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In this small note, we will give a necessary and su�cient condition un-
der which the tangent point energies introduced by Heiko von der Mosel
and Pawel Strzelecki in [SvdM11, SvdM10] are bounded. We show that an
admissible submanifold has bounded Eq-energy if and only if it is injective
and locally agrees with the graph of functions that belongs to Sobolev-
Slobodeckij space W 2−mq ,q. The known Morrey embedding theorems of
Heiko von der Mosel and Pawel Strzelecki can then be interpreted as stan-
dard Morrey embedding theorem for these spaces. Especially, this show
that the Hölder exponents for the embeddings in [SvdM11] are sharp.

1 Introduction

Very recently Heiko von der Mosel and Pawel Strzelecki started the investigation of
so called tangent point energies for curves and surfaces and showed that they posses
regularizing and self repulsive e�ects for a broad class of sets of arbitrary dimension
and codimension which they called admissible sets. One of the main results in this
work was that boundedness of these energies for an admissible set implies that this set
is locally a graph of a C1,1− q

2m function. For curves they could give an example that
shows that this Hölder exponent is optimal. For object of higher dimensions this was
not known.
The tangent point energy of an m-recti�able set Σ ⊂ Rn is given by the double

integral

Eq(Σ) :=

∫
Σ

∫
Σ

(
1

Rtp(x, y)

)q
dHm(x)dHm(y) (1.1)
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where Hm denotes the m-dimensional Hausdor� measure and

Rtp(x, y) :=
|x− y|2

dist(x− y, TxΣ)

for all x 6= y ∈ Σ such that the tangent space TxΣ on Σ exists.
In this small note, we want to classify all admissible sets with �nite tangent point

energy under the assumption that the exponent q is bigger than the critical exponent
2m. As in the case of O'Hara's knot energies (cf. [Bla10]), it turns out that this
classi�cation can be given with the help of Sobolev Slobodeckij spaces. For an open
subset Ω ⊂ Rn and s ∈ (0, 1), p ∈ [1,∞) these are de�ned using the seminorms

|f |s,p :=

(∫
Ω

∫
Ω

|f(x)− f(y)|p
|x− y|n+sp

dxdy

) 1
p

.

For k ∈ N0, the Sobolev-Slobodeckij space W
k+s,p(Rm,R) is the space of all functions

f ∈ W k,p(Rm,R) with |∂αf |s,p < ∞ for all multiindices α ∈ Nm0 with length |α| = k.
The W k+1,p-norm is then given by

‖f‖Wk,p := ‖f‖Wk,p +
∑
α∈Nn0
|α|=k

|∂αf |s,p.

As usual, the space W k+s,p(Rm,Rn) is de�ned component wise. More information on
these spaces can be found for example in [Ada75, Tar07] The main result of this article
is the following

Theorem 1.1. Let Σ be a compact m-dimensional embedded C1 submanifold and

q > 2m. Then Eq(Γ) <∞ if and only if Σ is an embedded W 2−mq ,q submanifold.

Here an embedded W s,p submanifold for s− p
m > 1 is a submanifold which locally

agrees with the graph of a W s,p function.
Combining this with Theorem 1.4 in [SvdM11] we get the following corollary

Corollary 1.2. Let Σ be an admissible set and q > 2m. Then Eq(Σ) <∞ if and only

if Σ is an embedded W 2−mq ,q manifold.

Especially, together with the sharpness of the Morrey embedding theorem this proves
that the exponent 1− m

2q in Theorem 1.4 of [SvdM11] is optimal. In Section 2 we �rst
give a proof of Theorem 1.1 for curves to illustrate the main idea for this simple
toy problem. Afterwards, with the help of some further techniques we prove the full
statement in Section 3.
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2 Proof for curves

Of course it is enough to show the theorem for curves of length 1. Let Γ ∈ C1(R/Z,Rn),
be a regular embedded curve parametrized by arc length and Σ = Γ(R/Z). Then

Eq(Γ) := Eq(Γ(R/Z)) =

∫
R/Z

1/2∫
−1/2

(Rtp(Γ(x),Γ(x+ w))−qdxdw

We chose a δ > 0 such that
|Γ′(x)− Γ′(y)| ≤

√
2 (2.1)

for all x, y ∈ R/Z with |x− y| ≤ δ. If we denote by ΠΓ(x) the orthogonal projection of
Rn onto the normal space of Γ(R/Z) at the point Γ(x), i.e.

