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Abstract

This paper deals with domain derivatives of energy functionals related to elliptic boundary
value problems. Emphasis is put on boundary conditions of mixed type which give rise to a
boundary integral in the energy. A formal computation for rather general functionals is given.
It turns out that in the radial case the first derivative vanishes provided the perturbations
are volume preserving. In the simplest case of a torsion problem with Robin boundary
conditions, the sign of the first variation shows that the energy is monotone with respect
to domain inclusion for nearly circular domains. In this case also the second variation is
derived.

1 Introduction

In this paper we are concerned with energy functionals & : €; — R where Q; C RY ¢ € [0, 7],
are small perturbations of a domain 2. Important tools in shape optimization are variational
formulas exhibiting the domain dependence. Under sufficient smoothness assumptions &(t)
can be expanded into powers of t,

E(t) = E(0)t + E(0)t? + o(t?) as t — 0.

The terms £(0) and £(0) are called the first variation, resp. second variation of £(t). They
depend on ) and on the particular perturbations. The simplest example we have in mind
are problems of the type

1
E(t) = infw12(q,) {/ <2|Vu2 — u) dx + %7{ u?ds, ac R*} . (1.1)
Q4 o0

It is well-known that a minimizer exists and that it satisfies Euler - Lagrange equation

du

Au+1=0in 4, 5
n

+ au = 0 on 9. (1.2)
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Here n stands for the outer normal of ;. Then
00 = {x +tg(z)n(x) : © € 0N},

where tg(z) is the normal displacement of each boundary point z € 9. In the case of
Dirichlet boundary conditions u = 0 on 0€);

1
EP(t) = infyrz g, {/ <Vu|2 —u) dx}.
0 t Q 2

Its minimizer solves Au + 1 = 0 in §; and vanishes on the boundary. Its first variation
assumes the simple form

- 1
EP(0) = —3 }({99 |Vul|?g ds.

From this expression and the positivity of u it follows immediately that £ is a decreasing
functional of the domain. Moreover if Q is a ball and [Q = [Q], i.e. §,,9ds = 0 then
EP(0) = 0. The first statement follows directly from the variational characterization of
EP(t). In fact if u is extended by zero outside ) it remains an admissible function for the
energy in (). In addition it does not change the energy and its minimum therefore decreases.
The second assertion is a consequence of Pélya’s theorem on the maximal torsional rigidity
[5]. By means of Schwarz symmetrisation it is easily proved that among all domains of given
volume the sphere has the minimal energy £ (t).

For Robin boundary conditions it is not known whether such results are true. No global
tools seem to be available to discuss question such as:

1. for what kind of deformations does £(t) decrease?
2. does the ball yield the minimum of £(t¢), among all domains §2; of prescribed volume?

In this paper we give an answer to the first question for nearly circular domains. Concerning
the second question we have only been able to show that for balls £(0) = 0. We have
computed £(0) for the ball, its sign however does not seem clear.

The paper is organized as follows. We first derive the first variational formula for general
energies. Such formulas are already known in the literature [3], [6], [4]. Since we are dealing
with slightly more general energy functionals containing boundary integrals we include the
formal computation for the reader’s convenience. We then apply the first variation to radial
problems and show that it vanishes for the ball. We then study the first and second variations
of the torsion problem with Robin boundary conditions in the case of a ball. A study of the
second variation for a different optimization problem is found in [2]. A the end some open
problems related to these investigations are listed.

2 Variation formulas

2.1 Domain variation

Let Q; C R¥is a bounded domain with smooth boundary and let 6(¢) : Q — €, t € [0, 7] be
a family of diffeomorphisms such that

Q, =0(t,Q) and Q = 60(0,Q).
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Since we will be interested in small perturbations of 2 we shall assume that
O(t,x) = z + tv(x), (2.1)

where v : Q@ — RY is a smooth vector field and ¢ is a small parameter. We shall use the

notation
ov; ov; Ovy,
D, = L), D?= L= i,j=1,...,N,
(8953) v <8xk 81“]) b

D4,y : Jacobian matrix ,

J(t) = det Dy o) : Jacobian determinant .

