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For continuously differentiable embedded curves v, we will give a nec-
essary and sufficient condition for the boundedness of integral versions of
the Menger curvature. We will show that for p > 3 the integral Menger
curvature 9, () is finite if and only if v belongs to the Sobolev Slobodeckij
space W2 r (R/Z,R™). The quantity J, () - defined by taking the supre-
mum of the p-th power of Menger curvature with respect to one variable
and then integrating over the remaining two - is finite for p > 2, if and
only if v belongs to the space W2 P,

1 Introduction

In [SSvdMO09, SSvdM10], Marta Szumanska, Pawel Strzelecki, and Heiko von der Mosel
observed that in certain parameter ranges integral variants of the Menger curvature
might be used as knot energies. They could show that these quantities have self
repulsive and regularizing properties [SSvdM09, SSvdM10]. In this article will sharpen
these statements by characterizing all curves with finite integral Menger curvatures.
The Menger curvature c(z,y, z) of three points z,y,z € R™ that are not colinear is
given by the inverse of the radius of the circle going through these points. If the three
points z, y, z are colinear one sets ¢(x,y, z) = 0. A well known formula for the Menger

curvature is given by

sin<(y — z,z — x) (1.1)
ly — 2| '

The integral Menger curvature with exponent p € [1,00] of a Borel measurable set
E C R" of locally finite one dimensional Hausdorff measure is defined by

y(E) = [ [ [ eyt @ar )ar o),
FE E FE

c(x,y,2) =2
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where H! denotes the one dimensional Hausdorff measure. Exchanging one of the
three integrals by a supremum, we get the following variant

/ / sup {c¥ (2, , 2)} dH (y)dH  (2).

el

In the two dimensional Euclidean space, the quantity 9(E) - also called total
Menger curvature - has deep connections to harmonic analysis and geometric measure
theory. To mention only two of the most prominent results, note that M. Leger was
able to prove that finite Menger curvature implies rectifiability of the set F [Lég99]
and Guy David showed that M2 (E) < oo is enough to show that E has vanishing
analytic capacity and was then able so solve the Vitushkin conjecture [Dav98].

Marta Szumarnska, Pawel Strzelecki, and Heiko von der Mosel studied rectifiable
curves 7 : R/Z — R™ which are local homeomorphism with 9t,(vy) := M, (v(R/Z)) <
oo for some p > 3. They showed that reparameterizing v by arc length one gets
an injective curve belonging to "'~ (R/Z R™) (cf. [SSvdM10]). Moreover, Marta
Szumanska was able to show in her PhD thesis that in the case of the integral Menger
curvature the Holder-exponents are sharp [Szu09] in the sense that there are curves
with finite energy that do not belong to Holder spaces with any higher exponent.

For curves as above, they found that J,(v) := J,(7(R/Z)) < oo for p > 2 implies
that reparameterizing v proportional to arc length one gets an injective curve belonging
to CV173 (R/Z,R™).

As mentioned before, we want to give a necessary and sufficient condition for a curve
v € CY(R/Z,R™) to have finite integral Menger curvature for p > 3 or to have finite
Jp for p > 2. It turns out that as for O’Hara’s knot energies [Blal0a] and the tangent
point energies [Blall] such a condition for the integral Menger curvature 9, can be
given using Sobolev Slobodeckij spaces. A detailed introduction to these function
spaces can be found for example in [Tri83] and [RS96].

Let us shortly repeat the definition of these spaces in a form suitable for our purpose.
For p € [1,00), s € (0,2) and f € LP(R/Z,R™) we define the semi norm

1/p
_9 —an\|P
o= (] [ s e

R/Z —1/2

for f € LP(R/Z,R™) and denote by W*P(R/Z,R™) the space of all f € LP with
|flwsr < co. We define a norm on W*P by setting

I llwer := I fllLe + | flwer

for all f € W*P(R/Z,R").
It is well known that for s € (1,2) we can exchange the semi norm | - |yys» by the

semi norm
1/2

1/p
f/ + + fl p
|f|ll/vs,p = (/ / | (ﬁw|ﬁ)(sl)p(m) dwdw)

R/Z —1/2




in the above definition. The first main result of this article is

Theorem 1.1. Let vy € CY(R/Z,R™) be an injective curve parameterized by arc length
and p > 3. Then the integral Menger curvature MM, () is finite if and only if v €

W2 P (R/Z,R").

