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Abstract

We study the ∞ - eigenvalue problem with respect to existence and unique-
ness. The existence of minimizers is proved via Γ - convergence. For the
uniqueness, we restrict to a subclass of minimizers. We conclude with some
examples.

1 Introduction

A classical example for a nonlinear eigenvalue problem is the minimization of the
Rayleigh quotient

Rp(u) :=
||∇u||p
||u||p

(1.1)

over the set W 1,p
0 (Ω) for 1 < p < ∞, where ||u||p = ||u||Lp(Ω) and Ω ⊂ IRn is an

open bounded domain. It is well known that a minimizer exists and is unique. The
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minimal value is called first eigenvalue for the p−Laplacian and is characterized as

Λp(Ω) = min

{
||Du||p
||u||p

: u ∈ W 1,p
0 (Ω), u 6= 0

}
.(1.2)

When p = 2, (1.2) gives the first eigenvalue of the Laplacian operator ∆. A mini-
mizer of (1.2) satisfies{

−∆pu = Λp
p(Ω)|u|p−2u, x ∈ Ω

u = 0, x ∈ ∂Ω.
(1.3)

The unique solution up of (1.3) is known to be positive in the interior of Ω and
up ∈ C1,α

loc (Ω). For more details about this subject we refer to [L1, L2, L3, BK]. In
[JLM] and [FIN] the authors considered the limit problem of (1.2) as p→∞

Λ∞(Ω) = min
{
R∞(u) : u ∈ W 1,∞

0 (Ω), u ≥ 0, u 6≡ 0
}

, where R∞ =
||Du||∞
||u||∞

.(1.4)

In [JLM] it is shown that a subsequence of the solutions {up}p of (1.3) converges as
p→∞ in the viscosity sense to a viscosity solution of{

min{|Du(x)| − Λ∞u(x), −∆∞u(x)} = 0 x ∈ Ω
u = 0 x ∈ ∂Ω.

(1.5)

Here ∆∞ denotes the ∞− Laplacian and is defined as

∆∞u(x) :=
n∑

i=1

∂iu(x)∂i∂ju(x)∂ju(x)

for any u ∈ C2 (see e.g.[ACJ]). We like to mention the paper [Y] in which the author
gives sufficient conditions on the domain Ω, such that the distance function is the
unique solution of (1.5).
In this paper we are interested in the following questions:

• Is it possible to derive a solution to (1.4) as a sequence of minimizers of (1.1)
as p→∞?

• Can (1.5) be understood as the Euler Lagrange equation of the limiting mini-
mization problem (1.4)?

• Are solution of (1.5) unique?

The paper is organized as follows: in Section 2 we present some known results
which will be needed in the sequel of the paper. In Section 3 we prove that the
sequence {Rp}p Γ - converges to R∞. In Section 4 we introduce the notions of local
minimizer and we derive (1.5) as a necessary condition for local minimizers of the
limiting problem. Then we prove uniqueness of solutions of (1.5) in the class of local
minimizer (see Definition 4.1). Finally in Section 5 we discuss the existence of local
minimizers for a given domain and we discuss our notion of local minimizer. We
conclude with an open problem.



2 Preliminary Results

Let Ω be an open bounded domain in IRn. We define the (normalized) distance
function to the boundary of Ω as

δ(x) :=
dist(x, ∂Ω)

‖dist(·, ∂Ω)‖∞
.

It is easy to see, that this function solves the minimization problem (1.4). Indeed,
by the mean value theorem we get for all u ∈ C∞(Ω)

|u(x)| ≤ ‖Du‖∞‖dist(·, ∂Ω)‖∞.

Hence using that ‖Dδ‖∞ = 1

‖dist(·,∂Ω)‖∞
we obtain

‖Dδ‖∞ =
‖Dδ‖∞
‖δ‖∞

=
1

‖dist(·, ∂Ω)‖∞
≤ ‖Du‖∞
‖u‖∞

and this gives the minimality of the δ - function for any domain Ω. In particular
this also gives

Λ∞ = ‖Dδ‖∞ =
1

‖dist(·, ∂Ω)‖∞
.

Thus Λ∞ can be characterized as the reciprocal number of the radius of the largest
ball which can be inscribed in Ω.

Since the δ - function is a minimizer we need to formulate (1.5) for functions which
are only Lipschitz continuous.

