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Abstract

We consider the energy of the torsion problem with Robin boundary conditions in the case
where the solution is not a minimizer. Its dependence on the volume of the domain and the
surface area of the boundary is discussed. In contrast to the case of positive elasticity constants,
the ball does not provide a minimum. For nearly spherical domains and elasticity constants close
to zero the energy is largest for the ball. This result is true for general domains in the plane under
an additional condition on the first non-trivial Steklov eigenvalue. For more general elasticity
constants the situation is more involved and it is strongly related to the particular domain
perturbation. The methods used in this paper are the series representation of the solution in
terms of Steklov eigenfunctions, the first and second shape derivatives and an isoperimetric
inequality of Payne and Weinberger [16] for the torsional rigidity.

Key words: Robin boundary condition, energy representation, Steklov eigenfunction, ex-
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1 Introduction

Let Q C R™ be a bounded smooth domain and let v denote its outer normal. In this paper we
study the Poisson problem

(1.1) Au+1=0inQ, 0Jyu= auon J.



It is the Euler-Lagrange equation corresponding to the energy functional
E(V,Q) ::/ IVV|? dz — a V2ds2/Vds.
Q a0 Q

If o < 0 there exists a unique solution w(z) which minimizes the energy among all functions
in W52(Q). In this case Bucur and Giacomini [7] have shown that among all domains of given
volume the ball has the smallest energy. This property is well-known if u satisfies Dirichlet con-
ditions and follows immediately by symmetrization. The presence of Robin boundary conditions
requires completely new arguments.

In this study we are interesting in the case where o > 0. The motivation came from the
eigenvalue problem Ap+Ap = 01in Q, d,¢ = ap on 0f2, considered for the first time by Bareket
[5]. She observed that for nearly circular domains of given area the circle has the largest first
eigenvalue. Recently this result was extended to higher dimensions for nearly spherical domains
by Ferone, Nitsch and Trombetti [11] cf. also [4]. The question whether or not the ball is
optimal for all domains of the same volume remained opened until recently when Freitas and
Krejcirik [12] showed that annuli have for large a a larger eigenvalue than the ball with the
same volume.

If @« > 0 Problem (1.1) is not always solvable. In fact if a coincides with an eigenvalue
0=p1 < o <... of the Steklov problem

(1.2) Ap=0inQ, 9,0 = e on 0.

then problem (1.1) has a solution if and only if the compatibility condition

(1.3) /Q by dy =0

holds for all eigenfunctions corresponding to u; = . If (1.3) is satisfied then (1.1) is solvable
but the the solution is not unique.

If o # p; then there exists a unique solution. It is a critical point of E(V,Q) in W12(Q)
in the sense that the Fréchet derivative vanishes. However in contrast to the case a < 0 the
critical point is not a local extremum but a saddle point.

The goal of this paper is to investigate E(u,()) among all domains with given volume. In
contrast to the case where « is positive the ball has in general not the smallest energy. By
means of the shape derivative and a result of Serrin [18]for overdetermined boundary value
problems it can be shown that the ball is the only critical domain. The analysis of the second
shape derivative reveals that for nearly spherical domains and for o small enough the energy is
larger or smaller that the one of the ball, depending on the perturbation. The most surprising
result in this context is that for « close to zero the ball has the largest energy for all domains
of given volume. This phenomenon is related in a wider sense to anti-maximum principles [8].
At the end we use an upper bound for the torsion of Payne and Weinberger [16] and obtain an
isoperimetric inequality for E(u,(2) for all domains in the plane.

This paper is organized as follows. First we use the Steklov eigenfunctions to derive a series
representation of the energy which will be useful to derive global estimates. This is the content
of Section 3. Then we discuss the first shape derivative for general domains and the second
shape derivative for nearly spherical domains. At the end we prove the optimality of the disc
in two-dimensions.



2 Preliminaries

The Steklov eigenvalues and eigenfunctions will play a crucial role in our considerations. If
09 is Lipschitz continuous then they belong to the Sobolev space W2(Q) and have a trace in
L?(0R2). The eigenfunctions can be chosen such that

(2.1) 7{ Gip; dS = b;j, /wi.wjda;:()ifz‘#jand/\v¢i|2da;=m.
0N Q Q

Moreover every harmonic function h in € with a trace in L?(9Q) can be expanded in a series of
Steklov eigenfunctions which converges in W12(€2). It should be mentioned that by a result of
Mazya [15] in a Lipschitz domain the norms corresponding to the inner products < u,v >q=
Jo Vu-Vudr+ [quvde and < u,v >s0= [, Vu- Vo dz + §, uv dS are equivalent.

In the next lemma we show how to expand harmonic functions into a series of Steklov
eigenfunctions.

