Rheinisch-Westfälische Technische Hochschule Aachen Institut für Mathematik Prof. Dr. Heiko von der Mosel Bastian Käfer

Übungen zur Vorlesung Möbius-invariante Energien Serie 1 vom 3.11.2020 Abgabedatum: 24.11.2020

Aufgabe 1

[Lineare Abbildungen & Orthogonale Projektionen]

Seien V und W endlichdimensionale Vektorräume mit Skalarprodukten $\langle \cdot, \cdot \rangle_V$ bzw. $\langle \cdot, \cdot \rangle_W$, dim V = k und $\operatorname{Hom}(V, W)$ sei die Menge aller linearer Abbildungen $f : V \to W$. Die zu $f \in \operatorname{Hom}(V, W)$ adjungierte Abbildung $f^* \in \operatorname{Hom}(W, V)$ ist definiert durch die Beziehung $\langle f(v), w \rangle_W = \langle v, f^*(w) \rangle_V$ für alle $v \in V, w \in W$.

(i) Zeigen Sie, dass durch $f \bullet g := \operatorname{trace}(f^* \circ g)$ für $f,g \in \operatorname{Hom}(V,W)$ ein Skalarprodukt auf $\operatorname{Hom}(V,W)$ definiert ist, und dass die dadurch induzierte Norm $|f| := \sqrt{f \bullet f}$ die folgende Abschätzung erfüllt.

$$||f|| \le |f| \le \sqrt{k} ||f||$$

wobei $||f|| := \sup_{\|v\|_V \le 1} ||f(v)||_W$ die Operatornorm von f bezeichnet.

(ii) Die orthogonale Projektion $\Pi_F: \mathbb{R}^n \to \mathbb{R}^n$ auf einen m-dimensionalen Unterraum $F \in \mathcal{G}(n,m)$ für $1 \leq m \leq n$ ist charakterisiert durch die Identitäten $\Pi_F \circ \Pi_F = \Pi_F$, $(\Pi_F)^* = \Pi_F$, und $\Pi_F(\mathbb{R}^n) = F$. Zeigen Sie:

$$|\Pi_E-\Pi_F|^2=2\Pi_E\bullet\Pi_{F^\perp}=2\Pi_{E^\perp}\bullet\Pi_F=|\Pi_{E^\perp}-\Pi_{F^\perp}|^2\quad \text{ für } E,F\in\mathscr{G}(n,m).$$

- (iii) Zeigen Sie, dass $\Pi_E \bullet \Pi_F = |\Pi_E \circ \Pi_F|^2$ für $E \in \mathscr{G}(n,k)$ und $F \in \mathscr{G}(n,m)$.
- (iv) Zeigen Sie für $E, F \in \mathcal{G}(n, m)$:

$$\langle (E,F) = \|\Pi_{E^{\perp}} \circ \Pi_{F}\| = \|\Pi_{E} \circ \Pi_{F^{\perp}}\| = \|\Pi_{F^{\perp}} \circ \Pi_{E}\| = \|\Pi_{F} \circ \Pi_{E^{\perp}}\| = \|\Pi_{E^{\perp}} - \Pi_{F^{\perp}}\|.$$

(v) Zeigen Sie für $E, F \in \mathcal{G}(n,m)$ und $f \in \text{Hom}(E, E^{\perp})$ die Ungleichung

$$2|\Pi_F \bullet (f \circ \Pi_E)|^2 \le |\Pi_E - \Pi_F|^2|f|^2.$$

(vi) Zeigen Sie für $E \in \mathcal{G}(n,m)$, $f_1, f_2 \in \text{Hom}(E,E^{\perp})$ und $F_i := (\text{Id} + f_i)(E)$, i = 1,2, die Ungleichungen

$$\|\Pi_{F_1} - \Pi_{F_2}\| \le \|f_1 - f_2\|,$$

$$(1 - \|\Pi_{F_1} - \Pi_E\|^2)\|f_1 - f_2\|^2 \le (1 + \|f_2\|^2)\|\Pi_{F_1} - \Pi_{F_2}\|^2.$$

Aufgabe 2

[Orthonormalbasen und Winkel]

Sei $1 \le m \le n$ und $\langle \cdot, \cdot \rangle$ bezeiche das Standardskalarprodukt im \mathbb{R}^n . Zeigen Sie die folgenden Aussagen.

(i) Für Orthonormalbasen $\{e_1,\ldots,e_m\}$ von $E\in \mathscr{G}(n,m)$ und $\{f_1,\ldots,f_m\}$ von $F\in \mathscr{G}(n,m)$ mit

$$|e_i - f_i| \le \chi$$
 für alle $i = 1, \dots, m$,

gilt
$$\langle (E,F) \leq 2m\chi$$
.

(ii) Für $\rho > 0$, $\varepsilon \in (0,1)$, und $\delta \in (0,1)$ sei $\{v_1,\ldots,v_m\}$ eine $(\rho,\varepsilon,\delta)$ -Basis von $V \in \mathscr{G}(n,m)$, d.h.

$$(1-arepsilon)
ho \leq |v_i| \leq (1+arepsilon)
ho \quad ext{ für } \ i=1,\dots,m, \ |\langle v_i,v_j
angle| \leq \delta
ho^2 \quad ext{ für } \ i
eq j.$$

Dann existiert eine Konstante $C_2 = C_2(m)$ und eine $(\rho, 0, 0)$ -Basis $\{f_1, \dots, f_m\}$ von V, so dass

$$|v_i - f_i| \le (\varepsilon + C_2 \delta) \rho$$
 für alle $i = 1, ..., m$.

Hinweis: Benutzen Sie für Teil (ii) die Beweisskizze aus der Vorlesung.