Definition 2.1 (see [CIL]) Let x0 ∈ Ω.

i) u ∈ W 1,∞(Ω) with u = 0 on ∂Ω is a viscosity subsolution of (1.5) in x0

if there exists a neighbourhood U(x0) ⊂ Ω such that for all test functions
ϕ ∈ C2(U(x0)) with ϕ(x0) = u(x0) and ϕ(x) > u(x) in U(x0) \ {x0} there
holds

max{Λ∞(Ω)ϕ(x0)− |Dϕ(x0)|, ∆∞ϕ(x0)} ≥ 0.

ii) u ∈ W 1,∞(Ω) with u = 0 on ∂Ω is a viscosity supersolution of (1.5) in x0

if there exists a neighbourhood U(x0) ⊂ Ω such that for all test functions
ϕ ∈ C2(U(x0)) with ϕ(x0) = u(x0) and ϕ(x) < u(x) in U(x0) \ {x0} there
holds

max{Λ∞(Ω)ϕ(x0)− |Dϕ(x0)|, ∆∞ϕ(x0)} ≤ 0.

iii) u is a viscosity solution of (1.5) in x0 if it is both sub- and supersolution of
(1.5).



It is a striking fact that there exist domains Ω ⊂ IRn for which the δ - function is
not a solution of (1.5) in the sense of the above definition. More precisely, while
the δ - function is always a viscosity supersolution, there are domains Ω for which
it fails to be a viscosity subsolution. In [JLM] the authors considered the square in
IR2. They showed that in this case the δ - function fails to be a viscosity subsolution
along the diagonals of the square.

On the other hand starting with finite p we can construct a sequence of eigen-
functions {up}p (each up solves (1.3)), such that a subsequence converges to some
function u which is a solution to (1.5) and also a minimizer of (1.4) (see e.g. [JLM]).
Thus minimizers of (1.4) in general are not unique. In fact, except for balls, each
domain admits infinitely many minimizers of (1.4) which are not solutions to (1.5)
(see [FIN]). Since up to now there is no global comparison principle for (1.5), the
question of uniqueness of solutions to (1.5) arises.

In this paper we will also need some facts about the ∆∞ - operator. In particu-
lar we will be interested in the Dirichlet problem{

∆∞u(x) = 0 on Ω
u(x) = g(x) in ∂Ω.

(2.1)

Here Ω ⊂ IRn is an open, bounded and connected domain and g is some prescribed
function in W 1,∞(∂Ω). A function satisfying ∆∞u(x) = 0 is called ∞ - harmonic
(see [A]). The following results are known:

i) There exists a unique viscosity solution u ∈ C(Ω) for (2.1) (see [J], Sect.2; see
also [C], Sect. 5);

ii) u ∈ W 1,∞(Ω) (see [J], Sect.3).

In a recent result Evans and Savin [ES] prove, in dimension n = 2, the C1,α regularity
of ∞ - harmonic functions. The C1 regularity when n ≥ 3 is still a major open
problem.

3 Gamma Convergence

Let

Rp(u) =
||Du||p,

||u||p
, u ∈ W 1,p

0 (Ω) \{0}(3.1)

be the Rayleigh quotient for p ∈ [1,∞]. We define the indicator function of the set
A as

χA(s) =

{
0 s ∈ A,

+∞ otherwise.

We define, for every u ∈ X = C0 (Ω) and for every n < p <∞

Fp(u) =

{
Rp(u) + χSp

(u) u ∈ W 1,p
0 (Ω) ,

+∞ otherwise,
(3.2)



where

Sp := {u ∈ W 1,p
0 (Ω) :

 1

|Ω|

∫
Ω

|u|p dx

 1
p

= 1}.

and

F∞(u) =

{
R∞(u) + χS∞

(u) u ∈ W 1,∞
0 (Ω) ,

+∞ otherwise,
(3.3)

where

S∞ := {u ∈ W 1,∞
0 (Ω) : sup

Ω
|u| = 1}.

It is well know (see e.g. [GT] Chapter 7) that

 1

|Ω|

∫
Ω

|u|p dx

 1
p

→ sup
Ω
|u| as p→∞.

We will show that the sequence of functionals {Fp}p Γ−converges to F∞. Let us re-
call the De Giorgi’s definition of Γ−convergence in a metric space (see e.g. Definition
4.1 and Proposition 8.1 in [DM]).

Definition 3.1 A sequence of functionals Gk : X → IR Γ(d)−converges to the
functional G∞ : X → IR with respect to the metric d on X, if for all u ∈ X

• (lim inf inequality) for every sequence {uk}k ⊂ X converging to u w.r.t. d

G∞(u) ≤ lim inf
k→∞

Gk(uk);

• (recovery sequence) there exists a sequence {uk}k ⊂ X converging to u w.r.t
d such that

G∞(u) ≥ lim sup
k→∞

Gk(uk).

The functional G∞ is called the Γ(d)−limit of the sequence {Gk}k.

In our case let X = C0(Ω) equipped with the uniform topology. For p > n the
space W 1,p

0 (Ω) is compactly embedded in C0(Ω). Thus in view of (3.2) and (3.3)
the functional Fp is well defined on X for all n < p ≤ ∞. In the sequel (Fp)p will
denote a sequence (Fpk

)k for k ∈ IN , where (pk)k is any nondecreasing sequence with
n < pk <∞ and pk →∞ as k →∞. Likewise we will use the notation (up)p.

