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Abstract

A Sobolev constant is studied which generalizes the torsional rigidity.
Some qualitative properties are derived. It is then used to estimate the L∞-
norm of quasilinear boundary value problems with variable coefficients. The
techniques used are direct methods from the calculus of variations and level
line methods. An optimization problem is discussed which is crucial for avoid-
ing the coarea formula for the estimates. Mathematics Subject Classifi-

cation 2000: 49J20, 49K20, 35J65.

Keywords: calculus of variations, quasilinear boundary value problems.

1 Introduction

Let D ∈ IRN be a bounded domain and let F : D × IRN → R be a function
satisfying the following assumptions:

(F1) F (·, ξ) is Lipschitz continuous for any ξ ∈ IRN .
(F2) F (x, ·) is strictly convex and differentiable for all x ∈ D.
(F3) There exist constants 0 < α < β such that

α|ξ|p ≤ F (x, ξ) ≤ β|ξ|p ∀ξ ∈ IRN , 1 < p <∞.

(F4) F is p-homogeneous in its second variable, i.e.

F (x, tξ) = tpF (x, ξ) ∀ξ ∈ IRN and ∀t > 0.
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Moreover let b(x) ∈ C0,α(D) be a weight such that 0 < b < b(x) < b. Consider
for any v ∈W 1,p

0 (D) he functional

SF (v,D) =

∫
D F (x,∇v) dx(∫
D b(x)|v| dx)p .

and the associated Sobolev constant

SF (D) = inf
v
SF (v,D).(1.1)

By (F4), SF (v,D) does not change if v is replaced by cv. Therefore we have
equivalently

SF (D) = inf
K

∫

D
F (x,∇v) dx, K := {v ∈W 1,p

0 (D) : v ≥ 0,
∫

D
b(x)v dx = 1}.

(1.2)

It follows from the Sobolev embedding theorem that there exists a minimizer
u which solves the Euler-Lagrange equation

div(∇ξF (x,∇u) + SF (D)b(x) = 0 in D, u = 0 on ∂D.(1.3)

A typical example is F (x, ξ) = |ξ|p. In this case (1.3) becomes

4pu+ SF (D)b(x) = 0, in D, u = 0 on ∂D,

where 4p is the p-Laplacian. Equations of the type (1.3) are used to model
the torsional creep [5].

The value of SF (D) depends in general on the size and the geometry of
D. It is easy to see that SF (D) is monotone with respect to the domain, in
the sense that

SF (D1) ≤ SF (D2) if D2 ⊂ D1.

In [3] we have addressed the following question:
Is there an optimal domain D0 ⊂ D of given total mass

M(D0) :=
∫

D0

b(x) dx = M

such that
SF (D0) = inf

D′
SF (D′), D′ ⊂ D,M(D′) ≤M?

It was shown that such a domain exists and that its boundary is continuous.
In general D0 is difficult to determine. It can consist of disconnected domains.
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If F = F (ξ) depends only on ξ, if b(x) is constant and if no restriction on the
location of D is imposed then the symmetrization [8],[1] applies and yields

SF (D∗) ≤ SF (D), where D∗ = {x ∈ IRN : |x| < R}, |D∗| = |D|.

In this case the optimal domain is a ball. Because of of (F4) we have, denoting
by B1 the unit ball in IRN ,

SF (D∗) = SF (B1)
( |D∗|
|B1|

)1− p
N
−p

(1.4)

Following Grigor’yan [4] we say that SF (D) satisfies a Rayleigh-Faber-Krahn
inequality in Ω if there exist positive constants s and α , depending only on
the original domain Ω such that

SF (D) ≥ sM(D)−αfor all D ⊂ Ω.(1.5)

The largest constant for which (1.5) holds will be denoted by s∗. It plays a role
in deriving a priori estimates for quasilinear elliptic boundary value problems
[2]. Except for b =const. and F (x, ξ) = F (ξ), this constant is difficult to
compute. In this paper we prove that in the one-dimensional case we have for
−α = 1− p

N − p

s∗ = min{a(x)b(x)p−1}2p
(

2p− 1
p− 1

)p−1

.

It turns out that s∗ is attained in the limit M(D) → 0 when D shrinks to a
point. This result is based on the formula for the Sobolev constant SF (D) in
disconnected domains which is derived in Section 2. In Section 3 we discuss
Rayleigh-Faber-Krahn inequalities, in particular the one-dimensional case and
in the last part we derive an estimate for the supremum’s norm for quasilinear
boundary value problem of the type (1.3) in terms of s∗. Related results are
found in [3], [10],[2],[6], [9].

