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Abstract

In this paper we discuss a boundary value and an eigenvalue problem with Robin
boundary conditions of opposite sign. The eigenvalue problem arises in the study
of the reaction-diffusion equation with dynamical boundary conditions. The depen-
dence of the energy and the principle eigenvalues of the domains is investigated. The
first and second domain variations are derived for nearly spherical domains. It is
shown that in contrast to the classical Robin conditions the second variation changes
sign and has singularities which depend on the eigenvalues of a Steklov problem. By
means of the harmonic transplantation isoperimetric inequalities are derived for the
principal eigenvalues in arbitrary domains.

1 Introduction

In this paper we discuss an elliptic boundary value problem with Robin boundary
conditions of the opposite sign and a corresponding eigenvalue problem with the
eigenvalue in the domain and on the boundary. The motivation comes from a classical
model for the heat distribution in a body Q C R3, expressed by the heat equation

T (z,t) — AT(z,t) = 1in Q x R,



where 0; denotes partial differentiation with respect to t, A is the Laplace operator
in R3 and the right-hand side describes a source of constant density 1. We suppose
that the body is immersed into an ice bath and that on the boundary there is a
regulating system with the following property: it the temperature drops below zero
heat is carried into and otherwise out of the body, according to the law 9,17 = —aT
on 09). Here 0, denotes the outer normal derivative of 2 and o € Rt is a fixed
positive number. This boundary condition is of the Neumann-Robin type. Observe
that this flux condition is different from the classical Newton’s law where « is of
opposite sign.

We shall also consider the case where at the boundary a reaction takes place.
Then on 0N), T satisfies the dynamical boundary conditions 0,T = —c0;T where
o <0.

In the first case the stationary solutions satisfy the elliptic boundary value prob-
lem

(1.1) Au+1=0inQ, 0Jyu= au on 0.

Under suitable regularity assumptions it has a unique solution provided a does not
coincide with a eigenvalue 0 = u; < uo < ... of the Steklov problem

(1.2) Ap=0inQ, 0y = o on 9.

If & = p; then the solutions are not unique. To (1.1) we associate the energy

E£(Q) :== E(u, ) where E(Q,v) :/‘VUP dx—2/vdx—oz/v2 ds.
Q Q o0

It is well-known that the solution of (1.1) is a critical point of E(v,Q) in W2(Q) in
the sense that the Frechet derivative vanishes. However it is not a local extremum.

In this paper we study the dependence of £(2) on the domain €. In contrast to the
case a < 0 the techniques based on the minimum principle £(2) = miny1.2(q) £(v,(2)
do not apply. Therefore, in the spirit of the previous investigations in [5] and [6], we
compute the first and second order shape derivative and discuss the behavior under
small perturbations of the domain which are volume preserving. This techniques fails
if o is a Steklov eigenvalue. It turns out that the first variation vanishes if 2 is a ball.
The second variation for the ball depends on §, EMCE v)2dS and on . It is singular
if aR = py, and if the kth-Fourier coefficient of (v - v) with repect to orthonormal
system of Steklov eigenfunctions does not vanish. At this point the second variation
changes sign. This is in contrast to the case a < 0 discussed in [5] where the ball
is a local minimum for all @ < 0. In a recent paper Bucur and Giacomini [7] have
shown that it is also a global minimum for the same choice of o. This first section
is a completes the investigations in our previous paper [6] where the case o < 0 is
discussed.

The eigenvalue problem we are dealing with has its origin in the heat equation
with dynamical boundary conditions. A standard method to find solutions is the



separation of variables. In fact T'(z,t) = e *¢(z) solves the homogeneous problem
if ¢ is an eigenfunction of

(1.3) Ap+Ap=0inQ, 0,¢ =g on O
It was shown in [4] that there exist two sequences of eigenvalues
A S A <A <0= < A1 < AL

such that lim,,_,oo A_, = —o0 and lim, -, A, = 00. These eigenvalues can be char-
acterized by a min-max principle, cf. [4].