Lemma 3.2 The sequence (Fp)p Γ−converges in X to F∞, as p→∞.



Proof: We will show that for any sequence (up)p ⊂ X which converges in X to
some u ∈ X we have

F∞(u) ≤ lim inf
p→∞

Fp(up) (lim inf - condition).

1. Let u /∈ W 1,∞
0 (Ω)∩S∞. Then F∞(u) =∞. Let (pk)k be a subsequence such that

lim
k→∞

Fpk
(upk

) = lim inf
p→∞

Fp(up).

Then we have to show that limk→∞ Fpk
(upk

) =∞. If ‖u‖∞ > 1 then

 1

|Ω|

∫
Ω

|upk
|pk

 1
pk

≥

 1

|Ω|

∫
Ω

|u|pk

 1
pk

− sup
Ω
|upk
− u| > 1

for k sufficiently large since

(
1
|Ω|
∫
Ω
|upk
|pk

) 1
pk

→ ‖u‖∞ > 1 and ‖upk
− u‖∞ → 0

by assumption. The case ‖u‖∞ < 1 is treated similarly. In any case we have(
1
|Ω|
∫
Ω
|upk
|pk

) 1
pk

6= 1 for sufficiently large k and thus Fpk
(upk

) = ∞. Consequently

the lim inf condition is satisfied. In a similar way we show that the lim sup condition
(recovery sequence) is satisfied as well.

2. Now let u ∈ W 1,∞
0 (Ω) ∩ S∞. We first prove the liminf inequality. Consider

a sequence up ∈ X, converging to u in X with respect to the L∞ norm, such that
Fp(up) ≤ C < +∞. For every n < q < p the Hölder inequality implies, that

||Dup||q ≤ ||Dup||p|Ω|
1
q
− 1

p .(3.4)

It follows from (3.2) that (up ∈ Sp)

Fp(up) =
||Dup||p
||up||p

≥ ||Dup||q|Ω|
1
p
− 1

q .(3.5)

Letting p→∞ in (3.4) gives us

lim inf
p→∞

Fp(up) ≥ lim inf
p→∞

||Dup||q|Ω|
1
p
− 1

q ≥ ||Du||q|Ω|−
1
q .

When q →∞ this gives us the liminf inequality

lim inf
p→∞

Fp(up) ≥ lim inf
q→∞

|Ω|−
1
q ||Du||q = ||Du||∞ = F∞(u).

3. Let now proceed with the recovery sequence. Consider the sequence up := u/‖u‖p
for all p > n. By construction up ∈ Sp for every p > n, and this implies, that

Fp(up) = ‖Dup‖p = Rp(u).



It follows that (u ∈ S∞)

lim sup
p→∞

Fp(up) = lim sup
p→∞

Rp(u) = ‖Du‖∞ = F∞(u)(3.6)

ut

We would like to prove, that every sequence of minimum points of the approxi-
mating functionals has a subsequence converging to a minimum point of the limit
functional. We introduce the following fundamental definition (see e.g. Definition
7.6 [DM]).

Definition 3.3 A sequence of functionals {Gk}k defined on the metric space (X, d)
is equi-coercive if, for every t ∈ IR there exists a closed sequentially compact set
Kt ⊆ X such that, for every k,

{u ∈ X : Gk(u) ≤ t} ⊆ Kt.

The following theorem is proved as Proposition 6.8 and Theorem 7.8 in [DM].

Theorem 3.4 Assume that {Gk}k Γ(d)−converges to G∞ on X, then G∞ is lower
semicontinuous on X.
Moreover if {Gk}k is equi-coercive on X, then G∞ is coercive too and so it admits
a minimum on X; also, if G∞ is not identically +∞ and uk ∈ argmin Gk then there
exists a subsequence of {uk}k which converges to an element u ∈ argmin G∞.

For every u ∈ X ∩W 1,p
0 with p > n there holds

Fp(u) ≥ ‖Du‖p.(3.7)

Then for every t ∈ IR and for every p > n

{u ∈ X : Fp(u) ≤ t} ⊆ {u ∈ X : ‖Du‖p ≤ t} ⊆ Kt(3.8)

where Kt is a compact subset of X. This proves the following lemma:

Lemma 3.5 The sequence of functionals {Fp}p defined in (3.2) is equi-coercive in
X.

Summarizing we have:

Theorem 3.6 Let {Fp}p as defined in (3.2). Then

min
W 1,∞

0 (Ω)
F∞ = lim

p→∞
min

W 1,p
0 (Ω)

Fp.

If up ∈ argmin Fp, then there exists a subsequence (with the same index p) {up}p
such that up → u∞

F∞(u∞) = Λ∞(Ω) = min
W 1,∞

0 (Ω)
F∞.

