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1 Introduction

A classical problem in the calculus of variations is to find among all domains of given
volume the domain for which the first Dirichlet eigenvalue of an elliptic operator is
minimal. This is typically done by two consequent minimizations. First, for an
arbitrary domain Ω with fixed volume, we define

λ(Ω) := min
u∈H1,2

0 (Ω)

∫
Ω

A(x)∇u(x) · ∇u(x) dx

∫
Ω

|u(x)|2 dx .(1.1)

Next we define an appropriate class of domains, say

A(B) := {Ω ⊂⊂ B : |Ω| = ω0}.
where |Ω| denotes the volume of Ω and ω0 denotes some prescribed positive number.
We now minimize the eigenvalue in this class:

λ(Ω∗) := min
Ω∈A(B)

λ(Ω).(1.2)

If A is equal to the identity matrix in IRn and B is large enough to contain a ball
of volume ω0 a classical result states that Ω∗ is a ball. The proof is done by sym-
metrization and goes back to Krahn (1924) and Faber (1932) (see e.g. [4], [12]).
In [5] (1.1)- (1.2) was considered requiring only that A is a positive definite matrix
with bounded coefficients. The authors were able to describe the behaviour of all
minimizing sequences of domains and obtained existence results for some particular
cases (e.g. A is periodic in the space variable).
Such minimizing problems can be formulated also for higher eigenvalues of the
Laplace operator and for other elliptic operators. A very general existence proof
was given by G. Buttazzo and G. Dal Maso in [6]. They prove, that if a functional
depends on a domain, is monotone with respect to set inclusion and is lower semicon-
tinuous with respect to some weak topology then there always exists a minimizer
in the class of domains with prescribed volume. The eigenvalues of the Laplace
operator (and of many more general elliptic operators) satisfy these assumptions.
However it seems to be very hard to extract regularity properties of the optimal
domain from this approach.

In this article we choose a different approach. The key point is a reformulation
of the problem. It is well known that the minimizer of (1.1) is positive in Ω, i.e. the
first eigenfunction is positive. If we now extend u outside Ω by zero we see, that
Ω can be equally characterized as the support of the minimizer. Hence finding the
optimal domain amounts to finding the ”optimal support”. The boundary of the
support is a free boundary. This leads to the following formulation. Define

Jε(u) :=

∫
{u>0}

A∇u · ∇u dx
∫

{u>0}
|u|2 dx + fε(|{u > 0}|),(1.3)
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where

fε(t) =

{
1
ε
(t− ω0) : t ≥ ω0

ε(t− ω0) : t ≤ ω0

for t ≥ 0. f is a strictly increasing piecewise linear function and ω0 denotes the
prescribed value for the volume.
If |{u > 0}| = 0 the value of the functional Jε(u) is set to be∞. The meaning of the
penalization function fε becomes clear, by the observation, that the first part of the
sum in (1.3) decreases as larger volumes of |{u > 0}| and thus more functions u are
admissible. Therefore f penalizes positive deviations from the prescribed volume.
By allowing negative values for f we obtain a strictly increasing penalization term.

Our problem is now formulated as

λε := min
uε∈H1,2

0 (B)
Jε(u),(1.4)

where the support of u may vary in a large ball B (|B| >> ω0). λ := limε→0 λε then
gives the optimal eigenvalue. In this setting we will prove some regularity of the
optimal domain by investigating the regularity of the minimizer u. The regularity
we will prove is good enough to perform a domain variation in a weak sense (see
6.6.). However it is not good enough to perform a classical domain variation which
would lead to an overdetermined boundary value problem for the optimal domain
Ω∗ := {u > 0}, u being the minimizer of (1.4) (for ε = 0):

∇ · (A(x)∇u(x)) + λu(x) = 0 in Ω∗(1.5)

u(x) = 0 in ∂Ω∗(1.6)

−ν · (A∇u) = const. in ∂Ω∗.(1.7)

Here ν denotes the outer unit normal vector field on ∂Ω∗. (1.5) - (1.7) can be read
as the Euler Lagrange equations for the optimal shape problem (1.1) - (1.2).

The paper is organized as follows: In the second chapter we prove the existence
of a minimizer u with support in a prescribed ( sufficiently large) ball and derive
a variational inequality for u. In the third chapter we turn to the regularity of u.
Using classical methods we prove boundedness and Hölder regularity of the mini-
mizer in B. In Chapter 4 we prove Lipschitz continuity. In Chapter 5 we prove a
density estimate for the free boundary from below. This already implies that the
support has (locally) finite perimeter. In Chaper 6 we derive a weak version of the
optimality conditions for u.

It should be mentioned that this article profites a lot from ideas from the paper
of H.W. Alt and L.A. Caffarelli [2]. They consider the functional

J (u) =

∫

{u>0}

|∇u|2 +Q2(x) dx
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for given 0 < Qmin ≤ Q ≤ Qmax < ∞ and derive regularity properties of the free
boundary ∂{u > 0}. The main technical difference to their work lies in the fact, that
wherever they could use the subharmonicity of their local minimizers, the maximum
principle and the strict positivity of Q new arguments had to be found. Also the
volume constraint had to be taken into account.

2 Existence of a Solution

This section deals with the existence of a minimizer of the functional Jε. The
admissible class of functions is

K := {v ∈ H1,2
0 (B) : v ≥ 0},

where B denotes a ball of sufficiently large radius centered in 0.

2.1. Notation.

(i) Let A(x) = (aij(x))i,j=1,...,n be a symmetric n × n matrix such that for two
positive constants 0 < θ ≤ Θ <∞ there holds

0 < θ|ξ|2 ≤ A(x)ξ · ξ ≤ Θ|ξ|2 for all ξ ∈ IRn, x ∈ B.
Moreover we assume aij ∈ C0,1(B). Let LA denote the global Lipschitz constant
of A.

(ii) In order to keep notation short we will write u instead of uε, J instead of Jε
etc.. We also agree on the normalization

∫
B

|u|2 dx = 1 and set λ :=

R
B

A∇u·∇u dx
R
B

|u|2 dx .

(iii) If Bρ(x0) denotes the n dimensional ball with center x0 and radius ρ we denote
by |Bρ(x0)| its n dimensional Lebesgue measure and by Hn−1(∂Bρ(x0)) the
n− 1 dimensional Hausdorff measure of ∂Bρ(x0). ωn is the volume of the unit
ball in IRn and χ(A) denotes the characteristic function of the set A.

2.2. Existence Theorem. There exists a u ∈ K such that

J (u) = min
v∈K
J (v)

for each ε, where

J (v) =

∫
B

A∇v · ∇v dx
∫
B

|v|2 dx + fε(|{v > 0}|).
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Proof: There is a lower bound J (v) > −εω0 for all v ∈ K. Thus there is a
minimizing sequence uk in K such that

J (uk)→ γε := inf
v∈K
J (v).

For v ≡ 0 we set J (v) =∞. Otherwise we normalize
∫

B

| uk |2 dx ≡ 1.

Since ∇uk is bounded in L2(B) there exists a u ∈ H1,2
0 (B) such that for a subse-

quence we have

∇uk → ∇u weakly in L2

uk → u almost everywhere in B.

By strong convergence of the minimizing sequence in L2 we know that
∫
B

| u |2 dx =

1. Moreover u ≥ 0. Furthermore, by lower semicontinuity, we have

|{u > 0}| ≤ lim inf
k→∞

|{uk > 0}|
∫

B

A∇u · ∇u dx ≤ lim inf
k→∞

∫

B

A∇uk · ∇uk dx

so that u is a minimizer. ut

2.3. Theorem (First Variation). If u is a minimizer, then for all nonnegative
smooth functions ϕ with compact support in B the following inequality holds:

∫

B

A∇u · ∇ϕ dx ≤ λ

∫

B

uϕ dx,(2.1)

where λ =

R
{u>0}

A∇u·∇u dx
R

{u>0}
|u|2 dx .

