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Abstract

This paper deals with domain derivatives of energy functionals related to elliptic boundary
value problems. Emphasis is put on boundary conditions of mixed type which give rise to a
boundary integral in the energy. A formal computation for rather general functionals is given.
It turns out that in the radial case the first derivative vanishes provided the perturbations
are volume preserving. In the simplest case of a torsion problem with Robin boundary
conditions, the sign of the first variation shows that the energy is monotone with respect
to domain inclusion for nearly circular domains. In this case also the second variation is
derived.

1 Introduction

In this paper we are concerned with energy functionals E : Ωt → R where Ωt ⊂ RN , t ∈ [0, τ ],
are small perturbations of a domain Ω. Important tools in shape optimization are variational
formulas exhibiting the domain dependence. Under sufficient smoothness assumptions E(t)
can be expanded into powers of t,

E(t) = Ė(0)t+ Ë(0)t2 + o(t2) as t→ 0.

The terms Ė(0) and Ë(0) are called the first variation, resp. second variation of E(t). They
depend on Ω and on the particular perturbations. The simplest example we have in mind
are problems of the type

E(t) = infW1,2(Ωt)

{∫
Ωt

(
1

2
|∇u|2 − u

)
dx +

α

2

∮
∂Ωt

u2 ds, α ∈ R+

}
. (1.1)

It is well-known that a minimizer exists and that it satisfies Euler - Lagrange equation

∆u+ 1 = 0 in Ωt,
∂u

∂n
+ αu = 0 on ∂Ωt. (1.2)
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variation formulas 2

Here n stands for the outer normal of Ωt. Then

∂Ωt = {x+ tg(x)n(x) : x ∈ ∂Ω},

where tg(x) is the normal displacement of each boundary point x ∈ ∂Ω. In the case of
Dirichlet boundary conditions u = 0 on ∂Ωt

ED(t) = infW1,2
0 (Ωt)

{∫
Ωt

(
1

2
|∇u|2 − u

)
dx

}
.

Its minimizer solves ∆u + 1 = 0 in Ωt and vanishes on the boundary. Its first variation
assumes the simple form

˙ED(0) = −1

2

∮
∂Ω

|∇u|2g ds.

From this expression and the positivity of u it follows immediately that ED is a decreasing
functional of the domain. Moreover if Ω is a ball and |Ωt| = |Ω|, i.e.

∮
∂Ω
g ds = 0 then

ĖD(0) = 0. The first statement follows directly from the variational characterization of
ED(t). In fact if u is extended by zero outside Ω it remains an admissible function for the
energy in Ωt. In addition it does not change the energy and its minimum therefore decreases.
The second assertion is a consequence of Pólya’s theorem on the maximal torsional rigidity
[5]. By means of Schwarz symmetrisation it is easily proved that among all domains of given
volume the sphere has the minimal energy ED(t).

For Robin boundary conditions it is not known whether such results are true. No global
tools seem to be available to discuss question such as:

1. for what kind of deformations does E(t) decrease?

2. does the ball yield the minimum of E(t), among all domains Ωt of prescribed volume?

In this paper we give an answer to the first question for nearly circular domains. Concerning
the second question we have only been able to show that for balls Ė(0) = 0. We have
computed Ë(0) for the ball, its sign however does not seem clear.

The paper is organized as follows. We first derive the first variational formula for general
energies. Such formulas are already known in the literature [3], [6], [4]. Since we are dealing
with slightly more general energy functionals containing boundary integrals we include the
formal computation for the reader’s convenience. We then apply the first variation to radial
problems and show that it vanishes for the ball. We then study the first and second variations
of the torsion problem with Robin boundary conditions in the case of a ball. A study of the
second variation for a different optimization problem is found in [2]. A the end some open
problems related to these investigations are listed.

2 Variation formulas

2.1 Domain variation

Let Ωt ⊂ RN is a bounded domain with smooth boundary and let θ(t) : Ω→ Ωt, t ∈ [0, τ ] be
a family of diffeomorphisms such that

Ωt = θ(t,Ω) and Ω = θ(0,Ω).



variation formulas 3

Since we will be interested in small perturbations of Ω we shall assume that

θ(t, x) = x+ tv(x), (2.1)

where v : Ω → RN is a smooth vector field and t is a small parameter. We shall use the
notation

Dv :=

(
∂vi
∂xj

)
, D2

v =

(
∂vi
∂xk

∂vk
∂xj

)
i, j = 1, . . . , N,

Dθ(t,x) : Jacobian matrix ,

J(t) = detDθ(t,x) : Jacobian determinant .