In particular we have that Λp(Ω)→ Λ∞(Ω).



Proof: The sequence {Fp}p is Γ−convergent to F∞ (by Lemma 3.2) and equi-
coercive (by Lemma 3.5). The claim follows from Theorem 3.4. ut

Remark 3.7 In [JLM] it is proved that Λp → Λ∞ in a different way. They proved
- in the language of Γ−convergence - that the set

K := {up ∈ C0(Ω) : Fp(up) = Λp(Ω)}(3.9)

is sequentially compact in the ‖ · ‖∞ norm. This means that the sequence {Fp}p is
equi-mildly coercive (see [BD]), a weaker version of equi-coercivity.

This problem has been investigated in a broader context by Champion and De
Pascale in [CD].

4 Euler Lagrange Equation and Uniqueness

In this section we will derive the Euler Lagrange equation

min{|Du(x)| − Λ∞(Ω)u(x),−∆∞u(x)} = 0 in Ω(4.1)

from a variational point of view. Let

Γ(Ω) := {x ∈ Ω : δ(x) = ‖δ‖∞,Ω = 1}.

We introduce the following subclass of minimizers of (1.4). W.l.o.g. we may assume
‖u‖∞,Ω = 1.

Definition 4.1 Let u ∈ W 1,∞
0 (Ω) with u > 0 in Ω.

(i) For any V ⊂ Ω and any v ∈ W 1,∞(V ) with v = u in ∂V we define

û(x) :=

{
v(x) : x ∈ V
u(x) : x ∈ Ω \ V.

We say û is admissible if û(x) = δ(x) in Γ(Ω) and û > 0 in Ω.

(ii) u ∈ W 1,∞
0 (Ω) with u > 0 in Ω is a local minimizer if for any V ⊂ Ω and any

admissible û there holds

‖Du‖∞,V ≤ ‖Dû‖∞,V .

Remark 4.2 In particular this class is a subclass of positive global minimizers u
with the additional property that u(x) = δ(x) in Γ(Ω). We will comment on this
geometric constraint in Chapter 5.

Remark 4.3 Observe that any local minimizer u is a global minimizer in the sense
that R∞(u) = Λ∞ (see e.g. Example 5.4).



Lemma 4.4 Let u be a local minimizer in the sense of Definition 4.1 and let x0 ∈
Γ(Ω). Then u is not differentiable in x0.

Proof: Assume on the contrary that u is differentiable in x0. Then for each α > 0
there exists an open neighbourhood Vα(x0) ⊂ Ω such that

v(x) := u(x0)− α |x− x0| ≤ u(x) in Vα(x0).

W.l.o.g. Vα(x0) can be chosen as the largest connected component of such a neigh-
bourhood containing x0. Thus v = u in ∂Vα(x0). Choose ρ > 0 sufficiently small
such that Bρ(x0) ⊂ V . Then

u(x) > u(x0)− α|x− x0| in Bρ(x0) \ {x0}.

For any y ∈ ∂V we define

x = ty + (1− t)x0 thus |x− x0| = t |y − x0|.

We choose T > 0 small enough such that for all 0 < t < T x ∈ Bρ(x0) (i.e.
T ≤ ρ

|y−x0|). Then

|u(x)− u(y)|
|x− y|

=
u(x)− u(y)

|x− y|
>

u(x0)− α|x− x0| − (u(x0)− α|y − x0|)
(1− t)|x0 − y|

= α
|y − x0| − |x− x0|

(1− t)|x0 − y|

= α
|y − x0| − t|y − x0|

(1− t)|x0 − y|
= α

Thus

‖Du‖∞,Vα > α

Since

û(x) :=

{
v(x) : x ∈ Vα

u(x) : x ∈ Ω \ Vα.

is admissible, local minimality of u gives

α < ‖Du‖∞,Vα ≤ ‖Dv‖∞,Vα = α

which is contradictory. ut



Definition 4.5 Let x0 ∈ Ω. A function u ∈ C(Ω) satisfies the inequality

|Du(x0)| − Λ∞u(x0) ≥ 0(4.2)

in the viscosity sense if there exists a neighbourhood U(x0) ⊂ Ω such that for all
test functions ϕ ∈ C1(U(x0)) with ϕ(x0) = u(x0) and ϕ(x) < u(x) in U(x0) \ {x0}
there holds

|Dϕ(x0)| − Λ∞ϕ(x0) ≥ 0.

Lemma 4.6 Let u be a local minimizer in the sense of Definition 4.1. Then u
satisfies

|Du(x0)| − Λ∞u(x0) ≥ 0(4.3)

in the viscosity sense for every x0 ∈ Γ(Ω).