In the second part of this paper we study the domain dependence of A; and A_;.
By means of the harmonic transplantation [8] a global upper bound for A\;(2) and a
global lower bound for A_; is derived. They are expressed in terms of the harmonic
radius which plays an essential role. Both bounds are sharp. In [3] it was shown
that for small o the ball has for all domains of given volume the smallest A\;. The
situation is more involved if A_;. An investigation is carried out for nearly spherical
domains of prescribed volume by means of the first and second domain variations.

Throughout this paper we shall assume that 2 is a bounded Lipschitz domain.
This guarantees that the embedding W12(€) into L?(92) as well as the trace operator
[ Wh2(Q) — L?(09) is compact. Under this condition both problems (1.1) and
(1.3) are solvable in W12(Q) in the classical sense.

2 The boundary value problem

2.1 First domain variation

Consider problem (1.1) in a class of domains §2; which are small perturbations of .
We assume that

_ +2 _
(2.1) O = {y:yzx+tv(w)+2w(a¢)+o(t2) : er}.
where v and w are vector fields such that
v,w:Q— R are in C1(Q).
The solutions of (1.1) in £; will be denoted by u(y;t) and the corresponding energy
by E(t).

Example 1 If () is the ball Br of radius R then for all a there exists a unique radial
solution

The corresponding energy is

S(BR):—/BRudx:|BR| <R_R2).

an  n(n+2)



If «v is not a Steklov eigenvalue u(y, ;) is continuous and continuously differentiable
in ¢. Under this condition it was shown in [5] that the first domain variation is

SmﬁiAJUWMVMQ—my—%%ﬁ—am—lm%ﬂd&

where H is the mean curvature of 092 and w is the solution of (1.1) in Q.

Example 2 If Q) = By then
; )R R?
(2.2) £(0) = <(”+2) - 2)/ (v-v) dS.
an n 9Bn
This leads to the following

Corollary 1 Let Q.t be a family of nearly spherical domains with prescribed volume
|%| = |Bgr|. Then £(0) = 0.

Proof The volume of € is given by [ By, J(t) dz where J(t) is the Jacobian de-
terminant corresponding to the transformation y : Bp — ;. The Jacobian matrix
corresponding to this transformation is up to second order terms of the form

12
I+tD, + EDU” where (D,);; = 0jv; and 0; = 0/0x;.

By Jacobi’s formula we have for small ¢

12
(2.3) J(t) = det (I +tD,+ ng)

= 1+tdive+ t; ((divv)? — Dy : D, +div w) + o(t?).
Here we used the notation
D, : D, = 0;v;0;v;.
Hence
1] = / J(t)dx = ]BRHt/ div valq:+i ((divv)® =D, : Dy+divw)dz+o(t?).
Br Br 2 JBg

For the first variation we have only to require that y is volume preserving of the first
order, that is

(2.4) / dive dr = / (v-v)dS =0.
Br OBg

This together with (2.2) proves the assertion. O
A further consequence of (2.2) is the local monotonicity property

Corollary 2 If 0 < aR < n+ 1 and || > |Bg| then £(0) > 0, otherwise if
aR >n+1 then £(0) < 0.

Proof By our assumption we have faBR(v -v) dS > 0 The sign of £(0) depends
therefore on the sign of (n + 1)aR — (aR)?. O



2.2 Second domain variation for nearly spherical do-
mains

Corollary 1 gives rise to the following question: is £(BR) a local extremum among
the family (); of perturbed domains with the same volume as Br? The answer
will be obtained from the second variation.

Let u¢(x) := u(y(z);t) be the solution of Au+1 =0 in €, d,u = au on I
transformed onto Q. If u; is differentiable then

d

%Ut(‘r)’tzo =u'(x) +v- Vu,

where u = ug is the solution of (1.1) in Bp.
It was shown in [5] that formally «’ solves the inhomogeneous boundary value
problem

(2.5) Au' = 0 in Br
1—
(2.6) o = ou + ( o R

n

)v-y on 0Bp.

