
March 1, 2011 12:24 WSPC/INSTRUCTION FILE OHarasEnergies

Boundedness and Regularizing Effects of O’Hara’s Knot Energies

Simon Blatt
Departement Mathematik

ETH Zürich
Rämistrasse 101
CH-8004 Zürich

Switzerland

simon.blatt@math.ethz.ch

Keywords: Knot energies, geometric knot theory, fractional Sobolev spaces, regularity

Mathematics Subject Classification 2000: 57M25, 46E35

Abstract
In this small note, we will give a necessary and sufficient condition under which

O’Hara’s Ej,p-energies are bounded. We show that a regular curve has bounded Ej,p-
energy if and only if it is injective and belongs to a certain Sobolev-Slobodeckij space.

1. Introduction

The search for nice representatives of a given knot class led to the invention of a
variety of new energies which are subsumed under the term knot energies. These new
energies were needed for example due to the fact that other well known candidates
like the elastic energy cannot be minimized within a given knot class (cf. [vdM98])
or at least their gradient flow can leave the given knot class.

One of the first families of geometric knot-energies were the Ej,p-energies in-
troduced and investigated by Jun O’Hara in [O’H91,O’H92a,O’H92b,O’H94]. For a
closed regular curve C0,1(R/Z,Rn) and j, p ∈ (0,∞) they are defined by

Ej,p(γ) :=

∫
(R/Z)2

(
1

|γ(v)− γ(u)|j
− 1

|u− v|j

)p
|γ′(u)||γ′(v)|dudv. (1.1)

Note that these energies are known to be infinite for all smooth closed curves if
jp− 1 ≥ 2p and fail to be self-repulsive for jp < 2 [BR08,O’H92b].

Although there are some deep results about the regularity of local minimizers
and the regularity of stationary points of those energies [FHW94,He00,Rei09] and
a few results on the gradient flow of the Möbius-energy [Bla09], no necessary and
sufficient criterion is known for the boundedness of these energies so far. The only
results in this direction are that these energies are bounded for embedded regular
curves in C1,α for α > (jp − 2)/(p + 2) [O’H94, Proposition 1.4] and that on
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the other hand boundedness of the energy implies that the curve is in C1,α for
α = (jp−2)/(2p+4) [BR08, Theorem 1.1], [O’H94, Theorem 1.11]. This small note
will fill this gap and thereby extend the above mentioned results.

It turns out, that periodic Sobolev-Slobodeckij spaces are the right setting for
this task. A detailed discussion of these spaces can be found for example in [Ada75,
Tay96,Tar07]. For s ∈ (0, 1) and q ∈ [1,∞) we set

W s,q(R/Z,Rn) := {f ∈ Lq(R/Z,Rn) :
∫

u∈R/Z

1/2∫
−1/2

|f ′(u+ w)− f(u)|q

|w|1+qs
dwdu <∞}.

and equip this space with the norm

‖f‖W s,q(R/Z,Rn) := ‖f‖W q +

( ∫
u∈R/Z

1/2∫
−1/2

|f(u+ w)− f(u)|q

|w|1+qs
dwdu

)1/q

.

Furthermore, we let

W 1+s,q(R/Z,Rn) := {f ∈W 1,q(R/Z,Rn) : f ′ ∈W s,q(R/Z,Rn)}.

Theorem 1.1. Let γ ∈ C0,1(R/Z,Rn) be an embedded regular curve parametrized
by arc-length and j, p ∈ (0,∞) with jp ≥ 2 and s := jp−2

p+2 < 1 and p ≥ 1. Then
Ej,p(γ) <∞ if and only if γ ∈W 1+s,2p(R/Z,Rn). Moreover, there is a C = C(j, p)

such that

‖γ′‖2pW s,2p ≤ C
(
Ej,p(γ) + ‖γ′‖2pL2p

)
.

.

In the forthcoming paper [Bla10], Theorem 1.1 will play a key role in the proof
of long time existence of the gradient flow of the energies Eα := Eα,1, α ∈ (2, 3).
Furthermore, it is to be expected that this result is of great importance in the study
of the regularity of stationary points and local minimizers of these energies.

Combining Theorem 1.1 with standard embedding theorems for Sobolev spaces
into Hölder spaces, one immediately gets the following extension of the main The-
orem 1.1 in [BR08] and Theorem 1.11 in [O’H94]:

Corollary 1.2. Let γ ∈ C0,1(R/Z,Rn) be an embedded regular curve parametrized
by arc-length with Ej,p(R/Z,Rn) < ∞ for some j, p ∈ (0,∞) with jp ≥ 2 and
s := jp−1

2p < 1. Then γ ∈ C1,α(R/Z,Rn) where α := jp−2
2p

This shows that the Hölder exponent α = (jp − 2)/(2p + 4) in Theorem 1.1 in
[BR08] and Theorem 1.11 in [O’H94] was not sharp.

