Rheinisch-Westfälische Technische Hochschule Aachen Institut für Mathematik Prof. Dr. Heiko von der Mosel Till Knoke

Übungen zur Vorlesung Nichtlinearen Funktionalanalysis Serie 7 vom 20.5.2014 Abgabedatum: 28.5.2014

Aufgabe 25

[Projektion auf konvexe Mengen im Hilbertraum]

Sei $C \subset \mathcal{H}$ eine abgeschlossene konvexe Teilmenge eines reellen Hilbertraumes \mathcal{H} . Zeigen Sie, dass die orthogonale Projektion $P: \mathcal{H} \to C$ (vgl. Aufgabe 12, FA, WS13-14), die jedem Punkt $\eta \in \mathcal{H}$ den eindeutigen nächsten Punkt $c_{\eta} \in C$ mit $\mathrm{dist}(\eta,C) = \|\eta - c_{\eta}\|_{\mathcal{H}}$ zuordnet, eine monotone Abbildung ist.

Aufgabe 26

[Gegenbeispiel zur Pseudomonotonie]

Sei $\mathscr{B}=\mathscr{H}$ ein unendlichdimensionaler Hilbertraum mit Orthonormalsystem $\{\phi_1,\phi_2,\ldots\}\subset\mathscr{H}$, und betrachten Sie die Abbildungen $f:\mathscr{H}\to\mathscr{H}$ und $\pi:\mathscr{H}\to\mathscr{H}$ gegeben durch f(u):=-u und

$$\pi(u) := \begin{cases} u/\|u\|_{\mathscr{H}} & \text{für } \|u\|_{\mathscr{H}} \ge 1\\ u & \text{für } \|u\|_{\mathscr{H}} < 1. \end{cases}$$

Zeigen Sie, dass zwar f die Minty-Bedingung (M_2) auf \mathscr{H} erfüllt und π auf $\mathscr{H}\setminus\{0\}$ monoton und stetig ist, dass aber die Summe $g:=f+\pi$ nicht die Bedingung (M_2) erfüllt.

Hinweis: Betrachten Sie u_n := $\phi_1 + \phi_n$.

Aufgabe 27

[Pseudomonotonie]

Sei $\mathcal B$ ein reeller, reflexiver Banachraum mit Dualraum $\mathcal B'$ und $f:\mathcal B\to\mathcal B'$. Zeigen Sie:

- (i) Falls f stark stetig ist, dann ist f pseudomonoton.
- (ii) Falls f pseudomonoton und lokal beschränkt ist, dann ist f demistetig.

Aufgabe 28

[Dualitätsabbildung]

Ein Banachraum \mathscr{B} heißt *strikt konvex*, wenn aus $||v||_{\mathscr{B}} \le 1$ und $||w||_{\mathscr{B}} \le 1$ und $v \ne w$, $v, w \in \mathscr{B}$, folgt, dass $||v + w||_{\mathscr{B}} < 2$.

(i) Zeigen Sie: Ist der Dualraum \mathscr{B}' eines Banachraums \mathscr{B} strikt konvex, dann existiert zu jedem $v \in \mathscr{B}$ genau eine Element $Jv \in \mathscr{B}'$, so dass

$$\langle Jv, v \rangle_{\mathscr{B}' \times \mathscr{B}} = ||v||_{\mathscr{B}}^2 = ||Jv||_{\mathscr{B}'}^2.$$

(Auch wenn J (für einen nicht strikt konvexen Dualraum) mengenwertig sein kann, nennt man diese Abbildung die Dualitätsabbildung.)

(ii) Zeigen Sie unter den Voraussetzungen wie in Teil (i), dass die Dualitätsabbildung monoton ist.