounds (Mp(γ))4/(3p), and the latter converges to (1/4[γ])4/3 as p → ∞. Examples of
infinite families of curves such that

acn(γ) ≈
(

1
4[γ]

)4/3

are given e.g. by Jason Cantarella, Rob Kusner and John Sullivan in [21]. (It is not difficult to imagine
one: fix a solid rotational torus T with both radii ≈ 1/n, and consider a tightly packed curve γ in T which
represents the (n, n − 1)-torus knot; since a cross section of T has the area ≈ 1/n2 and contains n equal
cross sections of the thick tube centered on γ, the thickness of γ must be ≈

√
1/(n2 · n) = 1/n3/2. Thus,

the right hand side of (37) is roughly n2. The left hand side is also ≈ n2, as the crossing number of the
(n, n − 1)-torus knot is n(n − 2) ≈ n2.)

4.2. Stick numbers
The stick number seg[K] of a knot-type [K] is the minimal number of segments (=“sticks”) needed

to construct a polygonal representative of [K]. It is clear that three sticks never suffice to tie a polygonal
knot, since the resulting triangle is a planar (and therefore unknotted) curve. Looking at possible planar
projections of a polygonal knot with very few segments one can actually show that one needs at least six
sticks to tie a nontrivial polygonal knot; see the nice argument in [1, Section 1.6] and Figure 13 (a).

For a very complex knot-type it is supposedly very difficult to determine the stick number, but if that
knot-type can be represented below certain energy levels for an energy that controls some features of the
curve, then one might hope to at least bound the stick number from above. That this is indeed possible for
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(a) The stick number of the trefoil knot equals six.
(b) Hausdorff distance alone does not distinguish the
knot type.

Figure 13

ropelength, because of its control of local curvature and the exact excluded volume constraint, was shown
by Richard A. Litherland, Jonathan K. Simon, Oguz C. Durumeric, and Eric J. Rawdon in [52]:

seg[K] ≤
⌊

1
π
·

1
4[γ]

⌋
+ 1, (38)

where bac denotes the largest integer below the real number a. This estimate implies a bound on the number
of knot-types representable below given values for ropelength, since the stick number is strongly related to
the crossing number, and explicit bounds can be derived as in [28, Section 3].

Integral Menger curvature, on the other hand, does not control local curvature, but due to the diamond
property (see Definition 2.5) that controls the amount of local bending and serves as a weak excluded
volume constraint, one can hope that stick numbers may be estimated. That this is indeed the case follows
from the following result.

Theorem 4.3. A unit loop γ ∈ C with Mp(γ) ≤ E < ∞ for some p > 3 represents the same knot-type
as any inscribed polygon of which the edge-length is bounded by δ1(p)E1/(3−p), where δ1(p) ∈ (0, 1) is an
absolute constant depending only on p.

Since the maximal number of edges is proportional to the inverse of the maximal edge-length one
immediately deduces the desired stick number bound, which in turn can be used to explicitly bound the
number of knot-types by integral Menger curvature.

Corollary 4.4 (Stick number). If the knot-type [K] possesses a representative γ ∈ C with Mp(γ) ≤ E < ∞
for some p > 3, then

seg[K] ≤
⌊

E1/(p−3)

δ1(p)

⌋
+ 1. (39)

For the proof of Theorem 4.3 we use Lemma 2.7 and the diamond property to construct explicitly a
deformation of 3-space that maps the curve to such an inscribed polygon with vertices xi ∈ γ without ever
leaving the knot-class, that is, we construct an ambient isotopy between γ and the inscribed polygon. To that
end cover γ with a necklace of double cones K(xi, xi+1) that, by virtue of Lemma 2.7, have pairwise disjoint
interiors, since for each i the polygonal edge connecting xi and xi+1 is sufficiently short by assumption.
The desired isotopy is constant off the union of the K(xi, xi+1), and in each double cone it maps each two-
dimensional cross section Di(z) := Ki∩(z+v⊥i ), containing z ∈ [xi, xi+1] and perpendicular to vi := xi+1− xi,
homeomorphically to itself, keeping the boundary of Di(z) fixed and moving the point γ(s) ∈ Di(z) along a
straight segment until it hits the axis of the cone.

A surprising second consequence of Theorem 4.3, besides the stick number bound in Corollary 4.4, is
that Hausdorff-distance can be used for finite energy curves to determine neighbourhoods in the space C
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of unit loops where only one knot-type is present. (This would even work for loops without fixed length as
long as their Mp-energy remains bounded.) Hausdorff-distance distH is a means to measure the distance
between sets, say X,Y ⊂ R3, and is defined as

distH (X,Y) := inf{ε > 0 : X ⊂ Bε(Y) and Y ⊂ Bε(X)},

where we used the notation Bε(X) := {z ∈ R3 : dist(z, X) < ε} for the ε-neighbourhood of a set X ⊂ R3.
In general, Hausdorff-distance is by no means a reasonable tool to separate distinct knot-types: For

any given ε > 0 and any embedded curve γ0 ∈ C one finds infinitely many other unit loops γn ∈ C with
distH (γ0, γn) < ε representing mutually distinct knot-types [Kn]; see Figure 13 (b). However, finite integral
Menger curvature introduces via the diamond property so much rigidity that the following result is true.

Theorem 4.5 (Isotopy by Hausdorff-distance). Any two unit loops γ1, γ2 ∈ C with Mp(γi) ≤ E < ∞ for
i = 1, 2 and some p > 3, are of the same knot-type, as long as

distH (γ1, γ2) ≤ δ2(p)E1/(3−p), (40)

where δ2(p) is a universal constant depending just on p.