Lemma 1 (i) Suppose that o € R does not coincide with a Steklov eigenvalue ;. Let h be the
solution of

(2.2) Ah=01inQ, 0J,h=ah+ g(x) on Q.
Then h =377 hip; where
B — ﬂg@Q ¢ig dS
' pi—a

This series converges in W12(Q) N L?(09).

(ii) Assume oo = py, and denote by Ly, the linear space generated by the Steklov eigenfunctions
belonging to the eigenvalue py. A solution exists if and only if the compatibility condition

(2.3) f({;ﬂ gqﬁk dsS = 0.

is satisfied for all ¢y, € Ly, . In this case (2.2) has infinitely many solutions which are expressed
as

h = Z hi¢i + Lk,
i,k
where h; is given in (i).
Proof Because of the completeness of the Steklov eigenfunctions we can write h = Y7 hi¢;.
Testing (2.2) with ¢; we get by (2.1)

0= / ¢;Ah dy = 7{ (¢500h — hpjdj) dS = (o — pj)h; +j{ ¢;9 dS.
Q onN oN
This proves the first assertion. The convergence follows from results by [15, 1]. The second

statement is a consequence of the classical theory on inhomogeneous linear problems. O

For the next considerations we decompose the solution u of (1.1) into u = h + s where s is
the solution of the Dirichlet problem

(2.4) As+1=0in 2, s=0on0d.



Then h is a solution of (2.2) with g = —0,s.
A straightforward computation shows that

E(u,Q):—/Qudx:—/QfH—s Zh/@d:g—/

—/sdy: min /(|VV|2—2V) dy =:T(Q).
Q

w,2() Ja

Observe that

Moreover we have

B faggbz@ sdS '
Zh/@dx Z /quldx

and
/ ¢; dx = —/ ¢iAsdr = —% ¢;0,8 dS.
Q Q o0
Hence
_ §89 $i0ys dS)
(2.5) E(u,Q) = T(Q) + Z -

Theorem 1 Assume that p, < a < pipy1. Set

et .= zp: ($oq #1005 d5)2 >0 and € = i ($0 D0y s dS)2

1 O — [ QO — [y

p+1

Then the following statements hold true.

1.
BE(u,Q)=T(Q)+ET +&.

2. Let Ly be the linear space generated by {¢j}§:1 and let Ly be the orthogonal complement
spanned by {gbj};?‘;pﬂ. Set

:/|VU\2dy—a7{ U2dS—|—27{ v0,s dS.
Q onN o0

= min H(v) = min H (v), where y{ vpr dS =0 fori=1,2..p.
o0

n
Lgo v

Then

EY =max H(v) and £~

P

8. If a = p; then (1.1) has a solution if and only if [, ¢i dx = — §,o ¢iOys dS = 0 for all

etgenfunctions belonging to p;.

Proof The first assertion follows from (2.5). Replacing v € Ly, by its series Y 5 v;¢; we find

P
= > v (pi— i @ ¢idys dS.
H(v) sz(,u a)—i—?Zl:v jiﬂ(;ﬁ s

i



By assumption p; — o < 0 which implies that the positive maximum is achieved for v; =
— $90 ®i0us dS/(p; — ) which is the Fourier coefficient h;. Inserting this expression into H(v)
we obtain £T.The same argument yields the result for £~. This establishes the second statement
and the last assertion is the compatibility condition stated in (1.3). O

In the sequel h; stands for the Fourier coefficient of h in the decomposition u = s + h.

REMARK The series development (2.5) holds also for negative o. In this case £ = 0 and
therefore E(u,Q) =T(Q) +&.

EXAMPLES 1. Le = Bpg be the ball of radius R centered at the origin. The Steklov

eigenfunctions for the ball are of the form 7% X} () where 6 € 0B; and X}, () are the spherical

harmonics of degree k. The eigenvalues are yu = %, k € N, and their multiplicity is %

By the maximum principle for harmonic functions ¢; =const. is the only radial eigenfunction.
R2

2
— _R*_
Here s = o~ o and thus

hz(,ul — Oé) = — (;52-(‘),,5 ds =0 Vi>1.
0BRr

Consequently (1.1) has a solution for all a # 0. It is of the form

R2 _ R _r? : ,
w=12m Tan " if o 7 puy,
R R [ : — .
on an o Tw  ifa=py

where w is any function in the eigenspace of ;. In both cases we get

|Br|? R? R
2. F(u,Bgr) =T(B =1|B _+ — ).
( 6) (U, R) ( R) + a|8BR] | R| TL(TL + 2) + an

2. Let Q@ ={y : 7o < |y| < R} be an annulus and set o = KR. Suppose for simplicity that
2 C R, n > 2. The radial solutions of (1.1) are of the form
r2 Co
u = —% + C1 + 7«717—2

The boundary conditions lead to the linear system

a n—2 aR? R
2. — -
(2.7) cla+62<R+Rn_1> o e
caten [ n—2 _oz(fiR)Q_i_@
! >\ kR (kR)»1)  2n n

This system has a unique solution if the determinant is different from zero. The determinant

vanishes if
n—2 (k™" 41
a=a1=0and o = oy = .

