Rheinisch-Westfälische Technische Hochschule Aachen Institut für Mathematik Prof. Dr. Heiko von der Mosel Nicolas Freches

Übungen zur Vorlesung Funktionalanalysis Serie 2 vom 27.10.2025 Abgabedatum: 5.11.2025

Aufgabe 5

[Metrische Räume]

(i) Sei $\mathbb{C}^{\mathbb{N}}:=\{x=(x_k)_{k\in\mathbb{N}}:x_k\in\mathbb{C}\ \text{für}\ k\in\mathbb{N}\}$ die Menge aller komplexen Folgen. Zeigen Sie, dass $\mathbb{C}^{\mathbb{N}}$ mit der von der Fréchet-Metrik

$$\rho(x) := \sum_{k \in \mathbb{N}} 2^{-k} \frac{|x_k|}{1 + |x_k|} \quad \text{für } x = (x_k)_{k \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$$

induzierten Metrik $d(x,y) := \rho(x-y)$ ein vollständiger metrischer Raum ist.

Hinweis: Benutzen Sie die Vollständigkeit von $\mathbb C$ für den Beweis der Vollständigkeit von $\mathbb C^{\mathbb N}$.

(ii) Sei (\mathcal{M},d) ein metrischer Raum und \mathscr{A} die Menge aller nichtleeren, abgeschlossenen und beschränkten Teilmengen von \mathscr{M} . Dabei heißt eine Menge $A \subset \mathscr{M}$ beschränkt, wenn es einen Punkt $x_0 \in \mathscr{M}$ und eine Zahl R > 0 gibt, so dass $d(x_0,a) \leq R$ für alle $a \in A$. Der Hausdorff-Abstand dist $\mathscr{H}(A,B)$ zweier Mengen $A,B \in \mathscr{A}$ ist definiert durch

$$\operatorname{dist}_{\mathscr{H}}(A,B) := \inf\{\varepsilon > 0 : A \subset B_{\varepsilon}(B) \text{ und } B \subset B_{\varepsilon}(A)\},\$$

wobei $B_{\varepsilon}(C) := \{x \in \mathcal{M} : \operatorname{dist}(x,C) := \inf_{c \in C} d(x,c) < \varepsilon\}$ die ε -Umgebung einer Menge $C \subset \mathcal{M}$ bezeichnet. Zeigen Sie, dass $(\mathcal{A},\operatorname{dist}_{\mathcal{H}})$ ein metrischer Raum ist.

Aufgabe 6

[Vollständigkeit]

Sei $\operatorname{Pol}(n) := \{p : [0,1] \to \mathbb{R} : p \text{ ein Polynom vom Grad höchstens } n\}$. Zeigen Sie, dass dann

$$\mathscr{P} := \bigcup_{n \in \mathbb{N}} \operatorname{Pol}(n)$$

mit der Supremumsnorm $\|f\|_{C^0([0,1])}:=\sup_{t\in[0,1]}|f(t)|$ ein normierter aber nicht vollständiger Raum ist.

Aufgabe 7

[Separabilität]

(i) Sei $K \subset \mathbb{R}^n$ eine kompakte Menge. Zeigen Sie, dass der Funktionenraum

$$(C^0(K), \|\cdot\|_{C^0(K)})$$

der auf K stetigen reellwertigen Funktionen zusammen mit der Supremumsnorm $\|f\|_{C^0(K)}:=\sup_{x\in K}|f(x)|$ separabel ist.

(ii) Zeigen Sie, dass die p-summierbaren Folgenräume (vgl. Aufgabe 3) ℓ^p für $p \in [1, \infty)$ separabel sind, nicht aber für $p = \infty$.

Aufgabe 8

[Hölderräume]

Für eine Menge $A \subset \mathbb{R}^n$ und eine Funktion $f: A \to \mathbb{R}^m$ definiert man zu $\alpha \in (0,1]$ die Hölderkonstante

$$\mathrm{H\"ol}_{\alpha,A}f:=\sup_{x,y\in A\atop x\neq y}\frac{|f(x)-f(y)|}{|x-y|^\alpha}\in [0,\infty].$$

(Für $\alpha=1$ heißt die Hölderkonstante auch *Lipschitzkonstante*, und man schreibt dann auch Höl_{1,A} $f=: \operatorname{Lip}_A f$.) Zeigen Sie, dass für eine kompakte Menge $K \subset \mathbb{R}^n$ die zugehörigen *Hölderräume*

$$C^{0,\alpha}(K):=\{f\in C^0(K): \mathrm{H\"ol}_{\alpha,K}f<\infty\}$$

bezüglich der Höldernorm

$$||f||_{C^{0,\alpha}(K)} := ||f||_{C^0(K)} + \text{H\"ol}_{\alpha,K}f$$

Banachräume sind.