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Abstract. We demonstrate how integrated Menger curvatures can replace the nonsmooth ropelength
functional to control regularity and topology of knotted curves and surfaces.

1. Introduction
Classic local curvature κγ of a closed smooth curve γ ⊂ R3 is a function that is defined pointwise:
at the point x = γ(s) one has κγ(x) = |γ′′(s)| via the arclength or unit-speed parametrization
γ : R/Z → R3 with |γ′(t)| = 1 for all t ∈ R/Z. Alternatively and in more geometric terms, the
best local approximation of γ by circles near the curve point x is given by the osculating circle that
touches γ at the point x. The radius r = r(x) of this osculating circle is the local radius of curvature
whose inverse equals the local curvature κγ(x) of γ at x. Likewise for surfaces or higher-dimensional
submanifolds, classic curvature functions such as mean or Gauß curvature are local, that is, they take
single surface points as arguments. In contrast to that, Menger (1930) considered functions on curves
that depend on more than one curve point. The most prominent example of such a multipoint function
is the circumcircle radius R(x, y, z) of three points x, y, z ∈ γ, which tends to the local radius of
curvature r(x) in the coalescent limit y, z → x if γ is smooth. This and the fact that R(x, y, z) may
be expressed solely in terms of the mutual distances of the three points x, y, and z, led Menger to the
idea of developing a purely metric geometry based on such multipoint functions in contrast to classic
differential geometry. Instead of following that thread here1 let us add one further simple observation:
in order to defineR(x, y, z) along γ it is by no means necessary to assume any smoothness of γ, which
turns out to be useful from the variational point of view. Indeed, quite often one has to enlarge the
classic function spaces to a wider class of nonsmooth functions, such as Sobolev spaces, to actually
find energy minimizers in the calculus of variations, or to find weak solutions of partial differential
equations.

With that in mind and motivated by computational issues in the numerical simulation of
macromolecules with self-contact, Gonzalez & Maddocks (1999) reconsidered the circumcircle radius
as a means to define an analytically tractable notion of thickness for curves. Indeed, their idea was

1 For further reading on this kind of metric geometry see, e.g. Blumenthal & Menger (1970).



to search for the smallest possible circumcircle radius among all triples of curve points. This way
one may end up with an osculating circle at a point of highest local curvature of the curve, or, on
the other hand, with a limiting circle whose radius is much smaller than the local curvature at any of
the curve strands it touches, thereby reflecting the fact that two (or more) strands of the same curve
are close to each other in the ambient space; see Figure 1. This interplay between local and global

Figure 1. 1/R can be high at many locations where
classic local curvature remains moderate.

Figure 2. The tubular neighbourhood
of a C1,1-curve

control by means of a pointwise minimization of R(x, y, z) is reflected in the following theorem
proved independently by Cantarella et al. (2002) and Gonzalez et al. (2002).

Theorem 1.1. An arclength parametrized closed curve γ with

4[γ] := inf
x 6=y 6=z 6=x

R(x, y, z) > 0 (1)

is embedded and continuously differentiable, with a Lipschitz continuous tangent vector, and local
curvature κγ defined and bounded almost everywhere by 1/4[γ].

Even more is true: the quantity4[γ] can justifiably be called thickness of γ since there is a uniform
tube around the curve, consisting of the disjoint union of normal disks centered on the curve and with
uniform radius 4[γ], so that in particular the nearest-point projection onto γ is well-defined and
unique within that tubular neighbourhood; see Figure 2. In that sense, positive thickness4[γ] serves
as an exact excluded volume constraint for γ. Theorem 1.1 may be viewed as the foundation for
the analytic investigation of ideal knots as minimizers of ropelength, i.e. the quotient of length and
thickness, see Cantarella et al. (2002, 2006, 2011, 2012); Gonzalez et al. (2002); Gonzalez & de la
Llave (2003); Schuricht & von der Mosel (2003b, 2004), as well as for elastic rods with self-contact
Schuricht & von der Mosel (2003a), or packing problems as in Gerlach & von der Mosel (2011b,a).
One possible generalization of thickness to surfaces including an existence theory for area-minimizing
thick surfaces with prescribed genus or in given isotopy classes was published by Strzelecki & von der
Mosel (2005, 2006).