Here and in the sequel repeated indices are understood to be summed from 1 to N . If θ is

of the form (2.1) then Jacobi’s formula gives

J(t) = 1 + t(traceDv) +
t2

2

(
(traceDv)2 − traceD2

v

)
+ o(t2), (2.2)

where traceDv =
∂vi

∂xi
.

Observe that (
∂xk
∂θi

)
= D−1

θ = (I + tDv)
−1.

For small t we have
D−1
θ = I − tDv + t2D2

v + o(t2).

Hence

∂

∂θi
=
∂xk
∂θi

∂

∂xk
= (δik − t

∂vk
∂xi

+ t2
∂vk
∂xs

∂vs
∂xi

)
∂

∂xk
+ o(t2), (2.3)

Our aim is to study the dependence of integrals involving u : Ωt → R on domain deformations
under the assumption that u is sufficiently regular in t.

2.2 Variation of volume integrals

Consider a function 1L(y, ũ, p) : Ωt×R×RN → R which is continuously differentiable in all
its argument and denote by ∇θũ the gradient (uθi). Define

L(ũ,Ωt) :=

∫
Ωt

L(y, ũ,∇yũ) dy.

After the change of variable y = θ(t, x) we obtain

L(ũ,Ωt) :=

∫
Ω

L

(
θ, u(x, t), uxk

∂xk
∂θi

)
J(t) dx, i = 1 . . . , N.

Here we have written u(x, t) for ũ(θ, t). Differentiation with respect to t yields

∂L

∂t
= Lθi

∂θi
∂t

+ Lu
∂u

∂t
+ Lpi(

∂uxk

∂t

∂xk
∂θi

+ uxk

∂2xk
∂t∂θi

).

1This function will be called the Lagrangian following the usage in the calculus of variations.
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For the particular diffeomorphism (2.1)

∂θi
∂t

= vi,

∂xk
∂θi

= δik − t
∂vk
∂xi

+ o(t),

∂2xk
∂t∂θi

= −∂vk
∂xi

+ 2t
∂vk
∂xl

∂vl
∂xi

+ o(t).

Formal differentiation of L with respect to t yields,

dL
dt

=

∫
Ω

{Lθivi + Lu
∂u

∂t
+ Lpi(

∂uxi

∂t
− uxk

∂vk
∂xi

)}J(t) dx (2.4)

+

∫
Ω

L
∂vs
∂xs

dx+O(t),

where (2.2) was used in the last integral.

2.3 Variation of boundary integrals

Suppose that ∂Ω = Γ0 ∪Γ1 such that Γ0 ∩Γ1 = ∅ and let Γkt = {x+ tv : x ∈ Γk}, (k = 0, 1).
Consider integrals of the form

B(ũ,Γ1
t ) :=

∫
Γ1
t

b(y, ũ(y, t)) dsy,

where b(y, ũ) : Γ1
t ×R→ R is continuously differentiable in y and ũ. Let x(ξ), ξ ∈ U ⊂ RN−1

be local coordinates of Γ1. Then Γ1
t is represented locally by {y(ξ) := x(ξ) + tv(x(ξ)) : ξ ∈

U}. Throughout this paper (x, y) stands for the Euclidean scalar product of two vectors
x and y in RN and |x| = (x, x)1/2. We have, setting gij := (xξi , xξj ), ṽ(ξ) := v(x(ξ)),
cij := (xξi , Dvxξj ) = (xξi , ṽξj ), aij = 1

2 (cij + cji) and bij = (ṽξi , ṽξj ),

|dy|2 = (gij + 2taij + t2bij)dξidξj =: gtijdξidξj .

Write for short G = (gij), G
−1 = (gij), A = (aij), B = (bij) and correspondingly Gt = (gtij).

Then
dsy =

(
detGt

)1/2
dξ.