R=2 \ k1-1
The eigenfunctions of the Steklov problem in annulus are similar to those for the ball, namely
(c17® 4 cor ™)Xy (0), k = 1,---. In addition to ¢; =const. there is a radial eigenfunction

br = c1+car® " with ¢y +co (% + Jgn;—%) = 0 and c1p,+c2 (Wg)g_n - (“7%;"2_0 = 0. Notice



that a1 and a9 correspond to the Steklov eigenvalues w1 and p, of the radial eigenfunctions.
For k # 1 the inhomogeneous linear system (2.7) is not solvable if o« = u,. Hence the Fourier
coefficient h, is not defined. From the symmetry of the annulus it follows that hi = 0 for all
k#£1,r.

The same argument as for the ball shows that in an annulus (1.1)

e has a unique solution if o # p;,

e no solution if a = p,

e a family of solutions of the form —% + ¢1 + %5 + w where is in the eigenspace of p; if

O = ;.

Therefore by Theorem 1 we obtain for the annulus

Q2 h? n—2 (k""" 41
(2.8)  E(u,Q)=T(2)+ 209 + p— for all & # 0 and o # p, = e \ oo )

3 Global estimates

3.1. General estimates.

From Theorem 1 we have for all a # p; that E(u,Q) = T(Q) + €T + £~. Many estimates
are known for 7'(€2) which is related to the torsion. Less known and more difficult to estimate
are the expressions £*. We first start with the observation that

a; = qﬁﬁys ds
oN

is the Fourier coefficient of 0, s with respect to the Steklov eigenfunction ¢;. Let us write

P 00
0ys = Z a;¢o; + Z a;¢; .
1

p+1
S—— —
Oys™ Oys—
Furthermore set for short ||v[| := [[v]|2(a0). Then [|9,s%|* = Y7 af and [|,s~[]> = 305, af.

Under the assumption 0 < p1), < a < pip41 it follows immediately that

(3-1) o H|0ystIIP < €F < (o= pp) "M 0us T,

m
(@ = piper) s 2 €7 < (@ =) S
pt1

APPLICATION If o = —¢?

Hence

is negative we have £t = 0 and therefore £~ > a*1|]&,3H%Q(aQ).

E(u, Q) > T(Q) — ¢ 2|8,

Equality holds for the balls. From Schwarz symmetrization it follows immediately that 7'(2) >
T(Br) where Bp is the ball with the same volume as . Also [, |Vsol* dz < [ [Vsp,[* dz.
However it is not clear that [|0ys||r2(a0) < [|0vsr2(ap,) Which would prove that the ball has



the smallest energy. Pointwise estimates for |[Vs|? are well-known in the literature cf. [13], [17].

3.2. Let 0 < a < p2(92).

In this case )
Et=at ( $10,s dS) .
00

1

N

. we find

Since ¢1 =

.l
a0

This together with Theorem 1 leads to
Lemma 2 Assume 0 < a < p2(Q2). Then

o

E(u,Q) <T(Q) + TR

Equality holds for the ball.

If a; = 0 for ¢ = 1,---7, like for instance in the annulus, then the estimate above holds for
0<a<pu ().
An interesting question is to find an isoperimetric upper bound for

JQ):=T(Q) + 9
o a0
If the volume || = |Bpg| is fixed then -as mentioned before- Schwarz symmetrization implies

2 2
that T(Q) > T(Bg), whereas Oll%‘ﬂl < OEI%E'RI' The question arises which inequality prevails.

Proposition 1 Let Q # Bpg be a fized domain in R™ such that |Q)| = |Bg|. Then there exists a
positive number ag(€2) > 0 such that

< j(BR) ’LfOé < o,

j(Q) {> j(BR) ika > Q.

Proof It is well-known that for any domain different from a a ball T(Q) — T'(Bgr) = € > 0.
Define oy = % (@ — ITlﬂ\) Then the assertion follows. O
REMARKS

1. A sharper estimate than in Lemma 2 can be derived from Theorem 1 (2). In fact
E(u, ) <T(Q)+ H(V),

where V is any trial function such that faﬂ V dS = 0. Observe that if V' is a admissible
trial function so is tV for any ¢ € R. Thus

($90 Vs dS)2
JoIVV2dy —a §,,V2dS’

& < rr]%nH(tV) =



Suppose that the origin is the barycenter with respect to 012, i.e. j;aQ x; dS = 0 for
t = 1,---n. Then x; is admissible for the variational characterization of £~. By our
assumption [, [Va;|* dy > po §yq @7 dS > o §,, 27 dS. Consequently

1 (fsz Li dy)2

£ <— .
n|Q| — a §,q, |2]2| dS

2. By the Brock-Weinstock inequality [19], [6], u2(2) < u2(B,) where B, is the ball of the
same boundary measure as 2, i.e |0B,| = |09|. Thus if |09)| is large, p2(Q2) is small.