The analytic drawback of thickness or ropelength is that it is a nonsmooth functional due to the
minimization over triples of points; see (1). Consequently, techniques from nonsmooth analysis are



required to derive variational equations as a set of necessary conditions for minimizers of ropelength.
In the light of this, it is not too surprising that up to now the optimal regularity of ideal knots is not
known2, and there is no rigorous analytic treatment of a suitable gradient flow for ropelength. So, it is
natural to ask for suitable relaxations of the ropelength functional without loosing too many features
that qualify ropelength as a knot energy separating different knot classes by infinite energy barriers.

In this short note we will address one possible relaxation of ropelength 1/4[γ] (keeping unit length
of all curves γ fixed), by replacing each pointwise maximization by averaging. That is, we consider
the integral Menger curvature3

Mp(γ) :=

∫
γ

∫
γ

∫
γ

1

R(x, y, z)p
dH 1(x)dH 1(y)dH 1(z) (2)

for a suitable range of integrabilities p > 0. It is clear that one may loose a lot of control over the
shape and regularity of a finite energy curve, since even for large positive p the circumcircleR may be
arbitrarily small at certain triples of curve points. The only hope is that such sets of triples cannot have
large measure. We discuss in this note which analytic and topological effects can still be observed for
curves with finite integral Menger curvature – at least for p above the scale invariant case p = 3.
To address a wider audience we will make an effort to survey our results in a more informal way
avoiding rigorous mathematical proofs, but we will try to explain some of the underlying (mostly)
geometric ideas and principles. We would like to invite the reader who is interested in the detailed
proofs to consult our respective papers (partly joint work with S. Kolasiński or M. Szumańska),
explicit references will be given.

In Section 2 we discuss integral Menger curvature and its regularizing and topological effects on
closed curves (Theorem 2.1), including a short sketch on how to obtain initial higher regularity and a
weak form of an excluded volume constraint, which we refer to as the diamond property. This suffices
to identify Mp as a valuable knot energy: in each knot class we find minimizing representatives, the
energy bounds the stick number and the average crossing number, thus the number of isotopy types,
and the energy separates knot space in terms of Hausdorff-distance; see Theorem 2.2. In Section 3
we describe how to generalize integral Menger curvature to higher dimensions and co-dimensions and
present some of our more recent results such as a geometric variant of the Morrey-Sobolev embedding
theorem (Theorem 3.1), the existence of Mp-minimizing submanifolds in given isotopy classes, and
a finiteness theorem on the isotopy types of Lipschitz submanifolds with unit area with uniformly
bounded integral Menger curvature (Theorem 3.2). Apart from the technically more demanding
proofs in higher dimensions that cannot even be sketched in the present note, there is one crucial
conceptual difference to one-dimensional sets, the so-called Ahlfors regularity, that we do address at
the end of Section 3, for simplicity for two-dimensional surfaces in R3: there is absolutely no control
how much measure of a closed surface is contained in a small ball that is centered on the surface, it
depends heavily on the individual surface; see Figure 3. For closed curves, on the other hand, it is
clear that the length of the curve within a small ball centered on the curve exceeds the ball’s radius.
We present a new algorithm to find “voluminous” tetrahedra on a general closed surface, which may
be of independent interest; see Theorem 3.3. These voluminous tetrahedra can then be used to control
Ahlfors regularity of finite energy surfaces purely in terms of the energy value, which is the essential
first step to even start regularity considerations for integral Menger curvature in higher dimensions.
2 Cantarella et al. (2002) have constructed ideal links with more than one component that are only C1,1, and there is
numerical evidence that the ideal trefoil knot may have jumps in local curvature.
3 As already suggested in Gonzalez & Maddocks (1999) as a potential knot energy; see also Sullivan (2002). Banavar
et al. (2003) discuss its possible relevance for modeling self-avoidance since no regularization is necessary in contrast to
repulsive potentials such as O’Hara’s energies, in particular the Möbius energy; see O’Hara (1991, 1992a,b).



Figure 3. For fixed radius r, the
measure of the surface inBr(x) can be
made arbitrarily small just by making
the tube thinner.

Figure 4. In a small scale, all arcs of a finite energy
curve are trapped in double cones.