Proof: If x0 ∈ Γ(Ω) then by Lemma 4.4 u is not differentiable in x0. However
in that case a function ϕ as required in Definition 4.5 does not exist. Thus the
inequality (4.3) holds trivially. ut

Lemma 4.7 Let u be a local minimizer in the sense of Definition 4.1. Then u
satisfies

|Du(x0)| − Λ∞u(x0) > 0(4.4)

in the viscosity sense for every x0 ∈ Ω \ Γ(Ω).

Proof: Let x0 ∈ Ω \ Γ(Ω). Recall that

δ(x0) =
dist(x0, ∂Ω)

‖dist(·, ∂Ω)‖∞,Ω

< 1.

Since

‖dist(·, ∂Ω)‖∞,Ω =
1

Λ∞
.

this gives

dist(x0, ∂Ω) <
1

Λ∞
.

Let U(x0) be a neighbourhood of x0, such that a function ϕ ∈ C1(U(x0)) exists with
u(x0) = ϕ(x0) and u(x) > ϕ(x) in U(x0) \ {x0}. Arguing by contradiction we also
assume that

|Dϕ(x0)| ≤ Λ∞ϕ(x0).(4.5)



Then, using (4.5), we have:

u(x) ≥ ϕ(x)− ϕ(x0) + u(x0)

= Dϕ(x0) · (x− x0) + u(x0) + o(|x− x0|)
≥ −|Dϕ(x0)||x− x0|+ u(x0) + o(|x− x0|)
≥ −Λ∞u(x0)|x− x0|+ u(x0) + o(|x− x0|).

for every x ∈ U(x0). Observe that for any α > 1 sufficiently close to 1 there exists
a ball Brα(x0) ⊂ U(x0) such that

o(|x− x0|) ≥ −|o(|x− x0|)|
|x− x0|

u(x0)Λ∞|x− x0|

≥ (1− α)u(x0)Λ∞|x− x0|.

α > 1 has to be chosen sufficiently close to 1 in order to guarantee that the ball
Brα(x0) is contained in U(x0). Thus in Brα(x0) there holds

u(x) ≥ u(x0)− αu(x0)Λ∞|x− x0|,(4.6)

and this inequality is strict in Brα(x0) \ {x0}. Choosing α (if necessary) even closer
to 1 we can ensure that αu(x0) < 1. If necessary, an even smaller choice of α
guarantees

1 < α <
1

Λ∞dist(x0, ∂Ω)
.

This fixes α. For x ∈ Brα(x0) we define

Cα(x) := u(x0)− αu(x0)Λ∞|x− x0|.

Inequality (4.6) and its strictness in Brα(x0) \ {x0} implies the existence of radii

0 < ρ2 < ρ1 <
rα

4

and the existence of some number γ = γ(ρ1, ρ2) > 0 such that

u(x) > Cα(x) + γ in Bρ1 \Bρ2(x0).

Let BRα(x0) = {x ∈ IRn : Cα(x) > 0} i.e. Rα = 1
αΛ∞

. By our choice of α we have

Rα > dist(x0, ∂Ω).

Thus, E := BRα(x0)\Ω is a nonempty open set. Let x ∈ ∂Ω∩BRα(x0) be such that

ρ := dist (x, ∂BRα(x0))

is maximal. Now choosing finally

0 < ρ2 < ρ1 <
1

4
min{ρ, rα}



we get for any x ∈ Bρ1 \Bρ2(x0) the following estimate

u(x)− u(x)

|x− x|
=

u(x)

|x− x|
>

Cα(x) + γ

|x− x|

=
u(x0) + γ − αu(x0)Λ∞|x− x0|

|x− x|
.

Next we observe that

|x− x| ≤ Rα − ρ + ρ1

and since u(x0) = αu(x0)Λ∞Rα

u(x0) + γ − αu(x0)Λ∞|x− x0| = αu(x0)Λ∞(Rα − |x− x0|) + γ

≥ αu(x0)Λ∞(Rα − ρ1) + γ.

Thus
u(x)− u(x)

|x− x|
>

αu(x0)Λ∞(Rα − ρ1) + γ

Rα − ρ + ρ1

= αu(x0)Λ∞ +
αu(x0)Λ∞(ρ− 2ρ1) + γ

Rα − ρ + ρ1

> αu(x0)Λ∞

(4.7)

for all x ∈ Bρ1 \ Bρ2(x0). Let us define V := {x ∈ Ω : u(x) < Cα(x)}, which is a
nonempty open set. Then

û(x) :=

{
u(x) : x ∈ Ω \ V

Cα(x) : x ∈ V,

is admissible for variation and (4.7) implies that

‖Dû‖∞,V = ‖DCα‖∞,V < ‖Du‖∞,V ,

which is contradictory since u is a local minimizer. ut

Lemma 4.8 Let u be a local minimizer in the sense of Definition 4.1. Let x0 ∈
Γ(Ω), then |Du(x0)| = Λ∞u(x0) in the viscosity sense.