(a) A ∆-move replaces an edge of a polygonal knot
by the union of two new edges.

(b) A ∆−1-move is an inverse operation: it replaces
two edges by one.

Figure 14: ∆ and ∆−1-moves. In both cases, the (full) triangle formed by the new and old edges cannot be
intersected by the other edges of the knot.

The idea of proof for this isotopy result is as follows. We know by Proposition 2.6 that both curves
enjoy the diamond property beyond the same scale d = d(E, p) := δ(p)E1/(3−p) depending only on E and
p (see (16)). Choosing δ2(p) := 0.001 · δ(p) will do the job. Indeed, by Theorem 4.3, we know that every
polygon P inscribed in γ1, with vertices xi = γ1(ti) for equidistantly spaced and pairwise sufficiently close
parameters ti, is of the same knot-type as γ1. The goal is, to find a second polygon Q inscribed in the
second curve γ2 with the same number of edges, such that, on the one hand, this polygon Q is of the same
knot-type as γ2, which can be guaranteed by sufficiently short edges, and, on the other hand, such that one
can see by elementary topological operations on the polygons, that also the polygons P and Q are of the
same knot-type. Then one concludes that γ1 and γ2 represent the same knot-type.

In order to construct such a polygon Q one introduces planes Πi through xi and orthogonal to the
tangent γ′1(ti). Then one can show by means of the quantitative self-avoidance estimate in Lemma 3.1
that the planes Πi and Πi+1 bound disjoint small tubular regions Bε(αi) about the subarc αi := γ1([ti, ti+1])
connecting xi and xi+1 on γ1. Here one can choose ε = 20 distH(γ1, γ2). In a second step, one finds points
yi ∈ Πi ∩ γ2 at distance, say ε/10 from xi for each i, by means of the diamond property of γ1, and the fact
that ε/10 = 2 distH(γ1, γ2). Crucial for this is the fact that the diamond property controls the amount of
bending of γ1. These points yi ∈ γ2 can be shown to produce a polygon Q (inscribed in γ2) with sufficiently
small edge length such that Q and γ2 are automatically of the same knot-type according to Theorem 4.3.
Finally, it remains to be shown, that P and Q are also of the same knot-type.
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To this end, one can use so-called ∆, and ∆−1-moves16 from classic knot theory; see Figure 14.
The first ∆-move within the first tubular region is to replace the edge [x1, x2] by the union of two new

edges, namely [x1, y1] and [y1, x2]. The second ∆-move replaces the edge [y1, x2] by the union of [y1, y2]
and [y2, x2]. Next, one performs one ∆−1- and one ∆-move by trading first the union of [y2, x2] and [x2, x3]
for [y2, x3], and then replacing [y2, x3] by the union of [y2, y3] and [y3, x3]; see Figure 15 (c)–(f).

(a) Two curves γ1, γ2 and their inscribed polygons P,Q.
(b) Since P and Q are isotopic to γ1 and γ2, it is enough
to establish their combinatorial equivalence.

(c) Combinatorial equivalence of P and Q, step 1. (d) Combinatorial equivalence of P and Q, step 2.

(e) Combinatorial equivalence of P and Q, step 3. (f) Combinatorial equivalence of P and Q, step 4.

Figure 15: The proof of Theorem 4.5.

This way, we proceed all the way around the curve constantly interchanging ∆−1- and ∆-moves. Only
for the last step we perform two consecutive ∆−1-moves to replace the last segments, say [yN , xN] and
[xN , x1], by [yN , x1], and then [yN , x1] and the first constructed segment [x1, y1] by [yN , y1], to finally obtain
the polygon Q to conclude the proof. One could argue that ∆-moves in one tubular region surrounding one
arc could also affect other parts of the polygons by producing new (and dangerous) intersections of distant
polygonal edges, but such effects are excluded by the choice of ε which is directly related to the small
Hausdorff-distance we assumed from the beginning on.

4.3. Packing problems

Among the variational applications of ropelength we mentioned in Section 2.1 packing problems, like
finding the longest rope on the unit sphere. Thickness prevents a high degree of bending, and it serves as an
excluded volume constraint, so one may ask for the best way to pack as much rope into a three-dimensional
container. Existence theory via the calculus of variations [36], [33] tells us that there is a solution, but –
apart from the unique explicit longest ropes on spheres established in [32, 31] – nobody was able so far to
analytically describe their actual shape yet. A rather rough account on the ability of ropelength to prevent

16These are not the famous Reidemeister moves as, e.g., carefully explained in [16, Chapter 1], but they do conserve the combina-
torial equivalence and hence the knot-type of polygons.
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Figure 16: The sweeping technique. Left: If x, y ∈ γ and ρ = %[γ](x, y) > |x − y|/2, then γ ∩ S = ∅ for a
large region S = S (x, y); hence γ is confined to the shaded zones. The solid circle in the middle depicts the
ball of radius 1/2π that contains γ. Right: A three-dimensional view of the sweep-out region S , bounded
by a self-intersecting torus of revolution. The ball containing γ is partially hidden in that torus.

a high degree of compaction is the following inequality proven by Buck and Simon in [14, Theorem 2] for
any smooth embedded closed curve γ of length L contained in a closed ball of radius r:

L
4[γ]

≥

√
3

32
·

L
r3/2 .