3.3. Let £p(Q) < a < pip+1(2)

This case is more involved. From Theorem 1 it follows that E(u,Q) = T(Q) + T + &~
Rough estimates are obtained from (3.1).

Observe that if the Fourier coefficient a, = ¢, ¢pdys dS # 0 then £ is positive and
becomes arbitrarily large as a tends to p, from above. Similarly if the Fourier coefficient
fBQ ¢p+10,5dS # 0 then £~ # 0 then £ is negative and becomes arbitraryly small if o tends
to pp4+1 from below.

EXAMPLES

1. In a ball E(u,€;«) has only one pole v = p11 = 0. Hence lim\ g E(u, ;o) = oo and
limg o E(u, Q; a) = —o0.

2. In an annulus E(u,Q; «) has two poles a = p; = 0 and a = p, see (2.8).

4 Domain variations

4.1 First domain variation
4.1.1 General remarks

Let € be a family of perturbations of the domain €2 given by

2

(4.1) Q= {y:y—x+tv(:r)+t2w(x)+o(t2) : xeﬂ},

where v and w are smooth vector fields v, w :  — R™ belonging to C%(€2).

We assume that on 0f2, v points in the normal direction, i.e. v = (v - v)v. The parameter
t belongs to (—to,tp) where ¢y is chosen so small that y : Q@ — € is a diffeomorphism. We
consider the family of problems

Ayu(y,t) +1=0in 8y, Oy u(y,t) = au(y,t) on 0Q,
where 14 is the outer unit normal at €;. For short we set
a(t) == u(y(z,t),t) forx € Q, |t| < to.

We now map this problem by means of y(x,t) into Q0 and obtain after the change of variable
y—x

(4.2) 0; (Aij(z,t)05u(t) + J(t) =0in Q, 0,,u(t) = am(x,t)a(t) on 0L,



where
0 Ox; Ox;
i = — ey t g T Al t = ? 7]
0, Bz, dy = J(t)dz, dS, =m(t)dS (1) 90k D

In [3] it was shown that for small |¢|

J(t), 81/,4 = yl-Aij&j.

t2
(4.3) J() = det(I+tD,+5Dy)

= 1l+4+tdiveo+ t; ((divv)2 — Dy : D, +div w) + o(t?).
Here we used the notation
D, : D, = 0;v;j0;v;,
where summation over repeated indices is undestood. Furthermore
m(t)=1+tn—1)(v-v)H + o(t)
where H is the mean curvature of 92 and
div gov = divv — v - Dyv 1= 0jv; — vj0jv;15.

We also showed that

Aij(0) = 043

A;;(0)

Aij(O) = ((diV v)2 — D, : DU) (Sij +2 (8kvi 8j11k + 8kvj @‘Uk)
+2 Opv; 8kvj — 2divw (8jv,- + (91‘1)]‘) + div w 5ij - 8iwj — 8jwi.

divov 52’]’ - ajvi - aﬂ)j;

Similarly we can transform the Steklov problem. In terms of the x-coordinates it reads as
(4.4) LA¢(t) =01in , &,A¢(t) = ,u(t)m(t)é(t) ondf), Ly:= aj(Aw@)
The next Lemma is well-known, s. for instance [14, IV, Sec. 3.5] or [9, VI, Sec. 6].

Lemma 3 Suppose that (1,(Q2) < o < pip4+1(Q). Then there exists to > 0 sich that p,() <
a < ppy1() for all t € (—to, to)..
Proof By the min-max principle
Jo VV-A(t)VV dx

3%9 V2m(t) dSx
where L, is an n—dimensional linear space in W12(Q). Since [VV[*(1—cit|) < VV-A(H)VV <
IVVI2(1 + c1]t]) and V(1 — ealt]) < m(t)V? < VZ(1 + coft|). From the min-max principle we
obtain that |, () — pp(£2)| < tC where C' depends on v and w. 0.

pp(€2¢) = ming, maxver,

In the sequel se shall always assume that o does not coincide with an eigenvalue of ), for
allt € (—to,to).