Together with Theorem 1.1 in [SSvdM10] and the fact that the W2 5P C C this
immediately leads to

Corollary 1.2. Let v € C%Y(R/Z,R") be a local homomorphism parametrized by arc
length and p > 3. Then My(y) < oo if and only if v is embedded and belongs to

W2 3 P(R/Z,R").
For the quantity JP we will show the following

Theorem 1.3. Let v € C1(R/Z,R") be an injective curve parameterized by arc length
and p > 2. Then JP(v) is finite if and only if v € WQ_%’p(R/Z,R").

Again, an immediate corollary of this theorem, Theorem 1.2 of [SSvdM10] and the
embedding W2~1/P»(R/Z,R™) ¢ CY(R/Z,R") for p > 2 is

Corollary 1.4. Let v € C%Y(R/Z,R") be a local homeomorphism parameterized by
arc length and p > 2. Then JP(v) < oo if and only if v is an embedded curve of class
W2-1/pr(R/Z,R"™).

We are convinced that the results and techniques in this article open the door to
a deeper understanding of integral Menger curvature for curves. The corresponding
results for O’Hara’s knot energies paved the way to regularity results for local min-
imizers and stationary points [BR11], and to long time existence results for the L?
gradient flows of O’Hara’s energies [Blal0b].

Throughout this paper, C' < oo and ¢ > 0 denote constants depending on known
quantities. These value of these constants are aloud to vary from line to line and even
within the same line.

2 Proof of Theorem 1.1

Let v € C'(R/Z,R") be an embedded curve parametrized by arc length. Then for
every € > 0 there is a constant C. < oo such that

[y(u+w) —y(u)| < Cclw| (2.1)

forall u €e R/Z and w € [-1+¢,1 —¢].

Let us assume that v € C1(R/Z,R") is an embedded curve parametrized by arc
length with 9,(v) < co. We will show that v can locally be written as a graph of
a W2 %" function and thus prove that v € W2~ since reparametrization by arc
length does not destroy this regularity.



So let w € R/Z. Since v € C'(R/Z,R"), we can assume that after a suitable
translation and rotation of the ambient space R™ we have v(0) = 0 and that there is
a é >0 and a function f € C}(R,R""1) with

£l <1
and f(0) = 0, such that (u) := (u, f(u)) satisfies
¥(B25(0)) C v(R/Z).
Then

[7(w) = ()| < |u—v| < [F(u) = F(v)] (2.2)
1<)y <2 (2.3)

DN =

and we observe that

(Al w) — ) At ws) = 5(w)

i << 5+ wr) — 3] Fu + ws) —3( )’
Hutw) =5 At w) - 5w ’

sign(wn)[5(u -+ w1) — 3(w)]  sign(ws)[3(u + wa) — 3(u)

1
> =
-2

for all u, wy,ws € R.
We hence get from (1.1)

VE S a2 — T (o ’
m > . sign(w1)]y u-‘,:wl —7(u ilgn wo) |7 (utwsz)—7(u
P7) 2 ( Flu+ w1) = 3(u+ )P

Bs(0) =0 —|w1|/2
X 3 (u+w2)| - 13 (w4 w1)| - |5 (u)|dwadw, du

F(u—wy) —F(u) H(utws)—F(u) P

6 |wil/2
sign(—w1) [ (u—w1)=¥(w)[  sign(wz)|¥(utw2)—7(u)]

/ / / |’Y(U*w1)*’7(u+w2~)|p

0 —|wi|/2
X |:Yl<u + w2)‘ : H/(U — ’IU1)| : |'7/(u)|dw2dw1du>
g lwil/2 7 (utwy) =5 (u) 5 (utwa) =5 (u) P
(2.2) & (2.3) sign(w1)[7(utwi)—F ()] ~ sign(wz)[5(utwz)—7(u)[P
dwadwrdu
|w1 — wal?
Bs(0) =6 —|w1|/2
o hwl/2 | Acw) A A(utws)A(u)
+ / / / Slgn(—wl)\’v(u—wl)‘—’v(g stl;g;lr:fz)lv(u+wz)—v(u)‘ dwgdwldu>
—wy —
BJ( -6 — ‘wﬂ/?