Let us assume for the moment that such a v’ exists. This is certainly the case if a
does not coincide with a Steklov eigenvalue ;.

For the next result we consider perturbations which, in addition to the condition
(2.4), satisfy the volume preservation of the second order, namely

(2.7) / ((divv)? — D, : Dy + div w) dz = 0.
Br

Set
Q(u') :—/\Vu’]de—a /u’2 ds.
Br dBr

Then the following formula was derived in [5].

Lemma 1 Assume o # g, (2.4) and (2.7). Put S(t) := |0%|. Then

(28)  £(0) = —2Q0) + R - aR)/ (wv-v)2ds — 2 5(0).
n 9Bn an

For a ball and for volume preserving perturbations the second variation of the surface
1s of the form

so-§ (v - 5 w2 as

where V7T stands for the tangential gradient on OBR.



2.2.1 Discussion of £(0)

We write for short

2R

(2.9) Fi= =2Q,(u) + =5

(1 -aR) / (v-v)%ds.
OBRr

In order to estimate F we consider the Steklov eigenvalue problem (1.2) An elemen-
tary computation yields pu; = 0, and pi = k—]_%l (for £ > 2 and counted without
multiplicity). The second eigenvalue po = 1/R has multiplicity n and its eigenfunc-
tions are T, ..., .

From now on we shall count the eigenvalues u; with their multiplicity, i.e. ps = pusz =
pin+1 = 1/R and pnp42 = 2/R etc. There exists a complete system of eigenfunctions

{¢i}i>1 such that
(2.10) $op,, Gid dS = i;.

In view of the completeness we can write

u'(z) = Z ci¢; and (v-v) = Z bi;.
i=1 i=1
Note that the first eigenfunction ¢q = constant. The condition
O:j{ (v-v)dS = o1(v-v)dS
dBgr dBRr

implies that by = 0. From (2.6) we have also ¢; = 0. The coefficients b; for i > 2 are
determined from the boundary value problem (2.5), (2.6). In fact

nc; (pi — a)

1 —aR for i=2,3,....

(2.11) b; =

From the orthonormality conditions of the eigenfunctions it follows that
o0
Q) =Y cf(pi — a).
i=2

Inserting this into (2.9) we get

> R 1
2.12 =92 2 P 2 _

DiscussioN oF S(0). Observe that

RIxX] = Jory V105
faBR x*ds

is the Rayleigh quotient of the Laplace- Beltrami operator on the (n —1)-dimensional
sphere of radius R. Its eigenvalues are k(n — 2 + k)/R?, k € NT. For volume




preserving perturbations of the first order (v-v) is orthogonal to the first eigenfunction
($5,,(v - V) dS = 0) and thus

n—1
Rl(v-v)] > R

Equality holds if and only if (v - v) belongs to the eigenspace spanned by {z;}.,,
|z;| = R. This does not occur if we exclude small translations. Consequently S(0) >
0.

SieN oF £(0) Let us write for short

2(1 — aR)? R R k—2
A:=———" and d := — = .
n2 ORI IO R T k-1-aR  (1-aR)(k—1-aR)
Clearly
d >0 ifaR<loraR>k-—1,
"1<0 ifl<aR<k-1.
By (2.11)

1— R)? & 1 > -
Fo « Z [ — Ma]:AZS:bidk.

2

Remark 1 The last equality is read in the following way. Assume for some k > 2
there are m identical eigenvalues

P = Py = -+« = My,

The sum to the left thus contains the finite sum

% 1
Z:: [1—ozR M — o

The sum on the right side abbreviates this by setting IN)% = E;n:l sz.