Clearly √
detGt =

√
detG{det(I + 2tG−1A + t2G−1B)︸ ︷︷ ︸

k(ξ,t)

}1/2.

Set
σA = traceG−1A, σB = traceG−1B and σA2 = trace(G−1A)2.

The Taylor expansion yields

k(ξ, t) = 1 + 2tσA + t2
(
σB + 2σ2

A − 2σA2

)
+ o(t2).

For small t we have√
k(ξ, t) = 1 + tσA + t2

(
σB
2
− σA2 +

σ2
A

2

)
+ o(t2) := 1 + tσA + t2

ν

2
+ o(t2). (2.5)
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As before we set u(x, t) = ũ(θ(x, t), t). Then, since ds =
√

detG dξ, it follows that

B(t) := B(ũ,Γ1
t ) =

∫
Γ1

b(θ, u){1 + tσA +
t2

2
ν + o(t2)}ds.

Consequently

dB
dt

(t) =

∫
Γ1

{bσA + bθivi + bu
∂u

∂t
} ds (2.6)

+ t

∫
Γ1

{σA(bθivi + bu
∂u

∂t
) + bν + o(1)} ds,

and

dB
dt

(0) =

∫
Γ1

{bσA + bxi
vi + bu

∂u

∂t
} ds. (2.7)

2.3.1 Discussion of σA, σA2 and σB

In order to have a better understanding of the term σA let us decompose the vector field v
on Γ1 in the following way

ṽ(ξ) := v(x(ξ)) = (v(x(ξ)), n(ξ))n(ξ)︸ ︷︷ ︸
ṽn

+

N−1∑
k=1

(v(x(ξ)), xξk)xξk︸ ︷︷ ︸
ṽ∗

. (2.8)

We set

ηk := (v(x(ξ)), xξk) k = 1, . . . , N − 1

ηN := (v(x(ξ)), n(ξ)).

Clearly ṽn ⊥ ṽ∗. In the language of differential geometry we have

ṽ∗ξj = ηk,jxξk =

[
∂ηk

∂ξj
+ Γkijη

i

]
xξk

where Γkij denotes the Christoffel symbol and ηk,j is the covariant derivative with respect to

gij . Using this decomposition we can compute G−1A and G−1B explicitely.

(G−1B)ik = gijbjk = gij
(
ηNξjn(ξ) + ηNn(ξ)ξj , η

N
ξk
n(ξ) + ηNn(ξ)ξk

)
+2gij

(
ηNξjn(ξ) + ηNn(ξ)ξj , η

l
,kxξl

)
gij
(
ηm,j xξm , η

l
,kxξl

)
where l = 1, . . . , N − 1. We observe that (n(ξ), n(ξ)) = 1, (n(ξ), n(ξ)ξi) = 0, (n(ξ), xξl) = 0
and we assume that (xξm , xξl) = δkl for m, l = 1, . . . , N − 1. Thus

(G−1B)ik = gijbjk = gijηNξjη
N
ξk

+
(
ηN
)2
gij
(
ηNξj , η

N
ξk

)
+ gijηl,jη

l
,k.
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For the trace σB we compute

σB =
(

1 +
(
ηN
)2)

gij
(
ηNξj , η

N
ξi

)
+ gijηl,jη

l
,i.

Moreover

cij = (xξi , ṽξj ) = ηN (ξ)(xξi , nξj ) + ηk,j(ξ)(xξi , xξk), k = 1, . . . , N − 1.

Thus

(G−1A)ij = gikakj =
1

2
gik(ckj + cjk)

=
1

2
gik
(
ηN (ξ)(xξk , nξj ) + ηl,k(ξ)(xξj , xξl) + ηN (ξ)(xξj , nξk) + ηl,j(ξ)(xξk , xξl)

)
=

1

2
gik
(
ηN (ξ)(xξk , nξj ) + ηl,k(ξ)gjl + ηN (ξ)(xξj , nξk) + ηl,j(ξ)glk

)
Analogously for the trace σA we compute

σA =
1

2
gik
(
ηN (ξ)(xξk , nξi) + ηl,k(ξ)gil + ηN (ξ)(xξi , nξk) + ηl,i(ξ)glk

)
= ηN (ξ)gik(xξk , nξi) + ηi,i(ξ)

Observe that τ i,i =: div∗ṽ∗ is the surface divergence on Γ1. Furthermore (nξi , xξs) =

−(n, xξsξi) = Lis is the second fundamental form.2 Let κi, i = 1, 2, . . . , N − 1 denote
the principle curvatures of Γ1. Then

gisLis =

N−1∑
i=1

κi =: (N − 1)H, H mean curvature of Γ1 .