F(utwa)—F(u

5§ |wil/2 _ A(udwi) = (w) _
> sign(w1)[¥(utw1)—7(u)] sign(w2)[¥(utwz)— ’Y (u)[? dwydw du
|we [P
Bs(0) =6 —|ws|/2
5 |wil/2 Alu—w1)=F(u) _ A (utwa)=5(u) ’
sign(—w1)|[¥(u—wi)—5(u sign(w2)|y(utws2)—5(u)|P
. EnC w0 ) 30— Fen(wa 50t w) T | g
w1 [P
Bs(0) =6 —|w1]/2
5 \wu/z‘ Futw)=F(u) | Flu—w)—i(u) [P
A inequalit u+w + u—w u
% yc / [F(utw)—F(w) * [5( 1) =3 (w)] dwodw, du
w1 [P
Bs(0) =6 —|w1l/2
& ’ J(utwq)— 'yu) F(u—wi)—F(u)
> e / / Flutwn)—3@] T FHla—w)— v(u)l dwydu, (2.4)
|wy [P~

Bs (0 —d
where ¢ > 0 is a constant that is allowed to change from line to line. We thus get for

a constant C' < oo

) — 25 S — P
/ |V u+wy) — 25(u) + y(u —wy)| dwy du

|w1|2p71
B(s 0)
I ) 360 (s - )
_c // utw) — ¥ R ~ Femw=arn| ),
|wy [P~ '
Bs(0) —6

|w1|2p 1

)
_ S _ P
> / /| F(u+wr) = 25(u) +(u — wy)| dw,du
-0

Bs(0) —

p
)| )
dw; du. (2.5)

T Hlu—wi)—F(u

6‘ 1
e / / w1\ Farm) =]
Jwa [P~
N

B

Observing that

F(u+w) = 3w 5w —w) - F(u )|‘
f(u) (wl,f(uw1)+f(u))‘
13 (u —w1) = F(u)]

‘(whf(quwl)
[ (u+ w1) = F(u)
F(u+wi) —F(u)
A+ wr) = A(w)]

Y(u—w1) = F(u)

A —w) —5@)| *9
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we get from (2.4)

7 |1 (Fewmrsem — )|
/ L\ Flutw)=F@)] — Flu—w1)—7(w)] dwydu

|wq [P~
Bs(0) —
"y(u—&-wl) F(u) + F(u—w1)=F(u) [P
A (utw) =] T Flu—w1)=F(u)]
dwidu
wr [P~

B5(0) —
< CMy(7y) < 0.

Hence, Estimate (2.6) implies

dwidu < 0o

/ /|7 +wi) — 29(u) + §(u — wy)P

|w1|2p 1

and thus 4 € WQ_%’p(Bg(O)).
The other implication will be shown in two steps. Let v € W2~2/PP(R/Z,R") be a
curve parametrized by arc length. First, we will see that

p
/ cp(u,u+w1,u+w2)dw1dw2du§C’(|~y(1)22 > . (2.7)
w P

(u,w1,w2)€EG

where G is the subset of all triple (u, wy,wq) € [-2,2] x [—1/2,1/2] x [-1/2,1/2] which
have the property that w; and ws have different sign and the norm of at least one
3

of the w; is less than 2. Then we will use a decomposition of [-1/2,1/2]* and the

symmetry of ¢(x,y, z) with respect to permutations of the arguments to show that

My(y) <C / P (u,u + wi, u + we)dwy dwadu (2.8)
(u,w1,w2)EG

and thus finish the proof of the Theorem 1.1.

Let us introduce some notation. For a set Q C R? we denote by Q4 the set of all
triples (u,w;,w2) € @ with w; positive and wy negative, by Q+ the subset with w,
negative and wy positive, and by @4, @Q_ the subset where w; and we are positive
/ negative, respectively. Furthermore, we use Q<,Q2,Q>, Q< to denote the subset
of Q with |wi| < |wal, |wi] > |wal|, etc. Of course, we allow combinations of these
super- and supscripts. So, Q5 denotes for example the set of all (z, w;,w2) € Q with
0 < w < ws.

For (u,w;,ws) € G we have

7
lwi —wo| < <
8

and hence by Esimate (2.1) we have

lw1 — wa| < Cly(wi) — y(w2)l.