So, if the ball as a container becomes smaller and smaller as its radius r tends to zero, the ropelength of any
loop of length L contained in that ball necessarily blows up like r−3/2. However, this estimate is not sharp
enough to prove, e.g., that any great circle, i.e., equator on the closed ball (of radius L/(2π) is the unique
ropelength minimizer among all loops of length L contained in that ball. A direct geometric argument
using [36, Lemma 3] shows, on the other hand, that ropelength is basic, which in particular implies such a
result. The same is true for the interpolating energy Up where one integration is involved; see [74, Lemma
7]. Relaxing Up to the double integral Ip (see (23)) leads to an energy for which it is still open whether or
not it is basic. But the packing problem described above has an affirmative solution as the following result
shows; see [80].

Theorem 4.6 (Optimal packing in a ball). Among all unit loops in C that are contained in a fixed closed
ball of radius 1/(2π), any great circle on that ball “uniquely” minimizes Ip for all p ≥ 2.

The mechanism behind the proof is a powerful geometric argument that we refer to as the “sweeping
technique” the essence of which is described in the following statement regarding the integrand %[γ](x, y)
of Ip defined in (22).

Assume that there are two distinct points x, y ∈ γ with

ρ := %[γ](x, y) >
|x − y|

2
, (41)

then no point of γ is contained in the “sweep-out region”

S (x, y) :=
⋃

x,y∈∂Bρ

Bρ \ `(x, y), (42)

which consists of union of all balls or radius ρ containing the (fixed) points x and y in their boundary ∂Bρ
minus the lens-shaped closure of their common intersection

`(x, y) :=
⋂

x,y∈∂Bρ

Bρ;
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see Figure 16.
If, moreover, the points x, y do not uniquely realize the diameter of the curve γ, i.e., the largest possible

Euclidean distance of point pairs on γ, then one can easily show that the curve cannot be contained within
the lens `(x, y)17.

Observe that the sweep-out region S (x, y) in (42) can be quite voluminous if ρ = %[γ](x, y) is fairly
large. In particular, if %[γ](x, y) were strictly greater than the radius 1/(2π) of the confining ball, then there
would be simply no space for the curve γ left within that ball; see Figure 16. This observation can be turned
into an upper bound on %[γ](ξ, η) for almost all pairs ξ, η ∈ γ:

%[γ](ξ, η) ≤
1

2π
,

which immediately implies the energy inequality

I 1/p
p (γ) ≥ I 1/2

2 (γ) ≥ 2π = I 1/2
2 (great circle).

A similar argument shows also that this inequality is actually strict, if γ is not one of the great circles
of the confining ball; for details see the proof of [80, Theorem 3.2].

The sweeping technique just described also leads to the nontrivial lower bound on the Ip-energy of
any unit loop γ ∈ C,

I 1/p
p (γ) ≥ I 1/2

2 (γ) ≥ min
{
2 + π,

2
diam γ

}
≥ 4, (43)

which states that one needs at least an I2-energy level of 16 to close a curve of unit length. This is vaguely
reminiscent of the lower bound 2π for total curvature to close a curve according to Fenchel’s theorem, only
that we do not know if the bound in (43) is sharp – probably not, since we strongly believe that Ip is basic
for all p ≥ 2, which would give 2π = I 1/p

p (circle) as the sharp lower bound. Since the sweeping technique
relies on the one maximization remained in the definition of Ip, we do not have a corresponding nontrivial
lower bound for the Mp-energy. One can, however, turn the arguments in the proof of the beta number
estimate in Lemma 2.4 into a lower bound for the Mp-energy for any loop, but the resulting constant would
be less explicit and much smaller than the right-hand side of (43). In other words, one also needs a positive
amount of Mp-energy to close a curve, but we are far from knowing sharp bounds here. Again, numerical
evidence of the simulations of Hermes [38] strongly suggests that the circle of radius 1/(2π) is the unique
minimizer of Mp for all p ≥ 3, so that we expect 2π as the sharp lower bound for (Mp)1/p on the class C
of unit loops.

Another consequence of the sweeping technique is the following rigidity result for curves of constant
(pointwise) Menger curvatures [80, Corollary 3.5].

Theorem 4.7 (Rigidity). If γ ∈ C satisfies either R(x, y, z) = R0, or %[γ](x, y) = R0, or ρG[γ](x) = R0 for
some 0 < R0 < ∞, then R0 = 1/(2π), and γ is a circle of radius 1/(2π).

Notice that such a result for classic local curvature is simply not true: there are infinitely many unit
loops of constant local curvature. One can even construct arbitrary C2-knots of constant curvature such as
in [54].

5. Higher dimensions and open problems

5.1. Shapes of energy minimizers: numerical evidence and some conjectures
Problem 5.1. Assume p ≥ 3. Is the integral Menger curvature Mp basic?

Even simpler versions of that question are open: it is unknown whether the round circle is the unique
minimizer of Mp restricted to the class of planar unit loops. As we have indicated earlier, the main source
of difficulties is the nonlocal character of Mp: even small changes of the curve affect the integrand, 1/R,
at all triples of points, making all comparison arguments difficult.

17For p > 2 this would also follow from C1-smoothness of γ with finite Ip-energy; see [70], since γ confined in the lens `(x, y)
would lead to sharp abrupt turns of the tangent γ′ in the tip points x and y of the lens.
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Problem 5.2. Does the integral Menger curvature Mp, p ≥ 3, detect the unknot?

Here, we only have a partial answer: the integral Menger curvature Mp detects the unknot for all
p ≥ p0, where p0 is a finite number. Since this statement is proved by contradiction, using the convergence
of Mp(γ)1/p to ropelength of γ as p → ∞, we have no explicit estimate of p0. Nevertheless, we are
tempted to conjecture that the answers to both questions, formulated in problems 5.1 and 5.2, are positive.
Numerical evidence, gathered by Tobias Hermes [38] (see the next subsection for more details), supports
that view very strongly. It is also rigorously proved in [38] that the circle is a critical point of Mp.