In conclusion we have

σA = (N − 1)ηNH + div∗ṽ∗. (2.9)

Finally we give an explicit expression for σA2 . We use the following notation:

hij =
1

2
(Lij + Lji) and Hij := gikhkj .

Then a lengthly computation gives

σA2 =
(
ηN (ξ)

)2
traceH2 + ηN (ξ)

(
hij η

j
,k g

ki +Hij η
i
,j +

1

2

(
ηi,j η

j
,i + gijηk,iη

l
,jgkl

))
.

2.4 Domain variation of critical points

Consider the following energy functional

E(t) = L(Ωt, ũ) + B(ũ,Γ1
t ).

2Notice that the minus sign is due to the fact that n is the outer normal.
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Suppose that for all t, ũ(y, t) is a critical point of the energy functional E-in the sense that the
Fréchet of E(Ωt, ·) derivative vanishes at this point. Thus ũ solves in Ωt the Euler-Lagrange
equation

∂Lpi(y, ũ,∇ũ)

∂yi
= Lũ(y, ũ,∇ũ) in Ωt, (2.10)

and boundary conditions

ũ = 0 on Γ0
t : Dirichlet boundary conditions , (2.11)

Lpi(y, ũ,∇ũ)ni + bũ(y, ũ) = 0 on Γ1
t : Robin boundary conditions.

Observe that if b = 0 the Robin condition becomes a Neumann boundary condition

Lpi(y, u,∇u)ni = 0.

In the x-coordinates the Euler-Lagrange equation for u assumes the form

LuJ =
∂

∂xk
(LpiJ

∂xk
∂θi

) in Ω. (2.12)

The boundary conditions are

u(x, t) = 0 on Γ0, (2.13)

LpiJ
∂xk
∂θi

nk + bu
√
k(x, t) = 0 on Γ1.

Introducing (2.12) into (2.4) and letting t→ 0 we find

dL
dt
|t=0 =

∫
Ω

{Lxi
vi − Lpiuxk

∂vk
∂xi

+ L
∂vs
∂xs
} dx+

∮
∂Ω

Lpk
∂u

∂t
nk ds.

Taking into account the boundary conditions we conclude that ∂u
∂t = 0 on Γ0 and Lpini = −bu

on Γ1. Thus ∮
∂Ω

Lpk
∂u

∂t
nk ds = −

∫
Γ1

bu
∂u

∂t
ds.

This together with (2.7) implies

∂E
∂t
|t=0 =

∫
Ω

{Lxivi − Lpiuxk

∂vk
∂xi

+ L
∂vs
∂xs
} dx (2.14)

+

∫
Γ1

{b(x, u)σA + bxi
vi} ds.

The volume integral can be transformed into a boundary integral. In fact if u is a solution
of (2.10) in Ω then

∂

∂xi

(
Lvi − Lpiuxj

vj
)

= L
∂vi
∂xi

+ viLxi
− Lpiuxj

∂vj
∂xi

,

and hence

∂E
∂t
|t=0 =

∮
∂Ω

{L(v, n)− Lpini(∇u, v)} ds (2.15)

+

∫
Γ1

{b(x, u)σA + bxivi} ds.
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3 Applications

3.1 Optimality of radial problems

Suppose that Ω is a ball of radius R and that L = L(r, u(r), u′(r)) and b = b(r, u(r)), r = |x|
are radially symmetric. Then on ∂Ω we have

L = const. and Lpini(∇u, v) = Lu′u
′(v, n).

Thus ∮
∂Ω

{L(v, n)− Lpini(∇u, v)} ds = (L− Lu′u′)
∮
∂Ω

(n, v) ds.