Here and in the sequel repeated indices are understood to be summed from 1 to N. If 6 is

of the form (2.1) then Jacobi’s formula gives

2

t

J(t) = 1+ t(traceDy) + 5 ((traceDy)? — traceDZ) + o(t?), (2.2)
where traceD, = 8vi'
aXi

Observe that

(‘Z?f) =Dy =(I+tD,)™"

For small ¢t we have
Dyt =1—tD, +*D2 + o(t?).

Hence
0 _on 0
8GZ - 692 63%

Ovy, 5 0vy, Ovs . O 9
0x; + Ox, axi) +o(t), (2:3)

81‘k
Our aim is to study the dependence of integrals involving v : 2; — R on domain deformations
under the assumption that u is sufficiently regular in ¢.

= (dix — 1

2.2 Variation of volume integrals

Consider a function ' L(y, @, p) : Q; x R x RY — R which is continuously differentiable in all
its argument and denote by Vyu the gradient (ug,). Define

L(a, Q) ::/ L(y,a, Vya) dy.
Qy

After the change of variable y = 6(t, x) we obtain

L(a, Q) = / L (9,u(x,t),umkaa?€) J(t)dz, i=1...,N.
Q i

Here we have written u(z,t) for @(6,t). Differentiation with respect to ¢ yields

oL 00; ou Ouy,, Oz, 0%z,
a1 = Loy Tl T I (S Bar T e i,

ot ¢ ot

IThis function will be called the Lagrangian following the usage in the calculus of variations.
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For the particular diffeomorphism (2.1)

a00; v,
at - 19
61‘k - (9’Uk
a0, = 0k — taxi + O(t)7
(92.%‘19 8’Uk (%k 81)1
= Tk g Ok .
0to0; Ox; + t@:cl ox; +o(t)
Formal differentiation of £ with respect to t yields,
dL ou Ooug, vy,
— = Lo,v; + Ly— + Ly, L — Uy, — t)d 24
o= [ Lo LG+ L (T =, )T () da (24)

Ov,
L d t
Jr/Q oz, x4+ O(t),

where (2.2) was used in the last integral.

2.3 Variation of boundary integrals

Suppose that 9 = '°UT* such that T°NT'! = () and let TF = {x +tv: 2z € T*}, (k=0,1).
Consider integrals of the form

B@.T!) = [ bl int) dsy.

where b(y, @) : T} x R — R is continuously differentiable in y and . Let z(€), £ €U C RN~!
be local coordinates of T't. Then I'} is represented locally by {y(&) := z(&) + tv(z(€)) : € €
U}. Throughout this paper (x,y) stands for the Euclidean scalar product of two vectors
z and y in RY and 2| = (z,2)!/2. We have, setting g;; = (z¢,,z¢,), 9(§) = v(z(£)),
cij = (we,, Dowg,) = (we,,0¢,), aij = 3 (cij + ¢ji) and by; = (g, Ve ),

|dy|* = (gij + 2tas; + t°bi;)d&dE; =: glyd&de;.

Write for short G = (gi;), G~ = (9"), A = (a;;), B = (bi;) and correspondingly G* = (g;).

Then s
ds, = (detG")'/? de.
Clearly
VdetGt = VdetG{det(I + 2tG'A + t2G'B)}1/2,
)
Set

o4 = traceG'A, op = traceG !B and 0> = trace(G™*A)?.

The Taylor expansion yields
k(&,t) =1+2toa +1° (05 +20% — 2042) + o(t).