Theorem 1.1 also sheds new light on the first part of Theorem 1.1 in [BR08].
There it is shown that there are curves with finite E2/p,p-energy which are not
differentiable. In view of our new theorem, this can be seen as consequence of
the fact that there are embedded curves parametrized by arc-length in W 1+1/2p,2p

which are not differentiable.
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2. Preliminaries

Let us first prove bilipschitz-estimates for injective curves in W 1+s,2p.

Lemma 2.1. For every embedded regular curve γ ∈ C0,1(R/Z,Rn) parametrized
by arc-length and every (j, p) ∈ (0,∞)2 with jp ≥ 2, s := jp−1

2p < 1, and p ≥ 1 the
following holds: If γ ∈W 1+s,2p, then γ is bilipschitz, i.e. there is a constant C <∞
such that

|s− t| ≤ C|γ(s)− γ(t)| ∀s, t ∈ R/Z.

Proof. Let 1
2 > δ > 0 be such that

 ∫
Br(z)

∫
Br(0)

|γ′(u+ w)− γ′(u)|2p

|w|jp
dwdu


1/2p

≤ 1/2

for all z ∈ R/Z and all r ≤ δ. For z ∈ R/Z and r ≤ δ we hence get

1

2r

∫
Br(z)

∣∣∣∣γ′(x)− 1

2r

∫
Br(z)

γ′(y)dy

∣∣∣∣dx ≤ 1

4r2

∫
Br(z)

∫
Br(z)

|γ′(x)− γ′(y)|dxdy

≤

 1

4r2

∫
Br(z)

∫
Br(z)

|γ′(x)− γ′(y)|2pdxdy


1
2p

≤

(2r)jp−2
∫

Br(z)

∫
Br(z)

|γ′(x)− γ′(y)|2p

|x− y|jp
dxdy


1
2p

≤ (2δ)
jp−2
2p

1

2
≤ 1

2
.

Since
∣∣ 1
2r

∫
Br(z)

γ′(y)dy
∣∣ ≤ 1 and jp− 2 ≥ 0 we deduce that

inf
a∈Rn
|a|≤1

1

2r

∫
Br(z)

|γ′(y)− a|dy ≤ 1

2
.
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For x, y ∈ R/Z with |x− y| ≤ 2δ let r := |x−y|
2 and z ∈ R/Z be the midpoint of the

shorter arc between x and y. Then

|γ(x)− γ(y)| = sup
a∈Rn
|a|≤1

∫
Br(z)

〈γ′(t), a〉dt

= sup
a∈Rn
|a|≤1

∫
Br(z)

〈γ′(t), γ′(t) + (a− γ′(t))〉

≥

1− inf
a∈Rn
|a|≤1

1

2r

∫
Br(z)

|γ′(t)− a|dt

 |x− y| ≥ 1

2
|x− y|

Hence,

|γ(x)− γ(y)| ≥ 1

2
|x− y|

for all x, y ∈ R/Z with |x− y| ≤ 2δ.
Since γ is embedded and (x, y) 7→ |γ(y)−γ(x)|

|y−x| defines a continuous positive func-
tion on Iδ := {(x, y) ∈ (R/Z)2 : |x− y| ≥ 2δ}, we furthermore have

|γ(x)− γ(y)| ≥ min{ |γ(y)− γ(x)|
|y − x|

: (x, y) ∈ Iδ}|x− y|.

for all (x, y) ∈ Iδ where min{ |γ(y)−γ(x)||y−x| : (x, y) ∈ Iδ} > 0. This completes the proof
of the lemma.

Lemma 2.2. For q ≥ 1 there is a constant C = C(q) such that for all a, b, c ∈
(X, ‖‖X), (X, ‖‖X) a normed vector space, and ε > 0 we have

‖a+ b+ c‖qX ≥ (1− (q − 1)ε)‖a‖qX − Cε
−(q−1)(‖b‖qX + ‖c‖qX).

Especially, there are constants 0 < c′ ≤ 1, C ′ <∞ such that

‖a+ b+ c‖qX ≥ c
′‖a‖qX − C

′(‖b‖qX + ‖c‖qX).

Proof. Using the mean value theorem and the Cauchy Schwartz inequality, we get
for x, y ∈ R

|x+ y|q ≥ |x|q − q|x|q−1|y| ≥ (1− (q − 1)ε)|x|q − ε−(q−1)|y|q.

Combining this with ‖a + b + c‖X ≥ |‖a‖X − ‖b + c‖X | and putting C = 2q, one
gets

‖a+ b+ c‖qX ≥ (1− (q − 1)ε)‖a‖qX − ε
−(q−1)‖b+ c‖qX

≥ (1− (q − 1)ε)‖a‖ − Cε−(q−1)(‖b‖qX + ‖c‖qX).
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3. Proof of Theorem 1.1

In this section C < ∞ and c > 0 are constants whose value may change from line
to line.