Furthermore, max{|w1|, jwa|} < |w; — we| < 2max{|w:], jw2|}.
We estimate for u, w1, ws € G>

: y(utwi)—y(u)  y(utwsz)—y(uw)
sin < (\v(u+w1)—v(U)|’ Iv(u+w2)—’v(u)|>

[v(u+ wr) —y(u+ wa)|

y(utwi)—v(u) + v (utwz)—~(u)
Y (utw)—~w)] T Ty(utws)—~(u)]

17w+ w1) = y(u + ws)|

y(utw)—y(u) _ y(utws)—y(uw)
w1 w2

c(u,u +wy,u+ ws) =2

<2

<ol
|w1 — ws

where we have used the estimate (2.1) and the fact that v — \UTI is locally Lipschitz

on R™ — {0} to get the last inequality.
Using the fundamental theorem of calculus, we get for (u,w;,ws) € G

Sl (A Twy) =4 (u+ Tws)| dr
|wy — wa|

c(uy,u 4wy, u+wy) <C
and hence

/cp(u, u 4wy, u + wy)dwydwedu

Gz

dwadwq

. / <f01 1Y (u+ Tw1) — 7' (u+ Tws)| dT)p

|w1 — wal?

Jensen /fo I (w + Twy) ’(u+7w2)|pd7dw2dw1
lwi — wal?
2 1/2 |@]
+ Pd
// /fo (W) =yt rd)dr ) dodu
—2-1/2 —|0|
2 p
_ //fo ) — vt To)dr g,
|w|p !
-2-1/2

- (|’Y|§/)2—2/p‘y)p :

To get from the third to the forth line, we first substitute u by ©+7w; and in a second
substitution exchange ws by @ := ws — w;. Furthermore, we use that |w;| < |w]| for
(u, w1, wz) € G=.

Exchanging the role of w; and ws in the argument above, we also get

P
/c” (u, v + wr, u + we)dwidwadu < C - (|7|W2 2/p, p)
G<



and thus (2.7).

To show (2.8), let A := [-1/2,1/2]3 and B := [-1,1] x [-1/2,1/2]?>. With the
notation introduced above we get

/cp(u, u 4wy, u + wy)dwydwedu
Ay
= /cp(u,u—i-wl,u—l—wg)dwldwgdu—l—/cp(u,u+w1,u+w2)dw1dw2du
A7 A3
S /Cp(’fb—@g,ft—‘r-@l,ﬂ)dﬁ}ld’lf}gdu-I-/Cp(ﬂ—@27ﬂ+’ll~}1,ﬂ)d’ll~)1d'll~)2du.
B B

The same estimate is true for A_ instead of A,.

Decomposing B into the set Wi where |w1|, |wa| > % and the rest G4 = By — W4
and substituting @ := u + w1, W := 1+ (wa —w) € [0, 1] and Ws == —w; € [~1/2,0],
we get after integrating over By

/c”(u, u + wi, u + wy)dwy dwedu
By
< /cp(u,u+w1,u+w2)dw1dw2du+/cp(u,u+w1,u+w2)dw1dw2du
By C_;i
S/cp(a—i-wg,ﬂ,ﬂ—l—zﬂl)dwldwgdd—l—/c”(u,u+w1,u+w2)dw1dw2du
G e

< 2/cp(u,u—i—wl,u—l—wg)dwldwgdu.
G

Analogous of course we have

/cp(u,u+w1,u+w2)dw1dw2du§ 2/cp(u,u+wl,u+w2)dw1dw2du.
B



Summing up, we get

1/2 1/2

/ / / P (u,u + wi, u + we)dwy dwedu

R/Z —1/2 —1/2

— /cp(u,u+w1,u+w2)dw1dw2du+/c”(u,u—i—whu—i—wg)dwldwgdu
Ay Ax

Jr/cp(u,u+w1,u+w2)dw1dw2du+/cp(u,u+w1,u+w2)dw1dw2du

Ay A_

§3/c”(u,u+w1,u+wg)dwldwgdu+3/c”(u,u+w1,u+w2)dw1dw2du

By Bx

< C/cp(u7u+w1,u+w2)dw1dw2du.
G

Together with Estimate 2.7 this shows that 9,(v) is finite if v € W2 P (R/Z,R™).

3 Proof of Theorem 1.3

Again, let us assume that v € C'(R/Z, R") is an embedded curve parametrized by arc
length with J,(v) < oco. We will show that v can locally be written as a graph of a

W2~ 5 P_function and thus prove that v € W2 5P,
As before, it is enough to show that if f € C1(R,R"~!) with

1l <1,
such that §(u) := (u, f(u)) satisfies
7(B25(0)) C v(R/Z).