To conclude this introduction let us point out an interesting connection to measure theoretic results
in harmonic analysis where integral Menger curvature was used to prove Vitushkin’s conjecture on
the solution of the famous Painlevé problem on the removability of singularities for bounded analytic
functions in the complex plane4. Léger (1999) proved that one dimensional Borel sets E ⊂ Rn
with M2(E) < ∞ are 1-rectifiable in the sense of geometric measure theory. That is, such sets can
(apart from a set of measure zero) be covered by a countable union of graphs of Lipschitz continuous
functions on the real line. Notice that the set can still consist of many disconnected little bits and
pieces, nevertheless this result yields a dramatic increase of regularity even though p = 2 is below the
scale-invariant exponent. This, on the one hand, serves as additional motivation to prove classic higher
regularity, starting with closed rectifiable curves already on a higher regularity level and with p ≥ 3 as
we describe in the present note. On the other hand, it opens more terrain for future research possibly
bridging the gap between the different ranges of integrability: polygons are shown to have finite
integral Menger curvature Mp exactly for p ∈ (0, 3) (Scholtes (2011)), so classic differentiability is
not to be expected in this range, but the situation remains unsettled for the scale-invariant case p = 3.

2. Integral Menger curvature for curves
To fix notation, we denote by C the class of all unit loops, i.e., closed curves γ : R/Z →
R3 parametrized by arclength with γ(0) = 0, and with H 1(γ) = 1 to exclude undesirable
parametrizations that cover subarcs or all of γ more than once. Since we are mainly interested in the
various shapes of different representatives of knot classes this is not a serious restriction. Moreover,
integral Menger curvature does not penalize multiple coverings as can be seen, e.g., for the twice
covered semicircle: the integrand of Mp is simply constant along the semicircle which gives finite
energy, the image is a one-dimensional manifold with boundary but the parametrization is not smooth
at the two endpoints since the tangent vector performs an abrupt turn by 180◦.

The first theorem is fundamental, it reflects how much control on topology and regularity finite
integral Menger curvature imposes on a unit loop.

Theorem 2.1 (Strzelecki et al. (2010)). All unit loops γ ∈ C with Mp(γ) ≤ E < ∞ for p ≥ 3 are
homeomorphic to a circle. Moreover, if p > 3, then γ is of class C1,1−(3/p) with a uniform estimate
of the corresponding C1,1−(3/p)-norm solely in terms of E and p.

4 For more details in that context; see, e.g., the surveys David (1999), Tolsa (2006) or Mattila (2004).



So, self-intersections are excluded for p ≥ 3, and for p > 3 one has a Hölder continuous tangent
vector with the Hölder exponent 1− (3/p). This exponent is optimal as one can either see by specific
examples constructed in Szumańska (2009); Kolasiński & Szumańska (2011), or by the more recent
characterization of finite energy curves in terms of fractional Sobolev spaces which exactly embed
into C1,1−(3/p) and not into any better classic function space; see Blatt (2011); Blatt & Kolasiński
(2012). For the reader who is more familiar with classic Sobolev spaces we would like to offer an
interpretation of Theorem 2.1 as a geometric variant of the Morrey-Sobolev embedding theorem: the
integrand 1/R is a very weak form of curvature integrated on a three-dimensional domain γ × γ × γ,
so it is comparable to the classic Morrey-Sobolev embedding theorem that guarantees C1,1−(3/p)-
regularity for functions whose second derivatives are p-integrable on a three-dimensional domain.
Theorem 2.1 is a generalization of Theorem 1.1 for curves of finite ropelength. Notice that ropelength
1/4[γ] is the limit of M

1/p
p (γ) as p→∞ for any unit loop γ ∈ C, so that one might think of taking

the formal limit in the regularity statement as well, to obtain the limiting C1,1-regularity for finite
ropelength.

For the proof of Theorem 2.1 one establishes first a geometric rigidity of the curve that serves
as a weak form of an excluded volume constraint, and provides an intermediate Hölder regularity of
the tangent with non-optimal exponent. After that, one proves in a more technical second step the
optimal regularity by slicing and iteration arguments. Let us very briefly sketch the more geometric
idea behind the first step, in which one tries to control the beta numbers introduced in the context of
harmonic analysis in Jones (1990) and defined as

βγ(x, d) := inf
{

sup
y∈γ∩Bd(x)

dist(y, L)

d
: L is a straight line through x

}
for x ∈ γ and d > 0.