Let u be the largest eigenvalue such that p, := max{p; : u; < a}. Suppose that
O<p—1<aR<p Thend, >0for k=1,...,pand di <O for £k > p. Then F
can be split into a positive and negative part,

p o0
F =Ft 4+ F, where .7:+:A213idk20, fszZBidkSO-
3 p+1

If 0 < @R < 1 then di > 0 for all k = 3,.... Hence

(2.13) F=Ft=A4) bid.
3



Moreover

p
(2.14) J—"+<AdeBi<Adp/ (v-v)%dS
m ~
F2 A 3B 2 Adyir [ (0w ds,
p+1 OBRr
R 1 )
< — : .
]:_A[l—aR ,ua—a} jiBR(v v)“dS
Recall that
R2

E0)=F" +F = —58(0).

Theorem 1 Suppose that the perturbations y are different from translations and
rotations. Under the assumptions of Lemma 1 and if 0 < aR < € for € sufficiently
small then £(0) < 0. The ball is a local mazimizer for E(t).

Proof By (2.13.), F* is bounded from above for R < € . Hence the last term
dominates and S(0) < 0. 0

Sign changes occur if « is in a neighborhood of p,. More precisely we have

Theorem 2 Let l;p % 0. Suppose that « is close to po = p— 1. Then there exists
€0 > 0 sufficiently small and depending only on v and w such that £(0) > 0 if
—1l<a<p—1+e¢€y. On the other hand if pr # 0 there exists e1 > 0 sufficiently
small such that £(0) < 0 if p—e1 < a <p. If by, = 0 in the first case then £(0) can
be positive or negative depending on (v-v). The same is true in the second case if
bp+1 = 0.
Proof The expressions containing d,, in the first case and, d,41 in the second case
dominate. O

In order to get a sharper upper bound for 8(0) in terms of v we impose the
"barycenter” condition

(2.15) ng z (v(z) - v(x))dS = 0.

Setting N = (v - v) we get

2
f{ V'N[2dS >0 ¢ N2ds.
OBg R? JoB,

Thus S(0) > 25t §,, N?dS > %5 3L b7

We then get the following upper bound for £(0).

(2.16) g(o)g{_n+1+2R(1—aR)_2(1—aR)2}Zp:B%
3

an? n? n?(fe — @)




Remark 2 Observe that since (2.15) is assumed, b; =0 fori=1,...,n. By (2.11)
this implies ¢; =0 fori=1,...,n. If

p—1l<aR<p

then

p—1
Ma:T-

Consequently
5 1 2a0R(1-aR)(p—2) 9
. < —— .
(2.17) £(0) < anz{n—i—l - }Zb

If p = 2 then it follows immediately that £(0) < 0. Let p > 2. The second term in
the brackets is monotone decreasing in aR. Thus
inf 2aR(1—aR)(p—2)
aRe(p—1,p) p—1—aR

= 2p(p® — 3p+2) > 12.

Hence if n > 12, £(0) < 0 for aR close to p.

Example 3 Let Q; C R? be the ellipse whose boundary 0 is given by

{Rlc‘f@ﬂ +t)Rsin(9)},

where (r,8) are the polar coordinates in the plane. This ellipse has the same area as
the circle Br and can be interpreted as a perturbation described in (2.1). We have
y = x + t(—x1,22) + %(1'1,0) + o(t?). The eigenvalues and eigenfunctions of the
Steklov eigenvalue problem (1.3) are
= % + a and ¢ = r™ (a1 cos(m@) + ag sin(m@)).
We have
(v-v) = —Rcos(20) = b3ps,

and
2

5(0) :}zé (]VTN\2 ]];) dS = 3nR.
OBR

A straightforward computation yields

with faBR (v-v)2dS = wR3. From this expression it follows immediately that

. ; 2
£(0) >Oz'faR>
<0ifaR < 2.

In this example there is only one coefficient bs which does not vanish. In accordance
with Theorem 2, £(0) has only one singularity at o = pus = %.



3 Eigenvalue problem

Let 2 C R™ be a bounded domain with smooth boundary. We consider the eigenvalue
problem

(3.1) Au+Adu=0 in Q, Oyu=Aou in 0.

o is a negative number. Clearly Ay = 0 is a eigenvalue and the corresponding
eigenfunction is ug = const.. We define
Uo(Q) = —"agg‘.