For small ¢t we have

2

VEED =1+ tos+ 12 ("23 — e+ ";) Fo(t?) =1+ toa +t2g +o(t?).  (25)
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As before we set u(x,t) = a(f(x,t),t). Then, since ds = VdetG d¢, it follows that

t2
B(t) := B(@,T}) = b0, u){1l+toa + O + o(t?)}ds.
I
Consequently
dB Ju
E(t) = Fl{bcrA + by, v; + bua} ds (2.6)
ou
+ t/ {oa(bg,v; +by—) +bv+0(1)} ds,
r ot
and
B ou
E(O) = Fl{bO’A +b111}1+bu§}d8 (27)

2.3.1 Discussion of 04, 042 and op

In order to have a better understanding of the term o4 let us decompose the vector field v
on I'! in the following way

N-1

0(§) == v(x(£)) = (v(x(£)), n(§))n(€) + - (v(2(£)), we, )y - (2.8)

h k=1

on

We set

0" = (v(x(£)), 2¢,) k=1,....N—1
™ = (v(2(8)), n(€))-

Clearly o™ L ¢*. In the language of differential geometry we have

on® .
~ % k ki

where Ffj denotes the Christoffel symbol and 17”3 is the covariant derivative with respect to
gi;- Using this decomposition we can compute G~'A and G~ B explicitely.

(G7'Blix = gtz = g7 (nn(€) + 1V n(€)e,, ndl n(€) + ¥ n(©)e, )
+29" (nn(€) + mVn(€)e, 'y )
g7 (7 ve,. mre,)

where I =1,..., N — 1. We observe that (n(£),n(€)) =1, (n(&),n(§)e,) =0, (n(€),zg,) =0
and we assume that (x¢,, ,x¢) = 0 for m,l =1,..., N — 1. Thus

_ . iy 2 .. ..
(G 'B)ir = g"bj = g"niinf) + (n") " g” (ng7ng)+gljnfjnfk-
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For the trace o we compute

2 ii i
op = (1+ (™) )gj (névnév) +g"nlnt
Moreover

Cij = (Ifi’/ﬁﬁj) = nN(g)("EEmnEJ) +77,k](£)('rfuz§k)’ k= 1a . '7N —1.

_ ; 1,
(G'A)y; = g%ap; = 59 *(crj + cjk)

1
= igzk (77N (g) (mEk ) nﬁj) + nfk (5)(‘r§] 3 xﬁz) + 77N (g) (‘réj ; n&k) + nfj (5) (xék ; x&l))
= %gik (™ (&) (we, ne;) + n'e(E)gin + 0 (©)(we, me) +1'5(E)gur)

Analogously for the trace o4 we compute

oA = %gik (WN(f)(l‘{k,n&) + Ufk(§)giz + WN(f)(Z‘&,nék) + nfi(f)glk)
= ™ (€)g™ (we ne,) +15(€)

Observe that 7"z =: div*'v* is the surface divergence on I''. Furthermore (ng,, z¢,) =

—(n,xe,e,) = Lys is the second fundamental form.? Let r;, @ = 1,2,...,N — 1 denote
the principle curvatures of I''. Then

-1
G L = Z k; =t (N —1)H, H mean curvature of I'* .
i=1

In conclusion we have
o4 =(N—-1)nVH + div*v*. (2.9)

Finally we give an explicit expression for o42. We use the following notation:

1 )
hij = 5 (Lz’j + Lji) and Hij = ngl’ij.

Then a lengthly computation gives

) . ol
oa2 = (0™ ()" traceH? + 0™ (¢) (hij My 9"+ Hignly + 5 (nfj 7+ g7 n,’i-nfjgkz)) :

2.4 Domain variation of critical points

Consider the following energy functional

E(t) = L(Qq,a) + B(a,T'}).

2Notice that the minus sign is due to the fact that n is the outer normal.
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Suppose that for all ¢, u(y, t) is a critical point of the energy functional £-in the sense that the
Fréchet of £(€,-) derivative vanishes at this point. Thus @ solves in €, the Euler-Lagrange

equation
oL, (y,u, Vi
OLp W, 0 V0) _ 1 Vi) in 2, (2.10)
y;
and boundary conditions
@ =0onTY: Dirichlet boundary conditions , (2.11)

Ly, (y, @, Vi)n; + ba(y,@) = 0 on T} : Robin boundary conditions.
Observe that if b = 0 the Robin condition becomes a Neumann boundary condition
Ly, (y,u, Vu)n; = 0.