ΠΓ(x)(v) := v − 〈v,Γ′(x)〉Γ′(x)

we get using Equation (2.1) that there is a C <∞ such that

C−1|Γ′(x)− Γ′(y)| ≤ ‖ΠΓ(x) −ΠΓ(x)‖ ≤ C|Γ′(x)− Γ′(y)|

for all x, y ∈ R/Z with |x− y| ≤ δ.
From

dist(Γ(x)− Γ(y), TxΓ) =
∣∣ΠΓ(x)(Γ(x)− Γ(y))

∣∣,
one then sees that

Eq(Γ) =

∫
(R/Z)

1/2∫
−1/2

|ΠΓ(x)(Γ(x)− Γ(x+ w))|q

|Γ(x)− Γ(x+ w)|2q
dwdx

=
1

2

∫
(R/Z)

1/2∫
−1/2

|ΠΓ(x)(Γ(x)− Γ(x+ w))|q + |ΠΓ(x+w)(Γ(x+ w)− Γ(x))|q

|Γ(x)− Γ(x+ w)|2q
dwdx

≥ C−1

∫
(R/Z)

δ∫
−δ

|ΠΓ(x) −ΠΓ(x+w)|q

|Γ(x)− Γ(x+ w)|q
dwdx

≥ C−1

∫
(R/Z)

δ∫
−δ

|Γ′(x)− Γ′(x+ w)|q

|w|q
dwdx.

Hence, ∫
R/Z

1/2∫
−1/2

|Γ′(x+ w)− Γ′(x)|q

|w|q
dxdw ≤ C(Eq(R/Z) + δq−1).
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This implies that Γ ∈W 2− 1
q ,q(R/Z) if Eq(Γ) is �nite.

To get the other implication, �rst note that every embedded curve Γ ∈ C1(R/Z,Rn)
parametrized by arc length satis�es a bi-Lipschitz estimate, i.e. there is a constant
C = C(Γ) <∞ such that

|w| ≤ C|Γ(x+ w)− Γ(x)|

for all |w| ≤ 1
2 .

Hence,

Eq(Σ) =

∫
R/Z

1/2∫
−1/2

( |ΠΓ(x)(Γ(x+ w)− Γ(x))|q

|Γ(x+ w)− Γ(x)|q

)
dwdx

≤ C
∫

R/Z

1/2∫
−1/2

( |ΠΓ(x)(
∫ 1

0
Γ′(x+ τw)dτ |
|w|

)q
dwdx

Jensen's inequality

≤ C

∫
R/Z

1/2∫
−1/2

1∫
0

(
|Γ′(s)− Γ′(s+ τw)|q

|w|q

)
dwdsdτ

As
|ΠΓ(x)Γ

′(y)| = |ΠΓ(x)(Γ
′(y)− Γ′(x))| ≤ |Γ′(y)− Γ′(x)|

this implies

Eq(Σ) ≤ C
∫

R/Z

1∫
0

1−2∫
−1/2

(
|Γ′(s)− Γ′(s+ τw)|q

|w|q

)
dwdsdτ

Substituting w̃ = τw, the right hand side can be written as

1∫
0

τp−1

∫
R/Z

τ/2∫
−τ/2

(
|Γ′(s)− Γ′(s+ w̃)|p

|w̃|p

)
dw̃dsdτ

=
1

p

∫
R/Z

1/2∫
−1/2

(
|Γ′(s)− Γ′(s+ w̃)|p

|w̃|p

)
dw̃ds <∞.

Thus Eq(Σ) is �nite if Γ ∈W 2−1/q,q.