We do not know much about the integral Menger curvature for curves in the very interesting, scale-
invariant case p = 3. If M3(γ) < ∞, then the loop γ is free from self-intersections (cf. Theorem 2.2).
However, it is not clear whether γ is differentiable everywhere! In fact, γ cannot be a polygon (cf. Sec-
tion 2.2) but we do not know how to exclude e.g. the possibility that γ spirals in a neighbourhood of a point
x so that the tangent at y ∈ γ has no one-sided limits as y→ x.

Problem 5.3. Let p = 3 and suppose that a loop γ ∈ C satisfies M3(γ) < ∞. Is γ differentiable every-
where? If yes, is the (unit) tangent continuous? How to obtain any compactness estimates, and fill in the
entries of Table 1 corresponding to M3?

The question concerning the regularity of minimizers of integral Menger curvature Mp is wide open.
Up to now, the problem of regularity of minimizers of knot energies has been successfully overcome only
in a few cases. Minimizers of O’Hara’s Möbius invariant energy EMöb, see (30), could be shown to be
C∞-smooth [28], [37]; see also Reiter [62, 63] and the recent work of Blatt, Reiter and Schikorra on critical
points of EMöb [12]. The initial gain in regularity up to C1,1 in [28] heavily relied on this Möbius invariance,
a property not shared by Mp or its relatives Up and Ip. The ropelength minimizing links constructed by
Cantarella, Kusner, and Sullivan in [20] show that C1,1 is indeed the optimal regularity in given link classes.
C1,1-regularity of ropelength minimizers might in fact be optimal in general: for ideal knots one observes
numerically jumps in local curvature.

However, even for Up with 1 < p < ∞ the situation is unclear.

Problem 5.4. Are the minimizers of Mp and related knot energies of class C1,1? C∞? Does the optimal
regularity for Mp-minimizers depend explicitly on the parameter p, and does that lead to any conclusions
about the still open optimal regularity of ideal knots as p→ ∞?

Uniqueness of ideal knots is not to be expected as exhibited by the examples of whole continuous
families of ideal links in [20]; see also Figure 4. For integral Menger curvature the situation might be
different, but also this is an open question.

Problem 5.5. Study the uniqueness (and nonuniqueness) of local minima of Mp in various knot classes.
In particular: does Mp, restricted to the class Cunknot of all unknots in C, have multiple local minima?

5.2. Energy landscape and flow

5.2.1. Second thoughts about the energy landscape of Mp

The energy landscape of integral Menger curvature Mp, and of the other geometric curvature energies
interpolating between Mp and ropelength, on the space C of unit loops is largely unknown. We do not
know how many local or absolute minimizers it has in particular knot classes, not to speak of the possible
distribution of critical points. Even if we dismiss the restriction of a given knot type we have no rigorous
proof that the circle (of length one) is the unique minimizer, although heuristic arguments and numerical
evidence suggest exactly that, which would make Mp basic.

Theorem 5.6 (Infinitely many local Mp-minima). The integral Menger curvature Mp possesses infinitely
many local minima in C for p > 3.

According to Theorem 3.2, Mp is minimizable for p > 3, so in each prescribed knot class [K] we find at
least one absolute minimizer γK representing [K]. Combining this with Theorem 4.5 each such minimizer
γK is a local minimum for Mp among all unit loops in C (without restrictions on the knot type). Indeed,
any loop α ∈ C with Mp(α) < Mp(γK) =: E and with Hausdorff distance from γK less than the constant
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in (40) would be of the same knot type [K], contradicting Mp(γK) ≤ Mp(α). So, in that neighbourhood,
there is simply no other unit loop with smaller integral Menger curvature. Since there are infinitely many
different knot classes we thus obtain infinitely many local minimizers for Mp in the unrestricted class C of
unit loops.

Motivated by finite-dimensional calculus one is tempted to say, that we have found infinitely many
Mp-critical points, but for a functional on an infinite dimensional domain, like C, the notion of a critical
point needs to be defined with care. In his PhD-thesis Hermes [38] derived a formula for the first variation
of integral Menger curvature,

δMp(γ, h) :=
d
dε

Mp(γ + εh)|ε=0,

in a mathematically rigorous way, for exactly those curves γ ∈ C of which the energy is finite, and for
variations h such that for all sufficiently small ε also the perturbation γ + εh has finite energy18. The term
“perturbation” is justified by the fact that the loops γ + εh tend to γ as ε → 0, in Hausdorff-distance. But
in general the perturbation is not of unit length, so that γ + εh < C for ε , 0. Consequently, the (infinitely
many) local minimizers γK obtained above, cannot be compared directly to the perturbed curves γK + εh.
Hermes considered the scale invariant version Sp of integral Menger curvature instead,

Sp(γ) :=
M 1/p

p (γ)
length(γ)(3−p)/p , (44)

for continuous closed curves γ of arbitrary finite length. It turns out that the Mp-minimizers γK ∈

[K] ∩ C also minimize the rescaled functional Sp in the class of continuous closed curves of finite length
parametrized on the interval [0, 1]. Since all perturbations γK + εh are of that class, we find therefore in-
finitely many critical points γK of the rescaled energy Sp. Alternatively, one can use Hermes’ formula for
the first variation δMp(γ, h) of integral Menger curvature to derive an Euler-Lagrange equation for each
local minimizer γK of Mp on C involving a Lagrange parameter and the variation of length due to the
length constraint in C. But the Lagrange parameter depends on γK , so that we cannot speak of infinitely
many solutions of the same variational equation in that case.