Proof: Since the functional is not differentiable the minimality of u is expressed by
an inequality for δ > 0:

∫
{u>0}

A∇u · ∇u dx
∫

{u>0}
|u|2 dx + fε(|{u > 0}|)

≤

∫
{u−δϕ>0}

A∇(u− δϕ) · ∇(u− δϕ) dx

∫
{u−δϕ>0}

|u− δϕ|2 dx + fε(|{u > δϕ}|).
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Since ϕ ≥ 0, the measure of {u − δϕ > 0} will be smaller than the measure of
{u > 0}. Together with the monotonicity of the penalization fε we may simplify:

∫
{u>0}

A∇u · ∇u dx
∫

{u>0}
|u|2 dx ≤

∫
{u−δϕ>0}

A∇(u− δϕ) · ∇(u− δϕ) dx

∫
{u−δϕ>0}

|u− δϕ|2 dx .

Expanding this gives
∫

{u>0}

A∇u · ∇u dx
∫

{u>δϕ}

|u|2 dx−
∫

{u>δϕ}

A∇u · ∇u dx
∫

{u>0}

|u|2 dx

−2δ

∫

{u>0}

A∇u · ∇u dx
∫

{u>δϕ}

uϕ dx+ 2δ

∫

{u>δϕ}

A∇u · ∇ϕ dx
∫

{u>0}

|u|2 dx

+o(δ) ≤ 0.

We observe that
∫

{u>0}

A∇u · ∇u dx
∫

{u>δϕ}

|u|2 dx−
∫

{u>δϕ}

A∇u · ∇u dx
∫

{u>0}

|u|2 dx

=

∫

{u<δϕ}

A∇u · ∇u dx
∫

{u>δϕ}

|u|2 dx−
∫

{u>δϕ}

A∇u · ∇u dx
∫

{u<δϕ}

|u|2 dx

≥ −
∫

{u>δϕ}

A∇u · ∇u dx
∫

{u<δϕ}

|u|2 dx

≥ −δ2

∫

{u>δϕ}

A∇u · ∇u dx
∫

{u<δϕ}

|ϕ|2 dx

Thus we are left with

−2δ

∫

{u>0}

A∇u · ∇u dx
∫

{u>δϕ}

uϕ dx+ 2δ

∫

{u>δϕ}

A∇u · ∇ϕ dx
∫

{u>0}

|u|2 dx

+o(δ) ≤ 0.

We divide by 2δ and use the normalization ‖ u ‖2
L2= 1 (thus

∫
{u>0}

A∇u ·∇udx = λ):

∫

{u−δϕ>0}

A∇u · ∇ϕ dx− λ
∫

{u−δϕ>0}

uϕ dx+ o(1) ≤ 0.

Since this holds for all δ the lemma is proved. ut
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2.4. Remark. If the support of ϕ is contained in the interior of {u > 0} we
are in the classical situation. Thus ∂i(aij(x)∂ju) + λu = 0 in the weak sense in the
interior of {u > 0}. In particular - since aij ∈ C0,1(B) - the solution is C1,α for
0 < α < 1 in the interior of {u > 0}.

3 Hölder Regularity of the Minimizer

In this section we will prove the boundedness and Hölder continuity for minimizers
of Jε. The proofs follow classical lines for fixed domain, however some care is nec-
essary whenever {u > 0} enters the argument.

3.1. Theorem. Let u be a minimizer of Jε, then u is bounded. Moreover we
have the bound

‖u‖L∞(B) ≤ 2n+1θ−
n
2ω−1

n λ
n
2 |B| 12 .

Proof: Let u be positive at some point. Consider the function

w(x) := (u(x)− k)+

for some k > 0. We use w as a test function in (2.1). With 2.1. (ii) the inequality

θ

∫

Ak

|∇u|2 dx ≤
∫

Ak

A∇u · ∇u dx ≤ λ

∫

Ak

(u− k)2 dx+ λk

∫

Ak

(u− k) dx(3.1)

holds, where Ak := {x ∈ B : u(x) > k}. We have the inequalities

k|Ak| =
∫

Ak

k dx <

∫

Ak

u(x) dx ≤
∫

B

u(x) dx ≤ |B| 12



∫

B

|u|2 dx



1
2

= |B| 12 .

Hence |Ak| → 0 as k →∞. We apply Poincare’s inequality to Ak:
∫

Ak

(u− k)2 dx ≤ ω
− 2
n

n |Ak| 2n
∫

Ak

|∇u|2 dx

(see e.g. (7.44) in [9]). Inequality (3.1) then reads as

ω
2
n
n θ

∫

Ak

(u− k)2 dx ≤ λ|Ak| 2n
∫

Ak

(u− k)2 dx+ λk|Ak| 2n
∫

Ak

(u− k) dx.
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Since k|Ak| ≤ |B| 12 we can choose k ≥ k∗ := 2
n
2 θ−

n
2ω−1

n λ
2
n |B| 12 such that λ|Ak| 2n ≤

1
2
θω

2
n
n . Thus we have

∫

Ak

(u− k)2 dx ≤ 2λkθ−1ω
− 2
n

n |Ak| 2n
∫

Ak

(u− k) dx(3.2)

for k ≥ k∗. Finally we use Cauchy’s inequality to derive

|Ak|−1




∫

Ak

(u− k) dx




2

≤
∫

Ak

(u− k)2 dx.

Thus we can estimate the left integral in (3.2) from below and get
∫

Ak

(u− k) dx ≤ 2λkθ−1ω
− 2
n

n |Ak|1+ 2
n(3.3)

for k ≥ k∗. We define f(k) :=
∫
Ak

(u− k) dx and observe that

f(k) =

∞∫

k

|As| ds, f ′(k) = −|As|.

Then (3.3) can be written as a differential inequality:

f(k) ≤ 2λkθ−1ω
− 2
n

n (−f ′(k))1+ 2
n for k ≥ k∗.

If f is positive on [k, k∗] we can integrate this inequality:

k
2

n+2 − k∗ 2
n+2 ≤ (2λθ−1ω

− 2
n

n )
n
n+2

(
f(k∗)

2
n+2 − f(k)

2
n+2

)
.

Since f(k∗) ≤ f(0) ≤ |B| 12 and f(k) ≥ 0 this inequality gives a bound for k and
thus f(k) will be zero for k ≥ k∗ sufficiently large. To find the explicit bound we
rewrite the above inequality as

k
2

n+2 ≤ k∗
2

n+2 + (2λθ−1ω
− 2
n

n )
n
n+2f(0)

2
n+2

≤ 22n+1
n+2 θ−

n
n+2ω

− 2
n+2

n λ
n
n+2 |B| 1

n+2 .

This implies

k ≤ 2n+1θ−
n
2ω−1

n λ
n
2 |B| 12 .

ut
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We prove the local Hölder continuity with a method which goes back to Morrey
[14] Chapter 5.

3.2. Theorem: Let u(x) be minimizer. Then u ∈ C0,α
loc (B) for any 0 ≤ α < 1.

Proof: Let x0 ∈ B such that Bρ(x0) ⊂ B for some small ρ > 0. Let v̂ be a
harmonic function in Bρ(x0) such that v̂ = u in ∂Bρ(x0) and ∇ · (A∇v̂) = 0 in
Bρ(x0) in the weak sense. We consider the function

v(x) =

{
v̂(x) : x ∈ Bρ(x0)
u(x) : x ∈ B \Bρ(x0).