3 Proof for submanifolds

In the case of submanifolds, surprisingly a similar idea as in the case of curves works
though the technical details are more involved.
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For m vectors v1, . . . , vm ∈ Rn, let A{vi} be the n×m matrix whose columns consist
of vi and Π{vi} be the orthogonal projection onto the vector space spanned by vi,
i = 1, . . . ,m. If the v1, . . . , vm are linearly independent, the normal equations (cf.
[Sto99, pp. 235-237] ) lead to the representation

Π{vi} = A{vi}

(
A{vi}A

∗
{vi}

)−1

A∗{vi}

and thus the map

(v1, . . . , vn)→ Π{vi}

is locally Lipschitz with respect to the Euclidean norm on (Rn)m on the set {(vi, . . . , vm) ∈
(Rn)m : vi are linearly independent}.
Now, let f ∈ C1(Rm,Rn−m) be such that

‖f‖L∞ ≤ 1,

g(x) := (f(x), x), and let e1, . . . , em be a basis of Rm. Then there is a C ≤ ∞ such
that for any orthogonal projection P onto a m-dimensional subspace and any x ∈ R
we have

‖P − Pg(x+ei)−g(x)‖ ≤ C sup
i=1,...,m

|(P − idRm)(g(x+ ei)− g(x))|. (3.1)

Indeed, for ε0 := ε0(e1, . . . , em) > 0 small enough,

|P (g(x+ ei)− g(x))− (g(x+ ei)− g(x))| ≤ ε0

implies that the vectors P (g(x+ei)−g(x)) are linearly independent as there projections
onto the �rst m coordinates are linearly independent. Furthermore,

|P (g(x+ ei)− g(x))| ≤ ε0 + 2 sup
i=1,...,m

|ei|

due to the Lipschitz estimate on f . Hence the local Lipschitz continuity proven above
implies that

‖P −Π{g(x+ei)−g(x)}‖ = ‖Π{P (g(x+ei)−g(x))} −Π{g(x+ei)−g(x)}‖
≤ C sup

i=1,...,m
|(P − idRm)(g(x+ ei)− g(x))|

if
sup

i=1,...,m
|(P − idRm)(g(x+ ei)− g(x)) ≤ ε0.

Since we always have ‖P −Πg(x+ei)−g(x)‖ ≤ 2, we deduce

‖P − Π{g(x+ei)−g(x)}‖ ≤ (C + 2/ε0) sup
i=1,...,m

|(P − idRn)(g(x + ei) − g(x))|
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which proves Equation (3.1)
To prove the theorem, let ẽi, i = 1, . . . ,m be an orthonormal basis of Rm and let

ej :=

{
ẽ1, if j = 1
1
2 (ẽ1 + ẽj) if j = 2, . . . ,m.

Since ei, i = 1, . . . ,m is a basis of Rm, we get

‖P −Πg(x+rei)−g(x)‖ ≤ C sup
i=1,...,m

|(P − idRm)(g(x+ rei)− g(x))|.

and scaling leads to

‖P −Π g(x+rei)−g(x)

r

‖ ≤ C sup
i=1,...,m

∣∣∣∣(P − idRm)

(
g(x+ ei)− g(x

r

)∣∣∣∣
≤ C(

∣∣∣∣(P − id)

(
g(x+ rẽ1)− g(x)

r

)∣∣∣∣+

m∑
i=2

∣∣∣∣(P − id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x)

r

∣∣∣∣)
for all r ≥ 0.
Since both sides of this inequality are invariant under orthogonal transformation

of the ẽi, the constant in it does not depend on the choice of the orthonormal basis
ẽ1, . . . , ẽm. Exchanging ẽ1 with −ẽ1 and x with x+ ẽ1 and observing that this leaves
the vector space spanned by g(x + rei) − g(x) invariant, we furthermore get that for
all orthogonal projections Q of Rn onto an m-dimensional subspace we have

‖Q−Π g(x+rei)−g(x)

r

‖

≤ C
∣∣∣∣(Q− id)

(
g(x)− g(x+ rẽ1)

r

)∣∣∣∣+ m∑
i=2

∣∣∣∣(Q− id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x+ rẽ1)

r

)∣∣∣∣
and hence

‖P −Q‖

≤ C
∣∣∣∣(P − id)

(
g(x+ rẽ1)− g(x)

r

)∣∣∣∣+

m∑
i=2

∣∣∣∣(P − id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x)

r

)∣∣∣∣
+C

∣∣∣∣(Q− id)

(
g(x)− g(x+ rẽ1)

r

)∣∣∣∣+ m∑
i=2

∣∣∣∣(Q− id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x+ rẽ1)

r

)∣∣∣∣
(3.2)

for all orthogonal projections P,Q of Rn onto m-dimensional subspaces.
Now let Σ be an m-dimensional C1 submanifold with �nite Eq energy and x0 ∈ Σ.

