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Abstract

In this paper the first and second domain variation for functionals related to elliptic boundary and eigenvalue
problems with Robin boundary conditions is computed. Minimality and maximality properties of the ball among
nearly circular domains of given volume are derived. The discussion leads to the investigation of the eigenvalues of
a Steklov eigenvalue problem. As a byproduct a general characterization of the optimal shapes is obtained.
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1 Introduction

The study of domain functionals has received in the recent years a lot of attention. New
techniques have been developed to prove the existence of an optimal shape among domains
which are characterized by a common geometrical property such as a fixed volume. An
important question is how to describe the optimal shape analytically. In the spirit of calcu-
lus this can be done by studying the dependence of the functionals under an infinitesimal
change of the domain. Hadamard [12] was the first to propose a systematic approach to
this question.

Let ; be a family of perturbations of the domain 2 C R™ of the form

t2
(1.1) O ={y=o+tv(x)+ Ew(a:) +o(t?) : 2 € Q, t small },

where v = (v1(2),v2(2),...,v,(z)) and w = (wy(x), wa(x),...,w,(z)) are smooth vector

05;2) — 0 as t — 0. Consider a functional

fields and where o(t?) collects all terms such that



E(t) which depends on €); and on a solution () of an elliptic problem defined on €;. The
first derivative of £(t) with respect to the parameter ¢ is called the first domain variation
and the second derivative is called the second domain variation. In modern text often the
expression shape derivative is used.

In their seminal paper on domain functionals Garabedian and Schiffer [7] computed the
first and second domain variation for several functionals such as the first eigenvalue of the
Dirichlet-Laplace operator, the virtual mass and the Green’s function. By choosing special
perturbations they obtained convexity theorems. Subsequent to the work of Garabedian
and Schiffer’s; D. Joseph [15] computed formally higher variations of the eigenvalues and
studied the behavior of the spectrum under shear and stretching and Grinfeld [11] computed
the eigenvalues of a polygon. For a long time this topic has rather been neglected. In the
last years it has attracted considerable interest. New developments and new applications
are found in the inspiring books by Henry [14] and Pierre and Henrot [13] where further
references are given.

Motivated by classical isoperimetric inequalities for domain functionals with prescribed
volume, like the Rayleigh-Faber-Krahn inequality and the St. Venant-Pélya inequality for
the torsional rigidity (cf. [17]) we shall focus on perturbations which are volume preserving.
To our knowledge the effect of this restriction, in particular to the second variation hasn’t
been explored yet. A basis for our study are the two model problems:

1. NONLINEAR PROBLEM
(1.2) Aji+g(@) = 0  in
(1.3) Ouii+at = 0  in 9.

Here v; is the outer unit normal to 2; and « is a real number. This problem is the
Euler-Lagrange equation corresponding to the energy functional

E(t) = |V1~L(t)|2 dy — 2/ G(a) dy + 04]{ 62(t) dS, where G'(s) = g(s).
Q Q o
2. EIGENVALUE PROBLEM
(1.4) A+ AQ)d = 0 inQ
(1.5) d,i+ai = 0  in 9.

Like the energy functional the eigenvalue is expressed in terms of integrals

A(t)/Q () dy = |Vﬁ(t)|2+a]{ w?(t) dS.

Q o



We shall compute the first and second variations of £(t) and A(t) using a change of
variable approach which transforms the new domain into the original one. In fact for small
t, the map y : Q@ — Q, defined in (1.1), is a diffcomorphism. Hence x can be chosen as a
new variable.

The first variation is a simple and elegant expression. It provides a necessary condition
for extremal domains in terms of an overdetermined elliptic problem. It turns out that for
the first eigenvalue the ball is a candidate for an extremal domain. The same is true for
the energy £(t) if the solutions of (1.2), (1.3) are radial. This is in accordance with the
Bossel-Daners inequality [5] which states that among all domains of given volume the ball
yields a local minimum of the first eigenvalue and by recent results by Bucur and Giacomini
[3]. As a byproduct we obtain a local monotonicity property which improves slightly the
one in [9].

We then compute the second variation and study its sign in the case of the ball. For
this purpose we use a device by Simon [20]. The discussion of the sign of %(t)]tzo and
fT;\(Qt)]tzo for volume preserving perturbations is related to an eigenvalues problem of a
Steklov type problem.

A theoretical approach was developed by Pierre and Novruzi [18]. In particular they
found an abstract result on the structure of the second variation. However the strict posi-
tivity (coercivity) necessary for the minimality property of a domain remained a challenging
open problem.

In this paper we first compute the second variation for general domains and then focus
on the ball which for many problems is a critical domain, i.e. the first variation vanishes.
With the help of a Steklov type eigenvalue problem we are able to give an estimate for
the second variation from below. It turns out that in contrast to problems with Dirichlet
boundary conditions the second variation of the surface plays an crucial role, s. [4] for
similar discussion. We obtain in this context an interesting result for this surface variation
which to our knowledge is new. It should be pointed out that the method works for
functionals which are not necessarily characterized by a variational principle, for instance
E(t) with o < 0. A first attempt to tackle this problem was made in [1].

Our paper is organized as follows.

First we introduce, for the reader’s convenience, the concept of the mean curvature
which will play an important role and some tools concerning vector fields. We then discuss
useful properties of the vector fields which are related to volume preserving perturbations.
In Section 3 we describe in full details the energies and the Rayleigh quotients of the
perturbed problems, expressed in the original domain €2 after the change of variables y =
x 4+ tv(x) + o(t). The first variations are derived in Section 4 from which overdetermined
boundary and eigenvalue problems for optimal domains can be deduced. In Section 5 an
auxiliary function related to the t-derivative of the solutions in €); will be discussed. It
turns out that this function will play an essential role for the sign of the second variation.



Section 6 is devoted to the lengthly computations of the second variation. Applications
to problems in nearly circular domains of fixed volume are investigated in Section 7. As
a surprise we find out that the sign of the second variation for the ball depends on the
sign of a.We compare our approach with Garabedian and Schiffer’s formula of the second
variation of the principal eigenvalue of the Laplacian with Dirichlet boundary conditions.
We show that the ball is a local minimum. For the sake of completeness we give at the end
the formula for the second variation of the energy in case of Dirichlet boundary conditions.

2 Preliminaries

2.1 Geometry of surfaces

In this section we collect some basic geometrical notions of surfaces needed in our study.
Throughout this paper we will use the following notation. Let Q be a bounded C**-domain
in R"and let = := (z1, 9, ...,x,) denote a point in R"™. Throughout this paper x -y stands
for the Euclidean scalar product of two vectors  and y in R” and |z| = (z - 2)"/2.

At every point P € 0f) there exist therefore a neighborhood Up and a Cartesian coor-
dinate system with the basis {e}? , centered at P, such that e” points n the direction of
the outer normal v and €', i = 1,...n — 1 lie in the tangent space of P. The coordinates
with respect to this basis will be denoted by (&;,&s,...,&,). Moreover we assume that
ONUUp ={£€lUp: & < F(&,&,...,61)}, F € C**. With this choice of coordinates
clearly F'(0) = 0 and F¢,(0) = 0fori =1,2,...,n—1. For short weset &’ = (&1,&2, -+ ,&n1)
which ranges in U’ :=Up N {&, = 0}.

In Up N O the boundary is represented by (&) = (£1,&s, ..., &1, F(£')) and the unit
outer normal v(¢') = (v, . . .., Uy,) with respect to the £’—coordinate system, is given by

_ —Fe,—Fe,, ..., —Fg, |, 1
u(g’/):( e —Fe e-1r 1)

V14 |VF?

In this paper we shall use the Einstein convention where repeated indices are understood
to be summed from 1 to n—1 or from 1 to n, respectively. The vectors x¢,, ¢ =1,2...n—1
span the tangent space. The metric tensor of 9 is denoted by g;; and its inverse by g%.

We have

Fe, F £
1+ |V'F|?
where V' stands for the gradient in R"~!. The surface element of 99 is dS = \/detg;;d§ =

V1+ [V'F]de.