Suppose that Q2 € C%€, A;;(t) € C1<, J(t) € C%€ and m(t) € C1¢. We also assume that
all the data are at least twice continuously differentiable in ¢. Then by Schauder’s regularity
theory [13] it follows that @(t) — @(0) =: u(z) in C>¢, ¢ < e. Our assumptions imply that
|0Q| — |0€2| which is crucial for the convergence of the eigenvalues. A general study of domain
perturbations for elliptic problems with Robin boundary conditions is carried out by Dancer
and Daners in [10].



4.1.2 First variation of the energy

Consider problem (1.1) in a class of domains 2 described in (4.1). As before the solutions of
(1.1) in Q will be denoted by u(z). We shall use the abbreviation £(t) for E(u(t), ). Under
the conditions stated above the solution of (1.1) @(t) = a(y,t) is continuous and continuously
differentiable in ¢.

It was shown in [3] that the first domain variation £E&(t)|;—o is given by

£(0) = /BQ(U V) [|Vu|2 —2u — 20%u® — an — 1)u2H] ds.

EXAMPLE
If QO = Bp then
: (n+1)R R? /
4. = —— — — . ds.
(45 fo - (P22 -35) [, @

This leads to the following

Corollary 1 Let § be a family of nearly spherical domains with prescribed volume || = | Bg].
Then £(0) = 0.

Proof From (4.3) it follows that for volume preserving transformations

(4.6) 7{ (v-v)dS =0.
0N
This together with (4.5) establishes the assertion. O

A further consequence of (4.5) is the local monotonicity property.

Corollary 2 If0 < aR <n+1 and [%| > |Bg| then £(0) > 0, otherwise if «R > n + 1 then
£(0) <o.

Proof By our assumption we have faBR (v-v)dS > 0. The sign of £(0) depends in view of (4.5)
on the sign of (n + 1)aR — (aR)?. O
4.1.3 First variation of J ()

In the case 0 < a < p2(R2) (see chapter 3.2) the energy E(u,$2;) is bounded from above by
T(Q) = T(Q) + 1%L Let S(t) = |9]. If || = || then the first variation is given by

a0
(47) 70 = 70 -2 50
’ N a|0Q?
where
(4.8) T(0) = —/|vs|2(v-y) ds
o0
(4.9) §0) = (n—1) / (v-v)H dS

o0

10



11

Thus for all critical domains the solution s of (2.4) solves the additional boundary condition

QP
al0Q?

(4.10) (n —1)H + |Vs|*> = const. on 0.

This is a direct consequence of (4.6). By Theorem 3 in [18] concerning overdetermined boundary
value problems, the ball is the only domain for which on 99, s is constant and |Vs| = ¢(H) for
a non-increasing function c¢. Consequently

Lemma 4 For o > 0 the ball is the only critical domain for the functional J(2) among all
domains of equal volume.

4.2 Second domain variation for nearly spherical domains
4.2.1 Second variation for the energy

Corollary 1 gives rise to the following question: is E(u, Br) a local extremum among the family
Q, t € (—to,tg), of perturbed domains with the same volume as Br? The answer will be
obtained from the second variation.

Consider the family of nearly spherical domains @ := {y = =z + tv(x) + %w(x) : x € Br}.
Let u(t) := u(y(z),t) be the solution of Au+1 =0 in Q, d,u = au on 9 transformed onto
Q. If a(t) is differentiable - this is the case when the data are Hélder continuous as described
in the previous section and « # p;(2¢) for all t € (—tg,to) - then

4
dt
where u = ug is the solution of (1.1) in Bp.

It was shown in [3] that the shape derivative 4’ solves the inhomogeneous boundary value
problem

a(t)‘tzo = u’(az) +v- VU(),

(4.11) Au' = 0 in Br
l1-aR
n

(4.12) v’ = au' + ( ) v-v on OBp.

Let us assume that such a solution u’ exists. This is certainly the case if o does not coincide
with a Steklov eigenvalue 11;(BR).

For the next result we consider perturbations which, in addition to the condition (4.6),
satisfy the volume preservation of the second order, namely

(4.13) / ((divv)? — D, : D, + div w) dz = 0.
Br
This formula can be simplified if v points into normal direction only. It takes the form

(4.14) (n—1) [ Hwv-v)*dS+ [ (w-v)dS =0.
Jreeres]
Set

QM) := / |Va/|? do — o / u'? ds.
Br

9Br



The following formula was derived in [3]. Remember that for nearly spherical domains £(0) =
E(u,Bg). Moreover if o # p;(Bgr), Lemma 2 implies that for ¢ sufficiently small « never
coincides with an eigenvalue 1;(€2;).

Lemma 5 Assume a # p;(Bgr) and let the volume preservation conditions (4.6) and (4.13) be
satisfied. Put S(t) := |0S2|. Then

R? ..

2R _ aR) /aB (w-)2ds — T§(0).