We distinguish two cases: If |{v > 0}| ≥ |{u > 0}| we consider the rescaled function
w(x) := v(µx). Clearly |{w > 0}| = |{u > 0}| iff

µ =

( |{v > 0}|
|{u > 0}|

) 1
n

.

Let this be the case, thus µ ≥ 1. By minimality we have J (u) ≤ J (w) and this
implies

λ :=

∫
{u>0}

A∇u · ∇u dx
∫

{u>0}
|u|2 dx ≤

∫
{w>0}

A∇w · ∇w dx
∫

{w>0}
|w|2 dx ≤ µ2

∫
{v>0}

Aµ∇v · ∇v dx
∫

{v>0}
|v|2 dx

since the penalization terms cancel. Here Aµ(x) := A(x
µ
). We rewrite this inequality

in several steps. First we split the integrals:

λ

∫

{v>0}\Bρ(x0)

|v|2 dx+ λ

∫

{v>0}∩Bρ(x0)

|v|2 dx

≤ µ2

∫

{v>0}\Bρ(x0)

Aµ∇v · ∇v dx+ µ2

∫

{v>0}∩Bρ(x0)

Aµ∇v · ∇v dx.

Next we use the definition of v:

λ

∫

B\Bρ(x0)

|u|2 dx+ λ

∫

Bρ(x0)

|v̂|2 dx(3.4)

≤ µ2

∫

B\Bρ(x0)

Aµ∇u · ∇u dx+ µ2

∫

Bρ(x0)

Aµ∇v̂ · ∇v̂ dx

= µ2

∫

B

Aµ∇u · ∇u dx− µ2

∫

Bρ(x0)

Aµ∇u · ∇u dx+ µ2

∫

Bρ(x0)

Aµ∇v̂ · ∇v̂ dx.

8



We estimate the first integral

µ2

∫

B

Aµ∇u · ∇u dx = µ2λ+ µ2

∫

B

(Aµ − A)∇u · ∇u dx

≤ µ2λ+ µ2c0LA

(
1− 1

µ

) ∫

B

|∇u|2 dx.

For this inequality we used the Lipschitz continuity of A and the fact that for any

x ∈ B we have |x| ≤ c0 Here c0 :=
(

1
ωn
|B|

) 1
n
. We also used 2.1 (ii). Similarly we

get:

−µ2

∫

Bρ(x0)

Aµ∇u · ∇u dx+ µ2

∫

Bρ(x0)

Aµ∇v̂ · ∇v̂ dx

≤ −µ2

∫

Bρ(x0)

A∇u · ∇u dx+ µ2

∫

Bρ(x0)

A∇v̂ · ∇v̂ dx

+µ2c0LA

(
1− 1

µ

)



∫

Bρ(x0)

|∇u|2 dx+

∫

Bρ(x0)

|∇v̂|2 dx


 .

We put this together, use again 2.1 (ii) and rewrite inequality (3.4):

λ− λ
∫

Bρ(x0)

|u|2 dx+ λ

∫

Bρ(x0)

|v̂|2 dx ≤

λµ2 − µ2

∫

Bρ(x0)

A∇u · ∇u dx+ µ2

∫

Bρ(x0)

A∇v̂ · ∇v̂ dx

+µ2c0LA

(
1− 1

µ

) 
2

∫

B

|∇u|2 dx+

∫

B

|∇v̂|2 dx



We divide this inequality by µ2 and rearrange terms:
∫

Bρ(x0)

A∇u · ∇u dx−
∫

Bρ(x0)

A∇v̂ · ∇v̂ dx(3.5)

≤ (1− 1

µ
)F +

λ

µ2

∫

Bρ(x0)

|u|2 − |v̂|2 dx

and F contains all the remaining terms:

F := c0LA


2

∫

B

|∇u|2 dx+

∫

B

|∇v̂|2 dx

 + λ

(
1 +

1

µ

)
.(3.6)
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In particular F is bounded. In fact using 2.1 (i), (ii), µ ≥ 1 and the harmonicity of
v̂ we can estimate

F ≤ c0LA
1

θ


2

∫

B

A∇u · ∇u dx+

∫

B

A∇v̂ · ∇v̂ dx

 + 2λ

≤ 3λc0LA
1

θ
+ 2λ

Let c1 := 3λc0LA
1
θ
+2λ. Since v̂ is harmonic and v̂ = u on ∂Bρ(x0) partial integration

gives
∫

Bρ(x0)

A∇u · ∇u− A∇v̂ · ∇v̂ dx =

∫

Bρ(x0)

A∇u · ∇u dx−
∫

∂Bρ(x0)

ν · A∇v̂v̂ dSρ

=

∫

Bρ(x0)

A∇u · ∇u dx−
∫

∂Bρ(x0)

ν · A∇v̂u dSρ

=

∫

Bρ(x0)

A∇u · ∇u dx−
∫

Bρ(x0)

A∇v̂ · ∇u dx

=

∫

Bρ(x0)

A∇u · ∇u dx−
∫

Bρ(x0)

A∇u · ∇v̂ dx

=

∫

Bρ(x0)

A∇(u− v̂) · ∇(u− v̂) dx+

∫

Bρ(x0)

A∇v̂ · ∇(u− v̂) dx

=

∫

Bρ(x0)

A∇(u− v̂) · ∇(u− v̂) dx.

We also used that A is a symmetric matrix. The ellipticity of A and µ ≥ 1 leads to

θ

∫

Bρ(x0)

|∇(u− v̂)|2 dx ≤ (1− 1

µ
)c1 + λ

∫

Bρ(x0)

|u|2 dx.

We estimate the first term on the right hand side of this inequality. Direct calculation
gives

1− 1

µ
= 1−

(
1 +
|{v̂(x) > 0} ∩ Bρ(x0)| − |{u(x) > 0} ∩Bρ(x0)|

|{u > 0}|
)− 1

n

≤ 2

n

|{u = 0} ∩Bρ(x0)|
|{u > 0}|

for sufficiently small ρ. This gives the inequality

θ

∫

Bρ(x0)

|∇(u− v̂)|2 dx ≤ c1
|{u = 0} ∩Bρ(x0)|
|{u > 0}| + λ

∫

Bρ(x0)

|u|2 dx.(3.7)
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Theorem 3.1 then gives

θ

∫

Bρ(x0)

|∇(u− v̂)|2 dx ≤ max{λ, c1}(‖u‖2
L∞(B) +

1

|{u > 0}|)ρ
n

and we rewrite this as
∫

Bρ(x0)

|∇(u− v̂)|2 dx ≤ c2ρ
n,

where c2 = c2(α, n, λ, θ, |B|, LA, |{u > 0}|). The Hölder regularity now follows from
standard arguments. We sketch the procedure.

1.) For r < ρ we have the estimate

∫

Br(x0)

|∇v̂|2 dx ≤ c3

(
r

ρ

)n ∫

Bρ(x0)

|∇v̂|2 dx,

where c3 only depends on n and Θ
θ

.

2.) Thus from the inequality
∫

Bρ(x0)

|∇u|2 dx ≤
∫

Bρ(x0)

|∇v̂|2 dx+

∫

Bρ(x0)

|∇(u− v̂)|2 dx

and the estimate for ∇(u− v̂) we deduce

∫

Br(x0)

|∇u|2 dx ≤ c3

(
r

ρ

)n ∫

Bρ(x0)

|∇v̂|2 dx+ c2ρ
n

≤ c3
Θ

θ

(
r

ρ

)n ∫

Bρ(x0)

|∇u|2 dx+ c2ρ
n,

and for the last inequality we used again the harmonicity of v̂.