Observe that any vector v can be represented in the form

(2.1) v=g"v-xg)ze, + (Vv 5,5 =1,2,...n— 1

Gij = Lg; - Tg; = 61‘]’ + FSiFéj and gij = 5ij



Let f € CY(Up) and let f(€') == f(&)|oa = f(&, F(£)). The tangential gradient of f at a

boundary point is defined as

_ Of
2.2 V7 f =qg¥—x.
(2.2) f=g o6,
Let us write for short

0

%= e
and
(2.3) 0; f = g"0;f.

the tangential derivative on 02. For a smooth vector field v : 92 — R™ which is not
necessarily tangent to 9€) we define the tangential divergence by

(2.4) div gqv := g0, - z¢;, where © = v(£', F(£')).
By (2.3) this can also be written as
(2.5) div a0l = 8]*’5 . l'gj.

If k;,i=1,...,n— 1 are the principal curvatures of 92 at the point P then

n—1
1
H - i
n—1 ; "
is the mean curvature of 9X2 at P. For a general point (¢, F(¢')) on 0f2 it is given by

AN —1 8 Fz(él)
H(E) = (n—1) 3, (-ﬁ) .

Observe that
(2.6) div gov = (n — 1)H.
In particular we have H = % if 0€) = 0BRr where By denotes the ball of radius R centered
at the origin.
Another way of defining geometrical quantities is by projection onto the tangent space
of 0Q2. Let x € 002 and let T,0€2 be the tangent space of 02 in x. Then we define
P R" — T,00 v— Pl)=v—(v-v)r
From (2.1) we have for the gradient V f in R”
Vf=g"(Vf ag)re, +(Vf-vv.



Notice that Vf - a¢, = O;f + 0 fFe, = 9, f. Hence
(2.7) Vf=Vf—(Vf-v)v=P(Vf).

As in [10] some computations will be shorter if we introduce the ¢ — th component of the
tangential gradient

0if = 0if —viOsfvs.
At the origin we have 0;f = 9/ f = 0;f. In general ¢, f and 9/ f are different, more precisely

(2.8) op = (z¢, - €°)0; = (O - €")0;.

In the same way we show that for any smooth vector field v : Q — R” that
(2.9) div gov = divv — v - Dyv = Ojv; — v;0;v;1; = 6;7;.

At the origin we have div gqv = Ojv; = 0fv;, 1 =1,...n— 1.
We will frequently use integration by parts on 9Q. Let f € C'(99Q) and v € C%1(9Q, R™).
The next formula is often called the Gauss theorem on surfaces.

(2.10) fdianUdS:—j{ v-V'fdS+(n—1) f(v-v) HdS.
o0 a0 o0
This formula can also be written in the form
(2.11) f fé;v; dSz—]{ v;0;fdS+(n—1) ¢ f(v-v)HdS.
a0 a0 a0

2.2 Domain perturbations

2.2.1 Volume element

The Jacobian matrix corresponding to the transformation y(t,{2) introduced in the Intro-
duction is up to second order terms

t2
I+1tD, + ng, where (D,);; = 0;v; and 0; = 0/0x;.

By Jacobi’s formula we have for small ¢

2

(2.12) J(t) = det (I+tDU+%Dw)
2

t
= 1+4+tdive+ 5 ((divv)® = Dy : D, + div w) + o(t?).

Here we used the notation

DU : DU = &vj-@jvi.



Thus y(t, <) is a diffeomorphism for ¢ € (—to, o) and t, sufficiently small.
Throughout this paper we shall consider diffeomorphisms y(t,€2) as described above.

Later on we will be interested in volume preserving transformations. From

1| = / J(t) dz = |9 +t/ div v dz + g /((divv)2 — D, : D, +div w) dx + o(?)
it follows tgflat y(t,Q) is Vo]um(e2 preserving of tth first order if
(2.13) / divodr =0
holds and it is volume preserving of thg second order if in addition to (2.13) it satisfies
(2.14) /Q((div v)> = D, : D, +div w) dz = 0.

For volume preserving transformations of the second order we have
Lemma 1 Let v € C%(Q,R™) Then

/ ((divv)®> = Dy : D, + div w) dz =0
Q

1s equivalent to

(2.15) ]{ (v-y)divvdS—f v; 00V, dS+?§ (w-v)dS =0.
o9 o9 o0
Proof Integration by parts gives
/DUZDvde‘ = —/vjaj(divv) d:zc—kj{ v; Ojv; v; dS
Q Q o9
= / (div v)* dz — 7{ (v-v)divedS + JQ{ v; Oy, v; dS.
Q o9 o9
This proves (2.15). O

Remark 1 The presence of w is crucial because otherwise the class of perturbations is too
limited. For instance consider By C R? and let Q, be a rotation,of the type

v= (o0 oy,

Then for small t, y = x + t(—x2,x1) — 5 (=21, x2) + o(t?). It is easy to see that the first
order approximation x + t(—xq.21) is not volume preserving of the second order.

Remark 2 For any given v we can always find a vector w such that (2.15) is satisfied.

Denote by
vT=v—(v-v)v
the tangential component of v on 0f2.



2.2.2 Surface element

In this part we shall compute the surface element of 9€;. Let z({), ¢ € U} be local
coordinates of 0f) introduced in Section 2.1. Then 0S2; is represented locally by

2

(€)= 2(€) +10(¢) + Sa(€) : € €Uy,
where as before 9(§') = v(¢', F(£')) and similarly w(§') = w(&', F(£')). Setting

Gij = Tg ot Xgy,
Qij = T Vg + Tg - Vg
bij = 2 .’&fj + w, " Tg; + w&j "L,
we get
12
dy|* = (gi; + tay + gbz‘j)d&dfj =: gi;d&;dE;.

Write for short G' = (gi;), G~ = (9%), A = (a;;), B = (bi;) and correspondingly G* = (g};).
Then the surface element on €, is

1/2

dS, = (detG") '~ d¢.
Clearly
t2
VdetGt = VdetG{det(I + tCGA + EG*B)}VZ.
k(o)
Set

o4 = trace G'A, op = trace G™'B and 04> = trace (G *A)%

For small ¢ the Taylor expansion yields

t2
k(z,t) =1+tos+ 3 (o5 + 0% — 042) + o(?)

and
t t2 (1 1 1
(2.16) k(l‘,t) = 1+50A+§ (QUB+ZU‘2L‘_§UA2) +0(t2).
In the sequel we shall use the notation
t t? 1 1 1,

m(t) =14 04 + —(=0p — =042 + ~03) + o(t?).

2 2\298 7 5 174



Then the surface element of 0€2; reads as
(2.17) dS; = m(t)dS, where dS is the surface element of Jf2 .

Our next goal is to find more explicit forms for the expressions in m(¢). It follows imme-
diately from Section 2.1 that
o4 = 2970, - x¢, = 2div gqu.
The expression o4 has a geometrical interpretation. We find after a straightforward com-
putation that
1
(2.18) 504 = div gov” + (n — 1)H(v - v),

where v7 is the projection of v into the tangent space.

Moreover a straightforward calculation leads to
oa2 = g 9" agan = 2(0;0 - we, ) (040 - wg,) + 2(0;0 - we, ) (g, - Fy),
op = 29", - V¢; + 2div gow
= 2(0%0 - we,, ) (Vg, - O w) + 29" (g, - U)(0e, - ©) + 2div pow.
In the last expression we have used for ¢, the representation (2.1). Consequently
1 1 1

(219) m(O) - 50’3 — §O'A2 —|— 10'124

= g"(0g - 7)(Ve, - ©) + div gow — (8]0 - g, ) (00 - wg,) + (div aqu)*.
This together with (2.10) implies that

(2.20) }ig m(0)dS = §,,(0:0 - 1) (050 - D) — (050 - w¢,) (050 - we,) + (0;0 - w¢,)? dS
+(n—1) [o(w-v)H dS.

2.3 Computations for the ball

In this subsection we simplify (2.20) for the special case 92 = dBg. For simplicity we move
the Cartesian coordinate system {e;}, into the center of the ball. This transformation
does not affect formula (2.20). Note that in the radial case

1
(221) vV = % and (Sﬂ/j = E

We now start with the evaluation of the different terms in (2.20). Setting N := (v - v) we
have

(51']' — ViVj) .