(3)
The beta numbers measure how well the curve can be approximated locally by straight lines, or in
other words, βγ(x, d) · d is the width of the thinnest cylinder centered at x ∈ γ that contains the
portion of the curve γ in the ball Bd(x). If the beta number happens to be small then the set is locally
fairly flat. In the present situation the following holds:

Claim. There is a universal constant c0(p) > 0 depending only on p such that for any ε ≤ 0.001
and d < diam γ satisfying the balance condition

ε6+pd3−p ≥ c0(p)Mp(γ) (4)

one has βγ(x, d) ≤ ε.
Applying this for ε with equality in the balance condition one observes that βγ(x, d) . dκ for

κ = (p− 3)/(p+ 6) which means that the height of the cylinder confining γ within the ball Bd(x) is
bounded by dκ+1. Keeping the curve point x fixed, one can repeat the same reasoning on every scale
d/2n for n = 1, 2, . . . to obtain a sequence of thinner and thinner cylinders centered at x ∈ γ and
containing the curve in the balls Bd/2n(x). The height of the previous cylinder bounds the maximal
tilt angle of the following cylinder, and all these angles add up like a geometric series to a total tilt
angle . dκ. Consequently, taking the limit n → ∞, one has established the following geometric
rigidity: γ ∩Bd(x) is contained in a double cone with vertex x, and cone axis containing the segment
x−y for any curve point y ∈ ∂Bd/2(x), and with cone angle . dκ. Reversing the roles of x and y one
actually finds locally near x and y the curve γ being trapped in the intersection of two such double
cones; see Figure 4. This immediately implies the intermediate Hölder regularity of the tangent γ′

with the non-optimal exponent κ, since one can argue first at all points x and y of differentiability, so
that the corresponding unit tangents differ by at most the cone angle . dκ. This uniform estimate on



the oscillation of tangents, that exist almost everywhere, can then be uniquely extended to all of the
parameter domain to find that the tangent exists everywhere and satisfies the same oscillation estimate.

Figure 5. The beta number is large: the
curve does not fit into a narrow cylinder.

Figure 6. Small perturbations of vertices
do not change 1/R significantly.

In order to establish the claim one assumes to the contrary that any cone with axis through x, y ∈ γ
with |x − y| < d misses some point z ∈ Bd(x), so that the triangle with vertices x, y, z has height
greater than εd; see Figures 5 and 6. Elementary geometry yields the inequality

1

R(x, y, z)
= 2

height
|x− z| · |y − z|

&
εd

d2
=
ε

d
. (5)

This estimate alone is useless since it is an estimate for just one triple of points which could be ignored
completely by the energy (in contrast to ropelength!), but there are enough triples of points close by
with roughly the same estimate, as long as those triples are in sufficiently small balls (say of radius
ε2d) about x, y, and z, respectively; see Figure 6. Indeed, any curve that hits the center of a ball and
that leaves the ball has one dimensional Hausdorff measure at least as large as the radius of the ball:

H 1(γ ∩Bε2d) ≥ ε2d. (6)

This property is commonly referred to as uniform (lower) Ahlfors regularity, a fact not shared by
higher dimensional objects such as two-dimensional surfaces, and we will make an effort in Section 3
to explain an algorithm which implies uniform Ahlfors regularity for general finite energy surfaces.

Returning to the proof of the claim we can now see how to obtain the desired contradiction by
estimating the total energy from below by the contribution of the three little portions of γ within the
balls of radius ε2d about x, y, and z, and finally using the balance condition (4):

Mp(γ) >

∫
Bε2d(x)∩γ

∫
Bε2d(y)∩γ

∫
Bε2d(z)∩γ

1

Rp

(5)(6)
& (ε2d)3 ·

( ε
d

)p
= ε6+pd3−p (4)

≥ c0(p)Mp(γ), (7)

which is absurd for an appropriately chosen constant c0(p). Thus, the initial step in the proof of
Theorem 2.1 is completed.

Let us recall that the curve is actually locally trapped in the intersection of two double cones with
vertices at curve points on a sufficiently small scale d(E) that depends only on the energy value



Mp(γ) ≤ E. Since this property holds true on this and every smaller scale, no matter where the two
points lie on the curve, we have established what we call the diamond property:

For each two points x, y ∈ γ with |x− y| ≤ d(E) the portion of γ within the intersection of balls,
B2|x−y|(x) ∩ B2|x−y|(y) is contained in the intersection of the two double cones with opening angle
. |x − y|κ, common axes through x and y, and with vertices at x and y, respectively; see Figure 4.
In addition, in each cross section perpendicular to the common cone axis, one finds exactly one curve
point γ.