In the z-coordinates the Euler-Lagrange equation for u assumes the form

L,J=—(Ly,J— Q. 2.12
J 8Z‘k( pIJ 861 ) m ( )
The boundary conditions are

u(z,t) =0on T, (2.13)

)
LpiJ%nk 4 bur/E(z,t) = 0on T,
[

Introducing (2.12) into (2.4) and letting ¢ — 0 we find

dl Ovy, Ovg ou
— =0 = Lyvi—Lyuy, — + L d L, —mny ds.
dt |t—0 ~/Q{ ;U pi Uy, 8371 + axs} T+ ﬁﬂ Pk ot ng as

Taking into account the boundary conditions we conclude that % =0onI?and Lp,n; = —by

on I''. Thus 5 p
u U

L, —ngds=— b, — ds.

fim pr gy Tk 4 /Fl o

This together with (2.7) implies

o€ o 8vk 8’05
E\t:o = /Q{Lmivl Lpiumka—xi + Laxs }dx (2.14)

+ [ {b(z,w)ou + by, v;} ds.
Tt

The volume integral can be transformed into a boundary integral. In fact if w is a solution
of (2.10) in § then

avi 8Uj
oz, (Lvi — Ly, ua,vj) = La—xi + 0Ly, — Ly, ug, e
and hence
o0&
—lt=0 = {L(v,n) — Ly,n;(Vu,v)} ds (2.15)
ot a0

+ [ {b(z,u)o4 + by,v;} ds.
I
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3 Applications

3.1 Optimality of radial problems
Suppose that €2 is a ball of radius R and that L = L(r,u(r),u/(r)) and b = b(r, u(r)), r = |z|
are radially symmetric. Then on 9Q2 we have

L = const. and  L,,n;(Vu,v) = Lyu' (v,n).

Thus

{L(v,n) — Lp,n;(Vu,v)} ds = (L — Lyu') ]{ (n,v) ds.

1219] o0

By (2.9), 04 = (v,n)(N —1)/R + div*v* and

/Fl{b(r, u)o g + by, v} ds = (b(NR;D + br> éﬂ(v,n) ds.

Finally we get

N -1
CfTSh:o =(L—Lyu + bV —1) + b,-)?[ (v,n) ds.
¢ o9

From the divergence theorem and (2.2) we get

jgg(v,n) dSZ/QtraceDvdX:1(/Qtdx—/gdx+o(t)).

Hence §,,(v,n) ds = 0 if || = |Q].
This together with the previous observations implies

Theorem 1 Let Q be a ball of radius R in RN and let ; be a small, volume preserving
perturbation in the sense of Section 2. Let u(r) be a solution of

ALy (7, u(r), v (r))

ar = Ly(r,u(r),u'(r)) in (0, R).

Then the energy E(t) given by th L(r,u,u)dx + fBQt b(r,u) ds is stationary in t =0, i.e.,

£(0) = 0.

3.2 Torsion problem with Robin boundary conditions

3.2.1 First variation

In this section we discuss the problem

2
E(t) :/ <|VU| - u) dx + gjl{ u? ds, (3.1)
Q 2 2 Jaa,

where u is a solution of the corresponding Euler- Lagrange equation

ou

Au+1=01th, 8
n

+ au = 0 on 9.
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The first variation is according to (2.15)
0) = f {(IVul?/2 — u)(v,n) + au(Vu,v) + au®c 4 /2} ds.
a0

For the ball Q = Bpg the solution can be computed explicitely. In this case we have u(r) =

B(5+1) - g Liud) = /2

RN+2 RN-‘rl
) = or| )

SN (N +2) | 2aN?

and

96(0)  [R® (N+1DR
ot __{2N2+ 202 7{)31%(“’””5'

It follows immediately that for volume preserving perturbations & (0) = 0, in accordance
with Theorem 1. The monotonicity of £(t)) with respect to nearly circular domain changes
ifa>—-(N+1)/Rorifa<—(N+1)/R.