0= (00 -0) (0,0- D) = 0*NON — 2010 - 0)(0 - 0,0) + (- 0°0) (T - B,)
= |V™N|2 = 2(80 - 0)(§ - 0,0) — R™2"|2.
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By (2.21) and (2.8)

—2(0%0-0)(v - O5v) = —%&@kﬂkf}m(a:x ™) = —%[Um(SmN — VRV Osg (Or - ™))

= 2 [-V'N) - BprP

R
This together with the Gauss theorem on surfaces (2.10) implies
(2.22)
2 2(n—1 1
7{ (X0 - ) (050 - D) dS = (|[V'N? + =N div v — ("—2)1\[2 + —[v7]?) dS.
OBp ’e 4 8Bg R R R
1

It will turn out that it is convenient to eliminate the last term in (2.22). If we replace in
the Gauss formula (2.10)) f by N and use (2.21) we obtain

1 1 1 ~1
—27{ WT2dS = —= ¢ ;801 dS — —7{ div op,0 N dS + = N2 ds.
R 9Bg R 9Bg OBp OBg

With this remark we rewrite (2.22).

J/
VvV
51

(2.23) ]gB (00 - D) (050 - D) dS = 7{83 <|VTN|2—(TLR;21)N2) ds

1
+— (N div BrU — Vj 5j’Ui I/i) dS
OBRr

Next we treat the second term. Observe that
Uy = —(0;0 - x¢,) (05D - e;) = —05v;0;0s.

By (2.11) we find

—1
162 dS = (] (51'5]‘1)1' ds — n % Vj (SjUZ'I/i ds.
O0BRr O0BRr R OBR

At this point it is important to note that 6;0; # d;d;. In [10] (Lemma 10.7) the following
relation is proved:

5i§j = 5j52 + (Vi5jyk — Vj(sin)(sk.
For the ball this gives
(I/idjl/k - Vj(Sin)(sk = Ril(l/iéj - Vj5i)-



Hence
n—2
(224) 62 dS == Uj 5]'61'@2' dS - T Uy (Sj’UiVi dS
O0BRr O0BRr OBR
1
—— N div gp,v dS.
R Jopy, :

We apply (2.11) to the first integral on the right hand side of (2.24) and obtain

—1
% (% 5j(5ivi dsS = —f (5ivi)2 dS + n Ndiv 8Brv ds.
BBR 6BR aBR
Introducing this expression into (2.24) we find
-2
% 62 ds = —% (52'1)1')2 dsS — r % Uy 5j’UZ'VZ' dS
BBR BBR R 8BR
-2
0 N div pp,v dS.
8Bp

Thus

-2 -2
j{ (ly + (0D - x&.)2) dS = _n j{ v; d;v1, dS + [ N div gp,v dS.
9Br R Jopy, R Jopy,

This identity together with (2.23) and the fact that
N div BrU — Uj (SjUz' V; = N dive — Uj 8jvi V;
implies the following lemma.

Lemma 2 For an arbitrary vector field v = v™+ Nv the second variation assumes the form

7233 m(0)dS = ngR (|VTN|2 - %NQ) dS

-1
o j{ (N divv — v 0ju; v; +w - v) dS.
0Bg

Let us now consider vector fields which are volume preserving of the second order (cf.
Lemma 1). We observe that in view of (2.15) the second integral on the right-hand side in
Lemma 2 vanishes. Therefore

—1
(2.25) ]{ (0) dS — j’{ VNP As - B2 N2 ds.
6BR aBR R 8BR

Remark 3 [t is interesting to observe that the second variation faBR m(0) dS does not
depend on w nor on the tangential components of the vector field v.

11



Let us introduce the following notation.
S(t) = j{ m(t) dS : surface of 0€; .
0Bg

Next we determine all volume preserving vector fields of first and second order for which
the second variation of S(0) vanishes. They will be called the kernel of S(0). For this
purpose we recall the eigenvalue problem

(2.26) Agn-1¢p 4 pip = 0 on S" 1.

It is well-known that the eigenfunctions are the spherical harmonics of order k£ and the

corresponding eigenvalues are k(k+mn—2), k € NT with the multiplicity (2k+n— 2)](6:11—2_)?;2:

If the v is volume preserving of the first order then fa B N dS = 0 and by the variational
characterization of the eigenvalues

1
n NZ dS.

H2 2
VN|?dS > = N?dS =
\%BBR | | R2 0BRr R 0BRr

Equality holds if and only if the projection of v onto the normal (v-v) is an element of the
eigenspace corresponding to u = (n — 1)/R?. Tt is generated by the basis {e; - v}, or if
N =0.

EXAMPLE Suppose that on dBpg the vector field v points only in tangential direction.
Then v = g (v - x¢, )z, The vector y = x(£') 4 t0(¢') is orthogonal to dBg. Its length
is |y|*> = R? + t2¢" (v - w¢,)(v - z¢,). The boundary 99, can therefore be represented by
y + Sgov + o(t?) where gy = ¢*(v - x¢,)(v - 7¢,) and v = £. The domain €, is therefore a
second order perturbation of Bp.

Definition 1 A perturbation of the form

t2
y=z+tNv+ Ew+0(t2) on 0Bgr
1s called a Hadamard perturbation.

From the previous consideration it follows immediately that every small perturbation of
the ball can be described by a Hadamard perturbation. Consequently we have

Lemma 3 Assume N # a;x; on OBg. Then for every Hadamard perturbation 8(0) > 0.

3 Energies

Let (§2): be a family of domains described in the previous chapter and let G : R — R
denote a smooth function i.e. G € C? (R) at least. We denote by g its derivative: G’ = g.
Consider the energy functional

12



(3.1) E(Q,u) = Vyul?dy —2 [ G(u)dy + ozf u? dS;.

Qs Qy o

A critical point @ € H'(Q;) of (3.1) satisfies the Euler Lagrange equation

(3.2) Aji+g(@) = 0  inQ
(3.3) Opi+ai = 0  in 0%,

where 14 stands for the outer normal of 9. A special case is the torsion problem (1.2)
and (1.3) with G(w) =

Assume that @ solves (3.2) - (3.3). We set
E(t) :=E(, u).

In a first step we transform the integrals onto Q and 09Q. Let y = = + tv(z) + 2w( ) be
defined as in (1.1) and let z(y) be its inverse. Then after change of variables we get

(3.4) / dvii(t) Dyt (g;) (%) J(t) dz — 2 /Q Ga(t)) J(t) da
va i) mie)ds

where u(t) := a(x + tv(z) + %w(x), t € (—e,€). We set

(3.5) Ay(t) == g;; gz:; J(t
The expression (3.4) assumes now the concise form

(3.6) Et) = / ViuAVia dz — 2/ G(u)J dx + a]{ a*m du.
Q Q o9

Thus in the domain ) the solution u(t) solves the transformed equation

(3.7) Lau(t)+g(a(t)) J(t) = 0 in Q2

(3.8) Oy, u(t) +am(t)a(t) = 0 in 09,

where

(3.9) La=0;(Ai;(t)0) and Oy, = 1 Ai;(t)0;.

It turns out to be convenient to write the equations (3.7) - (3.8) for @ in the weak form

(3.10) /Q VoAVi dz + - pumdS = /Qg(ﬁ) ¢ J dx, Yo € WH2(Q).

13



14

The eigenvalue A(t) in (1.4) and (1.5) is characterized by the Rayleigh quotient
_ th V,a|* dy + « fagt w?dS
' Jo, @ dy '

(3.11) A(t) = R(t)

The change of variable (1.1) yields
_ Jo A (1) O5u(t) 0;u(t) do + o $y, u(t)® m(t) dS
Jou2(t) J(t) dx '

Thus in the domain 2 the solution @(t) solves the transformed equation

(3.12) R(t)

(3.13) Laa(t)+ A(t)J(t) a(t) = 0 in

(3.14) Oy, u(t) +am(t)a(t) = 0 in 0€.

Testing the above equation with % we obtain the identity

(3.15) / VuAVi dr + ajf a@*m dS = \(t) / a*J dx
Q Gle! Q

which will be used later.

3.1 Expansions

In this subsection we expand formally all relevant quantities with respect to t about the
origin. Under suitable regularity assumption on €2, such processes can be justified.
We start with the energy (3.6)

Et) :/VﬁAvadx—2/G(ﬁ)de+aj{ a*m dz,
Q Q

o0
where @ is a weak solution of (3.10).

