Rheinisch-Westfälische Technische Hochschule Aachen Institut für Mathematik Prof. Dr. Heiko von der Mosel Alexandra Gilsbach Jan Knappmann

> Übungen zur Vorlesung Funktionalanalysis Serie 1 vom 21.10.2015 Abgabedatum: 30.10.2015

Aufgabe 1

[Die vom Skalarprodukt induzierte Norm]

Sei \mathcal{H} ein Prähilbertraum über \mathbb{C} mit Skalarprodukt $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. Zeigen Sie:

- (i) Das Skalarprodukt induziert mit $||x||_{\mathscr{H}} := \sqrt{\langle x, x \rangle}$ eine Norm auf \mathscr{H} , d.h. die Abbildung $||\cdot||_{\mathscr{H}} : \mathscr{H} \to \mathbb{R}$ erfüllt die Eigenschaften
 - (N1) $||x||_{\mathcal{H}} \ge 0 \,\forall x \in \mathcal{H}$ mit Gleichheit genau dann, wenn x = 0;
 - (N2) $\|\alpha x\|_{\mathcal{H}} = |\alpha| \|x\|_{\mathcal{H}} \ \forall \ x \in \mathcal{H}, \alpha \in \mathbb{C};$
 - (N3) $||x+y||_{\mathscr{H}} \le ||x||_{\mathscr{H}} + ||y||_{\mathscr{H}} \, \forall \, x, y \in \mathscr{H}.$
- (ii) Es gilt die Parallelogrammidentität

$$||x+y||_{\mathcal{H}}^2 + ||x-y||_{\mathcal{H}}^2 = 2||x||_{\mathcal{H}}^2 + 2||y||_{\mathcal{H}}^2$$
 für alle $x, y \in \mathcal{H}$.

(iii) Es gilt die Cauchy-Schwarzsche Ungleichung

$$|\langle x, y \rangle| \le ||x||_{\mathscr{H}} \cdot ||y||_{\mathscr{H}}$$
 für alle $x, y \in \mathscr{H}$.

Hinweis: Man kann den Beweis der Dreiecksungleichung (N3) in (i) zunächst zurückstellen und erst (iii) beweisen, bevor man damit dann (N3) zeigt.

Aufgabe 2

[Starke Konvergenz im Prähilbertraum]

Sei \mathcal{H} ein Prähilbertraum und $x, x_n, y, y_n \in \mathcal{H}$ für alle $n \in \mathbb{N}$. Zeigen Sie:

- (i) Äquivalent sind:
 - (a) $\lim_{n\to\infty} x_n = x$.
 - (b) $\lim_{n\to\infty} \|x_n\|_{\mathscr{H}} = \|x\|_{\mathscr{H}}$ und für alle $y\in\mathscr{H}$ gilt: $\lim_{n\to\infty} \langle x_n,y\rangle_{\mathscr{H}} = \langle x,y\rangle_{\mathscr{H}}$.
- (ii) Für $\lim_{n\to\infty} x_n = x$ und $\lim_{n\to\infty} y_n = y$ gilt: $\lim_{n\to\infty} \langle x_n, y_n \rangle_{\mathscr{H}} = \langle x, y \rangle_{\mathscr{H}}$.

Aufgabe 3

[Folgenraum ℓ^p]

Sei $1 \le p \le \infty$ und

$$\ell^p := \{A = (a_n)_{n \in \mathbb{N}}, a_n \in \mathbb{R} : \sum_{n=1}^{\infty} |a_n|^p < \infty \} \text{ für } p \in [1, \infty),$$

$$\ell^{\infty} := \{A = (a_n)_{n \in \mathbb{N}}, a_n \in \mathbb{R} : \sup_{n \in \mathbb{N}} |a_n| < \infty \} \text{ für } p = \infty,$$

der Raum der p-summierbaren Folgen.

- (i)* Zeigen Sie, dass $(\ell^p, \|\cdot\|_{\ell^p})$ mit der komponentenweise Addition und skalaren Multiplikation und mit $\|A\|_{\ell^p} = \|(a_n)_n\|_{\ell^p} := (\sum_{n=1}^\infty |a_n|^p)^{1/p}$ für $p \in [1, \infty)$ und mit $\|A\|_{\ell^\infty} := \sup_{n \in \mathbb{N}} |a_n|$ ein Banachraum ist.
- (ii) Zeigen Sie, dass ℓ^2 mit dem Skalarprodukt

$$\langle A,B
angle_{\ell^2}:=\sum_{n=1}^\infty a_nb_n$$
 für $A=(a_n)_n, B=(b_n)_n\in\ell^2$

ein Hilbertraum über \mathbb{R} ist.

(iii) Geben Sie ein vollständiges Orthonormalsystem (VONS) für ℓ^2 an.

Hinweis: Aufgaben mit Sternchen * liefern Zusatzpunkte. Sollten Sie den Teil (i)* nicht bearbeiten, so müssen Sie die Vollständigkeit von ℓ^2 in Teil (ii) separat zeigen.

Aufgabe 4

[Beispiele verschiedener Räume]

- (i) Zeigen Sie, dass die *Einheitssphäre* $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : |x| = 1\}$ mit der *Winkelmetrik* $d(x,y) := \arccos\langle x,y \rangle_{\mathbb{R}^n}$ ein vollständiger metrischer Raum ist.
- (ii) Zeigen Sie, dass für eine beschränkte, zusammenhängende, offene Menge $\Omega \subset \mathbb{R}^n$ der Funktionenraum $\mathscr{H} := \{ f \in C^1(\overline{\Omega}) : f|_{\partial\Omega} = 0 \}$ mit dem Skalarprodukt

$$\langle f, g \rangle_{\mathscr{H}} := \int_{\Omega} \langle \nabla f(x), \nabla g(x) \rangle_{\mathbb{R}^n} dx$$

ein Prähilbertraum ist.

(iii)* Zeigen Sie, dass der Raum ${\mathcal H}$ aus Teil (ii) mit der durch das Skalarprodukt induzierten Norm kein Hilbertraum ist.

2