Let us mention recent work of Jason Cantarella, Jennifer Ellis, Joseph H.G. Fu, and Matt Mastin on the
principle of symmetric criticality for ropelength which can be used to construct ropelength-critical points
different from known minima as long as one finds representatives with symmetries in the same knot class;
see [17].

5.2.2. On the gradient flow for integral Menger curvature
A finer tool to investigate the energy landscape of integral Menger curvature would be a gradient flow,

i.e., a time-dependent partial differential equation of the type γ̇ = V for a family of curves γ = γ(s, τ)
depending on time τ, where the velocity field V is proportional to the gradient of Mp. A solution γ of this
equation would describe the flow in the direction of steepest descent of Mp. Due to the complexity of the
gradient of Mp (derived by Hermes in [38, Section 2.5]) nothing is known about the existence of such a
solution, not even for short time.

Problem 5.7. Does the evolution equation describing the gradient flow for integral Menger curvature Mp

has a solution – at least for a short time interval? Is there a chance to prove long-time existence, and what
is the asymptotic behaviour of the solution as time tends to the boundary of the existence interval?

The only known existence results about gradient flows for knot energies are the contributions of Blatt
[10, 9] (based on earlier work of He [37]) on the Möbius energy EMöb, and on related knot energies intro-
duced by O’Hara. Blatt proved long-time existence and convergence to local minima as time τ → ∞; in
case of the Möbius energy, however, under the additional assumption that the initial curve is sufficiently
close to a (possibly different) local minimum of EMöb.

Hermes fully discretized the very complicated evolution equation for the rescaled integral Menger cur-
vature Sp in space and time and implemented a powerful and reliable numerical scheme to compute the

18By the aforementioned characterization of finite energy curves by Blatt [8, 11] it suffices to have simple regular curves γ in a
certain fractional Sobolev space, perturbed by h in the same Sobolev space; see [38, Theorem 2.33]
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The gradient flow for Sp
flows the initial configura-
tion above to the trefoil on
the top right for p = 3.5,
and to the bottom trefoil on
the right as p = 50.

Similarly for the figure
eight knot, rescaled in-
tegral Menger curvature
evolves the same initial
state to different end states
depending on the parame-
ter p = 3.5, (top right) or
p = 50 (bottom right).

Figure 17: Different parameters p > 3 lead to different final configurations for the gradient flow of the
rescaled integral Menger curvature Sp, but the knot type is preserved. (Images by courtesy of T. Hermes.)

(M50)1/50 ≈ 6.9776 (M50)1/50 ≈ 9.7989 (M50)1/50 ≈ 14.3477 (M50)1/50 ≈ 147.8466

(M3)1/3 ≈ 6.3184 (M3)1/3 ≈ 6.8320 (M3)1/3 ≈ 7.1855 (M3)1/3 ≈ 8.0706

Figure 18: A sample of T. Hermes’ computations of integral Menger curvature of various unknots in C
different from the circle for p = 50 and p = 3. Even the slightest perturbations of the circle which, for each
p > 0, satisfies (Mp(circle))1/p ≈ 6.2832 lead to a significant increase of integral Menger curvature for
p = 50 (top row) strongly suggesting that Mp is basic for p > 3. Even for p = 3 where no analytic results
are available yet, integral Menger curvature seems to have the circle as the unique minimizer (bottom row).
Nota bene: the numerical gradient flow of the rescaled energy S50 does deform the complicated unknot on
the top right into a perfectly round circle. (Images by courtesy of T. Hermes.)

gradient flow for Sp; see [38, Chapter 3]. His impressive simulations demonstrate that integral Menger
curvature can be used to flow initially highly complicated knotted configurations to “optimal” representa-
tives, presumably local Sp-minimizers, and to untangle complex structures, as long as p > 3. Hermes’
examples also show that for p large the Sp-flow tends to produce nicest embeddings close to the ideal
shapes produced by RIDGERUNNER, the algorithm devised by Ted Ashton, Jason Cantarella, Michael Pi-
atek, and Eric Rawdon [4] to produce ideal knots and links. For p close to 3, however, the smoothing effects
seem to dominate the self-repulsion effects, so that the final configurations do look different, although the
knot class is preserved during both flows; see Figure 17. In addition, the data produced by Hermes’ flow
strongly suggest that integral Menger curvature is basic as indicated in Figure 18.

5.3. Energies of sheets, surfaces and submanifolds.

It is natural to ask whether the integral Menger curvature Mp (or other related energies that were
discussed in Section 3) can be extended to surfaces in R3, or, more generally, to m-dimensional sets in
Rn, with similar regularizing and self-avoidance effects as in the curve case. The answer turns out to be
positive; surprisingly, one of the crucial difficulties is the choice of the integrand.
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Figure 19: The graph of (x, y) 7→ xy near zero and a sphere of radius R intersecting it at four non-coplanar
points. Three of them, and the center of the sphere, are in the (x, y)-plane. Similar spheres can be found in
smaller scales, closer to (0, 0, 0), making 1/R (essentially) unbounded. Perturbing the four points in little
dark patches, we do not change R too much. An argument based on scaling shows that for this particular
surface 1/Rp cannot be integrable over Σ × Σ × Σ × Σ for p ≥ 8.