Recall that a(t) = a(z + tv(x) + %w(:ﬂ), t € (—€,¢). Under sufficient regularity the
following expansion is valid

. 2 .
a(t) = a(0) + ¢ u(0) + 3 u(0) + o(t?).
We set v/(x) := Oyu(x + tv(x) + %w(m), t)|;=0 and get the following formulas for the coeffi-
cients of this expansion:
(3.16) u(0) = wu(x) and
2 2

(BAT)i(0) = Bl + to(e) + Sw(@), Do + () - Vile + to(z) + Sw(@), ey

= u'(x)+v(z) - Vu(z).
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We also expand A;;(t) with respect to ¢:
. t2 .
(3.18) Ay (t) = Ai(0) + ¢ Ai;(0) + 5 Ai5(0) + o(t?).

Later we will compute £(0) and £(0). For this purpose we shall need the explicit terms in
(3.18). A lengthy but straightforward computation gives

Lemma 4
A5(0) = by
Aij (0) = divv 5ij - ajUi - 8ivj;

Aij (0) = ((dZ’U U)Q — Dv : Dv) (5,‘]‘ + 2 (8ka 8j1}k + 8k’l}j &vk)
+2 &cvi akvj — 2 dwv (8jvi + &;vj) + div w 5ij - 8z-wj - (9sz
Finally we recall from (2.12)

(3.19) JO) =1
(3.20) JO) = divw
(3.21) J(0) = (divev)® =D, : D, +div w.

3.2 Differentiation of the energy and the eigenvalue

3.2.1 First and second variation

Direct computation gives

E(t) :/vaAvadx—z/G(a)JdHa]f @’ dS
Q Q 0

Q
+2 / ViuAVia dr — 2 / giiJ dz + 2o ]{ wtm ds.
Q Q oN

We now eliminate the terms containing i by means of (3.10) with ¢ = & and obtain
(3.22) Et) = / ViaAVidr + o f @’ dS — 2 / GJ dz.

Q B Q
Notice that £(t) is independent of .

Next we want to find an expression for the second derivative. Differentiation of (3.10)
implies

(3.23) / [wAva n ngAVﬂ] dz + o j'{ ($im + ¢iirn) dS
Q

o0N

- /Q (¢ (@)ib] + g(@)é]) dS,



for all ¢ € WH2(Q).
Differentiation of (3.22) yields

(324) £@t) = / [V@Ava +2VuAVa — 2guJ — 2GJ] dr + 7{ (2@t + @) dS.
Q o0

By means of (3.23) with ¢ = @ we get
(3.25) Et) = / VaAVi dx + af i dS — 2/ GJ dx
Q o9 Q

—2/ VuAVi dx — 2a7{ w*m dS + 2/ gu*J dx.
Q o9

Q

In accordance with the first derivative which does not depend on a1, the second derivative
does not depend on u.

In order to compute the variations of the eigenvalue we first recall that @ solves (3.15).
We impose the normalization

/vjﬁ(t) J(t) dx = 1.

This implies

d . .
(326) < / @(t) J () do = 2 / (t) di(t) J () d + / ()2 J(t) de = 0.
dt Jq Q Q
We differentiate (3.15), using the normalization and we set ¢ = ii. Then
(3.27) A(t) = / ViaAVia dr + a% @’ dS — \(t) / a*J da.
Q o0 Q

Thus () does not depend on a(t).

We differentiate (3.27) with respect to t. Then we differentiate (3.15) with respect to t
and choose ¢ = 2u. With (3.26) we get

(3.28) A\(t) = / ViuAVia dr — 2 / VuAVi dr + « f{
Q Q o0
—)\(t)/'zlzjdx+2>\(t)/ﬁ2jd:c.
Q Q

Thus () does not depend on a(t).

fﬂmds—m}[ @ mdS
o0

16
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3.2.2 Third variation

In order to compute the third variation £ (s) we proceed exactly in the same way as before.
We differentiate (3.25).

) = 2/va- (Ava) d:v+2/Vﬂ- (Aiva) dx+2a]{ i dS
Q Q o0
—1—047{ a%dS—Q/G’(a)&de—Q/G(a) ;'fdx—4/v1j- (AVi) dx
o0 Q Q Q
—2/ Vii - (Ava) dm—4aj§ aqjmdS—zajf a2mds+2/ G"(@) @ J dx
Q o0 o0 Q
+4/ G (@) J de + 2/ G" (@) @2 J d.
Q Q
Differentiation of (3.23) gives
/ (g (@)uJo+ g" (@)t Jo + 24 (@)uJ ¢ + g(a@)J ¢ da
Q
= / (VOAVE + 2VPAVU + VHAVE) d + o Ja{ (iprn 4 2ugm + ugpm) dS
Q

o9
If ¢ = 4u(t) then

_4/va.(Ava) dx+4]§ aamamds+4/
Q oN Q
(3.29}47{ ﬂaVAamdS—S/
o0 Q
+8/G”(a) aZjdg;+4/G’(a) w* Jdx = 0.
Q Q

G”(a)ﬁajdx—zi/va- (Ava) dz
Q

Vit - (Ava) dm+8]{ aaVA&mdS+4/G”’(a) w J dx
o0 Q

Notice that only three integrals in (3.29) contain . They also appear in £(t). Thus £ (t)
does not depend on u. Hence

) = 2/Qva- (AV&) dx+2/gVﬂ-(}4Vﬂ) dx+8/QVﬂ- (Ava) dz

(3.30) —G/G/(fb)’&jdl'—Q/G(ﬁ) jdx_6/G”(ﬂ) 7?62 jda:—?/Gm(ﬂ) ﬁSJd:L‘
Q Q Q o
+6a% ﬂfn’hdS—l—6ozf QdeS—Foz?{ @2 i dS.
o0N a0 50

Similarly we compute the third variation of A. We differentiate (3.28) with respect to .
Then we differentiate (3.15) twice with respect to ¢ and choose ¢ = —4u. With (3.26) we
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get
(3.31) At = / VAV dr + 6 / VaAVia dr + 6 / VaAVa dx
Q Q Q

+aj§ a%dswaf aamds+6a]§ % m dS
oN o0 l9]

=0 /Q %] dx — 6A(t) /Qu i J dx — 3\(t) / a* J dx

Q

—6A(t)/aQde—GA(t)/éﬂjdx—m(t)/aﬁjd:c
Q Q

Q

Thus )\ (t) does not depend on . A direct consequence is

Corollary 1 The derivatives of E(t) and of A(t) of order greater than two are expressed in
terms of the derivatives of . of two orders lower.

This phenomenon was observed by D. D. Joseph [15] for the eigenvalues.

4 First variation

4.1 Energies
The goal of this section is to represent & (0) as a boundary integral. By (3.22) we have

£(0) = /QaiuAij(O)ﬁju dxr +a j{m u?m(0) dS — 2 /Q G(u)J(0) dx .

51 52

J/

From Lemma 4 we conclude after integration by parts that

& = jég{\Vu\z(v v) = 2(v-Vu)(v-Vu)} dS — 2/Qg(u)(v -Vu) de.

Moreover
£ — ]{ Gw)(v-v) dS — / g(u)(v - V) de.

) Q

Hence by (2.18) and the boundary condition (1.3) for u
£(0) = 7{ {|Vul? — 2G(u))(v - v) + 2a(v - Vu)u
o0
+au?(div gov” + (n — 1) (v - v)H)} dS.
Observe that
v-Vu= @+ (w-v)v)- (Vu+ (v-Vu)r)=v"-Vu—av-vu.



Thus

£(0) = jgﬂ(v V){|Vul* - 2G(u) — 20*u® + a(n — 1)Hu*} dS

—1—04?{ (20"uVu + u*div sov”) dS.

09

The last integral vanishes by (2.10). Finally we have

(4.1) £(0) = ]{ (v - v){|Vul* = 2G(u) — 2a*u® + a(n — 1)Hu?} dS.
00

In particular we observe that £(0) = 0 for all purely tangential deformations. From the
expression (4.1) above we deduce

Theorem 1 Let € be a family of volume preserving perturbations of ) as described in
(1.1). Then Q is a critical point of the energy E(t), i.e. £(0) =0, if and only if

(4.2) IVul? — 2G(u) — 20*u* + a(n — 1)u*H = const. on 0N.

