Rheinisch-Westfälische Technische Hochschule Aachen Institut für Mathematik Prof. Dr. Heiko von der Mosel Tobias Hermes, Patrick Overath

Übungen zur Vorlesung Variationsrechnung I Serie 6 vom 23.11.2009

Aufgabe 21

[Stetige Fortsetzung]

Seien X ein normierter Vektorraum, Y ein Banachraum und $Z \subset X$ eine dichte Teilmenge.

- (i) Zeigen Sie, dass jede gleichmäßig stetige Funktion $f:Z\to Y$ genau eine (gleichmäßig) stetige Fortsetzung $\tilde{f}:X\to Y$ besitzt.
- (ii) Sei Z zusätzlich ein Unterraum von X. Beweisen Sie, dass es zu $T \in L(Z,Y)$ genau eine stetige Fortsetzung $\tilde{T} \in L(X,Y)$ gibt, wobei L(Z,Y) den Raum der stetigen linearen Abbildungen von Z nach Y bezeichnet.

Hinweis: Das *Prinzip der eindeutigen stetigen Fortsetzung* wird wiederholt in der Vorlesung benutzt, siehe z.B. den Beweis von Lemma 2.7.

Aufgabe 22

[Eine Kettenregel für Sobolevfunktionen]

Beweisen Sie: Sei $\Omega \subset \mathbb{R}^n$ offen und nichtleer. Dann ist für $u \in W^{1,p}(\Omega)$, $1 \le p \le \infty$, und $f \in C^1(\mathbb{R})$ mit $f' \in L^{\infty}(\mathbb{R})$, die Komposition $f \circ u \in W^{1,p}(\Omega)$, und es gilt

$$D(f \circ u) = f'(u)Du.$$

Hinweis: Approximieren Sie u zunächst mit glatten Funktionen u_m .

Aufgabe 23

[Poincaré Ungleichungen]

Sei $\Omega \subset\subset \mathbb{R}^n$ offen und $1 \leq p < \infty$. Beweisen Sie:

(i) Falls Ω zusammenhängend ist und $\partial \Omega \in C^{0,1}$, dann gibt es eine Konstante $C = C(n, p, \Omega)$, so dass

$$\int_{\Omega} |u - \bar{u}_{\Omega}|^p \, dx \leq C(n, p, \Omega) \int_{\Omega} |\nabla u|^p \, dx \quad \text{ für alle } u \in W^{1,p}(\Omega),$$

wobei wir

$$\bar{u}_{\Omega} := \int_{\Omega} u(x) dx = \frac{1}{\mathscr{L}^n(\Omega)} \int_{\Omega} u(x) dx$$

gesetzt haben.

(ii) Sei $\alpha \in (0,1]$, Ω zusammenhängend und $\partial \Omega \in C^{0,1}$, dann gibt es eine Konstante $C = C(n, p, \Omega, \alpha)$, so dass

$$\int_{\Omega} |u|^p dx \le C(n, p, \Omega, \alpha) \int_{\Omega} |\nabla u|^p dx \text{ für alle } u \in W^{1, p}(\Omega) \text{ mit } \mathscr{L}^n(\{u = 0\}) \ge \alpha \mathscr{L}^n(\Omega).$$

(iii) Es gibt eine Konstante $C = C(n, p, \Omega)$, so dass

$$\int_{\Omega} |u|^p dx \le C(n, p, \Omega) \int_{\Omega} |\nabla u|^p dx \quad \text{ für alle } u \in W_0^{1, p}(\Omega).$$

Zeigen Sie abschließend, dass man für $\Omega = B_R(x_0) \subset \mathbb{R}^n$ die Konstanten $C = C(n, p)R^p$ in (i) und (iii), bzw. $C = C(n, p, \alpha)R^p$ in (ii) wählen kann.

Aufgabe 24

[Beispiele zu den Einbettungssätzen]

(i) Zeigen Sie, dass keine stetige Einbettung des Raumes $W^{1,n}(\Omega)$ in $L^{\infty}(\Omega)$ existiert (vgl. mit dem Sobolevschen Einbettungssatz, Satz 2.8 (i) der Vorlesung).

Hinweis: Betrachten Sie dazu z.B. die Funktion

$$u(x) := \log(1 + |\log |x||)$$
 für $x \in B_1(0)$.

(ii) Diskutieren Sie die Funktion

$$u(x) := \frac{|\log|x||^{1/4}}{1 + |x|^2} \quad \text{ für } x \in \mathbb{R}^n$$

für unterschiedliche Dimensionen n im Hinblick auf den Morreyschen Einbettungssatz, Satz 2.8 (ii) der Vorlesung.

2