The energy spaces of the tangent
point energies

Simon Blatt *

August 31, 2011

In this small note, we will give a necessary and sufficient condition un-
der which the tangent point energies introduced by Heiko von der Mosel
and Pawel Strzelecki in [SvdM11, SvdM10] are bounded. We show that an
admissible submanifold has bounded &,-energy if and only if it is injective
and locally agrees with the graph of functions that belongs to Sobolev-
Slobodeckij space W2~ %% The known Morrey embedding theorems of
Heiko von der Mosel and Pawel Strzelecki can then be interpreted as stan-
dard Morrey embedding theorem for these spaces. Especially, this show
that the Holder exponents for the embeddings in [SvdM11] are sharp.

1 Introduction

Very recently Heiko von der Mosel and Pawel Strzelecki started the investigation of
so called tangent point energies for curves and surfaces and showed that they posses
regularizing and self repulsive effects for a broad class of sets of arbitrary dimension
and codimension which they called admissible sets. One of the main results in this
work was that boundedness of these energies for an admissible set implies that this set
is locally a graph of a C1'~=m function. For curves they could give an example that
shows that this Holder exponent is optimal. For object of higher dimensions this was
not known.

The tangent point energy of an m-rectifiable set ¥ C R"™ is given by the double

integral
) €, (%) ::!!(W)qdﬂmu)d%m(m (1.1)
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where H™ denotes the m-dimensional Hausdorff measure and

=y
Ru(@9) = G =y Tomy
for all z # y € ¥ such that the tangent space 1,2 on X exists.

In this small note, we want to classify all admissible sets with finite tangent point
energy under the assumption that the exponent ¢ is bigger than the critical exponent
2m. As in the case of O’Hara’s knot energies (cf. [Blal0]), it turns out that this
classification can be given with the help of Sobolev Slobodeckij spaces. For an open
subset Q@ C R™ and s € (0,1), p € [1,00) these are defined using the seminorms

VIE=C2
Q Q

For k € Ny, the Sobolev-Slobodeckij space W*+?(R™ R) is the space of all functions
f € WhP(R™ R) with [0%f|s, < oo for all multiindices o € Nj* with length |a| = k.
The W*+1P_norm is then given by

I lwee = 1 Fllwes + D 10%Flap-

a€NGY
|a|=k

As usual, the space WF+P(R™ R") is defined component wise. More information on
these spaces can be found for example in [Ada75, Tar07] The main result of this article
is the following

Theorem 1.1. Let ¥ be a compact m-dimensional embedded C' submanifold and
q > 2m. Then €,(T) < oo if and only if ¥ is an embedded W~ 5 submanifold.

Here an embedded W*? submanifold for s — £ > 1 is a submanifold which locally
agrees with the graph of a W*? function.
Combining this with Theorem 1.4 in [SvdM11] we get the following corollary

Corollary 1.2. Let ¥ be an admissible set and ¢ > 2m. Then €4(X) < oo if and only

if ¥ is an embedded W~ a9 manifold.

Especially, together with the sharpness of the Morrey embedding theorem this proves
that the exponent 1 — 7% in Theorem 1.4 of [SvdM11] is optimal. In Section 2 we first
give a proof of Theorem 1.1 for curves to illustrate the main idea for this simple
toy problem. Afterwards, with the help of some further techniques we prove the full

statement in Section 3.