Proof Write for short

z(z) = |Vul|* = 2G(u) — 2°u® + a(n — 1)u*H and 7 := \GQ|_1]{ 2 dS.
o0

Then, since §,,(v-v)dS =0,

jgg(v ‘v)zdS = jgﬂ(v -v)(z—2)dS.
Put Z* =max{0,+(z — z)}. Hence

ﬁg(v w)zds = (0-n)(z* = 27)ds

Suppose that z #const. Then Z* # 0 and we can construct a volume preserving perturba-
tion such that (v-v) > 0 in suppZ+ and (v-v) < 0 in suppZ~. In this case we get £(0) > 0
which is obviously a contradiction. 0

EXAMPLE If Q = Bj and u(z) = u(|z|) then £(0) = 0. The question arises: are there do-
mains other than the ball for which we can find a solution u : €2 — R of the overdetermined
problem

Au+g(u) = 0 inQ
ou+au = 0 in 0F)
Vul? — 2G (u) — 20u® + a(n — 1)u*H = const. in 907

Such overdetermined problems cannot be treated with the technique proposed by Serrin in
[19]

19
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4.2 Eigenvalues

The same arguments as in Section 4.1 imply that
(4.3) A0) = j{ (|Vu|* = A0)u* — 20°u® + a(n — 1)Hu?) (v - v) dS.
o0

In analogy to Theorem 1 we get by the same arguments

Theorem 2 Let () be a family of volume preserving perturbations of ) as described in
(1.1). Then 2 is a critical point of the principal eigenvalue \(t), i.e. A(0) = 0, if and only
if

(4.4) (Vul? — M\ — 20%u® + a(n — 1)u’H = const. in  OS.

Application Let us now determine the sign of the constant in (4.4) for the Ball Bg.
We set z = = and observe that

d -1
&2y T =0 (0, R).
dr r

At the endpoint
dz s mn—1

%(R) tat-—
We know that z(0) = 0 and z(R) = —«. Assume a > 0. If z,(R) > 0 then there exists a
number p € (0, R) such that z,.(p) =0, z(p) < 0 and z,.(p) < 0. From the equation we get
Zrr(p) = ”le > 0 which leads to a contradiction. Consequently
aln—1)
R
Similarly we prove that A < 0 if @ < 0. Consequently we have for a > 0 (< 0)

a+A=0.

(4.5) A=a® — + A > 0.

A0) <0(<0)
for all volume increasing perturbations fBBR v-vdS > 0. Notice that this observation

extends partly the result of Giorgi and Smits [9] who proved that A(2) > A(Bg) for any
2 C Bg. The result for negative a was observed in [2].

5 An equation for u/

In this section we derive a boundary value problem for the function ' defined in (3.17).
Let a(t) solve (3.7) - (3.8). If we differentiate with respect to ¢ and evaluate the derivative
at t =0 we get

(5.1)  La@u(0) + Lioa(0) + ¢'(a(0))u(0) J(0) + g(a(0))J(0) = 0  inQ

(5.2) baio W(0) + 8y, T(0) + am(0) @(0) + am(0) 4(0) = 0  in 990

YA(0)



From Lemma 4 we then get Au' 4 ¢'(u) v’ =0 in .
The computation for the boundary condition for ' is more involved.
Oy u(0) = 0,(v-Vu)+
8UA(0)11(O) = divv d,u — v; 0;v; O;u — Oju O;v; v,
= divvo,u—v-D,Vu—Vu- D,
am(0)u(0) = av-Vu+au
am(0)u(0) = an—1)(v-v)H u+ audivgv’.

Inserting these expressions into (5.2) and taking into account (2.18) and the boundary
condition du, + au = 0, we obtain

ou' +ou' = —0,(v-Vu)+Vu-Dyw+v-D,Vu—av-Vu
+ou(dive — (n — 1)(v - v)H — div gqu7).

We observe that since div gov = (n — 1)H,
dive =divpov” + (n — 1)(v-v) H + v; Ov; v;  on 5.
Thus
ou' +aou = —0,(v-Vu)+Vu-Dyw+v-D,Vu

—av-Vu+auv- D,v.
In view of (2.7) and the boundary condition for u we have
Vu-Dyv=—-auv-D,w+Vu-D,v.
Hence
ou' +aou' =-0,(v-Vu)+Vu-Dyw+v-D,Vu—av-Vu.
Thus v solves

(5.3) Au+g¢(uw)u = 0inQ
(5.4) o +au = —0,(v-Vu)+Vu-Dyv+v-D,Vu—av-Vuin Q.

Analogously we get for the eigenvalue problem

(55)  AY + X0 + A0)u=0inQ
(5.6) ou+au = —0,(v-Vu)+Vu-Dyw+v-D,Vu—auv-Vuin 0.

Examples



1. Of special interest will be the case where €2 is the ball By of radius R centered at the
origin and w is a radial solution of Au + g(u) = 0 in Bg with d,u + au = 0 on Bg. Then
(5.4) becomes

-1
57 ot et = (g(u) = ) o) ) -
For the torsion problem g(u) = 1 we have
R 1

5.8 =—+— (R*—|z]).
(5.9 u(r) = g o (B |aP)
Inserting u(R) = £ and ¢/(u) = 0 into (5.3) and (5.4) we obtain
(5.9) Au' = 0 inBg

1
(5.10) ou' +au = ( ra R) v-v  in0Bg.

n

2. Similarly we get for the eigenvalue problem in By

(5.11) Au' + A0’ + A(0)u' = 0  inBg

u(}f) (v-v) in 0Bg.

(5.12) ou +au = (1+aR—nla+AR)

6 The second domain variation

The aim of this section is to find a suitable form of £(0) in order to determine its sign.
Recall that £(t) is given by (3.25) and that consequently

(6.1) £(0) = /VuAVudx—l—oz]{ u%ﬁdS—Z/G(u)jdm
0 o0 0

—2/ VaAVa dx — Qa]{ i’ dS + 2/ g (u)i? de.
Q o0 0

For the moment we do not assume that {2 is a critical domain. This enables us to give a
rather general formula.
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The following integrals which appear in (6.1), will be expanded with respect to ¢.

(6.2) Fi(t) = /Q Ay (1) dvia(t) Dya(e) da
(6.3) Folt) := a]gﬂ a*(t) m(t) dS
(6.4) - /Q G(a(t)) J(t) da
(6.5) Fu(t) = —2/QAij(t) Osu(t) O;iu(t) dx
(6.6) Folt) = —2a fé im0 ds
(6.7) Folt) =2 /Q g (@)i2(8) I (£) da.

6.1 The expression F;(0) + F4(0)

From Lemma 4 we have
Fi(0) = / ((div v)? — D, : Dv) |Vul? do + 2/ (Okv; Ojv), + Ogvj Ojuy) Oju Oju dx
Q Q
—I—Z/ Okv; OV Oju Oju dx — 2/ div v (0;v; + O;vj) Oju d;u dx + D,
Q Q

where

D= —/(&-wj + 0jw;)0;ud;u dx + / div w|Vu|* dz.
Q Q

Using our notation (D,);; = 0;v; we rewrite this as

Fi(0) = /Q((divv)Z—Dv:Dv) |Vu|2dx+4/ﬂ(vu-Dv).(DUVu) dx

+2 / (D,Vu) - (D,Vu) de — 4/ dive Vu - D,Vudz + D.
Q Q

From Lemma 4 and (3.17) we also have

Fi(0) = —2/ 9;1(0) d;1(0 )dx——2/avk8kuf)vl@ludx—2/vkakauvlﬁlaudx

Q

—2/ V| do — / v; ,0;u O;vy, Opu dx — 4/ o’ Oy, Opu d
Q

—4/ v OpOsu Oy’ d.
Q

23



Moreover in terms of matrices we have, setting (D*u);; = 9;0;u,
Fi(0) = =2 / 9;u(0) 0;(0) dz = —2 / (D,Vu) - (D,Vu) dz
0 Q
—2/(D2u v) - (D*uv) dz — 2/ IV |? do — 4/ (D*uv) - (D,Vu) dx
Q Q Q
—4/ Vu' - (D,Vu) de — 4 / (D*uv) - V' dz.
Q 0
For the sum F;(0) + F4(0) we observe that the integral 2 [,,(D,Vu) - (D,Vu) dx cancels:
Fi1(0) + F4(0) = / ((divv)® — Dy : D) |Vul? dz + 4/(Vu -D,) - (D,Vu) dx
Q Q
—4/ diveo Vu - D,Vudr — 2 / (D*uv) - (D*uv) dx
0 0
—4/ (D*uv) - (D,Vu) do — 2/ VY| do — 4/ Vu' - (D,Vu) dx
Q Q Q
—4 / (D*uwv) - Vu' dx + D.
0
Observe that the last two integrals can be written as
—4/ V' - (D,Vu)dx — 4/(D2u v) - Vu' dx
Q Q
:4/U-VuAu'dx—47{ v-Vuo,u dS.
Q o9

We will show that F;(0) + F4(0) can be written as a sum of boundary integrals and two
domain integrals involving the Laplace operator. The computations are done in three steps.