In [4] [3] the following properties were shown.

(P1) There exists an infinite sequence of positive eigenvalues (Ay,), with lim, o Ay, =
00.

(P2) There exists an infinite sequence of negative eigenvalues (A, ), with lim, oo Ay, =
—00.

(P3) If 0 < 0p(f2), then A; is simple and the corresponding eigenfunction u; is of
constant sign.

(P4) If 0 > 0 > 0¢(f2), then A_; is simple and the corresponding eigenfunction u_
is of constant sign.

(P5) Let Bpg be a ball such that |Br| = |Q|. If 0 < 09(BRr), then \1(2) > A1 (Bgr).

(P6) For any domain Q (with |Br| = |€2|), there exist a number 6 € (0o(2),0) such
that A_1(Q) > A_1(BRr) whenever o € (0¢(Q2),5).

Remark 3 For (P5) we note that the condition o < oo(Br) is more restrictive than
the condition o < oo(2) if |2 = |Bgr|. This is a consequence of the isoperimetric
nequality.

From (3.1) we obtain a representation formula for A_; and A;. In fact, multiplying
the equation for u; (resp. u—_1) with u; (resp. u_1) and integrating over {2 we obtain

[ Vu;|? dz
Q

Ai(92) i=—1,1.

:fu?dac—i-afu%dS
Q o0

Remark 4 Note that from (3.1) we deduce

/\Vuilz dxr =0
Q

and hence u; = const., if the denominator

/u%dw+a/u?d$-0.

Q o0

10



From now on A and u will denote \; and u; in either case 1 = £1.

Let (2): be a smooth family of small perturbations of 2 as described in (2.1).
In particular they are volume preserving in the sense of (2.4) and (2.7). Denote by
u; the solution to

(32) Aut + )\(Qt)'dt =0 in Qt, (9Vtut = )\(Qt) g Ut in 8Qt
Here A(€2) has the representation

J [Vuel? dy
Q¢
3.3 Alt) = A() = .
(3:3) ®) () [uldy+o [ u?dS
O 0%

As in [5] we transform the integrals onto 2 for small ¢ and differentiate A(t) with
respect to t. Then we get

)\(0):/(|Vu|2—)\u2—)\202u2—(n—l))\aH) (v-v)dS.
oN

In particular 2 = Bpr implies that )\(0) = 0. We are interested in extremality prop-
erties of the ball. Thus let 2 = Bg from now on and let o < o¢(Bg).

We consider the following boundary value problem.
(34) A +Xd' =0 in Bg o —Xou =k(R)(v-v) in OBg

where

(3.5) k(R) :== Au(R) (1 + (n_Rl)U +A 02) .

We determine the sign of k(R). In this we follow the proof of Lemma 3 in [6]. For
the sake of completeness we give the details.

Lemma 2 Let k(R) be given by (3.5) and let u(r) be the positive radial function in
the case X = X1 or A = A_1. Then we have

k(R) > 0 if A=\

kE(R) <0 if A= A_1.

Proof In the radial case either eigenfunction satisfies the differentia equation

n—1
T

ur +Au(r) =0 in (0,R), u'(R) = Ao u(R).

Upr +

We set 2z = “—J and observe that

dz o5 n-—1
— + 2"+
dr

z4+A=0in (0, R).

11



At the endpoint

dz 9 9 (n—=1) B
dr(R) Ao+ 7 Ao+ A=0.

We know that 2(0) = 0 and z(R) = A 0. Note that
(3.6) zr(0) = —A.

We distinguish two cases.

The case A = A\1(BR).
In that case we have (also from (3.6))

(3.7) H0)=0, 2R =Mo<0, 2(0)=—X <0.