3.) This however implies
∫

Br(x0)

|∇u|2 dx ≤ c4r
n−2+2α

for all 0 < α < 1 and some positive constant c4 = c4(n, λ, θ,Θ, |B|, LA, |{u >
0}|). For this see e.g. Lemma 2.1 in Chapter III in [8].
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The second case |{v > 0}| ≤ |{u > 0}| follows along the same line, only that we do
not rescale. Thus the above arguments apply with µ = 1. ut

3.3. Lemma. Let u be a local minimizer, then u satisfies

∇ · (A∇u) + λu ≥ 0 in B(3.8)

in the sense of distributions. Furthermore, the support of the Radon measure
∇ · (A∇u) + λu is in ∂{u > 0}.

The proof of this lemma is an easy modification the proof of Remark 4.2 in [2].

3.4. Remark. For almost all ε the level set ∂{u > ε} is a smooth manifold
(C1). If we knew, that the free boundary ∂{u > 0} is also smooth we could obtain
an optimality condition by computing the first variation with respect to the inde-
pendent variable x. Let u be a minimizer that satisfies the volume constraint, and
let η ∈ C0,1

0 (B, IRn). Define uδ := u(x+ δη(x)). If ∇ · η = 0 it is easy to check that
|{uδ > 0}| = |{u > 0}|+ o(δ). Then

d

dδ
J(uδ)|δ=0 = 0

implies that the local minimizer u satisfies the overdetermined boundary value prob-
lem

∇ · (A∇u) + λu = 0 in {u > 0}
u = 0 in ∂{u > 0}

−ν · (A∇u) = const in ∂{u > 0}.

4 Lipschitz Regularity of the Minimizer

We now turn to the Lipschitz continuity for minimizers of J . All statements in this
chapter are independent of ε. Thus they hold for the original problem (1.2) with a
volume constraint. The first lemma adepts a technique used in [3] (Lemma 2.2) to
the functional J . As in [3] we use the following notation:

E+ := {u > 0}, E0 := {u = 0}
By Theorem 3.2 E+ is open and E0 is closed in B. We set d(x) := dist(x,E0).

4.1. Lemma. Let x0 ∈ B, d(x0) < 1
2
dist(x0, ∂B). Then u(x0) ≤ c5d(x0) where c5

depends only on n, λ, θ, Θ and |{u > 0}|.
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Proof: We assume that u(x0) ≥ Md(x0) and derive an upper bound on M . Set
ρ := d(x0), then by Harnack’s inequality (see e.g. [9] Theorem 8.20) there exists
a constant cH depending on n, θ, Θ, x0 and λ such that infB 3

4 ρ
(x0) u ≥ cHu(x0) ≥

cHMρ. Let y ∈ ∂Bρ(x0) ∩ E0. Let v̂ solve ∇ · (A∇v̂) + λv̂ = 0 in Bρ(y) such that
v̂ = u in ∂Bρ(y). Thus w := u − v̂ satisfies ∇ · (A∇w) + λw ≥ 0 with w = 0 in
∂Bρ(y). Then the maximum principle for domains with small volume (see e.g. [11]
Theorem 2.32.) asserts that for sufficiently small ρ we have u ≤ v̂ in Bρ(y). The
strong maximum principle then gives v̂ > u in Bρ(y). We consider the function

v(x) =

{
v̂(x) : x ∈ Bρ(y)
u(x) : x ∈ B \Bρ(y).

Since |{v > 0}| ≥ |{u > 0}| we consider the rescaled function w(x) := v(µx). As in
3.2. |{w > 0}| = |{u > 0}| iff

µ =

( |{v > 0}|
|{u > 0}|

) 1
n

,

thus µ ≥ 1. We use w as a comparison function for J . By minimality we have
J (u) ≤ J (w). Since {u > 0} = {w > 0} the penalization term drops out and we
get after similar computations which led to (3.5):

∫

Bρ(y)

A∇u · ∇u dx−
∫

Bρ(y)

A∇v̂ · ∇v̂ dx

≤ (1− 1

µ
)F +

λ

µ2

∫

Bρ(y)

|u|2 − |v̂|2 dx

with µ ≥ 1 and F is given by (3.6) where Bρ(x0) is replaced by Bρ(y). We will use
the following two identities:

∫

Bρ(y)

A∇u · ∇u dx−
∫

Bρ(y)

A∇v̂ · ∇v̂ dx =

∫

Bρ(y)

A∇(u− v̂) · ∇(u− v̂) dx

−2λ

∫

Bρ(y)

v̂(v̂ − u) dx

and

λ

µ2

∫

Bρ(y)

|u|2 − |v̂|2 dx =
λ

µ2

∫

Bρ(y)

|u− v̂|2 dx− 2
λ

µ2

∫

Bρ(y)

v̂(v̂ − u) dx.

13



We obtain the inequality

θ

∫

Bρ(y)

|∇(u− v̂)|2 dx ≤ (1− 1

µ
)F +

λ

µ2

∫

Bρ(y)

|u− v̂|2 dx(4.1)

+2λ(1− 1

µ2
)

∫

Bρ(y)

v̂(v̂ − u) dx.

We estimate the right hand side of this inequality. Since µ ≥ 1 and after applying
Poincare’s inequality to (v̂ − u) we have

λ

µ2

∫

Bρ(y)

|u− v̂|2 dx ≤ ω
− 2
n

n λ|Bρ| 2n
∫

Bρ(y)

|∇(u− v̂)|2 dx,

and

2λ(1− 1

µ2
)

∫

Bρ(y)

v̂(v̂ − u) dx ≤ 2λ(1− 1

µ2
)|Bρ|‖u‖2

L∞(B).

We choose ρ sufficiently small such that 1− ω−
2
n

n λ|Bρ| 2n ≥ θ
2

. Then (4.1) takes the
form

∫

Bρ(y)

|∇(u− v̂)|2 dx ≤ (1− 1

µ
)F̃ ,(4.2)

where

F̃ := θ−1F + 2θ−1λ(1 +
1

µ
)|Bρ|‖u‖2

L∞(B).

Moreover direct computation gives

µ−1 =

(
1− |{u > 0} ∩Bρ(y)| − |{v̂ > 0} ∩Bρ(y)|

|{u > 0}|
)− 1

n

=

(
1 +
|{u = 0} ∩ Bρ(y)|
|{u > 0}|

)− 1
n

.

We expand the term on the right side of inequality (4.2):
∫

Bρ(y)

|∇(u− v̂)|2 dx ≤ 8λ

n|{u > 0}| |{u = 0} ∩Bρ(y)|(4.3)

for ρ sufficiently small. We recall that

v(x) = v̂(x) ≥ u(x) ≥ cHMρ for x ∈ B 3
4
ρ(x0) ∩Bρ(y).
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Again Harnack’s inequality gives:

v(x) = v̂(x) ≥ cHMρ for x ∈ B 1
2
ρ(y).(4.4)

Now consider the function

w̃(x) := cHM
(
e
− γ

ρ2
|x−y|2 − e−γ

)
.

w̃ is positive in Bρ(y) and vanishes on ∂Bρ(y). We compute (ξ = x−y
|x−y|):

∇ · (A∇w̃) + λw̃

= 2cHM
γ

ρ2
e
− γ

ρ2
|x−y|2

(
2
γ

ρ2
Aξ · ξ|x− y|2 − (∇ · A) · ξ|x− y| − tr(A)

)

where tr(A) denotes the trace of A. Hence

∇ · (A∇w̃) + λw̃ > 0 for
1

2
ρ < |x− y| < ρ and γ sufficiently large.

Moreover on ∂B 1
2
ρ(y) we have

w̃(x) = cHM
(
e−

γ
4 − e−γ

)
≤ 1

2
cHM ≤ v(x) ∀ γ > 0.