Step 1 We observe that
I = —4/ diveo Vu - (D,Vu) dx — 4/(U - D*u) - (D,Vu) dx
Q Q

= —4/ 0; (v; Oju) Oy, Opu dx
Q
= 4/ v; Oju 0;0,v;, Opu do + 4/ v; Oiu O;vy, 0;0ku dx
Q Q
—47{ (v-v) Vu- (D,Vu) dS.
0

We integrate again the integral 4 [, v; diu 9;0;vr Opu da by parts. This gives a term with
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Au:
I = —4/ Auwv - (D,Vu)dx — 4/(Vu - Dy) - (D,Vu) dx
Q Q
—4/(1} - D,) - (D*uVu) dz + 4/(Vu - D,) - (D*uv) dx
Q Q
+4 ¢ Ouv-(D,Vu)dS — 4% (v-v)Vu-(D,Vu)dS.
G G
Then

Fi(0) + F4(0) = / ((divv)® = Dy : Dy) |Vul? dz — 4/ Auv - (D,Vu) dx
0 Q
—4/(1} - D,) - (D*uVu) dz + 4/(Vu - D,) - (D*uv) dx
Q Q
-2 / (D*uv) - (D*uv)dr+4 ¢ Ouv-(D,Vu)dS
Q o0
—47{ (v-v)Vu- (D,Vu)dS — 2/ |Vu'|)? dx
o9 0
+4/U-VuAu’dx—4j§ v-Vuo,u' dS +D.
Q 20
Step 2 Again by partial integration we get
—2/(v - D,) - (D*uVu) dz — 2/(D2u v) - (D*uv) dx
Q Q
= 2/ divo v - (D*uVu) dx + 2/ v; vj Ok 0;0;0ku dx
Q Q
—27{ (v-v)v- (D*uVu) dS.
o9

Moreover

4/(Vu -D,) - (D*uv)dr = —2/ Auv - (D*uv) dx — 2/ v; vj Opu 0;0;0ku dx
Q Q Q

+2 ¢ duv-(D*uv)dS.
o0
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Thus

Fi(0) + F4(0) = / ((divv)® = Dy : Dy) |Vul? dz — 4/ Auv - (D,Vu) dx

- (D*uVu) dx + 2/ divv v - (D*uVu) dx

2 :
Q/A 2uv da:—Qf(v v)v - (D*uVu) dS
Q )
+2 ¢ Ju uv)dS+4 ¢ duv-(D,Vu)dS
Q G

(v-v)Vu- (D,Vu) dS—Z/ |Vu'|)? dx
—1-4/21 Vu A dx — 4 7{ v-Vuo,u dS + D.
Q 99

Step 3 Finally we note that
div ([vdive —v - D,]|Vul?)
= ((divv)® = Dy : D,) |Vul* + 2(D*uVu) - (vdive — v - D,).
In addition straightforward partial integration implies
(6.8) D=-— 27{ w;0;ud,u dS +7{ (w - v)|Vul* dS — 27{ (w-v)G(u) dS
o9 o9 o9

+ 2/ G(u)div w dx.
Q
In summary we have proved
Proposition 1 A formal computation without any further assumption on v yields

Fi(0) + Fa(0) = /

Q

/Au( v)-vder+4 ¢ Oduv-(D,Vu)dS
)

4]{ v-v)Vu- DVu)dS%—ZY{ (D*wv) - v O,udS
) o9

2% - (D*uVu) dS+4/v-VuAu’d:c
o0 Q

4% v-Vudu' dS — 2/|Vu’|2dx—|—D.
o0

div ([v divv —v - D,]|Vul|?) dz — 4/ Auwv - (D,Vu) dx
Q
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6.2 The expression F3(0) + F(0)
From (6.4), (3.19) and (3.16) we have

F3(0) = —Q/QG(Q(O)) J(0) dzx = —Q/QG(u(x)) ((divv)® = Dy : D, +div w) dz.

Using again the fact that
(divv)* — D, : D, =div (vdive —v - D,)

we get

F3(0) = Q/Qg(u(x)) (v-Vudive —v - (D,Vu)) dx
—2]{ G(u(z)) ((v-v)dive —v - (Dyv)) dS
B

—2/G(u)div w dx.
0

From (6.7), (3.21) and (3.16) we have
Fs(0) = 2/99’(12(0)) u*(0) J(0) dx = 2/gzg(u(x)) (v-Vu+u) de
= 2 /Q g(u(z)) (v(x) - Vu(z))® dz + 4/Qg(u(x)) v(z) - Vu(z) u'(x) dz
+2/Qg(u(x)) u?(z) dx.

We note that
Q/Qg(u(x)) (v(z) - Vu(z))” do = Q/QU -Vyg(u) v Vudx

= —2/Qg(u(x))div v(x)v(z) - Vudr — Q/Qg(u(x)) v(x) - (Dy,Vu(z)) dz

-2 /Q g(u(x)) v(z) - (D*u(z)v(z)) do + 2%9 g(u(z)) v(x) - vov- Vu(x)dS.

Q

From this we easily deduce the following proposition.
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Proposition 2 A formal computation without any further assumption on v yields
F3(0) + Fs(0) = —4/ g(u(x))v(x) - (D,Vu(zx)) dx
Q

=2 [ g(u(x)) v(x) - (D*u(x) v(2)) dz

S—

QG(u) (v(z) - v dive —v(x) - (Dyv)) dS

|
)

%
So— SO

Qg(u(:zr))v(:v) -vov-Vu(z dS—l—Z/Qg x) dz

+4 | ¢ (u(x)) v(z) - Vu(z) v (z) dr

-2 [ G(u)div w dzx.

S— 55—

6.3 The expression F,(0) + F5(0)
From (6.3) and (3.16) we deduce

F2(0) := « 7{39 @?(0) 7m(0) dS = ozjg u?(z) m(0) dS.

Q

We will not use the explicit for of 7(0). From (3.17) and the fact that m(0) = 1 we obtain

F(0) == —2a 74 i2(0)m(0) dS
o0
= —204% (U-Vu)ZdS—éloz]{ v-Vuu’dS—Qoz]{ u? ds.
00 00 20
Thus
(6.9) F2(0) + F5(0) = 2047{ v-Vu)?dS — 404]{ U-Vuu'dS—Qaj{ u dS
o0 o0 00

+ozj{ u?
o0

Adding up all these contributions we arrive at our final result.

6.4 Main result
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Theorem 3 Assume that Au+ g(u) = 0 in Q and d,u + au = 0 on 0. Let u' satisfy
(5.3) and (5.4). Then the second variation £(0) can be expressed in the form

(6.10)(0) = —20,() —I—j{m[(v ) dive —v- (D) + w - v] (|Vul® — 26(w)) dS

4 74 (D v (DyVu) — (v- 1) Vu- (D, V) dS
B)
+2 fgg (Oyuv- (D*uv) — (v-v)v- (D*uVu)) dS

—I—Q% g(u)(v-y)v-VudS—ély{ v-Vu (u + au’) dS
o0N o0N

o0

—204]{ (v-Vu)*dS — 27{ w - Vud,udS + 047{ u?(x) 7(0) dS,
) o)
where

(6.11) Q) = /Q VY| do — /Qg’(u)u’2 dx + ozj{ u dS

o0
is a form in u'.
This formula is very general because no volume constraint is used. It could for instance be
used to study problems with a prescribed perimeter.

7 Applications to nearly spherical domains

7.1 Second variation

We evaluate (6.10) if Q = Br, u = u(|z|) and when the domain perturbations preserve the
volume and satisfy (2.15) and (2.14). Then

1
0i0ju(|z))|on, = Fou(R) vi v; + ROulR) (0 —vivy).

Since |Vu|?*—2G(u) = const. on OBg the contribution in the first integral of (6.10) vanishes
by (2.15). Keeping in mind the Robin boundary condition for u we get

(7.1) £(0) = —2Q,(u) +au2(R)j§ m(0) dS + 4a? UZ(R)f v" - D, vdS

OBRr OBR
207, T\2 2
—I—? u”(R) 7({33[{(1} )2 dS — 2a u(R) ngR g(u) (v-v)*dS
+4a u(R) 7{93 (v-v) (O + au') dS — 2a° v*(R) ng (v-v)*dS

—QuT(R)2j{ w-vdS.
OBRr
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We need the following technical lemma for v7.