2 Proof for curves

Of course it is enough to show the theorem for curves of length 1. Let T € C1(R/Z,R"),
be a regular embedded curve parametrized by arc length and ¥ = I'(R/Z). Then

1/2
&) = &C®/2) = [ [ (RylT(e). Do+ w) tdzdu
R/Z —1/2
We chose a § > 0 such that
(@) — T'(y)| < V3 (2.1)

for all z,y € R/Z with | —y| < 4. If we denote by Ilp(,) the orthogonal projection of
R™ onto the normal space of I'(R/Z) at the point I'(z), i.e

HF(I) (’U) =v - <Ua F/(x»rl(gj)
we get using Equation (2.1) that there is a C' < oo such that
CTHM (@) = T'(y)] < ITpy — Mg || < O (2) = T'(y)]

for all z,y € R/Z with |z — y| <.
From
dlSt(F({L‘) - F(y)aTxF) = |HF(x) (F(I‘) - F(:U))

)

one then sees that

1/2
p(gy (C(z) = T'(z 4+ w))[?
) =
%a(T) M) — Tt w)pr %
®/2)~1/2
/“/|Hm@ D W) Mg (O w) - T
29 wax
2 | (@)~ T+ )
H x _H r+w
>C / /| (@) F( + ;:qdwdm
®/2) >
> o1 [ 1)~ (o + )l dwdz
\w|q -
®/2) >
Hence,

/ / T/ (z + w) rf(a:)|qudw§O(@q(R/Z)qul).

wl
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This implies that T € W2~ ©9(R/Z) if &,(T) is finite.

To get the other implication, first note that every embedded curve I' € C1(R/Z, R™)
parametrized by arc length satisfies a bi-Lipschitz estimate, i.e. there is a constant
C = C(I') < oo such that

|lw| < CT'(z +w) — T'(z)]

for all |w| < 1.

Hence,
M (T + w) — T@))?
I(z) r+w)—1(x
E —
¢, (%) / / < (e +w) - T(2)]? )dwdaz
R/Zq/z
T, dr|\ 1
<c/ / (| r (o |U§| z 4 Tw) T') dwdz
R/Z —1/2
Jensen’s i lit; HE I I q
< yc/ // () = s+ Tw)lN ) dsar
lw|e
R/Z —1/2 0
As

M@ I ()| = M) (C'(y) = T'(2))] < [F(y) = T'(2)|
this implies

1 1-2

cof | [ (FOE

R/Z 0 —1/
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Substituting @ = 7w, the right hand side can be written as

1 T/2
I - I 0)|P
/T”_l/ / (' (5) |~E)s+w) )du?dsdr
W
0 R/Z —7/2

.y 1//2<|r'<s> e g <o,

R/Z —1/2

Thus €,(X) is finite if T € W2~1/aq,

3 Proof for submanifolds

In the case of submanifolds, surprisingly a similar idea as in the case of curves works
though the technical details are more involved.



For m vectors vy, ..., v, € R", let Ay, y be the n x m matrix whose columns consist
of v; and Ily,,; be the orthogonal projection onto the vector space spanned by v;,
i =1,...,m. If the vy,...,v,, are linearly independent, the normal equations (cf.
[St099, pp. 235-237] ) lead to the representation

~1
H{'Ui} = A{Ui} (A{Ui}A?qu}> A?Uz‘}
and thus the map
(’1117 . ,Un) — H{vl}
is locally Lipschitz with respect to the Euclidean norm on (R™)™ on the set {(v;, ..., vm) €
(R™)™ : v; are linearly independent}.
Now, let f € C*(R™,R"~™) be such that
”fHL"O <1,

g(x) == (f(x),x), and let ey, ..., e, be a basis of R™. Then there is a C < oo such
that for any orthogonal projection P onto a m-dimensional subspace and any x € R
we have

1P~ Pyrerstall SC_sup_ |(P—idzn)(gla+e) —g@@)l.  (31)
i=1,....m
Indeed, for ¢ := eg(eq, .- ., em) > 0 small enough,

|P(g(z +e;) — g(z)) — (9(z +ei) — g(z))| < €0

implies that the vectors P(g(z+e;)—g(z)) are linearly independent as there projections
onto the first m coordinates are linearly independent. Furthermore,

[P(g(z +ei) = g(x))| <eo+2 sup e

i=1,...,m

due to the Lipschitz estimate on f. Hence the local Lipschitz continuity proven above
implies that