then f € W2~1/PP(R/Z,R™).
We have

() = ()] < Ju—v| < [7(w) - 5(v)|
1< 3] <2

it wn) = 3(@)]" Flat ws) = 5(0)
J1 Altw) =) At ws) = 5(w)
= 2 [Sgn(wnli(u+wi) — 3] sign(w2) (e -+ wz) - 5(0)




for all u, w1, ws € R.
Hence, we get

5 _ Alwdw)—5(w) __ Alutws)—5(w) |7
3.(1) > c// sup sign(w1)[§(utw1)—F(w)|  sign(wz)[F(utwz)—F(u)] dwydu
wo € Bs (0) |wy — walP
—5-5
5 8 ’ Futw) (W) Au—w) -5 |
> C// [F(utw)=F(w)| " T (u—w1) () dwidu (3.1)
|wy [P
255
and again there is a constant C' < oo with
[ Bt ) 250 + (= wn))
N Y(u+wy) — 29(u) + y(u — wy)|P
Jp(y) > c/ TE; dwidu
-5

X X 1 1
|Gt 1) = 5(0) (= ~ o=
[wy [P

)

I
Q

\o. ‘;\&.
L —.

w1 du

|
%)

5 6
Y(u +wi) — 29(u) + (u — wy)|P
Lo [ [Blutw) =500 5wl
|wy [P
-5 -6
5 5‘ 1 p
w1 Yutw) =)~ Flu—w1)—7(u
—C’// (Iv(+1) F(u)| [7( 1)—(u)| )dwldu.
|wy [P
—6-6

As Estimate (2.6) and Estimate (3.1) imply

. ’wl ( 3 B 3 p)
Y(utw)—F(w)] [ (u—wi)=(u)]
dwrdu < CJ
/5 / wnl? i = Ch) <o

we get

p
dwidu < oo

5 6
//W%U+wﬂ—2ﬂw+ﬁw—uwl
526

[w:|2P

and hence ¥ € WQ_%’p(Bg(O)).
To show the other implication, as in the proof of Theorem 1.1 we first derive some
estimates for good parameters and then show that the rest can be reduced to that.

For w; € [—1/2,1/2], we denote by G'Y) the subset of all ws € [-1/2,1/2] such that
|wa| > 2|w;| and w; and ws have the same sign. Let é&) be the subset of all wy €
[—1/2,1/2] such that |wa| > 2|w|, w1 and we have opposite signs and |we —w;| < 7/8.

10



By Gﬁ) we denote the subset of all we € [-1/2,1/2] such that |ws| < 1/2|w;| and

wy and w; have the same sign, and by C?EUQB the set of all wy € [—1/2,1/2] such that

|wa] < 2|wq|, wy and wy have opposite signs and |wy — wy| < 7/8.

Furthermore, we denote by B, subset of all w, € [—1/2,1/2] such that |w; —ws| >
7/8, by BY) the subset of all w, € [—1/2,1/2] such that 1/2|w;| < |ws| < |wq| and wo
and wy have the same sign, and by Bf,i) the subset of all we € [—1/2,1/2] such that
|wy] < |we] < 2|wq| and we and wy have the same sign.

Let us first deal with the sets Gﬁgf and éﬁgf, j=1,2. By (2.1), we get for u € R/Z,
wy € [—1/2,1/2], and wy € GEﬁf or wg € Gng, j =1,2, that

lwy —wa| < Cly(wy) — y(w2)].

Furthermore, we deduce in these cases that

: y(utwi)—y(u)  y(utwz)—y(u)
sin < ( A (utwn) = (@] Ty (utws) = (w)] )

[v(u+wr) —y(u + wa)|

y(utwq)—v(u) + v (utwz)—(u)
[y (utwi)—y(u)] [v(utwz)—(u)|

c(u,u +wy,u+wy) =2

<2

= Iy(u+w1) = y(u + ws)|
"y(u+w1)—’y(u) _ y(utwz)—vy(u)

< C w1 w2

- |wy — wal

Here we have used the estimate (2.1) and the fact that v — ro7 s locally Lipschitz on
R™ — {0} to get the last inequality. Using the fundamental theorem of calculus, we

then get

1
c(u,u + wy,u+ wsy) < Cfo 1Y/ (u+ Twi) — ' (u+ Tws)| dr
) ) = |1,U1 _T,U2|

11



Since for wy € Gﬁulf we have |wq| < 2|w; — wsl, we deduce that

1/2
/ / sup P (u,u+ wy,u+ we)dwidu
o)
wek/z —1/2 W2€Cwi
1/2 )
+
<C / / sup fo ' (w (u + 7ws)] dwydu
Rz —1/2 W2EC |w2|p
ue
U+ TW "(u
co [ B A,
R/Z
1/2