(4.15) £(0) = —2Q(u)) + —

an?
For a ball the second variation of the surface area is of the form

so)-f (P - T w2 as

where V* stands for the tangential gradient on 0BR.

4.2.2 Discussion of the sign of £(0)

We write for short
/ 2R 2
(4.16) Fi==-2Q) + —(1—-aR) (v-v)=dS.
n OBr

In order to estimate F we consider the Steklov eigenvalue problem (1.2) An elementary compu-
tation yields p; = 0, and g = k—}_{l (for £ > 2 and counted without multiplicity). The second

eigenvalue o = 1/R has multiplicity n and its eigenfunctions are 7, ..., %,

From now on we shall count the eigenvalues p; with their multiplicity, i.e. ps = 3 = fn+1 =
1/R and pip4+2 = 2/R etc.

Let {¢i}i>1 be system of Steklov eigenfunctions introduced in Section 2. The function u’
solves (2.2) with g = (#) v - v. Hence by Lemma 1

o [e.e]
o' (z) = Z ci¢; and (v-v)= Z b; ;.
i=1 i=1
Note that since the first eigenfunction ¢; is a constant constant. the condition

0:% (v-v)dS = ¢1(v-v)dS
3BR 8BR

implies that b; = 0. From (4.12) we have also ¢; = 0. The coefficients b; for i > 2 are determined

from the boundary value problem (4.11), (4.12). In fact

n e (pi — o)

L — ok for 1=2,3,....

(4.17) b =

From the orthonormality conditions (2.1) of the eigenfunctions it follows that

Q) =3 i = ).

=2

12



Inserting this into (4.16) we get

f:2i::c?(ui—oz)2[1 R ! ]

—ozR_,uZ-—oz

it follows that

==

Since po = -+ = ppy1 =

(4.18) F = Zicg(ui—a)z[ r ! ]

- l-aR pu—o

1-aR?* X ,] R 1
2 . — .
n? Zbl l—-aR pu—«
n+2

Next we shall discuss the sign of S(0). Observe that

Ry = Jooa V48
faBR x> dS

is the Rayleigh quotient of the Laplace- Beltrami operator on 0Bpg. Its eigenvalues A; are
k(n—2+k)/R? k € N*. Observe that the multiplicity of this eigenvalue is the same as for the
Steklov eigenvalue corresponding to k/R. Remember that for volume preserving perturbations
of the first order we have faBR (v-v)dS = 0 and therefore (v - v) is orthogonal to the first
eigenfunctionwhich is a constant. Thus

n—1

R?

Rl(v-v)] =

Equality holds if and only if (v -v) belongs to the eigenspace spanned by {7 }7;. This does
not occur if we exclude small translations. Consequently S(0) > 0. This is consistent with the
isoperimetric inequality.

If we replace in S(0), (v - ) by Y25° big; we obtain

. >0 n—1
(4.19) S(0) =Y bi(Ai - =)
2
From (4.18) and (4.19) we then get
. O B2 aR o
4.2 = i 32(1 - aR)? — —R*A;+n—1)p.
2 £ ;2%2{< e e R SRR ).

d;

Since the multiplicity of the Steklov eigenvalues and A; depending on k is the same we can
replace p; by k;/R for a suitable integer k; and A; by k;(k; +n — 2)/R%. Consequently
26(1 = &) (ki

(4.21) d; = P _1)fki(k:¢+n72)+n71,

where € := aR and k; = 2,3,4....



Next we shall discuss the sign of d;. Suppose that k, < § < kpy1, kp > 2. It is easy to see
that

di < 0if k; > kyand i >n+ 2,

If¢=ky+e (0<e<1)and ky > 2, then by (4.21)

_ 2(kp +€)(kp+e—1)(kp—1)

€

d, kp(kp +1n—2) 41— 1.

For given k, > 2 and n we can always find 0 < e sufficiently small such that d,, > 0. Observe
that for k, > 2, d, — ky(kp +n — 2) +n — 1 is a monotone decreasing function of e. A lower
bound is obtained for € = 1, namely

dp > 2k3 — k2 — nky +n — 1.

For n = 2, 3,4 this expression is positive. However in general the sign varies.
Ifky=0,ie. 0<&<lork,=1,ie 1< <2, no positive terms appear in the expression of
£(0).
The same situation as for d, holds for d; < d,,. Since d; > k‘f + (4—n)k; +n —1 we have d; > 0
if n <4.

k; < k, the sign of d; depends on k; and n. If k; is large compared to n it is positive,
otherwise negative.

These observations are summarized in the following

Lemma 6 (i) Let 0 < aR <2, o # %. Then £(0) < 0. Equality holds if and only if b; = 0 for
all i > n+ 2.

(ii) If kp < @R < kpy1, kp > 2, then £(0) <0 if by =0 fori=n+2,.,ky_1.