Lemma 5 For volume preserving perturbations there holds

2 2
- U2(R)7{ (V)2 dS = —4a? uz(R)f v" - DyvdS
R O0BRr O0BRr
20%(n — 1
+M u?(R) 7{ (v-v)*dS + 2a2u(R)2f w - vdS.
R 0BR 0Bg
Proof At first observe that

1
— (v7)*dS = 7{ v-D,vdS.
R Jopy, 0Bp

On the other hand

j{ v-DyovdS = ]{ vl (Vv ), dS
O0BRr OBR

= —]{ vl (Vi) dS — 7{ div gp,v" (v-v)dS
O0BRr OBRr

= —j{ U-DUVdS—% dive (v-v)dS
O0BRr OBR

+2% (v-v)v-DywdS +j4 div op,v (v -v)* dS.
O0BR OBR

Next we use (2.15). Then

-1
]{ v-DyvdS = —2% vT-DUVdS+n }{ (v-l/)gdSqL]{ w-vdS.
OBRr OBRr R OBRr oN

This proves the claim. 0

This lemma together with the Robin condition u,(R) + au(R) = 0 implies that (7.1)
can be written as

(1) £(0) = ~20,(u)
o uX(R) ]{ 7 (0) dS + 4o u(R) jf (v v) (O + au) dS

—2a u(R) <g(u) - % w(R) — oﬂu(m) 7{) N (v-v)2dS.

We rewrite (5.4) for the radial situation. Recall that
ou' +au = —0,(v-Vu)+Vu-Dywv+v-D,Vu—av-Vu  indfd.
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Thus in the radial case we get

(7.3) Au'+¢'(u)u’ = 0 inBg

(7.4) ou +au = ky(u(R))(v-v) indBg,
with

(7.5) ko(u(R) = gu() — " Du(r) 1 au(r).

We can insert (7.4) into (7.2) and obtain £(0) as a quadratic functional in u’ alone.
B 2 R
(7.6)  €(0) = —20,(u/) + a u*(R) ]{ i(0) S + 20U E) jq{ (Ot + an')? dS.
8Br kg(u(R)) Jos,

Further simplification is possible if we use the equation (5.3) for «’. We multiply this
equation with u' and integrate over Br. This leads to

Qyu) = j{ (Opu’ + au')u’ dS.
9B

Lemma 6 For every volume preserving perturbation of the ball and for radially symmetric
solutions u we have

(1.7) £(0) = —2 7{ (O + o) dS + o v2(R) 7{ 7 (0) dS

QQU(R) u/ ozu’Q )
T (al(R)) ?gBR@” o) dS.

Remark 4 The second variation is independent of v and w. We can therefore restrict
ourselves to Hadamard perturbations y = x + tNv + O(t?).

Consider the case where (v -v) = 0 on 0Bg. Then by (7.3),(7.4) and (6.11) we have
Q,(u") = 0. Moreover by (2.25), Lemma 3 (7.6) it follows that £(0) = 0. Consequently

perturbations which preserve the volume and with (v - ) = 0 lie in the kernel of £(0).

7.2 Discussion of the sign of £(0) in the radial case
7.2.1 General strategy

Recall that by (7.6) and (7.3)

(7.8) £(0) = a®(R)S(0) + F

where

F = =2Q,u) + 2« u(R)kg(u(R))% (v-v)*dsS.



By Lemma 3 S(0) > 0. In order to estimate F we consider the following Steklov eigenvalue
problem

(7.9) A¢+ ¢'(u)p =0 in Bg,
0,¢ + ap = ¢ on OBR.

If ¢'(u) is bounded there exists an infinite number of eigenvalues

< po < pg < .. lim gy = oo.
1—00

and a complete system of eigenfunctions {¢;};>1. Testing (7.9) with ¢; we find
[ 90 Vo ko) do—ad codstup oo ds—o.
BR BBR 8BR

If we interchange ¢ and j we see immediately that the system of eigenfunctions {¢;}; can
be chosen such that

(7.10) Gip; dS = 65,

OBRr
and q(é,0)) = | Vor- Vo, dr — / JWid dr+ad by dS = .
Br Br OBRr

We write

o0

u'(x) = Z cip; and  (v-v)= i bi ;.
i=1

i=1
Note that the first eigenfunction ¢, is radially symmetric and does not change. The con-
dition

0:74 (v-v)dS = ¢1(v-v)dS
OBgr OBRr

implies that b; = 0. It gives a condition on ¢; y if we take into account (7.3) - (7.4):

0 = f (Ou' + au') ¢1 dS
OBg

= / Au' ¢y dx + Vu'V, dr + ozj{ u ¢ dS
Br

Br O0BRr

:f u’&,gbldS—kozf{ o Gy dS
O0BR OBR

= ,ulj{ u'qzﬁldS:clul.
OBRr
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Thus ¢; g1 = 0. The coefficients b; for ¢ > 2 are determined from the boundary value

problem (5.3), (5.4). In fact
Ci [ .
b= ——— for 1=2,3....
kg(u(R))

By means of the orthonormality conditions of the eigenfunctions we find
o0 e}
Qy(u') = ', u) =" claldi, &) = Y .
i=1 i=2

Inserting this into (7.8) we find

= au(R) 1
7.11 FoaS e {___}7
i 2 [y
where k, is defined in (7.5). Let p, = min{y; : ; > 0} be the smallest positive eigenvalue.

Then

The expression F vanishes if
ey =0
T au(R)

v kg(u(R))

for some i, and (v -v) = d;¢;.

The first case occurs only in the case of translations. This together with Lemma 3
implies
Lemma 7 The kernel of £(0) consists only on first order translations (v - v) = a;.

In order to get an estimate of £(0) in terms of v we impose the ”barycenter” condition
(7.12) 7{ x (v(z) - v(x))dS =0,
dBR
By (2.25) and (2.26) it then follows that

2
f VNP dS > ¢ N*dS
9B R* Jopy

and thus S(0) > 2t $om,, N? dS. Observe that b; = 0 for i = 1,...,n. Hence the estimate
(7.13) can be improved by replacing u, by p,y = min{u, > 0,k > n}. This together with
the estimate for F given above implies

(7.13) £(0) > {auQ(R)nR——zl + 2ky(u(R))au(R) — %}fﬁm} 729 (v-v)*dS.

In summary we have
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Theorem 4 The second variation of £ for volume preserving perturbations of the first and
second order is of the form

£(0) = au®(R)S(0) + F.
(i) If a > 0 it is bounded from below by
. R) 1
au?(R)S(0) + 2k2(u(R [%——}% v-v)?dS.
(B)30) + 2K |~ | § 00)
(i1) Under the additional assumption (7.12) we have for o > 0

£(0) > {M(R)”R—*;l 4 2%k, (u(R))au(R) — %}@} ng (v- )2 dS.

7.2.2 Applications

1. THE TORSION PROBLEM ¢ =1
The problem is well-posed provided a # 0. From (5.8) we have u(R) = £ and by(5.10)

1+aR ki(w(R)) 1+4+aR
n o0 au(R) R
The Steklov problem (7.9) is in this case
—A¢ = 01in Bg, 0,¢ + ap = ¢ on OBR.

An elementary computation yields pu; —a = 0 and pup — o = k—; (for £ > 2 and counted
without multiplicity). The second eigenvalue po = 1/R 4 o has multiplicity n and its
eigenfunctions are %, ..., % If @ > 0 then py > 0 and by Theorem 4 (i) £(0) > S(0) > 0.
Equality holds only for translations.

The estimate can be improved by assuming (7.12). Notice that this condition implies in
addition to ¢; = 0 also also that ¢ = --- = ¢, = 0. Hence we can take p,; = % + a. By
Theorem 7.13 (ii)

. n+1 (I1+aR)R 9
£(0) z{ as +2n2(2+QR)}]gBR(U.y) ds > 0.

ki

Next consider the case where —+ < a < 0. Then p > 0 and thus Q(u’) > 0. Moreover
F < 0 and consequently by (7.8) the second variation becomes negative, £(0) < 0.