Let us first prove that Ej,p(γ) is bounded for every embedded regular curve
γ ∈W 1+s,2p(R/Z,Rn). Using the definition of Ej,p(γ) we see

Ej,p(γ) =

∫
R/Z

1/2∫
−1/2

(
1

|γ(u+ w)− γ(u)|j
− 1

|w|j

)p
dwdu

=

∫
R/Z

1/2∫
−1/2

(
|w|

|γ(u+ w)− γ(u)|

)jp(1− |γ(u+w)−γ(u)|j
|w|j

|w|j

)p
dwdu

Lemma 2.1
≤ C

∫
R/Z

1/2∫
−1/2

(
1− |γ(u+w)−γ(u)|j

|w|j

|w|j

)p
dwdu

1−aj≤(j+1)(1−a)≤(j+1)(1−a2)
≤ C

∫
R/Z

1/2∫
−1/2

(
1− |γ(u+w)−γ(u)|2

|w|2

|w|j

)p
dwdu

= C

∫
R/Z

1/2∫
−1/2

(
1−

∫ 1

0

∫ 1

0
〈γ′(u+ tw), γ′(u+ sw)〉dsdt

|w|j

)p
dwdu

|γ′|≡1
= C/2p

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|γ′(u+ tw)− γ′(u+ sw)|2dsdt

)p
|w|jp

dwdu

Jensen’s inequality
≤ C

∫
R/Z

1/2∫
−1/2

1∫
0

1∫
0

|γ′(u+ tw)− γ′(u+ sw)|2p

|w|jp
dsdtdwdu.

Using Fubini’s lemma to change the order of integration and successively substitut-
ing ũ = u+ tw, w̃ = (s− t)w, we get

Ej,p(γ) ≤ C
1∫

0

1∫
0

∫
R/Z

1/2∫
−1/2

|γ′(ũ)− γ′(ũ+ (s− t)w)|2p

|w|jp
dwdũdsdt

≤ C
1∫

0

1∫
0

∫
R/Z

|s−t|/2∫
−|s−t|/2

|s− t|jp−1 |γ
′(ũ)− γ′(ũ+ w̃)|2p

|w̃|jp
dw̃dũdsdt

≤ C
∫

R/Z

1/2∫
−1/2

|γ′(ũ)− γ′(ũ+ w̃)|2p

|w̃|jp
dw̃dũ <∞
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as γ ∈W 1+s,2p(R/Z,Rn).
Now, let us assume that γ ∈ C0,1(R/Z,Rn) is a curve parametrized by arc length

with Ej,p(γ) ≤ M. From now on C = C(j, p) < ∞, c = c(j, p) > 0 are constants
which only depend on j and p but are still allowed to change from line to line.

One calculates

Ej,p(γ) =

∫
R/Z

1/2∫
−1/2

(
|w|

|γ(u+ w)− γ(u)|

)jp(1− |γ(u+w)−γ(u)|j
|w|j

|w|j

)p
dwdu

|γ′|≡1
≥

∫
R/Z

1/2∫
−1/2

(
1− |γ(u+w)−γ(u)|j

|w|j

|w|j

)p
dwdu

1−aj≥(1−a)≥1/2(1−a2)
≥ c

∫
R/Z

1/2∫
−1/2

(
1− |γ(u+w)−γ(u)|2

|w|2

|w|j

)p
dwdu

|γ′|≡1
= c/2

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|γ′(u+ tw)− γ′(u+ sw)|2dsdt

)p
wjp

dwdu = cẼj,p(γ′)

where

Ẽj,p(γ′) :=

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|γ′(u+ tw)− γ′(u+ sw)|2dsdt

)p
wjp

dwdu.

We will finish the proof of the theorem, by showing that for all functions f ∈
C0,1(R/Z,Rn) we have

‖f ′‖2pW s,2p(R/Z,Rn) ≤ CẼ
j,p(f ′) + C‖f ′‖2pL2p . (3.1)

Of course we can assume without loss of generality that the right hand side is finite.
To prove this inequality, let us first assume that f ∈ C∞(R/Z,Rn). We get for

0 < ε < 1

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|f ′(u+ tw)− f ′(u+ sw)|2dsdt

)p
|w|jp

dwdu

Lemma 2.2
≥ cIε1(f)− C(Iε2(f) + Iε3(f))
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where

Iε1(f) :=

∫
R/Z

1/2∫
−1/2

( ∫ ε
0

∫ 1

1−ε |f
′(u)− f ′(u+ w)|2dsdt

)p
|w|jp

dwdu

Iε2(f) :=

∫
R/Z

1/2∫
−1/2

( ∫ ε
0

∫ 1

1−ε |f
′(u+ w)− f ′(u+ sw)|2dsdt

)p
|w|jp

dwdu

Iε3(f) :=

∫
R/Z

1/2∫
−1/2

( ∫ ε
0

∫ 1

1−ε |f
′(u+ tw)− f ′(u)|2dsdt

)p
|w|jp

dwdu.