2 Disconnected domains

Let X and Y be two domains in IRN such that X ∩ Y = ∅.
Theorem 1 Assume (F1)-F4). Then

SF (X ∪ Y )−
1
p−1 = SF (X)−

1
p−1 + SF (Y )−

1
p−1 .
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Proof Let uX and uY be minimizers for SF (X) or SF (Y ). Without loss of
generality we can assume that they satisfy

div(∇ξF (x,∇u)) + b(x) = 0 in X (Y ), u = 0 on ∂X (∂Y ).

Hence
∫

X
F (x,∇uX)dx =

∫

X
buXdx = S

− 1
p−1

F (X) and
∫

Y
F (x,∇uY )dx =

∫

Y
buY dx = S

− 1
p−1

F (Y )

Choosing as a test function in (1.1)

v =

{
uX in X

uY in Y

we get

SF (X ∪ Y ) ≤ 1(
SF (X)−

1
p−1 + SF (Y )−

1
p−1

)p−1 .(2.1)

In order to show that the opposite inequality sign holds we proceed as follows.
Let u be a minimizer of SF (X ∪ Y ). Then keeping in mind that
∫

X
F (x,∇u)dx ≥ SF (X)

(∫

X
bu dx

)p

,

∫

Y
F (x,∇u)dx ≥ SF (Y )

(∫

Y
bu dx

)p

,

we find

SF (X ∪ Y ) ≥ SF (X)
(∫
X bu dx

)p + SF (Y )
(∫
Y bu dx

)p
(∫
X bu dx+

∫
Y bu dx

)p .(2.2)

Set I :=
∫
X bu dx+

∫
Y bu dx,

∫
X bu dx := λI and

∫
Y bu dx = (1− λ)I.

Then
SF (X ∪ Y ) ≥ SF (X)λp + SF (Y )(1− λ)p =: h(λ).

This function h(λ) achieves its minimum for

λ =
SF (Y )1/(p−1)

SF (X)1/(p−1) + SF (Y )1/(p−1)
.

Inserting this expression into h(λ) we get

SF (X ∪ Y ) ≥ 1(
SF (X)−

1
p−1 + SF (Y )−

1
p−1

)p−1 .
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This together with (2.1) proves the assertion. ¤
Remark In the proof of this theorem we have only used assumption (F4)

and the fact that there exist minimizers in X,Y and X ∪ Y .
An immediate consequence of Theorem 1 is the estimate: if SF (X) < SF (Y )
then

SF (X)
2p−1

≤ SF (X ∪ Y ) ≤ SF (Y )
2p−1

.

Corollary 1 Let X and Y be as in the previous theorem and assume that
α > p− 1. Then

SF (X ∪ Y )Mα(X ∪ Y ) ≥ min{SF (X)Mα(X), SF (Y )Mα(Y )}.
Equality holds only if X or Y is empty.

Proof Suppose that

SF (X)Mα(X) ≤ SF (Y )Mα(Y )(2.3)

and assume that the assertion is wrong, that is

SF (X ∪ Y )Mα(X ∪ Y ) < SF (X)Mα(X).

Then

(SF (X ∪ Y )Mα)−
1
p−1 > (SF (X)Mα(X))−

1
p−1 where M := M(X ∪ Y ).

This together with Theorem (1) implies

(SF (Y )Mα(Y ))−
1
p−1 > (SF (X)Mα(X))−

1
p−1

(
1−

(
M(X)
M

) α
p−1

)(
M

M(Y )

) α
p−1

.

Since for α > p− 1 and z ∈ (0, 1),

f(z) =
1− z α

p−1

(1− z)
α
p−1

≥ 1

we conclude that
SF (Y )Mα(Y ) < SF (X)Mα(X).

This contradicts (2.3). ¤
As a consequence we obtain

s∗ = inf
D
SF (D)Mα(D) where D ⊂ Ω is connected(2.4)

Open problem It is not clear whether or not there exists a doubly connected
domain of the form D = D1 \D2 where Di, i = 1, 2 is simply connected, such
that

SF (D)Mα(D) ≤ min{SF (D1)Mα(D1), SF (D2)Mα(D2)}.
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3 The one-dimensional case

Suppose that D is the interval (0, L). Then F (x, ξ) = a(x)|ξ|p and thus

Sp(D) = inf
W 1,p

0 (0,L)

∫ L
0 a(x)|v′|p dx(∫ L
0 b(x)|v| dx

)p

Let y(x) =
∫ x

0 b dξ and M = y(L). Then

Sp(D) = inf
W 1.p

0 (0,M)

∫M
0 a(x)b(x)p−1|v′|p dy(∫M

0 |v| dy
)p .