Again the maximum principle for small domains gives v ≥ w̃ in Bρ \B 1
2
ρ(y). In this

annulus we also get the estimate w̃(x) ≥ 1
2
(1− |x− y|). Together with (4.4) we get

v(x) ≥ 1

2
cHM(1− |x− y|) in Bρ(y).

With this we can now proceed as in the proof of Lemma 2.2 in [3] and Lemma 3.2
in [2] where the following inequality was derived: There exists a constant c6 which
depends cH such that together with (4.3) we get:

M2|{u = 0} ∩ Bρ(y)| ≤ c6

∫

Bρ(y)

|∇(u− v̂)|2 dx ≤ 8c6λ

n|{u > 0}| |{u = 0} ∩Bρ(y)|.

Thus we deduce that

M2 ≤ 8c6λ

n|{u > 0}| .

From this the claim follows if we set c2
5 := 8c6λ

n|{u>0}| . ut

The following theorem is proved using only the previous lemma. Its proof is there-
fore a copy of the proof of Theorem 2.3 in [3].

4.2. Theorem. Let u be a minimizer. Then u ∈ C0,1(B). Moreover for any
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domain Ω ⊂⊂ B containing a free boundary point the Lipschitz coefficient of u in
Ω is estimated by a constant c7 which only depends on c5 and dist(Ω, ∂B).

Proof: Suppose d(x) < dist(x, ∂B). We apply Lemma 4.1 to

ũ(x′) =
1

d(x)
u(x+ d(x)x′),

and deduce ũ(x′) ≤ c7. Hence |∇ũ(0)| ≤ c7 and this implies |∇u(x)| ≤ c7. ut

A direct consequence is the following lemma (see also Lemma 2.4 in [3]).

4.3. Lemma. There exists a constant c8 which only depends on c7 such that for each
minimizer the following property holds for any sufficiently small ball Bρ(x0) ⊂ B:

1

Hn−1(∂Bρ(x0))

∫

∂Bρ(x0)

u

ρ
dSρ ≥ c8 implies u > 0 in Bρ(x0).

Proof: Let Bρ(x0) ⊂ B. Then, according to Theorem 4.2 we have |∇u| ≤ c7 in
Bρ(x0), Since u(y) = 0 for some y ∈ Bρ(x0) we conclude that u(x) ≤ c7ρ in Bρ(x0).
This gives a contradiction if c8 is large enough. ut

4.4. Corollary. For any Ω ⊂⊂ B there exist positive constants c9 and c10 which
just depend on n, λ, θ, Θ, |{u > 0}| and dist(Ω, ∂B) such that if Bρ(x) is a ball in
Ω ∩ {u > 0} touching ∂{u > 0}, then

c9ρ ≤ u(x) ≤ c10ρ.

5 Density estimates for the free boundary

In this chapter we will derive two density estimates, one from below and one from
above. A consequence of the lower density bound is the local boundedness of the
perimeter of the set {u > 0}. From now on we will assume that ε ≥ ε0 > 0 for some
ε0.

5.1.Theorem. Let u be a minimizer and let x0 ∈ ∂{u > 0} such that Bρ(x0) ⊂ B
for some small ρ > 0. Then there exists a δ > 0 depending only on u, x0 and ε0
such that for sufficiently small ρ the density estimate

|{u > 0} ∩ Bρ(x0)|
|Bρ(x0)| ≥ δ

holds.
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Proof: We will prove by contradiction: Assume the density |{u>0}∩Bρ(x0)|
|Bρ(x0)| of a point

x0 ∈ ∂{u > 0} decreases to zero along some nullsequence (ρk)k. We construct the
following comparison function v (to keep notation short we will write ρ instead of ρk):

v(x) :=

{
u(x) : x ∈ B \Bρ(x0)

(u(x)− φ(x)+ : x ∈ Bρ(x0),

where φ ∈ C0,1(Bρ(x0)), φ ≥ 0 and φ = 0 on ∂Bρ(x0). Clearly |{v > 0}| ≤ |{u > 0}|.
By minimality of u we get

(λ =)

∫
B

A∇u · ∇u dx
∫
B

|u|2 dx + fε(|{u > 0}|) ≤

∫
B

A∇v · ∇v dx
∫
B

|v|2 dx + fε(|{v > 0}|).

There are two possibilities: Either |{u > 0}| > ω0 or |{u > 0}| ≤ ω0. We only
consider the second case here. The first one can then be discussed similarly. Thus
minimality gives

∫
B

A∇u · ∇u dx
∫
B

|u|2 dx ≤

∫
B

A∇v · ∇v dx
∫
B

|v|2 dx + ε(|{v > 0}| − |{u > 0}|).

We split the intergals and rearrange terms:
∫

Bρ(x0)

A∇u · ∇u dx− λ
∫

Bρ(x0)

|u|2 dx ≤
∫

Bρ(x0)

A∇v · ∇v dx− λ
∫

Bρ(x0)

|v|2 dx

+ε(|{v > 0}| − |{u > 0}|)
∫

B

|v|2 dx

We use the definition of v and obtain
∫

Bρ(x0)

A∇u · ∇u dx− λ
∫

Bρ(x0)

|u|2 dx

≤
∫

{u>φ}∩Bρ(x0)

A∇(u− φ) · ∇(u− φ) dx− λ
∫

{u>φ}∩Bρ(x0)

|u− φ|2 dx

+ε(|{u > φ} ∩Bρ(x0)| − |{u > 0} ∩Bρ(x0)|)
∫

B

|v|2 dx.
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We expand the integrals on the right hand side, rearange terms and observe that∫
B

|v|2 dx ≥ 1
2

for small ρ:

0 ≤ −2

∫

{u>φ}∩Bρ(x0)

A∇u · ∇φ dx+

∫

{u>φ}∩Bρ(x0)

A∇φ · ∇φ dx(5.1)

+λ

∫

Bρ(x0)

|u|2 dx− ε

2
|{u ≤ φ} ∩Bρ(x0)|.

We will show that this inequality cannot hold if the density tends to zero.

We give the construction of φ. Set r := |x− x0| and n ≥ 3 we define

φ(x) :=

{
M(ρ) r2−n−ρ2−n

(γρ)2−n−ρ2−n : γρ ≤ r ≤ ρ

M(ρ) : 0 ≤ r ≤ γρ,

for 0 < γ < 1 and M(ρ) := supx∈Bρ(x0) u(x). Thus φ(x) ≤ u(x) in Bγρ(x0). We
compute

∫

Bρ\Bγρ(x0)

A∇φ · ∇φ dx ≤ Θ

∫

Bρ\Bγρ(x0)

|∇φ|2 dx = Θ
n(n− 2)ωn
γ2−n − 1

M2(ρ)

ρ2
ρn

For n = 2 we define

φ(x) :=

{
M(ρ) ln(r)−ln(ρ)

ln(γρ)−ln(ρ)
: γρ ≤ r ≤ ρ

M(ρ) : 0 ≤ r ≤ γρ.

With this construction we have

|{u > φ} ∩Bρ(x0)| ≤ |Bρ \Bγρ(x0)|
|{u ≤ φ} ∩Bρ(x0)| ≥ |Bγρ(x0)|.

We choose γ = 2−
1
n and get |Bρ \Bγρ(x0)| = |Bγρ(x0)|.