After some rotation and translation we can assume that x0 = 0 and Tx0
Σ = Rm×{0}

and that there is an r0 > 0 and an f ∈ C1(Rm,Rn−m) with f(0) = 0 such that

‖f ′‖L∞ ≤ 1 (3.3)
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and
g(Br0(0)) ⊂ Σ.

Let Πg(x) denote the orthogonal projection of Rn onto the tangent space on g(Rm)
at g(x). For x ∈ Br0/2(0), r ≤ r0/2 and any orthonormal basis e1, . . . em of Rm we
have by the above discussion

‖Πg(x) + Πg(x+re1)‖

≤ C
∣∣∣∣(Πg(x) − id)

(
g(x)− g(x+ rẽ1)

r

)∣∣∣∣
+ C

m∑
i=2

∣∣∣∣(Πg(x) − id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x+ rẽ1)

r

∣∣∣∣)
+ C

∣∣∣∣(Πg(x+re1) − id)

(
g(x+ rẽ1)− g(x)

r

)∣∣∣∣
+ C

m∑
i=2

∣∣∣∣(Πg(x+re1) − id)

(
g(x+ r

2 (ẽ1 + ẽi)− g(x)

r

∣∣∣∣)
≤ CRtp(g(x), g(x+ re1))−1 r

|g(x)− g(x+ rẽ1)|2

+ C

m∑
i=2

Rtp(g(x+
r

2
(e1 + ei), g(x+ e1))−1 r

|g(x+ r
2 (ẽ1 + ẽi)− g(x+ rẽ1)|2

+ CRtp(g(x+ re1), g(x))−1 r

|g(x+ re1)− g(x)|2

+ C

m∑
i=2

Rtp(g(x+
r

2
(e1 + ei), g(x+ e1))−1 r

|g(x+ r
2 (ẽ1 + ẽi)− g(x+ rẽ1)|2

Using that due to the Lipschitz bound on f we have that |g(x)− g(y)| ≤ 2|x− y|, we
deduce

‖Πg(x) −Πg(x+re1)‖q

rq
≤ CRtp(g(x), g(x+ re1))−q

+ C

m∑
i=2

Rtp(g(x+
r

2
(e1 + ei), g(x+ e1))−q

+ CRtp(g(x+ re1), g(x))−q

+ C

m∑
i=2

Rtp(g(x+
r

2
(e1 + ei), g(x+ e1))−q.

To get rid of the dependence on a special orthonormal basis, we consider the space of

orthonormal matrices O(m) as a m′ := m(m−1)
2 dimensional submanifold of R(m×m)

and the fact that for a function f ∈ L1(Sm−1,R) we have

1

Hm′(O(m))

∫
A∈O(m)

f(Ai)dHm
′
(A) =

1

Hm−1(Sm−1)

∫
Sm−1

f(ω)dHm(ω).
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This leads to∫
Br0/2(0;Rm)

∫
Br0/2(0;Rm)

‖Πx −Πx+w‖q

|w|q
dHm(w)dHm(x)

=

∫
Br0/2(0;Rm)

r0/2∫
0

rm−1

∫
Sm−1

‖Πx −Πx+re‖q

|w|q
dHm−1(e)drdHm(x)

= C(m)

∫
Br0/2(0;Rm)

r0/2∫
0

rm−1

∫
O(m)

‖Πx −Πx+rA1‖q

|w|q
dHm

′
(A)dHm(w)

≤ C ·
∫

Br0/2(0;Rm)

r0/2∫
0

rm−1

∫
O(m)

(
Rtp (g(x), g(x+ rA1))

−q

+

m∑
i=2

Rtp

(
g
(
x+

r

2
(A1 +Ai)

)
, g(x+A1)

)−q
+Rtp(g(x+ rA1), g(x))−q

+

m∑
i=2

Rtp

(
g
(
x+

r

2
(A1 +Ai)

)
, g(x+A1)

)−q)
dHm

′
(A)drdHm(x)

≤ C
∫

Br0/2(0;Rm)

r0/2∫
0

∫
Sm−1

(
Rtp
(
g(x), g(x+ re)

)−q
+ (m− 1)Rtp

(
g
(
x+ 2−1/2re

)
, g(x)

)−q
+Rtp

(
g(x+ re), g(x)

)−q
+ (m− 1)Rtp

(
g
(
x+ 2−1/2re

)
, g(x)

)−q)
dHm−1(e)drdHm(x)

≤ CEq(Σ).