Proof: Since x0 ∈ Γ(Ω) we have u(x0) = 1 By Lemma 4.6, we need only to show,
that there exists a neighbourhood U(x0) of x0 such that for all ϕ ∈ C1(U(x0)) with
ϕ(x) > u(x) in U(x0) \ {x0} and ϕ(x0) = 1 we have |Dϕ(x0)| ≤ Λ∞. By the
maximality of x0 and the fact that ‖Du‖∞,Ω = Λ∞ we have

u(x) ≥ u(x0)− Λ∞u(x0)|x− x0| = 1− Λ∞|x− x0| ∀x ∈ Ω.

Hence

0 ≤ ϕ(x)− u(x)

= 1 + Dϕ(x0) · (x− x0) + o(|x− x0|)− u(x)

≤ Dϕ(x0) · (x− x0) + Λ∞|x− x0|+ o(|x− x0|)



Since this holds for all x in U(x0) we get after replacing x− x0 by −(x− x0)

Λ∞|x− x0|+ o(|x− x0|) ≥ Dϕ(x0) · (x− x0)

≥ −Λ∞|x− x0|+ o(|x− x0|).

We divide by |x− x0| and let x→ x0:

Λ∞ ≥ |e ·Dϕ(x0)|

for any |e| = 1. This proves the claim. ut

Lemma 4.9 Let u be a local minimizer in the sense of Definition 4.1. Let x0 ∈
Γ(Ω), then ∆∞u(x0) ≤ 0 in the viscosity sense.

Proof: Since x0 ∈ Γ(Ω), x0 cannot be a point of differentiability of u. Hence the
space of test functions touching u from below is empty. ut

Proposition 4.10 Let u be a local minimizer in the sense of Definition 4.1. Let
x0 ∈ Ω \ Γ(Ω), then ∆∞u(x0) = 0 in the viscosity sense.

Proof: We consider x0 ∈ Ω \ Γ(Ω) and denote by U = U(x0) a neighbourhood
such that U ⊂ Ω \ Γ(Ω). We introduce the following notation: For any V ⊂ Ω let
L(u, ∂V ) denote the Lipschitz constant of u|∂V and Λ

(
u|∂V

)
(x) = max{u(y)− L(u, ∂V )|x− y| : y ∈ ∂V }

Φ
(
u|∂V

)
(x) = min{u(y) + L(u, ∂V )|x− y| : y ∈ ∂V }.

This construction implies, that for x ∈ ∂V we have

Λ
(
u|∂V

)
(x) = u(x) = Φ

(
u|∂V

)
(x).(4.8)

Moreover we have

L(Φ
(
u|∂V

)
, ∂V ) = L(Φ

(
u|∂V

)
, V )

L(Λ
(
u|∂V

)
, ∂V ) = L(Λ

(
u|∂V

)
, V ).

(4.9)

Then, following Theorem 4.1 in [ACJ], it is sufficient to prove that for every V ⊂⊂ U
there holds

Λ
(
u|∂V

)
(x) ≤ u(x) ≤ Φ

(
u|∂V

)
(x) ∀x ∈ V.(4.10)

We will prove the inequality u ≤ Φ
(
u|∂V

)
. Let us define

û(x) =

{
u(x) if x ∈ Ω \ V

min
{

Φ
(
u|∂V

)
(x), ‖u‖∞,Ω

}
if x ∈ V.

Equality (4.8) implies that u|∂V = û|∂V . Since x0 /∈ Γ(Ω), û is admissible and hence
by the local minimality of u, we get from Definition 4.1 that

‖Du‖∞,V ≤ ‖Dû‖∞,V i.e. L(u, V ) ≤ L(û, V ).



For any y ∈ ∂V we get (since u(x)−u(y)
|x−y| ≤ L(u, V ))

u(x) ≤ u(y) + L(u, V )|x− y|
= û(y) + L(u, V )|x− y|
≤ û(y) + L(û, V )|x− y|.

By (4.9) L(û, V ) = L(û, ∂V ), thus

u(x) ≤ û(y) + L(û, ∂V )|x− y| = u(y) + L(u, ∂V )|x− y|

Now we take the infimum over all y ∈ ∂V . By the definition of Φ this gives

u(x) ≤ Φ
(
u|∂V

)
(x) ∀x ∈ V.

For the inequality Λ
(
u|∂V

)
(x) ≤ u(x) we define

ṽ(x) =

{
u if x ∈ Ω \ V

max
{

Λ
(
u|∂V

)
(x), 0

}
if x ∈ V

and then we proceed as before. ut

Thus Lemma 4.6, Lemma 4.7, Lemma 4.8, Lemma 4.9 and Proposition 4.10 give
the following theorem:

Theorem 4.11 Let u be a local minimizer in the sense of Definition 4.1. Then the
following alternative holds:

i) If x0 ∈ Γ(Ω) then |Du(x0)| − Λ∞u(x0) = 0 and ∆∞u(x0) ≤ 0 in the viscosity
sense.

ii) If x0 ∈ Ω\Γ(Ω) then |Du(x0)|−Λ∞u(x0) > 0 and ∆∞u(x0) = 0 in the viscosity
sense.