5.3.1. High-dimensional integral Menger curvatures
For the sake of simplicity, let us first describe such an extension of Mp, and a few of its properties, for

two-dimensional surfaces in R3.
The most natural generalization of Mp to two-dimensional closed surfaces Σ ⊂ R3 would be to re-

place the circumcircle radius R(x, y, z) of three points x, y, z by the circumsphere radius R(ξ, x, y, z) of the
tetrahedron T := (ξ, x, y, z) spanned by the four non-coplanar points ξ, x, y, z. This radius is given by

1
2R(T )

=

∣∣∣〈z3, z1 × z2〉
∣∣∣∣∣∣ |z1|

2z2 × z3 + |z2|
2z3 × z1 + |z3|

2z1 × z2
∣∣∣ , (45)

where z1 = ξ − z, z2 = x − z, z3 = y − z. This would lead to a possible variant of integral Menger curvature
for surfaces, ∫

Σ

∫
Σ

∫
Σ

∫
Σ

dH 2(ξ) dH 2(x) dH 2(y) dH 2(z)
Rp(ξ, x, y, z)

, (46)

which, however, has several unpleasant disadvantages. Although the integrand is constant if Σ happens to
be a round sphere – there are smooth surfaces with straight nodal lines (such as the graph of the function
f (x, y) = xy) where the integrand is not pointwise bounded. The reason is that on a surface, close to every
point, there are lots of small spheres intersecting the surface transversally, along a curve, see Figure 19.
This is a problem since we want to consider arbitrarily large p, and we envision a whole family of integral
Menger curvatures that are finite on any closed smooth surface for any value of p. The naive generalization
(46) fails to satisfy this requirement.

Let us go back to formula (10) for 1/R,

1
R(x, y, z)

=
2 dist(z, Lxy)
|x − z| |y − z|

=
4 Area4(x, y, z)
|x − z| |y − z| |x − y|

,

where Lxy denotes the straight line through x and y. The right hand side expresses, in metric terms, what
sort of behaviour is penalized by integral Menger curvature: if there are lots of small, nearly equilateral,
triangles with vertices on γ, the energy has to be large. On small triangles, with all edges ≈ d (up to,
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say, a factor of 2), the integrand 1/R becomes bounded only if the area is ≈ d3, i.e. only if the (shortest)
height of the triangle is much smaller than the longest edge. This way, one is tempted to consider various
4-point-integrands that measure the degree of flatness of tetrahedra T with all four vertices on the surface.

J.C. Léger [49, p. 833] proposed a general integrand of that type for d-dimensional sets; for d = 2 his
choice is

KLég(ξ, x, y, z, ) =
dist(ξ, 〈x, y, z〉)
|ξ − x| |ξ − y| |ξ − z|

(47)

where 〈x, y, z〉 denotes the affine 2-plane through generic non-collinear points x, y, z ∈ R3. However, for
this particular integrand, due to the lack of symmetry with respect to permutations of the 4 points, the
situation is even worse than for inverse powers of the circumsphere radius: even the energy of a round
sphere, ∫

S2

∫
S2

∫
S2

∫
S2

K p
LégdH 2(ξ)dH 2(x)dH 2(y)dH 2(z)

becomes infinite for all sufficiently large p; see [75, Appendix B]. This singular behaviour is caused by
small tetrahedra for which the plane through (x, y, z) is almost perpendicular to the surface.

A whole series of high-dimensional geometric curvatures measuring the flatness of simplices have
been introduced by Gilad Lerman and J. Tyler Whitehouse in their pioneering work [51, 50] dealing with
d-rectifiability and least square approximation of d-regular measures. Their discrete curvatures are based,
roughly speaking, on the so-called polar sine function scaled by some power of the diameter of the simplex,
and can be used to obtain powerful and very general characterizations of rectifiability of measures. (In [50,
Sec. 1.5 and 6] the authors also note that the integrand suggested by Léger does not fit into their setting.)
However, for surfaces the discrete curvatures of Lerman and Whitehouse, e.g. cMT in [50, p. 327], scale like
the inverse of the cube of length. This enforces too much singularity for our purposes, see [75, Sec. 1 and 5].
Namely, it turns out that for any integrand Ks(T ) satisfying

Ks(T ) ≈
hmin(T )

(diam T )2+s , s > 0,

i.e. scaling like the inverse of length to some power bigger than one, the corresponding surface energy

E (Σ) :=
∫

Σ4
Ks(T )p dµ ,

where dµ = dH 2 ⊗ dH 2 ⊗ dH 2 ⊗ dH 2 is the natural measure on Σ4 = Σ × Σ × Σ × Σ, has the following
property: for all p > 24/s the only surface of finite energy is a flat plane!

Motivated by all this, we have been led to consider another 4-point symmetric integrand, with fewer
cancellations in the denominator. For a tetrahedron T = (ξ, x, y, z) with all vertices on Σ consider the
function

K(T ) :=


Volume (T )

Area (T ) (diam T )2 if the vertices of T are not coplanar,

0 otherwise,
(48)

where the total area Area (T ) of T , i.e., the sum of the areas of all four triangular faces of T , could also be
replaced by another factor (diam T )2 (cf. formula (52) in general dimensions). Thus, up to a constant factor
K is the ratio of the minimal height of T to the square of its diameter. The main – and crucial – difference
with the curvatures defined in [50] is that our K scales like the inverse of length. The corresponding
integral Menger curvature for two-dimensional surfaces Σ ⊂ R3, defined as

Mp(Σ) :=
∫

Σ

∫
Σ

∫
Σ

∫
Σ

K p(T ) dH 2 ⊗ dH 2 ⊗ dH 2 ⊗ dH 2(T ), (49)

is finite for all C2-surfaces for all finite p, sinceK(T ) is bounded on the set of all nondegenerate tetrahedra
with vertices on such a surface; we refer to [75, Appendix A] for details.