By (2.9), σA = (v, n)(N − 1)/R+ div∗ṽ∗ and∫
Γ1

{b(r, u)σA + bxi
vi} ds =

(
b(N − 1)

R
+ br

)∮
∂Ω

(v, n) ds.

Finally we get

dE
dt
|t=0 = (L− Lu′u′ +

b(N − 1)

R
+ br)

∮
∂Ω

(v, n) ds.

From the divergence theorem and (2.2) we get∮
∂Ω

(v, n) ds =

∫
Ω

traceDv dx =
1

t
(

∫
Ωt

dx−
∫

Ω

dx + o(t)).

Hence
∮
∂Ω

(v, n) ds = 0 if |Ωt| = |Ω|.

This together with the previous observations implies

Theorem 1 Let Ω be a ball of radius R in RN and let Ωt be a small, volume preserving
perturbation in the sense of Section 2. Let u(r) be a solution of

dLu′(r, u(r), u′(r))

dr
= Lu(r, u(r), u′(r)) in (0, R).

Then the energy E(t) given by
∫

Ωt
L(r, u, u′)dx +

∮
∂Ωt

b(r, u) ds is stationary in t = 0, i.e.,

Ė(0) = 0.

3.2 Torsion problem with Robin boundary conditions

3.2.1 First variation

In this section we discuss the problem

E(t) =

∫
Ωt

(
|∇u|2

2
− u
)
dx+

α

2

∮
∂Ωt

u2 ds, (3.1)

where u is a solution of the corresponding Euler- Lagrange equation

∆u+ 1 = 0 in Ωt,
∂u

∂n
+ αu = 0 on ∂Ωt.
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The first variation is according to (2.15)

Ė(0) =

∮
∂Ω

{(|∇u|2/2− u)(v, n) + αu(∇u, v) + αu2σA/2} ds.

For the ball Ω = BR the solution can be computed explicitely. In this case we have u(r) =
R
N

(
R
2 + 1

α

)
− r2

2N , L(r, u, u′) = u′2/2− u,

E(0) = −|∂B1|
(

RN+2

2N2(N + 2)
+
RN+1

2αN2

)
,

and
∂E(0)

∂t
= −

[
R2

2N2
+

(N + 1)R

2αN2

] ∮
∂BR

(v, n) ds.

It follows immediately that for volume preserving perturbations Ė(0) = 0, in accordance
with Theorem 1. The monotonicity of E(t)) with respect to nearly circular domain changes
if α ≥ −(N + 1)/R or if α ≤ −(N + 1)/R.

Next we want to find out if for volume preserving perturbations the ball is a local maxi-
mum or minimum. For this we need the second variation.

3.2.2 Second variation for balls and divergence free vector fields

In order to make the computation more transparent we introduce some abbreviations.

ẇ =:
∂w

∂t
, div y(x) :=

∂yk

∂xk
(x),

∇u ·Dv =
∂u

∂xi

∂vk
∂xi

thus ∇u ·Dv ·X =
∂u

∂xi

∂vk
∂xi

Xk ∀X ∈ RN ,

∇u ·D2
v =

∂u

∂xi

∂vk
∂xi

∂vj
∂xk

thus ∇u ·D2
v ·X =

∂u

∂xi

∂vk
∂xi

∂vj
∂xk

Xj ∀X ∈ RN ,

traceD2
v =: σD2

v
.

Observe that the definition of σD2
v

differs slightly from those of σA and σB . From the Euler-

Lagrange equation we deduce that, taking into account that J̇(0) = 0,

Ë(0) = −
∫
B1

(ü+ uJ̈(0)) dx.

In order to evaluate this integral we need an equation for u̇ and ü. For that we differentiate
(2.12) and (2.13) with respect to t. After each differentiation we set t = 0. This gives

L̇uJ(0) + LuJ̇(0) =
∂

∂xk

(
˙LpiJ(0)

∂xk
∂θi

+ Lpi J̇(0)
∂xk
∂θi

+ LpiJ(0)
∂ẋk
∂θi

)
and

L̈uJ(0) + 2L̇uJ̇(0) + LuJ̈(0) =
∂

∂xk

(
L̈piJ(0)