= + Pd
Z / / sup <f0 GG \w Tp Tw2)| T) dwidu
. . )

— 20 jwq | < |wg <29+ wy |
- ueR/Z 1/2 |wo|<1/2

H’y ||W1 1/p.p

e fo I/ (u) — ' (u + 7271wy ) |PdT
< C’Z / / 2J|w1|P dwidu

I= eR/Z |wy | <291

+ Y Ry -1/

o + Pd
s / /fo [v(u) = +'(u + 70)| dwdu+ C |2

|w\”
uw€ER/Z —1

< ClIV IRy -1/p-

Using that |w;| < |w; — wq] for we € Gwl, we get by the same arguments that

1/2
/ sup  P(u,u + wy,u + wy)dwidu < C|ly ||W1 Vpp

(1)
weR/z —1/2 W2€Cm

12



Futhermore, we can estimate using that |w;| < 2|w; — ws| for we € Gq(fl) that

1/2
/ / sup P (u,u+ wi,u+ we)dwidu
MQGGEE)
wER/Z —1/2 1
1/2
+ P
<C / sup fo ' (u + 7ws)] dwidu
.
uw€ER/Z —1/2 w1
u~+ Twy) "(u
+C/‘f07 1 7()|dw1du
|w: [P
R/Z
1/2

ey [ w e
j j j 1

2797w [<|wz | <277 [w |

=Luer/z -1/2

||7 ||W1 1/p.p

(oo}

fo 1Y (u) — ' (u + 727 wy)|P

< CZ / \wl\p dwydu

jzluER/Zhul\SQ*j*l
+CIY i1/
eyt | / ) = et T i + Y s

uw€R/Z —1

< ClIVIy-1/m-

In the same way we get using |w1| < |wy — ws| for wq € GS,?B that

1/2
/ / sup P (u,u+ wy,u + we)dwidu
3(2)
ueRr/z —1/2 W2€Gw1
1/2
(u+ Tws) P
<C / / sup fo ' (u 2)| dwydu
o
uw€R/Z —1/2 w1
U+ Tw "(u
/fm DAl
w1 [P
R/Z
<O IBya1/m-
To deal with the sets BS}, j = 1,2,3, we observe that substituting w; = —ws,

13



U =u—+ wy, and Wy = we — wy we get
1/2
/ / sup  P(u,u+ wy,u + we)dwidu
wae B®
uw€R/Z —1/2 w1
1/2
< sup P(a+ Wy, a4, @ + Wwe)dwidu
BreC?)
u€R/Z —1/2 1
and
1/2
/ / sup cP(u,u+ wy,u+ we)dwidu
szB,(2)
weR/Z ~1/2 w1
1/2
< / / sup cP(a+ w1, U, 4 + we)dw du.
'J)QGGS>
wER/Z —1/2 1
To deal with Bﬁ}f we substitute & = u + wy, W1 = —w; and Wy = 1 + wo + wy if

w1 € [—1/2,0], Wy =wg +wy; — 1ifwy € [0,1/2] to get

1/2
/ / sup cP(u,u+ wy,u+ we)dwidu
wQEBS)
wER/Z —1/2 1

0
< / / sup cP(a+ W, U, U+ we)dwidu

_ (1)
wekr/z —1/2 P2€Bwi
1/2

+ / / sup P (44 w1, U, U+ Wwe)dwidu
e
ueryz 0 P2€Buwi

1/2

< / / sup P(+ Wy, 0, 4 + we)dwidu
@)
ueR/z —1/2 P2€Cw01

Together with the above estimates we hence get

1/2
/ / sup P (u,u + w1, u + ws)dwidu < C||y ||wi-1/v.0-
(i)
Ryz —1/2 “2€Bu1

Summing it all up and using

[-1/2,1/2] =GP UGH UGP uGP uBl) uBP UBY,

1
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we finally deduce that

1/2
TP(y) < Z / / sup P (u,u + wy,u + wy)dwidu
j=1,2 R/Z—1/2 wzeGﬁif
1/2
+/ / sup cp(u,u+w1,u+w2)dw1du>
R/Z —1/2 wgeégfl)
1/2
+ Z / / sup  P(u,u+ wy, u + we)dwidu
=123 g5 i weeGY)

< CIV IRy 1-1/m0-

This shows that J,(v) is finite if v € W2~1/?(R/Z,R") and thus finishes the proof
of Theorem 1.3.
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