This energy is well defined for a broad admissible class A of nonsmooth surfaces, including all closed
Lipschitz surfaces (i.e., boundaries of domains that are locally a graph of a Lipschitz functions) and some
other surfaces that are not even topological submanifolds of R3, e.g. a sphere with the north and south
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(a) If r � E−1/(p−8), then the intersection of Σ and the ball
B(x, r) centered on Σ does not have to be a graph.

(b) The ratio H 2(Σ ∩ B(x, r))/πr2 can be made ar-
bitrarily small just by making the tube thinner; this
would increase Mp(Σ).

Figure 20: A torus with thin tubes and thick bumps has large integral Menger curvature.

pole glued together (or, in other words, the horn torus depicted in Figure 3c), or whole infinite stacks of
concatenated spheres or boxes; see the examples in [75].

Our paper [75] contains several results which explain topological, measure theoretic and analytic con-
sequences of the finiteness of Mp. The scale invariant exponent here is p = 8; for p > 8 one can control
the flatness and bending of the surface, excluding self-intersections, wrinkles, folds along lines, conical or
cuspidal singularities etc. The picture is analogous to the one for integral Menger curvature for curves in
Section 2.3. Surfaces Σ with Mp(Σ) < ∞ for p > 8 turn out to be C1-smooth and have well defined tangent
planes at every point. Moreover, there is a length scale R0 ≈ E−1/(p−8) depending only on p and on the
energy bound E such that below this scale every surface Σ with integral Menger curvature Mp(Σ) ≤ E is a
nearly flat graph over a disc. Here is a more precise formulation.

Theorem 5.8. If Mp(Σ) ≤ E for some p > 8, then for each point x ∈ Σ and each radius r < R0 the
intersection Σ ∩ B(x, r) coincides with Graph f ∩ B(x, r), where f : R2 ≡ TxΣ → R ≡ (TxΣ)⊥ is a function
defined on the tangent plane to Σ at x; the function f is of class C1,α for α = 1 − 8

p and satisfies a uniform
estimate

‖ f ‖C1,α ≤ C(p)E1/p , (50)

with the constant C(p) depending only on p.

Thanks to [11], we know that the exponent 1 − 8
p is best possible.

To prove this, one has to adapt the argument from Section 2.3 from curves to surfaces and overcome
one crucial difficulty which is absent in the case of curves. Namely, we need to know first that if r < R0
and Mp(Σ) ≤ E, then the intersection Σ ∩ B(x, r) has surface measure comparable to the flat disc of radius
r, so that, say

H 2(Σ ∩ B(x, r))
πr2 ≥

1
2

for all r < R0 = δ(p)E−1/(p−8). (51)

Note that this property – which we refer to as uniform Ahlfors regularity – cannot be guaranteed even by
requiring that Σ be a priori smooth. Even for a very smooth surface with long thin tentacles or tubes the
ratio H 2(Σ∩B(x, r))/πr2 can be as small as one wishes, cf. Figure 20. (For curves the situation is different:
if x ∈ γ and diam γ > 2r, then we certainly have H 1(γ ∩ B(x, r)) ≥ r, since γ has to reach the exterior of
B(x, r) from its center).

Since the estimate (50) is uniform, it can be used to obtain compactness results and, as corollaries,
the existence of area minimizers under the constraint of bounded energy and fixed genus, and of energy
minimizers in a given isotopy class of surfaces with uniformly bounded area.

Theorem 5.9. If p > 8, and {Σ j} is a sequence of closed, compact and connected Lipschitz surfaces, all of
them containing 0 ∈ R3 and satisfying the bounds

Mp(Σ j) ≤ E and H 2(Σ j) ≤ A for all j ∈ N
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then there is a compact C1,1−8/p-manifold Σ without boundary embedded in R3, and a subsequence {Σ j′ }

converging to Σ in C1 as j′ → ∞, and such that

Mp(Σ) ≤ lim inf
j′→∞

Mp(Σ j′ ) .

(Instead of the uniform area bound one could use a uniform diameter bound in the above theorem).

Theorem 5.10. The class CE(Mg) of all closed, compact and connected Lipschitz surfaces Σ ⊂ R3, ambi-
ently isotopic to a fixed reference surface Mg ⊂ R3 of genus g and satisfying the constraint Mp(Σ) ≤ E,
contains – for each fixed genus g, each Mg and each energy bound E – a surface of least area.

Similarly, the class CA(Mg) of closed, compact and connected Lipschitz surfaces Σ ⊂ R3 ambiently
isotopic to a fixed reference surface Mg of genus g, and satisfying a uniform area bound H 2(Σ) ≤ A,
contains a surface Σ minimizing integral Menger curvature Mp on CA(Mg).

Following [75] and [51, 50], and sharpening the higher-dimensional techniques developed in [76],
Sławomir Kolasiński [45], [44] has studied a general integral Menger curvature Mp, defined for a wide
class of nonsmooth m-dimensional surfaces in Rn. His Mp is defined as the integral over m + 2 copies of
Σ of the multipoint integrand

KS K(x0, x1, . . . , xm+1) :=
H m+1(conv (x0, x1, . . . , xm+1)

)
diam

(
x0, x1, . . . , xm+1

)m+2 . (52)

Here, x0, x1, . . . , xm+1 ∈ Σ are vertices of an (m + 1)-dimensional simplex T = conv (x0, x1, . . . , xm+1).
Again, K scales like the inverse of length. For m = 2 the integrand differs slightly from (48); nevertheless,
all the results from [75] do also hold for (52) with m = 2. The integral Menger curvature of an m-
dimensional set Σ is given by

Mp(Σ) =

∫
Σ

∫
Σ

. . .