We return to inequality (5.1) and assume n ≥ 3 from now on. The case n = 2
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is discussed analogously. Cauchy inequality and the choice of γ give the estimate

0 ≤
∫

{u>φ}∩Bρ(x0)

A∇u · ∇u dx+ 2

∫

{u>φ}∩Bρ(x0)

A∇φ · ∇φ dx

+λ

∫

Bρ(x0)

|u|2 dx− ε

2
|Bγρ(x0)|

≤ Θ

∫

Bρ(x0)

|∇u|2 dx+ 2Θ

∫

Bρ\Bγρ(x0)

|∇φ|2 dx+ λ

∫

Bρ(x0)

|u|2 dx− ε

4
|Bρ(x0)|

≤ Θ(L2(ρ) + λ‖u‖L∞(B))|{u > 0} ∩ Bρ(x0)|+ Θ
n(n− 2)ωn
γ2−n − 1

M2(ρ)

ρ2
ρn

− ε
4
|Bρ(x0)|.

For the last inequality we used the Lipschitz constant L(ρ) for u in Bρ(x0) and the
explicit computations for the Dirichlet integral of φ. We divide this inequality by
|Bρ(x0)| and get

0 ≤ Θ(L2(ρ) + λ‖u‖L∞(B))
|{u > 0} ∩Bρ(x0)|

|Bρ(x0)| + Θ
n(n− 2)

γ2−n − 1

M2(ρ)

ρ2
− ε

4
(5.2)

We will show now that M(ρ)
ρ

tends to zero as ρ tends to zero. More precisely the

following consequence of the vanishing density assumption holds: If the density
|{u>0}∩Bρ(x0)|
|Bρ(x0)| of a point x0 ∈ ∂{u > 0} tends to zero as ρ tends to zero then necessar-

ily supx∈Bρ(x0)
u(x)
ρ

tends also to zero. This is easily seen if we argue by contradiction:

In fact otherwise there would exist a sequence 0 < ρk < ρ which tends to zero as

k →∞ and a sequence xρk which tends to x0 as ρk → 0 such that
u(xρk )

ρk
> a(k0) for

some a > 0 and all k > k0 for some large k0. Since u is Lipschitz continuous the set

{x : L(ρ)|xρk − x| ≥ u(xρk) > a(k0)ρk} ∩Bρk(x0)

is contained in {u > 0} ∩Bρk(x0). Here L(ρ) denotes the Lipschitz constant of u in
Bρ(x0). Thus

|{u > 0} ∩Bρk(x0)| ≥ an

L(ρ)n
|Bρk(x0)|.

Hence
|{u>0}∩Bρk (xρk )|

|Bρk (x0)| > 1
2

an

L(ρ)n
for k sufficiently large - clearly a contradiction to the

zero density assumption. Thus as ρ tends (5.2) cannot hold. ut

The previous result can be used to show, that the support of {u > 0} is contained
in B if the radius of B is large enough. For this we refer to the proof of Theorem
2.18 in [13]. The following lemma is a modification of Lemma 2.5 in [3].
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5.2. Lemma. Let u be a minimizer and let B2ρ(x0) ⊂ B for some ρ > 0. Then
for any 0 < κ < 1 there exists a constant c8 only depending on n, κ, θ,Θ, λ and
‖A‖C0,1such that we have the following implication: If

1

|Bρ(x0)|
∫

Bρ(x0)

u2

ρ2
dx ≤ c8 min{ε, 1

ε
} then u = 0 in Bκρ(x0).

Proof: We will derive a lower bound for 1
|Bρ(x0)|

∫
Bρ(x0)

u2

ρ2 dx. For κρ ≤ |x−x0| ≤
√
κρ

we consider the function

w(x) :=

(
sup

B√κρ(x0)

u

)
(κρ)γ − |x− x0|γ
(κρ)γ − (

√
κρ)γ

,

where ρ < 1 and γ < 0 will be given below. We see that w is positive in B√κρ \
Bκρ(x0), vanishes on ∂Bκρ(x0), and w ≥ u on ∂B√κρ(x0). With ξ = x−x0

|x−x0| we get:

∇ · (A∇w) = −Cγ|x− x0|γ−2 ((γ − 2)Aξ · ξ + (∇ · A) · ξ|x− x0|+ tr(A))

where tr(A) denotes the trace of A and

C :=
supB√κρ(x0)

u

(κρ)γ − (
√
κρ)γ

,

We estimate

(γ − 2)Aξ · ξ + (∇ · A) · ξ|x− x0|+ tr(A) ≤ (γ − 2)θ + ‖∇A‖L∞
√
κρ+ nΘ.

Hence

∇ · (A∇w) ≤ 0 for x ∈ B√κρ \Bκρ(x0)

where γ := 2− nΘ

θ
− ‖∇A‖L∞

√
κ

θ
.

The function min{u,w} is an admissible comparison function and therefore J (u) ≤
J (min{u,w}). We get the inequality

∫

B√κρ(x0)

A∇u · ∇u dx− λ
∫

B√κρ(x0)

|u|2 dx

∫

B√κρ(x0)

A∇min{u,w} · ∇min{u,w} dx− λ
∫

B√κρ(x0)

|min{u,w}|2 dx

+fε(|{min{u,w} > 0}|)− fε(|{u > 0}|).
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The penalization term will be discussed first. There are two possibilities: Either
|{u > 0}| ≤ ω0 or |{u > 0}| > ω0. In the first case we have

fε(|{min{u,w} > 0}|)− fε(|{u > 0}|) ≤ −ε|{u > 0} ∩Bκρ(x0)|.
If |{u > 0}| > ω0 we can choose ρ small such that |{min{u,w} > 0}| > ω0 as well.
Thus

fε(|{min{u,w} > 0}|)− fε(|{u > 0}|) ≤ −1

ε
|{u > 0} ∩ Bκρ(x0)|.

This gives the inequality
∫

Bκρ(x0)

A∇u · ∇u dx ≤
∫

B√κρ\Bκρ(x0)

A∇min{u,w} · ∇min{u,w} − A∇u · ∇u dx

+λ

∫

B√κρ∩{u>w}

|u|2 − |w|2 dx−min{ε, 1

ε
}|{u > 0} ∩Bκρ(x0)|.

We compute
∫

B√κρ\Bκρ(x0)

A∇min{u,w} · ∇min{u,w} − A∇u · ∇u dx

=

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇w · ∇w − A∇u · ∇u dx

=

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇w · ∇(w − u) dx+

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇u · ∇(w − u) dx

≤ −2

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇w · ∇(u− w) dx

−1

2

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇(u− w) · ∇(u− w) dx

≤ −2

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇w · ∇(u− w) dx

−1

2

∫

B√κρ(x0)∩{u>w}

A∇(u− w) · ∇(u− w) dx+
1

2

∫

Bκρ(x0)

A∇u · ∇u dx.
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We rearrange terms:

1

2

∫

Bκρ(x0)

A∇u · ∇u dx ≤ −2

∫

B√κρ\Bκρ(x0)∩{u>w}

A∇w · ∇(u− w) dx

−1

2

∫

B√κρ(x0)∩{u>w}

A∇(u− w) · ∇(u− w) dx

+λ

∫

B√κρ∩{u>w}

|u|2 − |w|2 dx−min{ε, 1

ε
}|{u > 0} ∩Bκρ(x0)|.

We integrate by parts and drop the first integral on the right side since it is negative
by the construction of w:

1

2

∫

Bκρ(x0)

A∇u · ∇u dx+ min{ε, 1

ε
}|{u > 0} ∩Bκρ(x0)|(5.3)

≤ 2

∫

∂Bκρ(x0)

A∇w · νu dS − 1

2

∫

B√κρ(x0)∩{u>w}

A∇(u− w) · ∇(u− w) dx

+λ

∫

B√κρ∩{u>w}

|u|2 − |w|2 dx.