One can use this property to discover that γ carries along a whole necklace of such double cones,
in our terms diamonds, that have mutually disjoint interiors. This necklace serves as a weak form of
an excluded volume constraint, since the curve is restricted to the diamonds in a whole neighbourhood
of the curve. This holds for every partition of the curve into small arcs, as long as each such arc is
sufficiently small in diameter, i.e. smaller than the scale d(E). However, let us point out that there is
no unique nearest-point projection, and we do not have the disjoint union of uniformly sized normal
disks about the curve, as finite ropelength would imply. Still, the diamond property gives the curve
enough rigidity to control local bending, and to allow for topological results that qualify integral
Menger curvature as a valuable knot energy.

Theorem 2.2 (Strzelecki et al. (2012)). Let p > 3, then Mp satisfies the following conditions:

(i) Mp is charge, i.e., it blows up along sequences {γi} ⊂ C that converge uniformly to some curve
γ with self-intersections. Moreover, Mp is tight in the sense that it blows up along sequences for
which small nontrivially knotted parts pull tight in the limit.

(ii) In each knot class [K] one finds a representative γK ∈ C ∩ [K] that minimizes Mp, i.e.,

inf
γ∈[K]∩C

Mp(γ) = Mp(γK).

(iii) Mp bounds the stick number and the crossing number, hence it bounds the number of knot classes
that can be represented under a given energy level.

(iv) Any two finite energy curves γ1, γ2 ∈ C that are closer in Hausdorff-distance than a constant
depending only on p and on max{Mp(γ1),Mp(γ2)} represent the same knot class.

Let us comment on some of the aspects and on typical arguments that enter the proof of this result.
For example, assume in part (i) that there is a sequence γi → γ with uniformly bounded energy
Mp(γi) ≤ E for all i, but with a double point in the limit curve, γ(s) = γ(t) for t 6= s. Using
the uniform bound on the C1,1−(3/p)-norm of the γi stated in Theorem 2.1 together with the fact
that all γi are embedded, an easy Taylor expansion argument yields a quantitative version of self-
avoidance, that is, there is a constant δ = δ(E) such that |γi(σ) − γi(τ)| ≥ min{δ, |σ − τ |/2} for
all i. Going to the C1-limit (which coincides with the C0-limit γ) for a suitable subsequence by
means of the basic compactness theorem of Arzela-Ascoli leads to a quick contradiction. A similar
compactness argument, or alternatively, the rigidity imposed by the diamond property, shows that Mp

is also tight, since each cross section of any diamond contains only one curve point, which prevents
small knotted subarcs to pull tight. The improvement to C1-convergence guarantees the same knot
class in the limit, which yields the existence of energy minimizers in each given knot class in part
(ii) by the direct method in the calculus of variations. The only additional ingredient is the lower
semicontinuity of Mp due to continuity of R on almost all triples of points and Fatou’s lemma. The
stick number is the minimal amount of straight segments (sticks) needed to construct a polygonal
representative of a given knot class. To bound that number which is a knot invariant we can show that
for a given curve γ ∈ C with Mp(γ) ≤ E <∞, any inscribed polygon with edge length smaller than



a constant C = C(p,E) is automatically isotopic to γ. To that end we cover γ with a necklace of
diamonds connecting the polygonal vertices, so that the axial segments of the diamonds coincide with
the polygonal edges. Then we construct a suitable ambient isotopy between γ and the polygon by
keeping everything constant outside the diamonds, while suitably mapping homeomorphically each
of the distinct cross section of each diamond onto itself (keeping the boundaries fixed), whilst moving
in each cross section the one and only curve point towards the axis of the double cone, i.e., onto the
respective polygonal edge. The minimal crossing number of a representative γ of a knot class [K] is
the minimal number of self-crossings that one obtains when looking at all planar projections of γ, and
the crossing number of [K] is then the smallest possible such minimal crossing number if one looks
at all representatives of [K]. To bound the latter we bound the minimal crossing number of a given
representative γ ∈ [K] by bounding its average crossing number acn(γ), which is the average value
of crossing numbers upon taking all possible planar projections into account. Due to the practical
integral representation; see Freedman et al. (1994),

acn(γ) =
1

4π

∫ ∫
[0,1]2

|det(γ′(s), γ′(t), γ(s)− γ(t))|
|γ(s)− γ(t)|3

dsdt, (8)