Thus z(r) decreases near 0. We determine the sign of z,.(R). If z.(R) > 0 then
because of (3.7) there exists a number p € (0, R) such that z.(p) = 0, z(p) < 0

and z.r(p) > 0. From the equation we get z,-(p) = ”p—_glz(p) < 0 which leads to a
contradiction. Consequently
-1

2(R) = —(\ o2 + (nR ) Ao+ A1) <O.
This implies k£(R) > 0 in the case A = A1 (BR).
The case A = A_1(BR).
In that case we have (see also (3.6))
(3.8) 2(0)=0, 2(R)=A_10>0, zr(0) = —A_1 > 0.

Thus z(r) increases near 0. We again determine the sign of z,(R). If z,(R) < 0 then
because of (3.8) there exists a number p € (0, R) such that z.(p) = 0, z(p) > 0 and
n—1

zrr(p) < 0. From the equation we get z..(p) = = z(p) > 0 which is contradictory.
Consequently

(n—1)
R

This also implies k(R) < 0 in the case A = A_1(Bg). O

2(R) = —(\2, 0% + A_10+4+ A1) >0.

To (3.4) we associate the quadratic form

Q) = / V! |2 dz — A /u’2 de — o / u'? ds.
Br

Br OBRr

Computations as in [5] lead to the following formula for Q = Br. These are the same
computations which lead to formula (2.8) in Chapter 2.

A0) ==X u?(R) S(0)+ A\ F

12
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where

F=-2Q) -2 ou(R) k(R) / (v- V)2 ds.
OBRr

In the remaining part of this chapter we will discuss the sign of )\(O)

We modify the approach in Chapter 2.2.1 and consider the following Steklov eigen-
value problem

(3.9) A¢+\é=0in B,
Oy — No ¢ = ¢on dBR.

There exists an infinite number of eigenvalues
w1 < po < pg < ... lim p; = oo.
71— 00

and a complete system of eigenfunctions {¢;}i>1. See also Chapter 7 in [5]. With
the same notation we have v’ = 3.7, ¢; ¢; for the solution of (3.4) and we get

. N > 2o|u
(310)  X(0) =M |o|u*(R) S(0) +2 ¢ pi (W - :) '
=1 ’

Let A = A\i(Bgr). Then (3.10) is precisely the expression in [5] Chapter 7.2.2 subsec-
tion 2. where o > 0 is now replaced by A\1(Bgr) |o| > 0. Thus we conclude

(3.11) A1(0) > A9 |o| u*(R) S(0) > 0.
This is a local version of (P5).

The case A = A_1(Bg) < 0 is more involved. In that case F < 0 since k(R) < 0 by
Lemma 2. Tt is an open problem to show that also in this case A_1(0) > 0 - at least
for o close to oo(Bg) = —£. This conjecture is motivated by (P6).

4 Harmonic transplantation

The eigenvalues A; (resp. A_1) have a variational characterization for o # o (2) (see
[4]). Let

(4.1) Kq:={vewh"*Q) : /]Vv|2 dr =1 ,/vdm+a/v ds = 0}.
Q Q 09
Then for o < 09(2)
1

0 < M(Q) =
sup{fvzdx—]a|f02d8 : UEICQ}
Q oN




14

has a unique minimizer (of constant sign). The same holds in the case 0 > o > 0o (Q2)
for

1

inf{vada:—a]fUQdS : velCQ}
Q o

0> A_1(Q) =

We shortly review the method of harmonic transplantation which has been deviced
by Hersch[8], (cf. also [2]). In [6] it applied to some shape optimization problems
involving Robin eigenvalues. To this end we need the Green’s function with Dirichlet
boundary condition

(4.2) Go(z,y) =v(S(lz —y|) — H(z,y)),
where
= if n =2 —1 ifn =2
(43)  y=7% o and  S()=1 a(t)  ifn
m—2)[0B1] itn > 2 te—n if n > 2.

For fixed y € Q the funcion H(-,y) is harmonic.

Definition 1 The harmonic radius at a point y € § is given by
e Hwy) ifn =2,
r(y) = I S
H(yy) ™2 ifn>2.