Next we want to find out if for volume preserving perturbations the ball is a local maxi-

mum or minimum. For this we need the second variation.

3.2.2 Second variation for balls and divergence free vector fields

In order to make the computation more transparent we introduce some abbreviations.

. ow Iy
W= divy(x) := an( X),

_ Ou Juy, _ Ou Juy, N
V“'D”_aT:iaxi thus V“'D”'X_axlasz’“ VX eRY,
Vu.p2= 20RO e vy p2.x = 200U 0y X; VX eRY,

v Qx, Ox; Oz, Oxz; Ox; Oxy,
2 _.
traceDy =: op2.

Observe that the definition of opz differs slightly from those of 04 and op. From the Euler-
Lagrange equation we deduce that, taking into account that J (0) =0,

£(0) = —/B (it 4 uJ(0)) d.

In order to evaluate this integral we need an equation for @ and i. For that we differentiate
(2.12) and (2.13) with respect to t. After each differentiation we set ¢ = 0. This gives

Lo J(0) + Ly J(0) = 9 (L‘ J(o)a + L, J(0 )a + L, J(0 )ax’“)

oxy, 00; 00; 00
and
L J(0) + 2L, J(0) + L,J(0) = Tor (L J(0)ZE ae b oL, J(0)=E ae + 2L, J(0) == a 7,
Oz 6 8a:k
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in B;. For t = 0 and divergence free vector fields we have (see also (2.2) and (2.3))

JO)=1, J(0)=divv=0, 3(0) = —ope
8‘Tk 81% 8’Uk 6Z‘k

—_ . —_ — = 2
06, = Oiks 00, or;. 06, 2D,

Moreover
1
L= 5|vu|2 —u, L,=-1, L, =p.
Thus we obtain an equation for % and i in Bj.

0 =div (Vi — Vu-Dy),
opz = div(Vii — 2V - Dy — op2Vu + 2Vu - D?).

(3.2)
(3.3)

For the boundary conditions we work similarly. For the case of Robin condition on 0By,
we consider the second equation in (2.13) on 0B;. After differentiation in ¢t = 0 and taking

J(0) = 0 into account, we get

Ly, J(0 )Bx nHLp,J()a e+ buVE+buVE=0  in 9B,

00; 00;
and
Oxy, ozy, = O0xy i
L J( )89 le+2Lle( )09i nk+LpiJ(0) 90, nk+LmJ(0)879ink

b VE+26VE+bVE=0  in OB,

From (2.5) we have in t =0

\/%:1, \/%:UA, \/E:V:03720A2+0124.

Moreover

b(u) = Zuz b, = au.

From that we obtain the following Robin boundary conditions for % and i on 0B;.

%-ﬁ-au:Vu-Dv-n—aoAu,

on

ot 0

a—u+aU—2Vu D, - n—i—aDz@—u—QVu-Dg~n—2aa,4ﬂ—ayu.
v on

(3.4)

(3.5)

We first consider the equation for 4 in B;. We multiply it with « and intergrate over Bj.

After integration by parts this gives
o) 0
/uaDz dx = {u—u—ﬂ—u}ds—/ i dx
E 8B, on on B
1

—27{ uVi - Dy -nds+2 V- D, -Vudr
0B, B,

0
_j{ u—uoDQ d5+/ |Vul?op2 dx
oB, On 7 By ’

+2}{ uVUngondsz/ Vu - D?-Vudz.
6B1 Bl

(3.6)

10
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Next we make use of the boundary condition (3.4) for 4 and obtain

/’LLO'DZ dx = {u(—aii — 200 4% — avu) — u@} ds — / i dx
’ 8B, on By

By
+2 [ Vi-D, Vudz +/ |Vul|?0p2 de —2 [ Vu-D?.Vudz.
B B v B
We can simplify, since % = —au on 0B;.