(iii) Assume aR =k, +¢€, ky > 2, € € (0,1). Then for every n there exists € sufficiently
small such that £(0) >0 for b, #0 and b; =0 fori=n+2,..,p—1 and b; =0 for i > p.

(i) If n < 4 and k, < aR < kpy1 then E(0) > 0 if by = 0 for all i > p and arbitrary b;,
i <p, and £(0) <0 ifb; =0 fori < p and arbitrary b;, i > p.

EXAMPLE

Let © C R? be the ellipse whose boundary 052 is given by

(e

i , (1 +t)Rsin(0)} ,

where (r,6) are the polar coordinates in the plane. This ellipse has the same area as the circle
Bp and can be interpreted as a perturbation described in (4.1). We have y = = + t(—z1,x2) +
%(l‘l, 0) + o(t?). The eigenvalues and eigenfunctions of the Steklov eigenvalue problem (1.2) in

Bp are
k a cos(k0)
=~ and ¢ = rF
H=R™ b=r {asin(k@)

14
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VrR2k+1

where a = is the normalization constant. We have

(v-v) = —Rcos(20) = by,

and
(v-v)?

$(0) :jéBR <yv*(v.y>\2 -l ) 4 = 37R.

A straightforward computation yields

with ¢, FRCE v)? dS = mR3. From this expression it follows immediately that

. > 0if aR > 2
HOR
< 0if aR < 2.

This result is in accordance with Lemma 6 (i). In this example b; = 0 for all i # 4. The sign of

£(0) depends therefore on dy. It changes sign at aR = 2

As we have already mentioned b; = 0 for all volume preserving perturbations. The coef-
ficients by, ..,bp41 belong all to the Steklov eigenvalue pg = -+ = ppy1 = 1/R and give no
contribution to £(0). This is due to the fact that on 0Bp

n+1

Zbid)i = Zn:bz‘ﬂca% =b-v,
2 1

where b is a constant vector. The presence of b; for ¢ = 2,..,n + 1 means that the perturbed
domain €2 has been shifted by a vector tb. Notice that such a shift does not affect the higher
coeflicients bg, k > n+ 2. Obviously it leaves the energy invariant. There is therefore no loss in
generality to assume that

(4.22) by=by = =bpis =0.

This condition also implies that co = --- = ¢,4+1 = 0. Hence Problem (4.11), (4.12) is solvable
for «R = 1. This observation together with (4.20) implies that for perturbations which are not
pure translations or rotations the following result holds true.

Theorem 2 1. Assume 0 < aR < 1. Then

£(0) < —"_2'574 (v )2 dS < 0.
an 8Bg

2. Assume 1 < aR < 2. Then
1 2 1-—
aF aR)—n—l % (v-v)?dS < 0.
2 —aR OBg

In both cases the energy is mazximal for the ball among all nearly spherical domains of given
volume.

£(0) <

an?



In general if aR > 2 the energy £(t) has a saddle in ¢ = 0.

Theorem 3 Assume n =2,3,4 and ky, < aR < kpi1. Let L, be the linear space generated by
the eigenfunctions ¢; belonging to the eigenvalues pi; = 1/R, .., ky/R and Ej be its complement
generated by ¢; belonging to the remaining eigenvalues p; = kpy1/R, ...,00. Then

- >0if(v-v)e L,
8(0){<0if(v'y) €Ly

4.2.3 The second variation of 7 ()

As for € (0) we can derive a formula for the second volume preserving domain variation for the
functional J. Applying the rules of differentiation we get

2|0/ i

(4.23) JO) = ﬂOHW (0)_04\8(2]25(0)

In analogy to formulas (4.7) - (4.9) and with the help of (4.14) we get
(4.24) TO) = [|Vs?((n-1)Hv-v)?— (w-v)) dS
o0

+2 [|Vs'|2dz+2 [ (v-v)?d,sdS,
Q [2/9]

where the shape derivative s’ satisfies
(4.25) As'=0 inQ, s'=—-v-Vs=v-v|Vs| indQ.

Moreover by formula (2.20) in [3]

(4.26) /]V* v-v)|?dS — / ]A|2 1)2H2) (v-v)*dS

+(n—1) / (w-v)H dS,

o0

where

n—1

|A’2 = Z(a:V -2, ) (O - wg,).

4]
denotes the socond fundamental form of 992.

From Section 4.1.3 we know that the ball is the only critical point of 7. For the ball Bgr
we have

S(0) = o0,

$(0) = ﬁBR <|V*(v-1/)|2 - ”B;l(v-y)?> ds > 0,

16
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and
1
s(x) = o (R* - |2?).