∂xk
∂θi

+ 2 ˙Lpi J̇(0)
∂xk
∂θi

+ 2 ˙LpiJ(0)
∂ẋk
∂θi

+Lpi J̈(0)
∂xk
∂θi

+ 2Lpi J̇(0)
∂ẋk
∂θi

+ LpiJ(0)
∂ẍk
∂θi

)
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in B1. For t = 0 and divergence free vector fields we have (see also (2.2) and (2.3))

J(0) = 1, J̇(0) = div v = 0, J̈(0) = −σD2
v

∂xk
∂θi

= δik,
∂ẋk
∂θi

= −∂vk
∂xi

,
∂ẍk
∂θi

= 2D2
v.

Moreover

L =
1

2
|∇u|2 − u, Lu = −1, Lpi = pi.

Thus we obtain an equation for u̇ and ü in B1.

0 = div (∇u̇−∇u ·Dv), (3.2)

σD2
v

= div(∇ü− 2∇u̇ ·Dv − σD2
v
∇u + 2∇u ·D2

v). (3.3)

For the boundary conditions we work similarly. For the case of Robin condition on ∂B1,
we consider the second equation in (2.13) on ∂B1. After differentiation in t = 0 and taking
J̇(0) = 0 into account, we get

˙LpiJ(0)
∂xk
∂θi

nk + LpiJ(0)
∂ẋk
∂θi

nk + ḃu
√
k + bu

√̇
k = 0 in ∂B1,

and

L̈piJ(0)
∂xk
∂θi

nk + 2 ˙LpiJ(0)
∂ẋk
∂θi

nk + Lpi J̈(0)
∂xk
∂θi

nk + LpiJ(0)
∂ẍk
∂θi

nk

+ b̈u
√
k + 2ḃu

√̇
k + bu

√̈
k = 0 in ∂B1.

From (2.5) we have in t = 0

√
k = 1,

√̇
k = σA,

√̈
k = ν = σB − 2σA2 + σ2

A.

Moreover

b(u) =
α

2
u2, bu = αu.

From that we obtain the following Robin boundary conditions for u̇ and ü on ∂B1.

∂u̇

∂n
+ αu̇ = ∇u ·Dv · n− ασAu, (3.4)

∂ü

∂n
+ αü = 2∇u̇ ·Dv · n+ σD2

v

∂u

∂n
− 2∇u ·D2

v · n− 2ασAu̇− ανu. (3.5)

We first consider the equation for ü in B1. We multiply it with u and intergrate over B1.
After integration by parts this gives∫

B1

uσD2 dx =

∮
∂B1

{u∂ü
∂n
− ü ∂u

∂n
} ds−

∫
B1

ü dx (3.6)

− 2

∮
∂B1

u∇u̇ ·Dv · n ds+ 2

∫
B1

∇u̇ ·Dv · ∇u dx

−
∮
∂B1

u
∂u

∂n
σD2

v
ds+

∫
B1

|∇u|2σD2
v
dx

+ 2

∮
∂B1

u∇u ·D2
v · n ds− 2

∫
B1

∇u ·D2
v · ∇u dx.
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Next we make use of the boundary condition (3.4) for ü and obtain∫
B1

uσD2
v
dx =

∮
∂B1

{u(−αü− 2ασAu̇− ανu)− ü ∂u
∂n
} ds−

∫
B1

ü dx

+ 2

∫
B1

∇u̇ ·Dv · ∇u dx +

∫
B1

|∇u|2σD2
v
dx− 2

∫
B1

∇u ·D2
v · ∇u dx.

We can simplify, since ∂u
∂n = −αu on ∂B1.∫

B1

uσD2
v
dx = −α

∮
∂B1

u(2σAu̇+ νu) ds−
∫
B1

ü dx+ 2

∫
B1

∇u̇ ·Dv · ∇u dx

+

∫
B1

|∇u|2σD2
v
dx− 2

∫
B1

∇u ·D2
v · ∇u dx.

After rearranging terms we obtain a formula for Ë(0) which does not depend on ü anymore
(recall J̈(0) = −σD2

v
).

Ë(0) = −
∫
B1

(|∇u|2 − 2u)σD2
v
dx+ α

∮
∂B1

u(2σAu̇+ νu) ds (3.7)

− 2

∫
B1

∇u̇ ·Dv · ∇u dx+ 2

∫
B1

∇u ·D2
v · ∇u dx.