/uaDzdx:—aj{ u(2UAu+uu)ds—/ ide+2 [ Vu-D, Vudx
! 8B, By By

By

+/ |Vul*0p2 dz —2 [ Vu-D?.Vudzr.
B v By

After rearranging terms we obtain a formula for é (0) which does not depend on i anymore
(recall J(0) = —op2).

£(0) = —/(\Vu|2 —2u)op2 dr + aj{ u(20 40 + vu) ds (3.7
0B
B1

-2 Va4 D, -Vudz+2 | Vu-D? Vudz.
Bl Bl

At this point it is convenient to use the explicitly known solution of the torsion problem with
Robin boundary conditions on B;. We have

1 /1 1 r?

T 0%u Oik
N’ Ox;0xzx N (3.9)

Consequently

Vu = —

In particular we can use this information in (3.2) and obtain A% = 0 in B;. Then the third
integral in (3.7) can be simplified. Partial integration gives

o[ vi-D, Vud —2]5 (v, 2% 4 2/ (L i+ (Vu,0)Ad} d
. - D, -Vudr = -~ u,v) 5 ds . axi&vkvkuxi u, V) AU} dx
2 o 2 .
=-N 8Bl(v,n)a—nds—i-ﬁ Blv-Vud:v
2

oun
= —N . (’l],n){% — ’LL} ds.

Introducing this expression into (3.7) we obtain

£(0) = —/(\Vu|2 — 2u)op2 dx + aj{ u(20 40 + vu) ds (3.10)
E ! 0B,
2

+ J—
N 0B,

(v,n){% fu}derQ/ Vu - D? - Vudz.
on B
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If we replace u and Vu by (3.8) and (3.9) and use the abbreviation g = (v,n)|sp, (cf.
(2.8)) we find

2 _ 2 N -1 2
EO0)=N"11+ a)/Bl op2 dr — N2/B |z|*0p2 da + NZ/B D2z dx (3.11)

. 1 7{ ds + 27{ { . - 312} J
— vas -— gAUuU — gu 9 S.
OZN2 9B, N OB, 8”

The explicit formulas for o4 and v are given in Section 2.3.1 and op2=traceD}. In view if

(3.4) the term 9% on 9By can be substituted by

ou iy oA .

— =——Dyx — — — a.

on NTY N
From this computation it is not clear if & (0) has constant sign. The normal displacement
g : 0B1 — R necessarily needs to satisfy the compatibility condition

f 9(¢) ds = 0.

0B,

Moreover, for simply connected domains, it is not restrictive to set
v(z) = Vo(x) x € By.
Necessarily

Ap=0 in By, %:g in 0B;.

In this case we have o D2 = G0, Gz 2; > 0. Thus the contribution of the volume integrals in
(3.11) is positive.

4 Open problems

PROBLEM 1

Let B C Q. Prove or disprove that for the torsion problem with Robin boundary conditions
E(Q) <&(B)?

PROBLEM 2 .
Let © be convex and Q; D Q. Prove or disprove that £(0) < 0.

PROBLEM 3
Prove the existence of an optimal domain with given volume for an energy with a boundary
integral. Once the existence is established a symmetry argument leads to the conjecture.

CONJECTURE

Among all Lipschitz domains of given volume the ball yields the minimum of £ given in
(1.1) and (1.2). This conjecture is supported by the Faber-Krahn inequality for the first
membrane eigenvalue with Robin boundary conditions [1].

12
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PROBLEM b

Give conditions on the data which justify the formal computations. More precisely under
what conditions are the solutions of the Euler-Lagrange (2.12) with the boundary conditions
(2.13) differentiable in ¢?

Acknowledgement The authors would like to thank the referee for having pointed out
many misprints and a computational error in the second variation for the torsion problem
in balls.
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