and following ideas of Buck & Simon (1997) for thick knots, we can use the diamond property as
a weaker from of excluded volume constraint to estimate this double integral. The local estimate of
this integral on pairs of parameters that are sufficiently close to each other is a result of the geometry
in one diamond: the respective tangents and the chord γ(s) − γ(t) for such parameters span a fairly
flat parallelepiped, so that the integrand is sufficiently small. For mutually distant parameters, on the
other hand, one can use the necklace of diamonds as an excluded volume constraint to compute a worst
case scenario of closest possible packing since the numerator in (8) as the dominating term needs to
be controlled. Both, stick number and the crossing number, are knot invariants, and one knows from
knot theory how bounds on either of these transfer to bounds on the number of possible knot types
representable under these bounds, which concludes part (iii). For part (iv) one uses inscribed polygons
of the same knot type as in part (iii) for each of the two curves, and shows by virtue of so called ∆-
moves the combinatorial equivalence of these inscribed polygons to guarantee the same knot type of
the two curves.

3. Integral Menger curvature in higher dimensions
Léger (1999) proposed to replace the integrand 1/R in Mp by the expression

L(ξ, x, y, z) :=
dist(ξ, 〈x, y, z〉)
|ξ − x||ξ − y||ξ − z|

(9)

for two-dimensional sets, where 〈x, y, z〉 denotes the 2-plane spanned by x, y, and z. This suggestion
might or might not work to generalize his proof of rectifiability, but it is certainly not the right choice
in our context, since even the unit sphere S2 would have infinite energy∫

S2

∫
S2

∫
S2

∫
S2
Lp(ξ, x, y, z) dH 2(ξ)dH 2(x)dH 2(y)dH 2(z) (10)

for sufficiently large p. The most obvious generalization of the circumcircle radius of three curve
points would be the circumsphere radius of four points on a surface, which would provide a constant
integrand equal to 1 for the unit sphere S2. But even that choice is too singular for our purposes,
since there are smooth surfaces, e.g. with straight nodal lines such as the graph of the smooth



function f(x, y) := xy, where the inverse of the circumsphere radius as a possible integrand is not
bounded. This led us to the idea to use a very similar but less singular integrand defined on tetrahedra
T = (ξ, x, y, z) of surface points, namely Volume(T )/(Area(T ) · (diamT )2) (Strzelecki & von der
Mosel (2011a)), where Area(T ) is the sum of all facet areas of T , or even simpler (Kolasiński (2011,
2012)), and for all dimensions k < n and (k + 1)-dimensional simplices T = (x1, . . . , xk+2) ∈ Rn:

K(T ) :=

{
Volume(T )

(diamT )k+2 if T is non-flat,

0 otherwise.
(11)

The scale invariant case for integral Menger curvature Mp(Σ) on k-dimensional subsets Σk ⊂ Rn,

Mp(Σ) :=

∫
Σ
· · ·
∫

Σ︸ ︷︷ ︸
k + 2 integrations

Kp(T ) dH k · · · dH k, (12)

would be p = k(k + 2), which corresponds to k + 2 integrations with respect to the k-dimensional
Hausdorff measure H k. Again, for exponents above the scale invariant case we obtain a geometric
Morrey-Sobolev embedding theorem (Strzelecki & von der Mosel (2011a); Kolasiński (2011, 2012)):

Theorem 3.1. If an admissible k-dimensional set Σk ⊂ Rn satisfies Mp(Σ) ≤ E < ∞ for some
p > k(k + 2), then Σ is a submanifold of class C1,1−(k(k+2))/p. In addition, there is a length scale
R0 = R0(E, p) depending only on E and p, such that for each x ∈ Σ and 0 < r < R0 the
intersection Σ ∩ Br(x) equals, up to isometry, Graphf ∩ Br(0), where Graphf is the graph of a
function f ∈ C1,1−(k(k+2))/p(Rk,Rn−k) with ‖f‖C1,1−(k(k+2))/p . Mp(Σ)1/p.