Theorem 4.12 Let Ω ⊂ IRn a bounded domain. If a local minimizer of (1.4) exists,
then it is unique.

Proof. Suppose u1, u2 be local minimizers. By Theorem 4.11, both functions are
solutions of the Dirichlet problem{

−∆∞u(x) = 0 in Ω \ Γ(Ω)
u(x) = δ(x) on Γ(Ω) ∪ ∂Ω.

(4.11)

It is well known, that (4.11) has a unique solution, see [C], Sect.5. ut



5 Examples and Open Problems

As an example for the existence of a local minimizer we can choose the class of
strictly convex domains. A domain Ω is strictly convex if any two points in Ω can
be joined by a segment which is contained in Ω.

Lemma 5.1 Let Ω be a strictly convex domain. Then Γ(Ω) is a singleton.

Proof: If not there exists at least two distinct points x0 and x1 in Γ(Ω). Let S
denote the segment joining x0 and x1. By convexity

C :=
⋃
x∈S

B 1
Λ∞

(x) ⊂ Ω.

All balls B 1
Λ∞

(x) are maximal with respect to Ω, i.e. the closure of each of them

has a nonempty intersection with ∂Ω. Choose any point p in this intersection. Let
TpC be the tangent plane to C in p. There exists at least one segment S̃ such that
S̃ ⊂ C ∩ TpC. Since Ω is convex and contains C, the segment S̃ must belong to ∂Ω
as well. This contradicts the strict convexity. ut

Proposition 5.2 Let Ω be convex such that Γ(Ω) is a singleton. Then there exists
a local minimizer in the sense of Definition 4.1.

Proof: Let Γ(Ω) = {p}. Let u(x) be the unique solution of the Dirichlet problem
−∆∞u = 0 on Ω \ {p}

u(p) = δ(p) = 1
u(x) = 0 in ∂Ω

(5.1)

(see e.g. [C], Sect. 5). Observe that u is a minimizer of R∞. The function u is
positive and ‖u‖∞ = 1. We show that u is a local minimizer in the sense of Definition
4.1. Let V ⊂ Ω \ {p}. Let v ∈ W 1,∞(V ) with v = u in ∂V such that (with the
notation of Definition 4.1) we have û(p) = δ(p). We need to show that

‖Du‖∞,V ≤ ‖Dv‖∞,V .(5.2)

Since u is ∞ - harmonic in V , [CEG] implies that u is AML - which implies (5.2).
Now choose V ⊂ Ω such that p ∈ V and choose again a v ∈ W 1,∞(V ) with v = u
in ∂V such that û(p) = δ(p). Assume v(q) = 1 for some q ∈ V and q 6= p. Then
1 = v(q) > δ(q) since the set Γ(Ω) is a singleton. However then û cannot be a
minimizer, in fact ‖Dû‖ > Λ∞. Thus q = p and then we argue as in the first case
for the set Ṽ = V \ {p}. ut

Example 5.3 (Strictly convex domains) Lemma 5.1 together with Proposition 5.2
tells us that a (unique) local minimizer exists for every strictly convex domain. In
particular, when Ω is a ball, the function δ(x) is the unique local minimizer.

Example 5.4 (The square) Proposition 5.2 proves the existence of a local minimizer
also when Ω is a square in IR2. In this case the function δ(x) is only a global
minimizer (see e.g. [JLM]).



Example 5.5 For convex domains with the additional property that δ ∈ C2(Ω \
Γ(Ω)) the δ - function is the unique local minimizer.

In Definition 4.1 it is essential to require

û(x) = δ(x) = 1 for all x ∈ Γ(Ω).(5.3)

In the following we will discuss an alternative definition of local minimizer when
(5.3) is replaced by

‖û‖∞,Ω = ‖δ‖∞,Ω = 1.(5.4)

We will refer to this modification as local minimizer in the modified sense. Set

Γu(Ω) := {x ∈ Ω : u(x) = 1}.

Then the following statement is still true.

Lemma 5.6 Let u be a local minimizer in the modified sense. Then Γu(Ω) ⊂ Γ(Ω).

Proof: Assume there exists a point x0 in Γu(Ω) \ Γ(Ω). Since both sets are closed
we have dist(x0, Γ(Ω)) > 0. Thus δ(x0) < ‖δ‖∞,Ω. Since u is a minimizer we have

u(x) ≥ u(x0)− Λ∞|x− x0| ∀ x ∈ Ω.