This property is not longer true if < —1/R. In fact we can always find ¢; or equivalently
b; such that F > 0 orF < 0 and £(0) is positive or negative, respectively. For the torsion
problem we have proved the following

Theorem 5 (i) Assume o > 0. Then £(0) > 0 for all volume preserving perturbations.
(it) If = < o < 0 then £(0) < 0 for all volume preserving perturbations.

(1) If a < —% then the sign of 5(0) can change depending on he particular perturbation.
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2. PRINCIPAL EIGENVALUE g(u) = Au

In [2] it was shown that for ap < a < 0 the ball yields the maximal principal eigenvalue
among all nearly spherical solutions of the same volume. In this section we therefore restrict
ourselves to the discussion of the case a > 0.

The first eigenfunction is of the form u = u(r) = J n2 (vVAr)r~"z". Furthermore

kna(u(R)) = (R — a(n — 1) + AR)U(;?) .

Then by (4.5), A := a?R — a(n — 1) + AR is positive. In order to prove that A(0) is non
negative we shall use the form (7.6). Under the assumption that [ B u? dz = 1 it follows
that

(7.14) M0) = —2Qx, (u') + 2au(R)k)\u% (v-v)*dS.
0Br
The corresponding Steklov eigenvalue problem is
(7.15) Ap+Xrp = 0 in Br
(7.16) 00 +ap = up in 0Bg.
Notice that ¢; = u and therefore ¢; =const. on 0Br. Moreover iy = 0, therefore i, = po.
Next we want to check the sign of the expression %(R) — i in Theorem 4 . This is equivalent
to the sign of
I n n—1 A
=l — - —.
H2 R o

For this purpose we need the eigenvalues of (7.16). The eigenfunctions of (7.15) — (7.16)
are of the form

$x) = coias(r) Vo), 0e SN

S,1

Here s e NU{0} and i =1,...,d, for dg = (2s + n — 2) (j!w:;))!l € N. The function Y ;(6)

denotes the 7 - th spherical harmonics of order s. In particular
AYi+s(s+n—2)Y,; =0 in S"°1,

where A* is the Laplace Beltrami operator on the sphere. As a consequence of this Ansatz
we get from (7.15)

as(r) =r’7" Js+%,1(\/x ).
The corresponding eigenvalue follows from (7.16), namely

a,(R) = (p— a)as(R).
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Since the first eigenfunction does not change sign
u = r*%J%(ﬁr),
It follows from the well-known Bessel identity
(27" I (2))s = =17 g (2)
and from u,(R) + au(R) = 0 that

o VX Jnja(VAR) .
Jin-2/2(VAR)

The eigenfunctions corresponding to ps span the n-dimensional linear space (s = 1)

(7.17)

o(r,0) =D car T Ja(VAT)Y,(0).
=1

The boundary condition gives by means of the same identity as before

In AR

R Jnj2(VAR)

If we replace o and 9 we obtain

VA

n
L= AT (J241(VAR) + J2_1(VAR)).

From the identity

(7.18) ndnj2(2) = 2(Jnj241(2) + Jnj2-1(2)

it follows that L = 0. Consequently for all v # const.

(7.19) A0) > au?(R)S(0) > 0.

As for the torsion problem the inequality can be improved by imposing the barycenter
conditions (2.15). The positivity of the decond variation is in accordance with Daners-
Bossel’s inequality [5].

8 The ball is optimal

By the Taylor expansion
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for some ¢ € (—t,t). If |£] < c then for the critical domain
2

E(t) > £(0) + % (£(0) — ¢ 1)

which shows that for small ¢ that £(0) is minimal. In the first step we find upper bounds
for 1, J and A. The main tool is the formula

det (Id +tA)) Zk, ( Z—l)jtr((t A)j)>

Jlj

where tr(A) denotes the trace of the matrix A. In our case the matrix A will depend on ¢
as well:

t -~ .
A=A+ -B where A=D, B=D,.

N}

We now assume
(8.1) HD,UHLOO + || Dy HLOC <1 and 0<t<1/2
then

<c

det (Id +tA)) < et

and ¢ does not depend on v or w. With these assumptions we also get the estimates
3

ddet([d+tA %det(]d#—tfl) <c

dt

and again ¢ does not depend on v or w. With this we can easily prove the following lemma

Lemma 8 Let J (resp. m and A) be defined as in (2.12) (resp. (2.16) and (3.5)). Moreover
we assume (8.1) for the vector fields v, w and the parametert. Then the following estimates
hold:

— det (Id+tA)|,

m(t) + () +i(0) + (1) < co
IO+ IO+ IO+ T < o
[A®1+ IA®] +1A@) + [A@)] <

where cq and ¢y do not depend on v and w. || - || denotes any matriz norm.

(1,

In a final step we assume that for some number ¢ € R we have
(8.2) G’ (u)] < c.
Then from (3.7) and (3.8) and the corresponding equation for i we get

/\Vﬁ\de—ira]{fLZngc
Q Q
/|vﬁ|2dx+afa2dsgc.
Q Q



Theorem 6 Let t € R and let v and w be two smooth vector fields satisfying (8.1). Then
there exists a number ¢ € R which is independent of v and w such that

1
E@Wl<e Vost<s.

Consequently

. . 1
EW) 2 E0)—ct  VO<t<s.

For t sufficiently small we thus get the uniform positivity of E(t)

Since & (t) does not depend on u it is also independent of the tangential component of v,
and w.

9 Back to Garabedian and Schiffer’s second variation

In [7] the authors computed the second domain variation of the first Dirichlet eigenvalue
of the Laplace operator for the ball. Since the Krahn - Faber inequality holds one would
expect the strict positivity of Ap(0). However, from the formula Garabedian and Schiffer
obtained, namely

Ap(0) = — fgﬂ(ayu)‘z(v V)2H dS — 2 / (IV(0) — A(@(0))%) da

Q

it seems to be difficult to show that XD(O) > 0. Throughout this section we shall assume
that [ B u? dr = 1. Following the device of our paper we find

1. -1
15,0 :/ Vi = apu2de+ "= wrds
2 Br R Japy,
Here v’ satisfies the equation
A+ pu = 0 in By
v = (v-v)du  in OBg.

In this computation }\D(O) = 0 is already taking into account. We define

5 IVOP = Ape? du

Rs((b) faBR ¢2 dS

and we set

g = inf {Rs(qb), qdezO},

OBR
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From the previous considerations we observe that ;1 = s —« where s is as in the previous
subsection. As before

u=u(r)= crzt Janz(\/)\D T).
Ap is determined by the boundary condition u(R) = 0, i.e.

(9.1) Ju2(v/ApR) = 0.

By the same arguments as in the previous section

1. n \/EJ%-H(\/ER) 2
7 0(0) = {E‘ J2(VApR) }f[EBRu -

The identity (7.18) and (9.1) imply that

A(0) > 0.
As in the last section the equality sign can be excluded if v satisfies (7.12).

9.1 The Case of Dirichlet data
In case of Dirichlet data v = 0 on 0f2 the energy £(t) has the form

(9.2) E(t) = / VaAVi de — 2/ G() J d.
Q Q
As in (3.7) the function @ solve

Lau(t) + g(u(t)) J(t) =0 in Q
with the boundary condition (3.8) replaced by

(9.3) a(t)=0 in OQ.

The function v’ solves

(9.4) Au'+¢'(uw)u = 0 in Q

(9.5) W = —v-Vu in  09.

In complete analogy with Chapter 4.1 we get
(9.6) £(0) :7{ (v-v) {|Vul]* = 2G(u)} dS
o9

Thus any critical domain for which £(0) = 0 satisfies the overdetermined boundary condi-
tion

(9.7) IVul* — 2G(u) = const. in 09,
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thus
(9.8) Vu| = ¢ in 0Q.

Note that by a result of Serrin for positive solutions this would already imply that € is a
ball. For the second variation we observe that only & and F; + F4 + F3 + Fg contribute.
Hence

£(0) = 8(0) + F1(0) + Fa(0) + F3(0) + F5(0),

Computations very similar to those in Chapter 6 lead to the following lemma.

Lemma 9 Let Q2 be a smooth domain and let E(t) be as in (9.2). Let u be a solution of
Au+g(u) =0 in Q and u = const. on Q. Let v’ be a solution of (9.4) - (9.5). For any
critical domain Q in the sense that £(0) = 0 we have

(9.9) £(0) = 20, (u) — 2 }é s

Co

where ¢q is given by (9.8).
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