We will briefly comment on the notion of “admissible sets” later on, for the moment one may
assume that Σ is a compact, connected Lipschitz submanifold of Rn without boundary, but much
more general sets are in fact admissible. As for curves, the integrand K(T ) is a form of weak discrete
curvature, and it is integrated on a k(k + 2) dimensional domain, so that Theorem 3.1 corresponds to
the classic Morrey-Sobolev theorem for functions whose second weak derivatives are p-integrable on
a k(k+2)-dimensional domain. But our result says more: the uniform control over the “patch size” of
the local graph representation purely in terms of the integrability p and the energy value E allows for
nice topological applications, stated here for two-dimensional5 surfaces in R3 (Strzelecki & von der
Mosel (2011a)):

Theorem 3.2. Let CA(Mg) be the class of all closed, compact and connected Lipschitz surfaces
Σ2 ⊂ R3 without boundary, ambiently isotopic to a fixed reference manifold Mg ⊂ Rn of genus g
with the uniform area bound H 2(Σ) ≤ A. Then, for any p > 2(2+2) = 8, there is an Mp-minimizing
surface Σg ∈ CA(Mg), i.e.,

inf
CA(Mg)

Mp = Mp(Σg). (13)

Moreover, there are only finitely many isotopy types of surfaces that can be represented under a given
Mp-energy level.

The last statement should be compared to finiteness theorems in smooth Riemannian geometry by
Anderson & Cheeger (1991), but in the present setting we are below the C2-category.

5 This result extends to higher dimensions and co-dimensions due to the uniform estimates on the graph patches; see
Kolasiński et al. (2013).



The general strategy to prove Theorem 3.1 is, albeit much more technical, the same as for curves.
One tries to estimate the beta numbers, say in the two-dimensional case (k = 2),

βΣ(x, d) := inf
{

sup
y∈Σ∩Bd(x)

dist(y, P )

d
: P is a 2-dimensional affine plane through x

}
(14)

for x ∈ Σ and d > 0, to show local flatness in a first step, which leads to an initial (non-optimal)
oscillation estimate for tangent planes. A second technical step, as for curves, improves the Hölder
exponent via slicing and iteration.

To obtain in the first step such beta number estimates under a suitable balance condition one uses
elementary geometry in a contradiction argument: assuming a fourth surface point ξ ∈ Σ ∩ Bd(x)
too far away from a flat slab around the plane 〈x, y, z〉 spanned by x, y, z ∈ Σ, one can deduce a
lower bound on the integrand K(T ) for that particular tetrahedron T = (ξ, x, y, z). But here comes
the catch: to derive a contradiction one needs similar bounds on sufficiently many tetrahedra T ′ close
to T . But are there “sufficiently many” such tetrahedra with vertices in small balls around the four
vertices of T ? What was automatic for curves (cf. (6)) is not at all true for arbitrary surfaces. Even
smooth surfaces Σ ⊂ R3 may exhibit very slender fingers so that there might be points x ∈ Σ such
that the surface area H 2(Σ∩Br(x)) is not all comparable to r2; see Figure 3 again. So, apart from the
technical complications in higher dimensions, one needs an additional step to prove uniform Ahlfors
regularity for finite energy surfaces: there is a universal constant R = R(E, p) depending only on p
and the energy level E such that

H 2(Σ ∩Br(x)) ≥ π

2
r2 for all r ≤ R. (15)

The idea to prove this can be described as follows. Assume, that the tangent plane TxΣ of Σ at
x ∈ Σ exists. Then one can imagine this point x as a “seed” from which we can grow double cones
C(x) with opening angle, say, π/4 and cone axis perpendicular to TxΣ, until we hit another part of
the surface after some positive distance, the “stopping distance” d(x) depending on the starting point
x. (Notice that one half of the cone is in the interior, the other in the exterior of Σ, which, as a closed
surface in R3, separates space into a bounded interior and an unbounded exterior. So eventually, this
increasing cone must hit the compact surface Σ at some surface point ξ ∈ Σ \ {x}.) As long as there
is no hit one has large orthogonal projections of Σ onto the tangent plane TxΣ, which in turn gives the
(not yet uniform) lower Ahlfors estimate

H 2(Σ ∩Br(x)) ≥ π

2
r2 for all r ≤ d(x). (16)

If the first hit yields a surface point ξ ∈ Σ fairly close to the cone axis, then it is easy to find two
other points y, z ∈ Σ to generate a “voluminous” tetrahedron T = (ξ, x, y, z) whose smallest height
(of one point over the plane spanned by the remaining three points) is comparable to the diameter of
T . Indeed, any segment parallel to the cone axis connecting the two components of C(x) \ {x} must
hit the (connected) surface Σ since they connect the surface’s interior to its exterior. Just choose two
such appropriately spaced segments so that their intersection points y, z with Σ together with x and
ξ span a voluminous tetrahedron. Such a voluminous tetrahedron T has potential to contribute to the
energy. Indeed, perturbing all vertices just a little leads to similar estimates for the integrand K(T ′)
on neighbouring tetrahedra T ′. And if diamT (and hence diamT ′ for all such T ′ near T ) is small,
then one expects a high contribution to the energy. This observation can be used for surfaces Σ with