Hence

Sp(D) ≥ min
D

a(x)b(x)p−1 inf
W 1.p

0 (0,M)

∫M
0 |v′|p dy(∫M
0 |v| dy

)p .

The minimizer at the right-hand side can be computed explicitely. It is the
solution of

(|u′|p−2u′)′ + 1 = 0 in (0,M), u(0) = u(M) = 0.

The solution is symmetric with respect to M/2. Thus

u′(y) = (
M

2
− y)1/(p−1) and

u(y) =
p− 1
p

[(
M

2

) p
p−1

−
(
M

2
− y

) p
p−1

]
in (0,

M

2
).

Finally we obtain

Sp(D) ≥ min
D
{a(x)b(x)p−1}2p

(
2p− 1
p− 1

)p−1

M−2p+1(3.1)

For α = p+ p
N − 1 and N = 1, (2.4) becomes

s∗ = inf
I
Sp(I)M2p−1(I) where I ⊂ (0, L) is an interval .

This together with (3.1) yields

s∗ = min
D
{a(x)b(x)p−1}2p

(
2p− 1
p− 1

)p−1

.(3.2)
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4 A priori estimates

In this section we shall derive a priori estimates for the solution of

N∑

i=1

∂

∂xi

(
Fuxi (x,∇u)

)
+ b(x) = 0 in D, u = 0 on ∂D(4.1)

under the assumption that SF (D) satisfies a Rayleigh-Faber-Krahn inequality
of the form

pSF (D(t)) ≥ s∗m(t)−α for some α > 0 and s∗ > 0 .(4.2)

As in [2] see also [3] we have

Theorem 2 Let u be the solution of (4.1) and let M =
∫
D b(x) dx be the

total mass. Assume (4.2) with α > p − 1. Then there exists a constant
c∞ = c∞(s∗, α, p) such that

|u|∞ ≤ c∞M
1+α−p
p−1 .

Proof By testing (4.1) with (u− t)+ we obtain, setting

D(t) := {x ∈ D : u(x) > t} and m(t) :=
∫

D(t)
b(x) dx,

∫

D(t)

N∑

i=1

Fuxiuxi dx =
∫

D(t)
b(u− t) dx.(4.3)

Hence by the definition of SF (D) and since F is homogeneous and thus satisfies
the Euler relation

∑N
i=1 Fuxiuxi = pF , we get

(∫

D(t)
(u− t)bdx

)p

pSF (D(t)) ≤
∫

D(t)
b(u− t) dx.(4.4)

Next we apply the formula
∫

D(t)
(u− t)bdx =

∫ |u|∞
t

m(s) ds =: M̂(t).

Inserting this expression into (4.3) we obtain

pSF (D(t)) ≤ M̂1−p(t).(4.5)

By (4.2)
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s
1/α
∗ M̂

p−1
α ≤ −dM̂

dt
.(4.6)

This inequality shows that u ∈ L∞(D). Integration of (4.6) yields

s
1/α
∗ (|u|∞ − t) ≤ α

α+ 1− pM̂
α+1−p
α (t).

Putting for short γ = α
α+1−p we obtain

{
s

1/α
∗
γ

(|u|∞ − t)
}γ

≤ M̂(t).

Finally by (4.6)

s
γ/α
∗

{ |u|∞ − t
γ

} p−1
α+1−p

≤ m(t).(4.7)

Evaluating this inequality at t = 0 we find the assertion with

c∞ =
α

α+ 1− ps
− 1
p−1∗ .

This completes the proof. ¤
Examples

1. In one-dimension the solution of

(a(x)|u′|p−2u′)′ + b(x) = 0, u(0) = u(L) = 0,

satisfy (α = 2p− 1)

|u|∞ ≤ 2p− 1
p

s
− 1
p−1∗ M

p
p−1 = c(p)

(
Mp

min(0,L){a(x)bp−1(x)}
) 1
p−1

,

where s∗ is given in (3.2). Equality holds if a = b =const.

2. Consider the case F = F (ξ) and b =const. From the symmetrization ar-
gument mentioned in the Introduction and (1.4) we have for the solution
of (4.1)

s∗ = SF (B1)|B1|p+p/N−1 and α = p+ p/N − 1.

Hence

|u|∞ ≤ p+ p/N − 1
p/N

(
Mp/N

s∗

) 1
p−1

.

Equality holds for balls.

This result generalizes the one in [7] for the torsion problem.
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