Teil A

Höhere Mathematik I + II

Aufgabe 1: Man beweise durch vollständige Induktion:

(6)

$$\frac{4^n (n!)^2}{(2n)!} > 1 \qquad (n \in \mathbb{N}) .$$

Aufgabe 2: Es sei $f: (-1,1) \to \mathbb{R}$ mit

(8)

$$f(x) \ = \ \begin{cases} \cos\left(4\sqrt{|x|}\right) & \text{für } -1 < x < 0 \\ \frac{1 \ + \sqrt{x}}{1 \ - \sqrt{x}} & \text{für } 0 \le x < 1 \ . \end{cases}$$

Man beweise, dass f in $x_0 = 0$ stetig ist, indem man zu jedem $\varepsilon > 0$ ein $\delta(\varepsilon) > 0$ angibt mit

$$x \in (-1,1) \land |x-x_0| < \delta(\varepsilon) \Rightarrow |f(x)-f(x_0)| < \varepsilon$$
.

Aufgabe 3:

(4) (a) Man untersuche auf Konvergenz bzw. Divergenz:

$$\sum_{n=1}^{\infty} \frac{\sqrt[n]{(2n)!}}{2^n} .$$

(5) (b) Man bestimme alle $x \in \mathbb{R}$, für welche die Potenzreihe

$$\sum_{n=1}^{\infty} \frac{4^n (n!)^2}{(2n)!} \left(\frac{x}{2}\right)^n$$

konvergiert.

Aufgabe 4: Gegeben sei der Punkt $P = \begin{pmatrix} -9 \\ 9 \\ -9 \end{pmatrix}$ und die Ebene (8)

$$E\colon x = \lambda \begin{pmatrix} 2\\1\\-2 \end{pmatrix} + \mu \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \quad \lambda, \ \mu \in \mathbb{R}.$$

Man bestimme den Lotfußpunkt von P bezüglich E und den Abstand des Punktes P von E.

Aufgabe 5:

(6) (a) Man berechne

$$I := \int_{-1/2}^{1/2} \frac{2x+3}{x^2 + x + \frac{5}{4}} dx$$

und zeige: $0 < I < 1 + \frac{\pi}{2}$.

(5) (b) Man berechne

$$\int_{2}^{3} \frac{x^{2}dx}{(x^{2}-1)^{2}}$$
 (partielle Integration).

Aufgabe 6: Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \frac{1}{7} x^7 + 3x^5 - 10x^3 + 15x - \frac{71}{7} .$$

- (5) (a) Man beweise, dass zu y = f(x) die Umkehrfunktion x = g(y) existiert, und dass g(y) auf \mathbb{R} gleichmäßig stetig ist.
- (3) **(b)** Man berechne die Zahlenwerte g(-2), g'(-2), g''(-2).

Aufgabe 7: Man beweise mit Hilfe der Taylorformel:

(8)
$$x - \frac{3}{2} x^2 \le \frac{\log(1+x)}{1+x} \le x + x^2 \qquad (x \ge 0) .$$

Aufgabe 8: Man bestimme die Lösung des Anfangswertproblems

(12)
$$\begin{cases} x^2 u''(x) - 2x u'(x) + (2 - x^2) u(x) + x^3 = 0, & x > 1; \\ u(1) = u'(1) = 1. \end{cases}$$

Hinweis: $u(x) = x \cdot e^{\alpha x}$ mit geeignetem $\alpha \in \mathbb{R}$ sind Lösungen der homogenen Differentialgleichung.