Together with the estimate

‖f ′(x)− f ′(y)‖ ≤ C‖Πg(x) −Πg(y)‖

this proves hat Σ is a W 2− 1
q ,q submanifold if Eq(Σ) is �nite.

Do get the other implication, we use that if Σ is a compact W 2−1/q,q manifold there
is an r0 > 0 such that for all x0 in Σ there is a function f ∈W 2−1/q,q(Rm,Rn−m) with
f(0) = 0 such that

‖f ′‖L∞ ≤ 1
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and an A ∈ SO(n) such that the function g(x) := (f(x), x) satis�es

A(g(Br0/2(0;Rm))) + x0 ⊂ Σ.

For �xed x0 ∈ Σ we then use

‖Πg(x) −Πg(y)‖ ≤ ‖f ′(x)− f ′(y)‖,

and
|g(x)− g(y)| ≥ |x− y|

to get∫
Br0/2(0)

∫
Br0/2(0)

|Πg(x)(g(x+ w)− g(x)|q

|g(x+ w)− g(x)|2q
dHm(w)dHm(x)

≤ C
∫

Br0/2(0)

∫
Br0/2(0)

1∫
0

|Πg(x)g
′(x+ τw|q

|w|q
dτdHm(w)dHm(x)

≤ C
∫

Br0/2(0)

∫
Br0/2(0)

1∫
0

|Πg(x)(g
′(x+ τw)− g′(x)|q

|w|q
dτdHm(w)dHm(x)

≤ C
∫

Br0/2(0)

∫
Br0/2(0)

1∫
0

|(g′(x+ τw)− g′(x)|q

|w|q
dτdHm(w)dHm(x).

Substituting w̃ = τw this expression can be estimated as in the case of curves by

C(r0)

∫
Br0/2(0)

∫
Br0/2(0)

|(g′(x+ w)− g′(x)|q

|w|q
dHm(w)dHm(x) ≤ C(r0)‖f‖

W
2− 1

q
,q

(Br(0))

Let dΣ denote the geodesic distance Σ and Br(x; Σ) denote the geodesic ball of radius
r in Σ. Then the above calculation combined with the fact that the gradient of f is
bounded leads to∫
Br0/2(x0,Σ)

∫
y∈Σ

dΣ(x,y)≤ r0
2

1

Rtp(x, y)q
dHm(y)Hm(x)

≤
∫

Br0/2(0)

∫
Br0/2(0)

|Πg(x)(g(x+ w)− g(x)|q

|g(x+ w)− g(x)|2q
dHm(w)dHm(x)

<∞

for all x0 ∈ Σ.
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Since Σ is compact an easy covering argument then gives

x

y,x∈Σ
dΣ(x,y)≤r0/4

1

Rtp(x, y)q
dH(y)Hm(x) <∞

Since Γ is an embedded C1 manifold we furthermore have that

µ := inf

{
‖x− y‖
dΣ(x, y)

: x, y ∈ Σ, dΣ(x, y) > r0/4

}
> 0

and hence we �nally get

Eq(Σ) =

∫
Σ

∫
x∈Σ,dΣ(x,y)≤r0/4

1

Rtp(x, y)q
dHm(y)Hm(x)

+

∫
Σ

∫
x∈Σ,dΣ(x,y)≥r0/4

1

Rtp(x, y)q
dHm(y)Hm(x)

≤
∫
Σ

∫
x∈Σ,dΣ(x,y)≤r0/4

1

Rtp(x, y)q
dHm(y)Hm(x) +

1

µq
Hm(Σ) <∞.

This �nishes the proof of the theorem.
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