1P = ig(aten—g@n | = Mipg@ten—g@nt — Miga+en—g@l
<C sup [(P—idgm)(g(x +e;) — g())]
i=1,....,m
if
sup |[(P —idgm)(g(x + €;) — g(x)) < &p.

i=1,....m

Since we always have ||P — Iy qe,)—g(2) || < 2, we deduce

IP = Mgsen—gw}l < (€ +2/20) sup [(P — idzn)(g(x + e) — g(a))]



which proves Equation (3.1)
To prove the theorem, let €;, ¢ = 1,...,m be an orthonormal basis of R™ and let

é,ifj=1
e =
! L +é)iftj=2,...,m

Since e;, i = 1,...,m is a basis of R™, we get

HP - Hg(errel-)fg(z)H < C‘ sup |(P - idRm)(g(x + rei) - g(x))l

i=1,....m

and scaling leads to

. xr+e)—glx
||P — Hg(w+Tei)—9(a’) || S C sup ‘(P — ldRm) <g()g(>‘
T i=1,...,m r
m
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for all r > 0.

Since both sides of this inequality are invariant under orthogonal transformation
of the €;, the constant in it does not depend on the choice of the orthonormal basis
€1,...,6m. Exchanging €; with —€; and x with z + €; and observing that this leaves
the vector space spanned by g(z + re;) — g(x) invariant, we furthermore get that for
all orthogonal projections @) of R™ onto an m-dimensional subspace we have

1Q — M getrep—so |

< clig (12 =ste ) 5

O ia) (g(w—i— (E1+ &) —g(ﬂc—i—rél))‘

and hence T . T
1P —Q
cofip-in (et )‘+ | - (2 =)

] ) D

( glx + 561+ &) — J;—!—rel)‘
Q —id)
,

(3-2)

for all orthogonal projections P, Q of R™ onto m-dimensional subspaces.

Now let ¥ be an m-dimensional C' submanifold with finite €, energy and zo € .
After some rotation and translation we can assume that o = 0 and T,, X = R™ x {0}
and that there is an 7o > 0 and an f € C*(R™,R"™™) with f(0) = 0 such that

1f 2= <1 (3.3)



and
9(By,(0)) C X.

Let II,(,) denote the orthogonal projection of R™ onto the tangent space on g(R™)
at g(v). For x € B, /2(0), 7 < ro/2 and any orthonormal basis ei,...e,, of R™ we
have by the above discussion

”Hg(w) + Hg(w-{-rel) H

g(x) —g(z + Té1)> ‘

r

+c§: (Ug(z) — id) (g(f” +3@ +é;-) —g(@+rér) )

T — (fetra o)

+ sz: (Mg (+rey) — i) <9($ +5(@ ;L &) —g(z) >
=2

lg(z) — g(z +7é1)|?

< CRyp(g(x), g(z +re1))

i r r
CY R - i), -t — _
+ 1:22 wlg(r+ 2(61+€ )9 +e1) lg(x + 5(é1 + &) — g(w +ré1)]?

+ CRyy(g(z +rer), g(z))

lg(z +re1) — g(x)]?

T
lg(x + 5(€1 + &) — g(x 4 7é1)|?

+CY Ruylgla+ gler +ei) gl +e1) ™!

i=2
Using that due to the Lipschitz bound on f we have that |g(xz) — g(y)| < 2|z — y|, we
deduce

||Hg(oc) - Hg(m+re1) ”

q
— < CRyp(g(x), g(x + re1)) ™

m r B
+ C’; Rip(g(x + 5(61 +e;),9(x+er)) 1
+ CRyy(9(x +rer),g(x) ™1
m r B
+ Og Rip(g(x + 5 (ex + 1), g(a + 1)) .
To get rid of the dependence on a special orthonormal basis, we consider the space of
orthonormal matrices O(m) as a m’ := ™7=1) dimensional submanifold of R(m x m)
and the fact that for a function f € L'(S™~1,R) we have