∫
Σ︸         ︷︷         ︸

m+2 times

KS K(x0, x1, . . . , xm+1)p dH m(x0) dH m(x1) . . . dH m(xm+1) . (53)

The large class A of admissible m-dimensional sets considered by Kolasiński in [45] is strongly related but
not identical to the admissibility class considered in [76]. It contains all m-dimensional closed Lipschitz
submanifolds of Rn and all sets Σ = f (M) where M is an abstract C1 manifold and f : M → Rn an
immersion. It also contains all finite unions of embedded closed C1 manifolds. One of the main results of
[45] is the following.

Theorem 5.11. If Σ ⊂ Rn is an m-dimensional admissible surface with Mp(Σ) ≤ E for some p > m(m+2),
then Σ is an embedded manifold of class C1,α, α = 1 − m(m + 2)/p. Moreover, there is a length scale
R0 ≈ E−1/(p−m(m+2)), depending only on p and the energy bound E, such that for each x ∈ Σ and each
radius r < R0 the intersection Σ∩ B(x, r) is a (nearly flat) m-dimensional disk: it equals, up to an isometry,
Graph f ∩ B(0, r) where f : Rm → Rn−m is a function of class C1,α, with

‖ f ‖C1,α . Mp(Σ)1/p .

Again, the exponent α = 1 − m(m + 2)/p is best possible here.
This regularity result – again, due to uniform estimates on the patch size R0 and on the norm of the

graph representation f – can be used to deduce that, for each p > m(m + 2), each E and each A, there are
only finitely many C1-smooth manifolds M satisfying a uniform volume bound H m(M) ≤ A and a uniform
integral Menger curvature bound Mp(M) ≤ E.19

19This is work in progress [47]. The result can be viewed as an analogue of Anderson–Cheeger finiteness theorems in (smooth)
Riemannian geometry, but here in a setting which is ‘below the C2 category’; see [3] and the references therein.
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5.3.2. Other high-dimensional energies
In our papers [72, 73] we have introduced the concept of thickness 4[X] for a large class of nonsmooth

parametric surfaces X : Σ → R3, where Σ is a smooth fixed reference surface. As for curves, a uniform
lower bound 4[X] ≥ θ > 0 provides the surface with “thickness”; it is equivalent to the requirement that
the so-called reach20 of the set X(Σ) ⊂ R3 be at least θ, see [73, Lemma 6.2]. The normal vector to a
surface with 4[X] ≥ θ turns out to be (locally, at scales ≈ θ) Lipschitz continuous with constant ≈ 1/θ.
This is the reason why families of ‘thick surfaces’ with uniform area bounds (or uniform diameter bounds)
are compact in the C1-topology. As a result, one can minimize area under thickness and genus constraints;
more precisely, one can prove that each class of compact, closed surfaces of fixed genus, global curvature
bounded from below by θ > 0, and ambiently isotopic to a fixed reference surface, contains at least one
surface of minimal area. For more details, also for surfaces with nonempty boundary, we refer to [72, 73],
and to related work of Alexander Nabutovsky [57] on thick knotted hyperspheres.

Let us also briefly mention that Kolasiński [45] obtains geometric regularity results for high-dimensional
integral curvatures generalizing the Ip-energy (23) for curves. Setting

K (l)(x0, . . . , xl−1) = sup
xl,xl+1,...,xm+1∈Σ

KS K(x0, . . . , xl−1, xl, . . . , xm+1) (54)

where l = 1, . . . ,m + 1, he considers the integral

E (l)
p =

∫
Σ

. . .

∫
Σ︸    ︷︷    ︸

l times

K (l)(x0, . . . , xl−1
)p dH m(x0) . . . dH m(xl−1) . (55)

Analogues of Theorem 5.11 discussed above hold true for each of those energies. For C1 manifolds, Blatt
and Kolasiński [11] give an equivalent condition (expressed in terms of the so-called fractional Sobolev
spaces) for finiteness of these energies. We refer to [45] and [11] for more details.

In [76], we have studied a high-dimensional counterpart of the tangent-point energy Ep defined for
curves by (28), and obtained self-avoidance and regularity results analogous to (v).

Finally, in the joint work with Kolasiński [46] we study the energy E (1)
p defined by (55), and a related

energy where the integrand is expressed in terms of the size of spheres tangent to Σ at one point and passing
through another point of Σ. It turns out that for a each of these two energies is finite if and only if the set
Σ (which a priori might be nonsmooth and have self-intersections, cusps, folds etc.) is a manifold of class
W2,p, i.e. locally a graph of a C1 function which has second order distributional derivatives in Lp.

All the open problems on curves mentioned in the previous sections immediately extend to hard prob-
lems in higher dimension and codimension, such as finding nontrivial (if not sharp) lower bounds for
Mp(Σ), optimal regularity of Mp-minimizing surfaces, and – even more difficult to tackle – the question if
there is a reasonable notion of a gradient flow for higher dimensional integral Menger curvatures.
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fields program at the Kavli Institute for Theoretical Physics in the summer of 2012. They are grateful to
KITP for providing excellent working conditions and for partially supporting this research under the NSF
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[44] Sławomir Kolasiński. Integral Menger curvature for sets of arbitrary dimension and codimension. PhD thesis, Institute of

40



Mathematics, University of Warsaw, 2011. arXiv:1011.2008v4.
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