The key point of the proof is the monotonicity of the first Dirichlet eigenvalue of
the operator ∇ · (A∇u) with respect to set inclusion. This gives

∫

B√κρ(x0)∩{u>w}

A∇(u− w) · ∇(u− w) dx ≥ λ(B√κρ(x0))

∫

B√κρ(x0)∩{u>w}

|u− w|2 dx,

where λ(B√κρ(x0)) is the first Dirichlet eigenvalue of ∇ · (A∇u) for B√κρ(x0). Thus
(5.3) can be written as

1

2

∫

Bκρ(x0)

A∇u · ∇u dx+ min{ε, 1

ε
}|{u > 0} ∩Bκρ(x0)|

≤ 2

∫

∂Bκρ(x0)

A∇w · νu dS − 1

2
λ(B√κρ(x0))

∫

B√κρ(x0)∩{u>w}

|u− w|2 dx

+λ

∫

B√κρ∩{u>w}

|u|2 − |w|2 dx.
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We show that the sum of the last two integrals is negative: Indeed, with Young’s

inequality uw ≤ γ
2
u2 + 1

2γ
w2 and γ :=

λ(B√κρ(x0))

2λ+λ(B√κρ(x0))
we get

−1

2
λ(B√κρ(x0))

∫

B√κρ(x0)∩{u>w}

|u− w|2 dx+ λ

∫

B√κρ∩{u>w}

|u|2 − |w|2 dx

≤ λ(1− λ(B√κρ(x0)))

∫

B√κρ(x0)∩{u>w}

|u|2 dx.

For sufficiently small ρ the term 1 − λ(B√κρ(x0)) becomes negative. We use the
ellipticity of A and the explicit for of w:

θ

2

∫

Bκρ(x0)

|∇u|2 dx+ min{ε, 1

ε
}|{u > 0} ∩Bκρ(x0)| ≤ 2C(γ, κ, ρ,Θ)κρ

∫

∂Bκρ(x0)

u dS,

where

C(γ, κ, ρ,Θ) := Θ|γ| (κρ)γ−2

(κρ)γ − (
√
κρ)γ

sup
B√κρ(x0)

u.

We estimate the terms on the right side of the inequality:

2C(γ, κ, ρ,Θ)κρ

∫

∂Bκρ(x0)

u dS

= 2C(γ, κ, ρ,Θ)

∫

Bκρ(x0)

nu+ (x− x0) · ∇u dx

≤ 2nC(γ, κ, ρ,Θ)|{u > 0} ∩Bκρ(x0)| sup
B√κρ(x0)

u+
θ

2

∫

Bκρ(x0)

|∇u|2 dx

+4κ2ρ2C2(γ, κ, ρ,
Θ√
θ

)|{u > 0} ∩Bκρ(x0)|.

We are left with

min{ε, 1

ε
} ≤

(
2nC(γ, κ,Θ) + 4κ2C2(γ, κ,

Θ√
θ

)

) (
sup

B√κρ(x0)

u√
κρ

)2

,

where

C(γ, κ,Θ) := Θ|γ| κγ−1

κγ − (
√
κ)γ

.
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In Theorem 8.17 in [9] the following estimate is shown: Since u satisfies inequality
(2.1) there exists a constant c = c(n, κ, θ,Θ, λ) such that

sup
B√κρ(x0)

u ≤ c


 1

|Bρ(x0)|
∫

Bρ(x0)

u2 dx




1
2

.

Thus there exists a constant c8 only depending on n, κ, θ,Θ, λ and ‖∇A‖L∞ such
that

c8 min{ε, 1

ε
} ≤ 1

|Bρ(x0)|
∫

Bρ(x0)

(
u

ρ

)2

dx.

This proves the lemma. ut

5.3. Remark: In the next theorem we will prove a density estimate from above.
For that we will apply the previous lemma with ε ≥ ε0 for some prescribed ε0 > 0.
Later we will see that this is not restrictive. We will also use the scaled function

uρ(y) :=
1

ρ
u(x0 + ρy)

for some x0 ∈ B with Bρ(x0) ∈ B. Note that if u is a minimizer of J (u) then uρ is
a minimizer of the scaled functional

J ρ(uρ) :=

∫
Ωρ

Aρ∇uρ · ∇uρ dy
∫

Ωρ

|uρ|2 dy + fε(ρ
n|{uρ(y) > 0}|)

where Ωρ := {x−x0

ρ
: x ∈ B} and Aρ(y) := A(x0 + ρy).

5.4. Theorem. Let u ∈ C0,1(B) be a local minimizer and let x0 ∈ ∂{u > 0}.
Then there exists a δ > 0 such that the density estimate

|{u > 0} ∩ Bρ(x0)|
|Bρ(x0)| ≤ 1− δ

holds as ρ tends to zero.

Proof: We argue by contradiction. Thus we assume that there is a null sequence

(ρk)k such that
|{u>0}∩Bρk (x0)|
|Bρk (x0)| → 1 along this sequence. As a comparison function

we define w resp. v and v̂ as in the proof of Theorem 3.2. We recall inequality (3.5):
∫

Bρ(x0)

A∇u · ∇u dx−
∫

Bρ(x0)

A∇v̂ · ∇v̂ dx

≤ (1− 1

µ
)c1 +

λ

µ2

∫

Bρ(x0)

|u|2 − |v̂|2 dx
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where we have used the estimate for F given by (3.6). We proceed as in Theorem
3.2 and arrive at (3.7):

θ

∫

Bρ(x0)

|∇(u− v̂)|2 dx ≤ c1
|{u = 0} ∩Bρ(x0)|
|{u > 0}| + λ

∫

Bρ(x0)

|u|2 dx.(5.4)

Let ρk be a null sequence along which the density
|{u=0}∩Bρk (x0)|
|Bρk (x0)| tends to zero and

Bρk(x0) ⊂ B. We consider the scaled functions

uρk(y) :=
1

ρk
u(x0 + ρky) and v̂ρk(y) :=

1

ρk
v̂(x0 + ρky).

Clearly we have

∇ · (Aρk∇v̂ρk) = 0 in B1(x0) and v̂ρk = uρk in ∂B1(x0)

Inequality (5.4) then reads as

θ

∫

B1(x0)

|∇(uρk − v̂ρk)|2 dy ≤ c0
|{uρk = 0} ∩B1(x0)|
|{uρk > 0}| + λρ2

k

∫

B1(x0)

|uρk |2 dy(5.5)

This implies that
∫

B1(x0)

|∇(uρk − v̂ρk)|2 dy → 0 as ρk → 0. Since the functions uρk

and v̂ρk are Lipschitz continuous in B1 they are uniformly Lipschitz continuous in

B 1
2
(x0). Thus there exist Lipschitz continuous functions u0(y) and v̂0(y) such that

uρk → u0 and v̂ρk → v̂0 uniformly in B 1
2
(x0) and u0 and v̂0 are equal up to a constant.

Moreover v̂0 is a weak solution to the equation ∇ · (A(x0)∇v̂0) = 0 in B 1
2
(x0) and

so ∇ · (A(x0)∇u0) = 0 in B 1
2
(x0). Since u0(x0) = 0 the strong maximum principle

for weak solutions (see e.g. Theorem 8.19 in [9]) leads to u0 = 0 in B 1
2
(x0). On the

other hand we know by the previous remark, that uρk is a minimizer for J ρk thus
we can apply Lemma 5.2. This gives

∫

B 1
2

(x0)

u2
ρk
dy > c > 0

where c depends on c8 and on ε0 but not on ρk. This is contradictory. ut

The nondegeneracy of u along the free boundary leads to a density result for the
nonnegative Radon measure σ = ∇·(A∇u)+λu. The proof of the following theorem
is essentially the same as the one for Theorem 3.1 in [3].