Mp(Σ) ≤ E < ∞ to actually bound the stopping distances d(x) from below: there is a constant
R0(E, p) > 0 depending only on E and p, such that

d(x) ≥ R0(E, p) for all x ∈ Σ such that TxΣ exists, (17)

which implies the desired uniform Ahlfors regularity (15) by virtue of (16).
The only question that remains is: does the growing cone C(x) always hit Σ in a point ξ ∈ Σ close

to the cone axis? The answer is “no”, but in that case a subtle algorithm can unfold: the growing cone
can be turned suitably depending on the geometric situation, and one can grow further by doubling
the cone’s size, possibly ignoring some parts closer to x, but always keeping a connected set with one
portion in the interior and the other in the exterior of Σ. One continues that algorithm by growing
and turning (possibly neglecting some subsets closer to x). After a finite number of steps one has
to hit the compact surface Σ in a suitable point to find the voluminous tetrahedron; otherwise Σ
would be unbounded. The quantitative reasoning to make this algorithm work is quite involved, but
the outcome is valid for arbitrary surfaces and may be of independent interest (Strzelecki & von der
Mosel (2011a)):

Theorem 3.3. For any closed, compact, connected Lipschitz surface Σ and every point x ∈ Σ where
the tangent plane TxΣ exists, one finds a positive stopping distance d(x) and a voluminous tetrahedron
T = (ξ, x, y, z). In addition, the lower Ahlfors estimate (16) holds at such x.

After this informal description it becomes clear that one does not need Lipschitz surfaces
(guaranteeing tangent planes at almost every point). One simply needs a dense set of starting points
x ∈ Σ, and the corresponding planes P (x) orthogonal to which one can start growing cones for some
positive distance. The second ingredient is topology: in co-dimension one, i.e., for hypersurfaces Σ,
this is granted by a bounded interior and an unbounded exterior of Σ. In higher co-dimensions one has
to add suitable linking conditions to define the class of admissible surfaces; see Strzelecki & von der
Mosel (2011b); Kolasiński et al. (2012); Kolasiński (2011).
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[31] Buttazzo G. and Wagner A.: On some Rescaled Shape Optimization Problems, S 17, März 2009

[32] Gerlach H. and von der Mosel H.: What are the longest ropes on the unit sphere?, S 50, März 2009

[33] Schikorra A.: A Remark on Gauge Transformations and the Moving Frame Method, S 17, Juni 2009

[34] Blatt S.: Note on Continuously Differentiable Isotopies, S 18, August 2009

[35] Knappmann K.: Die zweite Gebietsvariation für die gebeulte Platte, S 29, Oktober 2009

[36] Strzelecki P. and von der Mosel H.: Integral Menger curvature for surfaces, S 64, November 2009

[37] Maier-Paape S., Imkeller P.: Investor Psychology Models, S 30, November 2009

[38] Scholtes S.: Elastic Catenoids, S 23, Dezember 2009

[39] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of an Elastic Body Moving Freely in a
Navier-Stokes Liquid under the Action of a Constant Body Force, S 67, Dezember 2009

[40] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are
Physically Reasonable, S 25, Dezember 2009



[41] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Around a Rotating Body: Leray Solutions are
Physically Reasonable, S 15, Dezember 2009

[42] Bemelmans J., Galdi G.P. and Kyed M.: Fluid Flows Around Floating Bodies, I: The Hydrostatic Case, S 19,
Dezember 2009

[43] Schikorra A.: Regularity of n/2-harmonic maps into spheres, S 91, März 2010

[44] Gerlach H. and von der Mosel H.: On sphere-filling ropes, S 15, März 2010

[45] Strzelecki P. and von der Mosel H.: Tangent-point self-avoidance energies for curves, S 23, Juni 2010

[46] Schikorra A.: Regularity of n/2-harmonic maps into spheres (short), S 36, Juni 2010

[47] Schikorra A.: A Note on Regularity for the n-dimensional H-System assuming logarithmic higher Integrability,
S 30, Dezember 2010
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