1 m’ - w)dH™ (w
omy | AW = s [ @),
AeO(m) Sm—1



This leads to

HHI 7HI+qu m m
B, /2(05R™) By /2 (0;R™)

ro/2
= / /rm_l / —”Hz_ijenqd?-[m_l(e)drd?—lm(x)
B,y /2(0;R™) 0 gm—1 vl
ro/2
:C(m) / /Tm—1 / ||Ha: _|1;U[T;TA1quH"LI(A)de(w)
By /2(0;R™) 0 O(m)
ro0/2
<C- / /r"‘*l / (Rtp(g(x),g(x+rA1))q
B, /2(0;R™) 0 O(m)

3R (on+ 5+ 40).atos a0)
+ Rip(g(z +7A1), g(x)) 71

- i Rip(9(x + 541+ 4) gla + A1>)q> aH (A)drdH" (@)

7‘0/2

<C / //(Rtp(g(x)yg(ﬂfﬂ”e))_q

BTO/Z(O;R"L) 0 §gm-1
—q

+ (m = )Ry (9w +272re), g(a))
+ Rip(g(a + re), g(z)) "
+(m —1)Ry, (g (z+27"?re), g(x)) _q> dH™ " (e)drdH™ (z)
< CE,(X).
Together with the estimate
17 (@) = £ W)l < ClMg(a) = My

this proves hat ¥ is a W2~ 4% submanifold if ¢,(X) is finite.

Do get the other implication, we use that if ¥ is a compact W?2~1/9¢ manifold there
is an ro > 0 such that for all 2o in X there is a function f € W?2~1/¢4(R™ R"~™) with
£(0) = 0 such that

1l <1



and an A € SO(n) such that the function g(z) := (f(x), x) satisfies
A(g(Byy/2(0;R™))) + x9 C X
For fixed zg € ¥ we then use
g2y — Lyl < I1f/(2) = £/ W),

and
lg(x) —g(y)| = |z —y|
to get

lg(z +w) — g(z)[*
By /2(0) Bry/2(0)

m,., q
<C / / /' a9 AT i )i ()

|w]?
70/2(0 r0/2

<c | / / My (§'@ 4 70) = 9O g )t 2

|wl

By /2(0) Bry/2(0

<cC / / /' ‘”T'Z’I IO G apm (w)dpm (z).

By /2(0) By /2(0) 0

Substituting @w = 7w this expression can be estimated as in the case of curves by

I(¢'(z + w) — g' ()|
w4

C(ro)

Brg/2(0) Bry/2(0)

AH" ()R (@) < OO 3y o,

Let dy, denote the geodesic distance ¥ and B, (z; %) denote the geodesic ball of radius
r in Y. Then the above calculation combined with the fact that the gradient of f is
bounded leads to

/ E%fdﬂm@n#%m

g x,y)4
Brg/2(®0,%) ves
0/2 dx (z,y)<

My () (9(z +w) — g(2)|
l9(z + w) — g(z)[?

<

dH™ (w)dH™ (z)

Bro/Z(O) Br0/2(0)

for all xg € X.



Since ¥ is compact an easy covering argument then gives

il Wd%(y)?—lm(x) <0

Yy, cED
dsy(z,y)<rg/4

Since T is an embedded C! manifold we furthermore have that

and hence we finally get

qu(E) =

e LMl
W= mf{dg(x,y) cx,y € Xyds(x,y) >ro/dy >0
_ @
Rtp(xay)q Y

S zeX,dx (z,y)<ro/4

1
+ ——dH™ (Y H™ (x
/ / Rtp(mvy)q ) )
Y zeX,ds(z,y)>ro/4

1 1
< ——dH™(Y)H™ () + —H™(X) < 0.
<[] mt e e e)
Y zeX,ds(z,y)<ro/4

This finishes the proof of the theorem.
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