The harmonic radius vanishes on the boundary 92 and takes its maximum rq at the
harmonic center yp,. It satisfies the isoperimetric inequality [8],[2]

(4.4) [Bro| < 1€2].

Note that Gp,(x,0) is a monotone function in r = |z|. Consider any radial function
¢ : By, — R thus ¢(z) = ¢(r). Then there exists a function w : R — R such that

¢(z) = w(Gg,, (¢,0)).

To ¢(x) we associate the transplanted function U : @ — R defined by U(z) =
w(Ga(z,yn)). Then for any positive function f(s), the following inequalities hold
true

(4.5) /QVUFdx:/& |Vo|? dx
(4.6 [y [ g an

(4.7) /Q f(U) dx < /B £(6) d,

1
72( i )n.
| Bral

For a proof see [8] or [2] and in particular [6] for a proof of (4.7). The following
observation will be useful in the sequel.

where




Remark 5 Since U is constant on 0Q (U = U(0Q)) and since ¢ is radial we deduce

o9)| 109
U%dS = U?(09) |09 = ¢*(rq) |0B, | = / $? dS.

/ 9)190] = 6%00) 0B 5 = 3]
TQ

o

Let u be a positive radial eigenfunction of \i(Bg). Then U € Kq since u € Kp,
and (4.5) holds.

The case 0 < g9 < 0. By the variational characterization we observe that

1
U?dx —|o| [[U?2dS’
o0

0= M) = X(®) <
Q

We use (4.6) for the first integral in the denominator and Remark 5 for the second.

1
0<A(Q) < - .
| w?de — o] gpry [ u?dS
Brg 9By,
Set
o = o 109
0By |

Then we have

/

0 AT(Q) < A (Bry).

Alternatively we may write

1
2 dp — gl 1921 2
Brfnu dr —|o| [0Brg,| Bfmu as
lo| [ wu?dS
B 1 | 9Br |0QY| 1
u2dr — |o u?dS u2dr —|o u?dS \ |08,
Q
B’V'Q aB’rQ BTQ 8BTQ
Thus
lo| [ u?dS -
9B |09
4.8)  0<X(Q) <X(B. 1- 2 ( —1>
( ) 1( ) 1( Q) A?(BTQ) |8Br9’
=:A(Q,0)

Note that the multiplicative term on the right hand side is close to one if the isoperi-
metric defect % — 1 is small. In fact for @ = Bgr we have rq = R and thus
TQ

A(Bpg,0) = 1.
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The case 09 < 0 < 0. Again by the variational characterization we have

1

0>A1(Q) > .
= -1 )—fU2d;p—|a|fU2ds
Q o0

We apply (4.7) to the first integral in the denominator and again Remark 5 to the
second.

1
0>A4(Q) >
v [ u?dz — o] |8|%Q| | [ u?dS
Brq, " a0
1
v [ uwtde — ol [ u?dS
Brg 89

The last inequality holds since the isoperimetric inequality

n

o0l 19l _
0,51 = 1Bl

was applied. Thus

1
0>A1(Q) = %Afl(Bm)

We may rewrite this as
Q[ A-1(Q) = [Brg| A-1(Brg)-

This proves the following theorem.

Theorem 3 Let Q be any domain for which the trace operator W12(Q) — L?(09)
is well defined. Let Ay+1(Q2) be the first positive (negative) eigenvalue of (3.1) and let
rq be the harmonic radius of ). Then the following optimality result holds.

1) In the case o < op(§2) < 0 we have 0 < A\ () < A(RQ,0)\1(By,), where the
factor A is given in (4.8) and A =1 for the ball.

2) In the case 0p(2) < o <0 we have 0 > |Q A_1(Q) > | By, | A—1(Bry,)-

Remark 6 It is interesting to compare 1) in Theorem 3 with (P5). We get the
following two sided bounds.
If Bg is a ball of equal volume with Q and if o < o9(Br) < 0 then

A(Bg) < M (Q) < AQ,0)M\ (Bry).

FEquality holds for the ball.
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