Note that Iε2(f) = Iε3(f)

Iε1(f) = ε2p
∫

R/Z

1/2∫
−1/2

|f ′(u)− f ′(u+ w̃)|2p

|w̃|jp
dw̃du,

and

Iε3(f) = εp
∫

R/Z

1/2∫
−1/2

( ∫ ε
0
|f ′(u)− f ′(u+ tw)|2dt

)p
|w|jp

dwdu

Hölder-inequality
≤ ε2p−1

∫
R/Z

1/2∫
−1/2

( ∫ ε
0
|f ′(u)− f ′(u+ tw)|2pdt

)
|w|jp

dwdu

w̃:=tw
= Cε2p−1

∫
R/Z

ε∫
0

t/2∫
−t/2

tjp−1
|f ′(u)− f ′(u+ w̃)|2p

|w̃|jp
dw̃dtdu

≤ Cε2p−1
ε∫

0

tjp−1dt

∫
R/Z

ε/2∫
−ε/2

|f ′(u)− f ′(u+ w̃)|2p

|w̃|jp
dw̃du

≤ Cεjp−1Iε1(f).

Hence,

Ẽj,p(f) ≥ c(1− Cεjp−1)ε2p
∫

R/Z

ε/2∫
−ε/2

|f ′(u)− f ′(u+ w̃)|2p

|w̃|jp
dw̃du

≥ cε2p
∫

R/Z

ε/2∫
−ε/2

|f ′(u)− f ′(u+ w̃)|2p

|w̃|jp
dw̃du
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if ε > 0 is small enough. With Jε := [−1/2, 1/2]− [−ε/2, ε/2] and fixing ε > 0 small
enough, this leads to

∫
R/Z

1/2∫
−1/2

|f ′(u+ w)− f ′(u)|2p

|w|jp
dwdu

=

∫
R/Z

∫
Jε

|f ′(u+ w)− f ′(u)|2p

|w|jp
dwdu+

∫
R/Z

ε/2∫
ε/2

|f ′(u+ w)− f ′(u)|2p

|w|jp
dwdu

≤ C‖f ′‖2pL2p + C

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|f ′(u+ tw)− f ′(u+ sw)|2dsdt

)p
|w|jp

dwdu

which proves Equation (3.1) for smooth f .
For general f ∈ C0,1(R/Z) for which the right hand side of inequality (3.1)

is finite, we choose a function φ ∈ C∞(R, [0,∞)) with support in B1/2(0) and∫
φ = 1. We set φε(z) := 1

εφ(z/ε) and define the smoothened functions fε(x) :=∫ 1/2

−1/2 f(x+z)φ(z)dz for ε < 1. It is well known that fε ∈ C∞(R/Z,Rn) and fε → f

in W 1,q for all q ∈ (1,∞). Furthermore,∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|f ′ε(u+ tw)− f ′ε(u+ sw)|2dsdt

)p
|w|jp

dwdu

=

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|
∫ 1/2

−1/2 φε(z)(f
′(u+ tw + z)− f ′(u+ sw + z))dz|2dsdt

)p
|w|jp

dwdu

Jensen’s inequality
≤

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0

∫ 1/2

−1/2 φε(z)|f
′(u+ tw + z)− f ′(u+ sw + z)|2dzdsdt

)p
|w|jp

dwdu

Fubini & Jensen
≤

1/2∫
−1/2

φε(z)

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|f ′(u+ tw + z)− f ′(u+ sw + z)|2dsdt

)p
|w|jp

dwdudz

=

∫
R/Z

1/2∫
−1/2

( ∫ 1

0

∫ 1

0
|f ′(u+ tw)− f ′(u+ sw)|2dsdt

)p
|w|jp

dwdu,

and another application of Jensen’s inequality implies

‖f ′ε‖L2p ≤ ‖f ′‖L2p .

From (3.1) for smooth functions and the last two inequalities, we hence get

‖f ′ε‖
2p
W s,2p ≤ C

(
Ẽj,p(f) + ‖f ′‖2pL2p

)
. (3.2)
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Thus there is a subsequence of f ′ε converging weakly in W s,2p. The limit of the
subsequence is f ′ as we already know that fε → f in W 1,q for all q ∈ [1,∞). Hence,
f ∈ W 1+s,2p. Since the norm W s,2p is lower semicontinuous with respect to weak
convergence, we deduce from (3.2) that (3.1) also holds for f .
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