At this point it is convenient to use the explicitly known solution of the torsion problem with
Robin boundary conditions on B1. We have

u =
1

N

(
1

2
+

1

α

)
− r2

2N
. (3.8)

Consequently

∇u = − x

N
,

∂2u

∂xi∂xk
= −δik

N
. (3.9)

In particular we can use this information in (3.2) and obtain ∆u̇ = 0 in B1. Then the third
integral in (3.7) can be simplified. Partial integration gives

2

∫
B1

∇u̇ ·Dv · ∇u dx = 2

∮
∂B1

(∇u, v)
∂u̇

∂n
ds− 2

∫
B1

{ ∂2u

∂xi∂xk
vku̇xi

+ (∇u, v)∆u̇} dx

= − 2

N

∮
∂B1

(v, n)
∂u̇

∂n
ds+

2

N

∫
B1

v · ∇u̇ dx

= − 2

N

∮
∂B1

(v, n){∂u̇
∂n
− u̇} ds.

Introducing this expression into (3.7) we obtain

Ë(0) = −
∫
B1

(|∇u|2 − 2u)σD2
v
dx+ α

∮
∂B1

u(2σAu̇+ νu) ds (3.10)

+
2

N

∮
∂B1

(v, n){∂u̇
∂n
− u̇} ds+ 2

∫
B1

∇u ·D2
v · ∇u dx.
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If we replace u and ∇u by (3.8) and (3.9) and use the abbreviation g = (v, n)|∂B1
(cf.

(2.8)) we find

Ë(0) = N−1(1 +
2

α
)

∫
B1

σD2
v
dx− N − 1

N2

∫
B1

|x|2σD2
v
dx+

2

N2

∫
B1

xD2
vx dx (3.11)

+
1

αN2

∮
∂B1

ν ds+
2

N

∮
∂B1

[
σAu̇− gu̇+ g

∂u̇

∂n

]
ds.

The explicit formulas for σA and ν are given in Section 2.3.1 and σD2
v
=traceD2

v. In view if

(3.4) the term ∂u̇
∂n on ∂B1 can be substituted by

∂u̇

∂n
= − x

N
Dvx−

σA
N
− αu̇.

From this computation it is not clear if Ë(0) has constant sign. The normal displacement
g : ∂B1 → R necessarily needs to satisfy the compatibility condition∮

∂B1

g(ξ) ds = 0.

Moreover, for simply connected domains, it is not restrictive to set

v(x) = ∇φ(x) x ∈ B1.

Necessarily

∆φ = 0 in B1,
∂φ

∂n
= g in ∂B1.

In this case we have σD2
v

= φxjxi
φxjxi

> 0. Thus the contribution of the volume integrals in
(3.11) is positive.

4 Open problems

Problem 1
Let B ⊂ Ω. Prove or disprove that for the torsion problem with Robin boundary conditions
E(Ω) ≤ E(B)?

Problem 2
Let Ω be convex and Ωt ⊃ Ω. Prove or disprove that Ė(0) ≤ 0.

Problem 3
Prove the existence of an optimal domain with given volume for an energy with a boundary
integral. Once the existence is established a symmetry argument leads to the conjecture.

Conjecture
Among all Lipschitz domains of given volume the ball yields the minimum of E given in
(1.1) and (1.2). This conjecture is supported by the Faber-Krahn inequality for the first
membrane eigenvalue with Robin boundary conditions [1].
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Problem 5
Give conditions on the data which justify the formal computations. More precisely under
what conditions are the solutions of the Euler-Lagrange (2.12) with the boundary conditions
(2.13) differentiable in t?

Acknowledgement The authors would like to thank the referee for having pointed out
many misprints and a computational error in the second variation for the torsion problem
in balls.
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[29] Strzelecki P., Szumańska M. and von der Mosel H.: Regularizing and self-avoidance effects of integral Menger
curvature, S 33, November 2008

[30] Gerlach H. and von der Mosel H.: Yin-Yang-Kurven lösen ein Packungsproblem, S 4, Dezember 2008
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