If R is chosen such that |Q;| = |Bg| for all t € (—tg.ty) we get

. 2
J(0) = 52/((71—1)}[(2}-1/)2—(10'1/)) dS+2/’VS/|2d$—2nR/(U‘V)2dS
OBgr Bgr OBRr
2 ..
o S0

The volume constraint (4.14) then implies
. R?2 .
j(O)——2— / v V) dS+2/|Vs 2 dr— 1 8(0).
6BR BR
If we use (4.25) to eliminate (v - v) we can write J(0) as a functional in s’ alone.
. 1 n—1
_ 2 2 x 112 2
J0)=TI —2/\Vs]dx /s' dS—a/<|Vs\—RQs>dS’.
Br 0BRr
4.2.4 Sign of J(0)
We like to find the sign of Z. For the ball it follows from the volume constraint that ¢, Br §'dS =

0. Hence
/ \Vs'|2 da > ,uQ(BR)j{ s dS.
Br OBRr

Since uy = 1/R we get the lower estimate

(4.27) I(s') > —ES(O).

Keeping in mind that s’ is harmonic we get

(4.28) / \Vs'|? da :75 §'0,s dS < 1% s dS + Ryf (0,5")% dS.
Br 0Bg 2R Jopg 2 JoBg

Next we multiply —As = 1 with x - Vs and integrate over ). Since s = 0 on 02 this gives

R R
12 ) N2
der = —— s — —— 5 dS
/yvs| . n_2/|Vs| s—2 [ @)
Br O0BRr OBRr
If we put this together with the estimate (4.28) we get
1
/ IVs'|? dx < jf s2as+ B |V*s'|2 dS.

nR OB 2 dBg

This results in the following upper bound.
2R 1) .
(s < [ — — =) 5(0).
@< (2250

Thus we have proved
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Lemma 7 For a < g5 the ball is a local mazimizer of J(2) among nearly circular domains of
equal volume.

4.3 Optimality of the ball in two dimensions

From Proposition 1 it follows that among all domains of given area A := |Bpg| the functional
J(£2) is smaller than the corresponding expression for the circle provided a < ay where
A? 1 1
o ==~ (|0Bgr|”" — L") where L = |09)|.
T(Q) — T(Bg) (| ‘ ) 109

If we replace T'(?) by an upper bound T* then

A2

1 -1

Observe that )

A
T(Br) = % and |0Br| = V4rA.
™
We are interested in estimates for T'(€2) which depend only on L and A. in [16] Payne and
Weinberger derived by means of the method of parallel lines such an inequality.

Let us introduce the notation
onR:=L, A=:7(R?>—-7%) and7=yR.

Then S )
4T A 4T A 4°R ~ A R
2 2 2
=1- L7 = = dR* = = :
Y L2’ 1—9y2 1—y2an 7(1—y?) 1—92

Payne-Weinberger’s inequality says that

P33 - R
T(Q) < g <f4 log% - R 4) .
The expression at the right-hand side is the energy corresponding to the boundary value problem
AU +1=0in By \ B; with U = 0 on 0B and 0,U = 0 on 0B;. Consequently equality holds
for the disc.

This inequality implies that

T~ TR4
€0 =T(Q2) —T(Br) < ZR4?J2 [1+y°logy” —y?] = m?ﬁ [1+y*logy® —v?] .
Moreover
1 4mA 2 2
0Bp|™! — L' = 1- Y Y - i :
A A L VirA (1+—V4L”A) 2rR(1+ /1 —12)

Collecting all the terms we obtain the estimate

2\2
20— v) — 2g().

4.29 ag >
29 R(1+1-y?)(1+ylogy? —y?) I




The function g(¢) is monotone increasing for ¢ € (0, 1) with lim;_,; g(¢) = 2 and ¢g(0) = 1/2. The
number y? measures the defect of 2 with respect to the circle. The estimate (4.29) together
with the monotonicity of g implies

Theorem 4 (i) Let Q C R? be a domain with fived area A and let Br be a disc with the same
area. Then

2
J(Q) < J(BR) for alla < Eg(yQ).
(ii) In particular J () is smaller than the corresponding quantity for the disc if « < 1/R.
Observe that the second statement is consistent with Lemma 7. As a consequence we have

Corollary 3 Under the same assumptions we have E(a,$2) achieves its mazximum for the disc
provided o < pa(£2).

Proof From Lemma 2 and Theorem 4 (ii) it follows that F(a, Q) < min{%, u2(2)}. Note that
by Weinstock’s result 12(Q2) < po(B,) < %, thus min{ua(Q), %} = p2(Q). O

Open problem In order to extend Corollary 3 a generalization of Payne-Weinberger’s
inequality to higher dimensions would be helpful. This inequality is based on estimates for the
length of parallel curves which to our knowledge are not available in higher dimensions.
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