5.5. Theorem: For any subset Ω ⊂⊂ B there exist constants c, C such that
for any ball Bρ ⊂ Ω with center x0 in the free boundary

c ρn−1 ≤
∫

Bρ(x0)

dσ ≤ C ρn−1.
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6 Weak Formulation of the Optimality Condition

The results in the previous chapters bring us into the setting of [1]. Therfore this
chapter summarizes their conclusions mostly without proof. In particular we have
enough regularity to perform a domain variation in a weak sense (see [1] Theorem
3). This will give a weak formulation of an overdetermined boundary value problem.
The first theorem in this chapter is a direct consequence of the Lipschitz regularity
of u and the nondegeneration of its gradient along the free boundary. It corresponds
to Theorem 4.5 in [3]. We will use the following notation: If σ denotes a Radon
measure and E a measurable subset of IRn then σbE denotes the restriction of σ to
E, i.e. σbE(A) = σ(E ∩ A) for all measurable sets A.

6.1. Theorem (Representation Theorem). Let u be a minimizer. Then

(i) Hn−1(Ω ∩ ∂{u > 0}) <∞ ∀ Ω ⊂⊂ B;

(ii) there exists a Borel fuction qu, such that ∆u + λu = quHn−1b∂{u > 0}, that
is, for all ξ ∈ C∞0 (B) we have

∫

B

−∇u∇ξ + λuξ dx =

∫

B∩∂{u>0}

ξqu dHn−1.

(iii) For Ω ⊂⊂ B there are constants 0 < c ≤ C <∞, such that for balls Br(x0) ⊂
Ω with x0 ∈ ∂{u > 0}

c ≤ qu ≤ C, crn−1 ≤ Hn−1(Br(x0) ∩ ∂{u > 0}) ≤ Crn−1.

Proof: The proof is the same as in [2] and follows from 5.5. ut

6.2. From 6.1. (i) we know, that ∂{u > 0} has locally finite perimeter. Equiva-
lently (see e.g. [7] Chapter 4 or [10]) we may say, that the characteristic function
χ{u>0} is in BVloc or that γu = −∇χ{u>0} is a Borel measure. We define the reduced
boundary reduced boundary ∂redE of a set E of finite perimeter:

∂redE := {x ∈ B : |ν(x)| = 1}.
where ν(x) is the unique unit vector with

∫

Bρ(x)

|χE(y)− χ{z:(z−x)·ν(x)<0}(y)| dy ≤ o(ρn)(6.1)

The following characterisation of the reduced boundary is due to De Giorgi:

6.3. Theorem (De Giorgi) Let E ⊂ IRn a set of locally finite perimeter. Then
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(i) ∂redE is rectifiable, i.e. there exists a countable family (Γi)i of graphs of Lips-
chitz functions of (n− 1) variables such that Hn−1(E \⋃∞

i=1 Γi) = 0;

(ii) |∇χE|(B) = Hn−1(B ∩ ∂redE). In particular Hn−1(∂redE) <∞;

(iii) the generalized Gauss - Green formula
∫

E

∇ · g dx = −
∫

∂redE

ν · g dHn−1

holds for all g ∈ C1
0(Ω, IRn). This can be read as ∇χE

|∇χE | = νHn−1b∂redE.

In the sequel the blow up limit of a minimizer u will be frequently used: Let u be a
minimizer, let Ω ⊂⊂ B and let Bρk(xk) ⊂ Ω be sequence of balls such that xk → x0,
ρk → 0 and u(xk) = 0. We define

uk(x) :=
1

ρk
u(xk + ρkx).

Thus, contrary to 5.3, we do not blow up with respect to a fixed point. The functions
uk are uniformly Lipschitz in Ω and so we have for a subsequence:

uk → u0 in C0,α
loc (IRn) for every 0 < α < 1;(6.2)

∇uk → ∇u0 weakly - star in L∞loc;(6.3)

∂{uk > 0} → ∂{u0 > 0} locally in the Hausdorff distance;(6.4)

{uk > 0} → {u0 > 0} in L1
loc(IR

n);(6.5)

∇uk → ∇u0 a.e..(6.6)

u0 is called blow up limit of u with respect to the ball Bρk(xk). For the proof of
(6.1) - (6.4) we refer to 4.7 in [2]. In particular we have that if xk ∈ ∂{uk > 0} then
x0 ∈ ∂{u0 > 0}.

6.4.Definition. For any set E and x0 ∈ E we define the topological tangent
plane for E at x0 by

Tan(E, x0) := {v : v = lim
m→∞

rmvm, rm > 0, x0 + vm ∈ E, vm → 0}

The (n− 1) upper density of a measure σ in IRn in x0 is defined as

Φ∗(n−1)(σ, x0) :=
lim supρ→0 σ(Bρ(x0))

|∂Bρ(x0)| .

With this definition we will now characterize the Borel function qu:

6.5.Theorem. For almost all x0 ∈ ∂{u > 0}
Tan(∂{u > 0}, x0) = {x : x · ν(x0) = 0}.
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If in addition Φ∗(n−1)(Hn−1b∂{u > 0}, x0) ≤ 1 and if
∫

Bρ(x0)∩∂{u>0}

|qu(x)− qu(x0)|dHn−1 = o(ρn−1) as ρ→ 0

then we have

u(x0 + x) = qu max{−x · ν(x0), 0}+ o(|x|)
as |x| → 0.

Proof: The statement about the characterization of the the tangent space follows
exactly as in Theorem 4.8 in [2] and Theorem 3.5 in [3]. We sketch the idea for
the second part: If we assume that ν = en and uk denotes the blow up sequence
with respect to balls Bρk(x0) we deduce that u0 is a smooth positive solution to
∇ · (A(x0)∇u0)) = 0 in {xn < 0} and u0 = 0 in {xn > 0}. Moreover we get

A(x0)∇u0 · en = q(x0) in {xn = 0}
in the classical sense. This however implies that u0 is the unique solution to a
Cauchy problem given by u0(x) = −qu(x0)xn. Thus the blow up limit with respect
to balls Bρk(x0) as ρk → 0 is unique. From this follows the last statement. ut

The next theorem is the main statement of [1]. Depending on ε in the penaliza-
tion term of J it states the existence of a constant Λ such that qu = Λ Hn−1

a.e. on the free boundary. As a consequence −ν(x) · A(x)∇u(x) = Λ along any
smooth part of the free boundary. The key point is that Λ can be bound away
from zero and infinity independent of ε. For the proof of this theorem we refer to
the proof of Theorem 3 in [1] which holds with minor changes also for our functional.

6.5.Theorem. There exists a positive constant Λ = Λ(ε) bounded from above
and below by positive constants which do not depend on ε such that

qu = Λ Hn−1 a.e.on ∂red{u > 0}.
As observed in [1] there is an interesting conclusion from this theorem: If ε is small

enough the volume of {u > 0} automatically satisfies the volume constraint, i.e.
|{u > 0}| = ω0 for ε < ε0 for some ε0 > 0. Thus our positivity assumption on ε in
the beginning of Chapter 5 is not restrictive.

We have proved, that minimizers of the functional J are solutions in the follow-
ing weak sense.

6.6. Definition. u is a weak solution if

• u is a continuous and nonnegative function in B and satisfies the equation
∇ · (A∇u) + λu = 0 in B ∩ {u > 0};
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• c rn−1 ≤ ∫
Br(x0)

dσ ≤ C rn−1 where σ = ∇ · (A∇u) + λu in B;

• ∇ · (A∇u) + λu = ΛbHn−1(∂red{u > 0}), that is, for test functions ξ ∈ C∞0 (B)
the equality

∫

B

−A∇u∇ξ + λuξ dx = Λ

∫

∂red{u>0}

ξ dHn−1(6.7)

holds. Λ is the constant from Theorem 6.5..
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