Let y ∈ ∂Ω be such that Λ∞|x0 − y| = δ(x0). For x = y we have u(y) = 0 and since
u(x0) = 1 we get the inequality

0 ≥ 1− δ(x0) > 1− ‖δ‖∞,Ω,

which implies ‖δ‖∞,Ω > 1. This is a contradiction, since by normalization we have
‖δ‖∞,Ω = 1. ut

Next we prove that a point x0 ∈ Γ(Ω) \ Γu(Ω) is a point in which u is not dif-
ferentiable.

Lemma 5.7 Let u be a local minimizer in the modified sense. Then for any x0 ∈
Γ(Ω) \ Γu(Ω) u is not differentiable in x0.

Proof: Consider the two cones

Q1(x) := u(x0)Λ∞|x− x1| Q2(x) := u(x0)Λ∞|x− x2|.

x1 6= x2 denote two points in ∂Ω such that

{x1, x2} ⊆ ∂Ω ∩ ∂B 1
Λ∞

(x0).

We claim that the local minimizer u(x) satisfies

u(x) ≤ min{Q1(x), Q2(x)}(5.5)



for every x ∈ Ω. In fact, suppose by contradiction that (5.5) is violated, then there
exists x ∈ Ω such that e.g. u(x) > Q1(x). Let us define V1 := {x ∈ Ω : u(x) >
Q1(x)}. V1 is a nonempty open set, thus

û(x) :=

{
u(x) : x ∈ Ω \ V1

Q1(x) : x ∈ V1,

is admissible for variation. A direct computation gives

‖Dû‖L∞(V1) = ‖DQ1‖L∞(V1) < ‖Du‖L∞(V1),

which is contradictory since u is a local minimizer. Consequently the local minimizer
must satisfies

C(x) ≤ u(x) ≤ min{Q1(x), Q2(x)}(5.6)

for every x ∈ Ω. The key observation is that, since Λ∞ = 1
|x0−xi| for i = 1, 2,

inequality (5.6) is an equality along the set

S = {tx0 + (1− t)x1 : t ∈ [0, 1]} ∪ {tx0 + (1− t)x2 : t ∈ [0, 1]}.

This implies that u(x) is not differentiable in x0. ut

A consequence of this lemma is shown by the following example. We consider the
stadium in IR2 given by

Ω :=
⋃
x∈S

BR(x),(5.7)

where S is some prescribed segment. Then 1
Λ∞

= R and Γ(Ω) = S. In this case the

distance function is C1 in Ω \Γ(Ω). The following properties of δ(x) are immediate.

(i) δ(x) is a positive minimizer for the minimum problem (1.4) and it is of class
C1 in Ω \ Γ(Ω);

(ii) δ(x) satisfies the eikonal equation |Dδ(x)| = Λ∞ in Ω;

(iii) |Dδ(x)| − Λ∞δ(x) > 0 in Ω \ Γ(Ω).

Properties (i) - (iii) imply that δ(x) is a viscosity solution of (4.1). Despite all
those properties, we will show that δ(x) is not a local minimizer in the sense of the
Definition 4.1 modified by replacing (5.3) by (5.4).

Proposition 5.8 Let Ω ⊂ IRn be a stadium. The function δ(x) is not a local
minimizer in the modified sense.

Proof. For the reader convenience, we outline the proof in IR2, but it can easily be
extended to IRn. Let S be the segment {t(−1, 0) + (1− t)(1, 0) : t ∈ [0, 1]} joining
(−1, 0) and (1, 0). W.l.o.g. we assume that Λ∞ = 1, i.e. R = 1. Let us consider the
plane of equation x3 = f(x1, x2) = 2

3
− 1

2
(x1 − 1). This plane intersects the graph

of δ(x) along a closed curve C, and the projection of C on the plane x3 = 0 is the
boundary of a set V . We have that



• V ⊂ Ω and V ∩ ∂Ω = ∅;

• Γ(Ω) ∩ V 6= ∅ and Γ(Ω) ∩ (Ω \ V ) 6= ∅.

Then the function

û(x) =

{
f(x), if x ∈ V
δ(x), if x ∈ Ω \ V

(5.8)

is an admissible variation in the modified sense, since (5.4) holds. We have that

1 = ‖∇δ‖∞,V > ‖∇û(x)‖∞,V =
1

2
.(5.9)

Inequality (5.9) implies the claim. ut

Moreover this proposition shows, that a local minimizer in the modified sense cannot
exist. If it would exist then for any x ∈ Γ(Ω) \ Γu(Ω) it would be

• not differentiable (by Lemma 5.7);

• ∞ - harmonic (since Proposition 4.10 still holds).

However at least in IR2 it is well known that ∞ - harmonic functions are C1.

Open Problem: Definition 4.1 only considers a subclass of positive global mini-
mizers u. Let us enlarge this subclass by restricting only to nonnegative u. Is this
also a uniqueness class? Nonconvex domains like the dumbell may be interesting
examples to study this question.
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